JP2014214290A - Carbon black, and electrode for battery using the same - Google Patents

Carbon black, and electrode for battery using the same Download PDF

Info

Publication number
JP2014214290A
JP2014214290A JP2013095119A JP2013095119A JP2014214290A JP 2014214290 A JP2014214290 A JP 2014214290A JP 2013095119 A JP2013095119 A JP 2013095119A JP 2013095119 A JP2013095119 A JP 2013095119A JP 2014214290 A JP2014214290 A JP 2014214290A
Authority
JP
Japan
Prior art keywords
carbon black
specific surface
surface area
battery
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013095119A
Other languages
Japanese (ja)
Other versions
JP6207219B2 (en
Inventor
守 山比羅
Mamoru Yamahira
守 山比羅
拓志 坂下
Takushi Sakashita
拓志 坂下
横田 博
Hiroshi Yokota
博 横田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP2013095119A priority Critical patent/JP6207219B2/en
Publication of JP2014214290A publication Critical patent/JP2014214290A/en
Application granted granted Critical
Publication of JP6207219B2 publication Critical patent/JP6207219B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PROBLEM TO BE SOLVED: To provide carbon black having a high specific surface, high crystallinity, and low aggregability.SOLUTION: A carbon black has a specific surface of 300-1,100 m/g, a crystal layer thickness (Lc) of 25-100Å, and a maximum diameter of aggregating particles of not greater than 20 μm. A bulk density of the carbon black is preferably 0.010-0.030 g/cm. A degree of dispersion of the carbon black by a fineness gage defined in JIS K 5600-2-5 is preferably not greater than 20 μm. An electrode for a battery is manufactured using the carbon black.

Description

本発明は、カーボンブラックに関する。   The present invention relates to carbon black.

近年、リチウムイオン二次電池や燃料電池などでカーボンブラックが用いられることが多くなっている。具体的には、リチウムイオン二次電池は正極および負極の導電剤として、燃料電池では触媒の担体として利用される。リチウムイオン二次電池の一般的な構造は、アルミニウム箔に正極活物質と導電剤の溶液を塗工した正極電極と、銅箔に炭素材料などの溶液を塗工した負極電極の間にイオンの移動が可能な多孔質の絶縁フィルムを挟み、全体を電解液で満たすことで構成される。導電剤として用いられるカーボンブラックはその目的(正極活物質の導電性向上)の為、高比表面積、高結晶かつ高分散であることが要求される。燃料電池のセル構造は、ガス流路を施したセパレーターの間にガス拡散層、触媒層、電解質膜を挟んだ構造となっている。この触媒層は触媒金属粒子(白金を用いることが多い。)が担持されたカーボンブラックで構成されており、触媒金属粒子はカーボンブラック表面に高分散で担持されている。ここで、担持とは、カーボンブラック表面に別の粒子が化学結合又は物理結合により付着した状態のことである。水素、酸素等の原料ガスは触媒金属粒子と接触して活性化され水を生成するため、触媒層の触媒金属粒子は高分散で担持されている方が、反応効率が高い。逆に、触媒金属粒子がカーボンブラックに低分散で担持される、すなわち凝集して担持されていると、原料ガスと触媒金属粒子の接触面積が小さくなり、反応効率が低下してしまう。   In recent years, carbon black is often used in lithium ion secondary batteries and fuel cells. Specifically, a lithium ion secondary battery is used as a conductive agent for a positive electrode and a negative electrode, and as a catalyst carrier in a fuel cell. The general structure of a lithium ion secondary battery is that an ion is interposed between a positive electrode in which a positive electrode active material and a conductive agent solution are coated on an aluminum foil, and a negative electrode in which a solution such as a carbon material is coated on a copper foil. It is configured by sandwiching a movable porous insulating film and filling the whole with an electrolytic solution. Carbon black used as a conductive agent is required to have a high specific surface area, high crystallinity, and high dispersion for its purpose (improvement of conductivity of the positive electrode active material). The cell structure of a fuel cell has a structure in which a gas diffusion layer, a catalyst layer, and an electrolyte membrane are sandwiched between separators provided with gas flow paths. The catalyst layer is composed of carbon black on which catalyst metal particles (often platinum is used) are supported, and the catalyst metal particles are supported on the carbon black surface in a highly dispersed manner. Here, the term “supported” refers to a state in which another particle is attached to the carbon black surface by a chemical bond or a physical bond. Since the source gas such as hydrogen and oxygen is activated by contact with the catalyst metal particles to generate water, the reaction efficiency is higher when the catalyst metal particles in the catalyst layer are supported in a highly dispersed state. On the contrary, when the catalyst metal particles are supported on the carbon black with low dispersion, that is, the catalyst metal particles are aggregated and supported, the contact area between the raw material gas and the catalyst metal particles is reduced, and the reaction efficiency is lowered.

前述の為、カーボンブラックは高比表面積のものが好ましい。当初はファーネスブラックが使用されていたが、ファーネスブラックは結晶性が低く、また原料由来の不純物、例えば硫黄、塩素、カリウム、鉛、ナトリウム、カルシウムなどが数10ppm〜数%オーダーで含まれている場合が多く、これらの不純物は電池性能の低下の原因となっていた。   For the above reasons, carbon black preferably has a high specific surface area. Although furnace black was initially used, furnace black has low crystallinity and contains impurities derived from raw materials, such as sulfur, chlorine, potassium, lead, sodium, and calcium, on the order of several tens of ppm to several percent. In many cases, these impurities have caused a decrease in battery performance.

そこで、ファーネスブラックよりも格段に不純物の少ないアセチレンブラックを用いることが考えられるが、通常のアセチレンブラックの比表面積は30〜200m/gであり、高比表面積のファーネスブラック等に比べると担持面積が小さく、触媒金属粒子が凝集して担持され、高分散の状態を担持することができない。したがって、アセチレンブラックの高比表面積化が必要となる。アセチレンブラックの高比表面積化は、アセチレンブラックを500℃以上の温度で空気、酸素等により表面を酸化することによって可能である(特許文献1)。上記の様にして高比表面積化したアセチレンブラックは触媒担体として使用されるが、一部にアセチレンブラック同士が凝集した凝集粒子が存在している。 Therefore, it is conceivable to use acetylene black, which has much less impurities than furnace black, but the specific surface area of normal acetylene black is 30 to 200 m 2 / g, and the supported area compared to furnace black with a high specific surface area. The catalyst metal particles are agglomerated and supported, and cannot be supported in a highly dispersed state. Therefore, it is necessary to increase the specific surface area of acetylene black. A specific surface area of acetylene black can be increased by oxidizing the surface of acetylene black with air, oxygen or the like at a temperature of 500 ° C. or higher (Patent Document 1). The acetylene black having a high specific surface area as described above is used as a catalyst carrier, but there are agglomerated particles in which acetylene blacks are partly aggregated.

近年の電池製造技術の向上に伴い、薄膜化が進んだ結果、上記の凝集粒子を低減させる要求が出てきている。凝集粒子が存在すると、正極の塗工面あるいは触媒層に凝集粒子による突起が生じ、その周辺に電荷の集中が起こり、電池寿命が短くなる原因となる。アセチレンブラックは、ストラクチャーと呼ばれる一次粒子の結合体が枝状に発達しており、凝集粒子低減にはそのストラクチャー同士の絡み合いをほぐす必要があるが、容易ではなかった。   As the battery manufacturing technology has been improved in recent years, as a result of the progress of thinning, there has been a demand for reducing the above-mentioned aggregated particles. When the aggregated particles are present, protrusions due to the aggregated particles are formed on the coating surface of the positive electrode or the catalyst layer, and charge concentration occurs in the vicinity thereof, which causes the battery life to be shortened. In acetylene black, a bonded body of primary particles called a structure is developed in a branch shape, and it is necessary to loosen the entanglement between the structures to reduce the aggregated particles, but it is not easy.

カーボンブラック凝集粒子を低減させる手法として、当該カーボンブラックとイオン交換樹脂を溶媒に混合させてスラリーとし、これを外部剪断機(ビーズミル、ボールミル、3本ロール等)及び内部剪断機(超音波ホモジナイザー、ジェットミル等)を使用した解砕が提案されている(特許文献2)。また、カーボンブラック自体を粉体のまま各種の粉砕装置(ジェットミル、遊星ミル等)で解砕する手法が提案されている(特許文献3、4)。しかし、本用途で使用されるアセチレンブラックは一般のカーボンブラック以上にストラクチャーが発達しているだけでなく、高比表面積を有しているため、後処理による解砕には限界があった。   As a technique for reducing carbon black aggregated particles, the carbon black and ion exchange resin are mixed with a solvent to form a slurry, and this is made into an external shearing machine (bead mill, ball mill, three rolls, etc.) and an internal shearing machine (ultrasonic homogenizer, Crushing using a jet mill or the like has been proposed (Patent Document 2). In addition, methods have been proposed in which the carbon black itself is pulverized with various pulverization apparatuses (jet mill, planetary mill, etc.) in the form of powder (Patent Documents 3 and 4). However, acetylene black used in this application not only has a structure developed more than that of general carbon black, but also has a high specific surface area, so that there is a limit to crushing by post-treatment.

特開昭61−66759号公報JP-A-61-66759 特開2005−216661号公報JP 2005-216661 A 特開2005−41967号公報JP-A-2005-41967 特開2006−274189号公報JP 2006-274189 A

本発明の目的は、高比表面積、高結晶かつ低凝集性のカーボンブラックを提供することである.   An object of the present invention is to provide a carbon black having a high specific surface area, high crystallinity, and low agglomeration.

本発明は、上記の課題を解決するために、以下の手段を採用する。
(1)比表面積が300〜1100m/g、結晶層厚み(Lc)が25〜100Å、かつ凝集粒子の最大径が20μm以下であることを特徴とするカーボンブラック。
(2)かさ密度が0.010〜0.030g/cmであることを特徴とする前記(1)に記載のカーボンブラック。
(3)JIS K 5600−2−5に規定されるツブゲージによる分散度が20μm以下であることを特徴とする前記(1)又は(2)に記載のカーボンブラック。
(4)前記(1)から(3)のいずれか一項に記載のカーボンブラックを用いた電池用電極。
The present invention employs the following means in order to solve the above problems.
(1) Carbon black having a specific surface area of 300 to 1100 m 2 / g, a crystal layer thickness (Lc) of 25 to 100 mm, and a maximum diameter of aggregated particles of 20 μm or less.
(2) The carbon black as described in (1) above, having a bulk density of 0.010 to 0.030 g / cm 3 .
(3) The carbon black as described in (1) or (2) above, which has a dispersity of 20 μm or less by a tube gauge specified in JIS K 5600-2-5.
(4) A battery electrode using the carbon black according to any one of (1) to (3).

本発明のカーボンブラックは、高比表面積かつ高結晶であり電池材料として用いると従来よりも高性能を得ることができる。また凝集粒子が低減されている為、水やアルコール、その他の溶剤に混合した際に高分散が可能であり、また塗工時に特段の配慮無く均一な平面を得ることが出来る。従来よりも薄膜にすることが可能であり、積層数を増やすことができるので、電池性能向上につながる。
The carbon black of the present invention has a high specific surface area and a high crystal, and when used as a battery material, higher performance can be obtained than before. In addition, since aggregated particles are reduced, high dispersion is possible when mixed with water, alcohol, or other solvents, and a uniform flat surface can be obtained without special consideration during coating. Since it can be made thinner than the conventional one and the number of stacked layers can be increased, the battery performance is improved.

本発明のカーボンブラックは、比表面積が300〜1100m/gである。300m/g未満では、電極スラリーあるいは触媒の担持工程等で十分に高分散させることができず、所望の性能を得ることができない。1100m/gを超えると、前述の工程において薬液との浸せきが困難であり、所望の性能を得ることができない。また、X線回折により測定された結晶層厚み(Lc)が25〜100Åである。25Å未満では結晶性が不十分で導電性を十分に付与することができない。100Åを超えると一次粒子径が大きくなり過ぎ、高分散を維持することができなくなる。 The carbon black of the present invention has a specific surface area of 300 to 1100 m 2 / g. If it is less than 300 m < 2 > / g, it cannot fully disperse | distribute in an electrode slurry or a catalyst loading process etc., and a desired performance cannot be obtained. When it exceeds 1100 m 2 / g, it is difficult to soak in the chemical solution in the above-mentioned process, and desired performance cannot be obtained. The crystal layer thickness (Lc) measured by X-ray diffraction is 25 to 100 mm. If it is less than 25%, the crystallinity is insufficient and the conductivity cannot be sufficiently provided. If it exceeds 100 mm, the primary particle size becomes too large and high dispersion cannot be maintained.

本発明のカーボンブラックは、凝集粒子の最大径が20μm以下である。20μm以上の凝集粒子が存在すると、塗工の際に凝集粒子によって表面平滑性が保てず、凹凸部に電荷の粗密が生じ、電池特性が低下する。   In the carbon black of the present invention, the maximum diameter of the aggregated particles is 20 μm or less. When aggregated particles having a size of 20 μm or more are present, the surface smoothness cannot be maintained by the aggregated particles at the time of coating, and the density of electric charges is generated in the concavo-convex portions, resulting in deterioration of battery characteristics.

また、本発明のカーボンブラックは、好ましくはJIS K 5600−2−5に規定されるツブゲージによる分散度が20μm以下のカーボンブラックである。ツブゲージにより平均的な凝集粒子のサイズを測定できるが、20μm以下が好適である。   The carbon black of the present invention is preferably a carbon black having a dispersity of 20 μm or less by a tube gauge specified in JIS K 5600-2-5. The average agglomerated particle size can be measured with a tube gauge, but is preferably 20 μm or less.

本発明のカーボンブラックの製造方法は、その一例として、まず反応炉内で原料(アセチレン、ベンゼンなど)を不完全燃焼反応させて高比表面積を有するカーボンブラックを生成させる。この高比表面積を有するカーボンブラックに、水分を含有させた後に、空気、オゾン等の酸化性ガスを用いて酸化処理することにより製造することが出来る。   As an example of the method for producing carbon black of the present invention, a raw material (acetylene, benzene, etc.) is first subjected to incomplete combustion reaction in a reaction furnace to produce carbon black having a high specific surface area. This carbon black having a high specific surface area can be produced by containing moisture and then oxidizing it using an oxidizing gas such as air or ozone.

段落(0014)の工程で合成したカーボンブラックは、本発明のカーボンブラック原料粉であり、従来のカーボンブラックと比べ、凝集粒子が低減しているが、残存しているため、ボールミル、振動ミル、ジェットミル等を使用して凝集粒子を低減させる工程が必要である。特に、ジェットミルを用いるとより効果的に凝集粒子の低減することができる。この凝集粒子の低減工程に供する原料粉の物性の内、比表面積およびかさ密度が本発明の特許請求範囲に収まっている必要がある。比表面積が300m/g未満である場合、この処理により比表面積がさらに低くなり、十分な性能を得ることができない。比表面積が1100m/gを超えると、本工程による凝集の低減の効果が不十分となる。結晶相の厚さが25Å未満の場合、解砕により結晶相の厚さが大きく低下し、電池性能が低下する。100Åを超える場合、本工程による凝集の低減の効果が不十分となる。さらに、結晶相の厚さが25〜65Åの範囲の場合、処理後の結晶相の厚さの減少が抑えられるため望ましい。 The carbon black synthesized in the process of paragraph (0014) is the carbon black raw material powder of the present invention, and the aggregated particles are reduced as compared with the conventional carbon black, but since it remains, a ball mill, a vibration mill, A step of reducing aggregated particles using a jet mill or the like is necessary. In particular, when a jet mill is used, aggregated particles can be more effectively reduced. Of the physical properties of the raw material powder used for the process of reducing the aggregated particles, the specific surface area and bulk density must be within the scope of the claims of the present invention. When the specific surface area is less than 300 m 2 / g, the specific surface area is further lowered by this treatment, and sufficient performance cannot be obtained. When the specific surface area exceeds 1100 m 2 / g, the effect of reducing aggregation by this step becomes insufficient. When the thickness of the crystalline phase is less than 25 mm, the thickness of the crystalline phase is greatly reduced by crushing, and the battery performance is lowered. When it exceeds 100%, the effect of reducing aggregation by this step becomes insufficient. Furthermore, when the thickness of the crystal phase is in the range of 25 to 65 mm, it is preferable because a decrease in the thickness of the crystal phase after the treatment can be suppressed.

実施例1〜10、比較例1〜6
アセチレンガスと酸素ガスを混合し、カーボンブラック製造炉(炉全長5m、炉直径0.5m)の炉頂に設置されたノズルから噴霧し、アセチレンの熱分解及び燃焼反応を利用してアセチレンブラックを製造した。その後、炉下部に直結されたバグフィルターからアセチレンブラックを捕集した。捕集したアセチレンブラック500gを温度30℃、湿度50%の恒温恒湿装置で、質量が定常状態になるまで含水させた。その後、700℃に加熱された電気炉内に投入し、炉内の圧力を0.1kPaに保ったまま、空気を30L/時で導入して1時間酸化処理を行い、高比表面積、高結晶化および高分散化処理を行った。このアセチレンブラックをジェットミルで粉砕圧0.3MPaの条件で処理を行った。
Examples 1-10, Comparative Examples 1-6
Acetylene gas and oxygen gas are mixed and sprayed from a nozzle installed at the top of a carbon black production furnace (furnace total length 5 m, furnace diameter 0.5 m), and acetylene black is obtained by utilizing the thermal decomposition and combustion reaction of acetylene. Manufactured. Thereafter, acetylene black was collected from a bag filter directly connected to the lower part of the furnace. 500 g of the collected acetylene black was hydrated with a constant temperature and humidity device having a temperature of 30 ° C. and a humidity of 50% until the mass reached a steady state. After that, it was put into an electric furnace heated to 700 ° C., and while maintaining the pressure in the furnace at 0.1 kPa, air was introduced at 30 L / hour and oxidation treatment was performed for 1 hour to obtain a high specific surface area, high crystal And high dispersion treatment. This acetylene black was processed with a jet mill under the conditions of a pulverization pressure of 0.3 MPa.

アセチレンブラックの原料粉の物性、原料粉を処理して得られたアセチレンブラック処理粉の物性について、表1及び表2に示す。なお、物性としては下記の項目の物性を測定した。
(1)比表面積:JIS K 6217−2に従い測定した。
(2)かさ密度:JIS K 5101−12−2:2004に従い測定した。
(3)結晶相の厚さ:ブルカー社製X線回折装置D8ADVANCEを行い、得られたアセチレンブラックの15°〜35°のX線回折像を測定し、25°付近のピークから結晶相の厚さ(Lc)を求めた。
(4)凝集粒子径:前処理としてアセチレンブラック0.1gをヘキサメチルリン酸ナトリウム0.5%水溶液10mLに加え、超音波水槽を用い、150Wで3分間の分散処理を行った。その後、フロー式粒子形状測定装置FPIA−3000(マルバーン社製)を用いて測定をした。測定モードはLFP、カウントは定量カウント、対物レンズは10倍としてサンプルの粒子像を撮影し、それをコンピューターで解析をして粒子径を求めた。
(5)ツブゲージ分散度:前処理として、アセチレンブラックを0.1g、ジブチルフタレートを30g、遠心沈降管に入れ、ホモジナイザー(日本精機製BM−2)を用いて、2000rpmで1分間の条件で混合し、JIS K 5600−2−5に従いグラインドゲージ(50μmまたは25μm溝)でツブの粒径を測定した。
Tables 1 and 2 show the physical properties of the acetylene black raw material powder and the physical properties of the acetylene black-treated powder obtained by processing the raw material powder. In addition, the physical property of the following item was measured as a physical property.
(1) Specific surface area: Measured according to JIS K 6217-2.
(2) Bulk density: Measured according to JIS K 5101-12-2: 2004.
(3) Thickness of the crystal phase: An X-ray diffraction apparatus D8ADVANCE manufactured by Bruker, Inc. was measured, and an X-ray diffraction image of 15 ° to 35 ° of the obtained acetylene black was measured. (Lc) was determined.
(4) Aggregated particle size: As a pretreatment, 0.1 g of acetylene black was added to 10 mL of a 0.5% aqueous solution of sodium hexamethylphosphate, and a dispersion treatment was performed at 150 W for 3 minutes using an ultrasonic water bath. Then, it measured using the flow type particle shape measuring apparatus FPIA-3000 (made by Malvern). The measurement mode was LFP, the count was a quantitative count, the objective lens was 10 times, and a particle image of the sample was taken and analyzed by a computer to determine the particle diameter.
(5) Tub gauge dispersity: As a pretreatment, 0.1 g of acetylene black and 30 g of dibutyl phthalate were put in a centrifugal sedimentation tube, and mixed under a condition of 2000 rpm for 1 minute using a homogenizer (BM-2 manufactured by Nippon Seiki). Then, according to JIS K 5600-2-5, the particle size of the tube was measured with a grind gauge (50 μm or 25 μm groove).

Figure 2014214290
Figure 2014214290

Figure 2014214290
Figure 2014214290

表1から、本発明の実施例により得られたアセチレンブラックは、比表面積が高く、結晶性が高く、かつ凝集粒子径が小さく分散性に優れている。特に、比表面積が300〜800m/gかつ結晶相の厚さが25〜65Åのアセチレンブラックを原料とすることで処理後の比表面積および結晶相の厚さを維持しながら凝集粒子粒を小さくし、分散性を良くすることができる。 From Table 1, the acetylene black obtained by the Example of this invention has a high specific surface area, high crystallinity, a small aggregated particle diameter, and excellent dispersibility. In particular, by using acetylene black having a specific surface area of 300 to 800 m 2 / g and a crystal phase thickness of 25 to 65 mm as a raw material, the agglomerated particles can be reduced while maintaining the specific surface area and crystal phase thickness after treatment. And dispersibility can be improved.

実施例8〜10、比較例6のアセチレンブラックを用いて電極を作製し、その表面に認められた凝集塊(塗工面に生じた凸部分)の個数を比較した。電極の作成方法を以下に示す。正極材としてリチウム酸コバルトを、結着剤としてポリフッ化ビニリデン(呉羽化学製、KFポリマー溶液)を用いた。これに分散溶媒としてN−メチルピロリドン(Aldrich製)を添加、混練した正極合剤(スラリー)を作製した。バーコーターを用いて当該正極合剤スラリーをアルミニウム箔に20μmの厚みとなるように塗布後、乾燥して電極を作製した。   Electrodes were produced using the acetylene blacks of Examples 8 to 10 and Comparative Example 6, and the number of aggregates (convex portions generated on the coated surface) recognized on the surface was compared. The method for producing the electrode is shown below. Cobalt lithium oxide was used as the positive electrode material, and polyvinylidene fluoride (Kufa Chemical Co., Ltd., KF polymer solution) was used as the binder. A positive electrode mixture (slurry) was prepared by adding and kneading N-methylpyrrolidone (manufactured by Aldrich) as a dispersion solvent. The positive electrode mixture slurry was applied to an aluminum foil to a thickness of 20 μm using a bar coater, and then dried to produce an electrode.

作製した電極の表面平滑性は、SEMを用いて100μm角の視野を各10視野観察して塗工面に生じた凸の個数により評価した。その結果、実施例8は平均0.5個、実施例9は平均0.7個、実施例10は平均1.3個に対して、比較例6は平均15個であった。
なお、比較例1は比表面積が低すぎる為、比較例3は結晶相厚みが薄過ぎる為、電極に用いるには不適であった。
The surface smoothness of the fabricated electrode was evaluated by observing 10 fields of 100 μm square using each SEM and evaluating the number of projections formed on the coated surface. As a result, Example 8 had an average of 0.5, Example 9 had an average of 0.7, Example 10 had an average of 1.3, and Comparative Example 6 had an average of 15.
Since Comparative Example 1 has a specific surface area that is too low and Comparative Example 3 has an excessively thin crystal phase thickness, it is unsuitable for use in an electrode.

本発明のカーボンブラックは、電池材料あるいは触媒担体として利用することができる。
The carbon black of the present invention can be used as a battery material or a catalyst carrier.

Claims (4)

比表面積が300〜1100m/g、結晶層厚み(Lc)が25〜100Å、かつ凝集粒子の最大径が20μm以下であることを特徴とするカーボンブラック。 A carbon black having a specific surface area of 300 to 1100 m 2 / g, a crystal layer thickness (Lc) of 25 to 100 mm, and a maximum diameter of aggregated particles of 20 μm or less. かさ密度が0.010〜0.030g/cmであることを特徴とする請求項1に記載のカーボンブラック。 The carbon black according to claim 1, wherein the bulk density is 0.010 to 0.030 g / cm 3 . JIS K 5600−2−5に規定されるツブゲージによる分散度が20μm以下であることを特徴とする請求項1又は2に記載のカーボンブラック。 The carbon black according to claim 1 or 2, wherein the degree of dispersion by a tube gauge specified in JIS K 5600-2-5 is 20 µm or less. 請求項1から3のいずれか一項に記載のカーボンブラックを用いた電池用電極。
The battery electrode using the carbon black as described in any one of Claim 1 to 3.
JP2013095119A 2013-04-30 2013-04-30 Carbon black and battery electrode using the same Active JP6207219B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013095119A JP6207219B2 (en) 2013-04-30 2013-04-30 Carbon black and battery electrode using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013095119A JP6207219B2 (en) 2013-04-30 2013-04-30 Carbon black and battery electrode using the same

Publications (2)

Publication Number Publication Date
JP2014214290A true JP2014214290A (en) 2014-11-17
JP6207219B2 JP6207219B2 (en) 2017-10-04

Family

ID=51940371

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013095119A Active JP6207219B2 (en) 2013-04-30 2013-04-30 Carbon black and battery electrode using the same

Country Status (1)

Country Link
JP (1) JP6207219B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170063271A (en) * 2015-11-30 2017-06-08 주식회사 엘지화학 A lithium ion secondary battery with enhanced high speed charging performance
WO2018221632A1 (en) * 2017-06-01 2018-12-06 ライオン・スペシャリティ・ケミカルズ株式会社 Carbon black for electrode and electrode slurry
WO2022118920A1 (en) * 2020-12-04 2022-06-09 デンカ株式会社 Carbon black, slurry, and lithium-ion secondary battery

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04225074A (en) * 1990-12-27 1992-08-14 Mitsubishi Kasei Corp Production of carbon black increased in graphitization degree
JPH05234599A (en) * 1992-02-21 1993-09-10 Tanaka Kikinzoku Kogyo Kk Gas-diffusion electrode for fuel cell and its manufacture
JP2004288388A (en) * 2003-03-19 2004-10-14 Aisin Seiki Co Ltd Electrode for fuel cell, its manufacturing method, and fuel cell
JP2005118671A (en) * 2003-10-16 2005-05-12 Catalysts & Chem Ind Co Ltd Fine particle for electrode catalyst, its dispersion liquid and method for preparing the dispersion liquid
WO2005120703A1 (en) * 2004-06-10 2005-12-22 Sumitomo Electric Industries, Ltd. Metal catalyst and method for preparation thereof
JP2007112660A (en) * 2005-10-20 2007-05-10 Denki Kagaku Kogyo Kk Acetylene black, its production method and catalyst for fuel battery
JP2013209504A (en) * 2012-03-30 2013-10-10 Denki Kagaku Kogyo Kk Acetylene black and catalyst for fuel cell using the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04225074A (en) * 1990-12-27 1992-08-14 Mitsubishi Kasei Corp Production of carbon black increased in graphitization degree
JPH05234599A (en) * 1992-02-21 1993-09-10 Tanaka Kikinzoku Kogyo Kk Gas-diffusion electrode for fuel cell and its manufacture
JP2004288388A (en) * 2003-03-19 2004-10-14 Aisin Seiki Co Ltd Electrode for fuel cell, its manufacturing method, and fuel cell
JP2005118671A (en) * 2003-10-16 2005-05-12 Catalysts & Chem Ind Co Ltd Fine particle for electrode catalyst, its dispersion liquid and method for preparing the dispersion liquid
WO2005120703A1 (en) * 2004-06-10 2005-12-22 Sumitomo Electric Industries, Ltd. Metal catalyst and method for preparation thereof
JP2007112660A (en) * 2005-10-20 2007-05-10 Denki Kagaku Kogyo Kk Acetylene black, its production method and catalyst for fuel battery
JP2013209504A (en) * 2012-03-30 2013-10-10 Denki Kagaku Kogyo Kk Acetylene black and catalyst for fuel cell using the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170063271A (en) * 2015-11-30 2017-06-08 주식회사 엘지화학 A lithium ion secondary battery with enhanced high speed charging performance
KR102171853B1 (en) 2015-11-30 2020-10-29 주식회사 엘지화학 A lithium ion secondary battery with enhanced high speed charging performance
WO2018221632A1 (en) * 2017-06-01 2018-12-06 ライオン・スペシャリティ・ケミカルズ株式会社 Carbon black for electrode and electrode slurry
WO2022118920A1 (en) * 2020-12-04 2022-06-09 デンカ株式会社 Carbon black, slurry, and lithium-ion secondary battery
CN116457428A (en) * 2020-12-04 2023-07-18 电化株式会社 Carbon black, slurry and lithium ion secondary battery

Also Published As

Publication number Publication date
JP6207219B2 (en) 2017-10-04

Similar Documents

Publication Publication Date Title
Xu et al. Nitrogen‐doped holey graphene as an anode for lithium‐ion batteries with high volumetric energy density and long cycle life
Qi et al. Suitable thickness of carbon coating layers for silicon anode
US10793439B2 (en) Fibrous carbon nanohorn aggregate and method for producing the same
TWI709527B (en) Graphene dispersion, method for producing electrode paste, and method for producing electrode
Gao et al. Hierarchical WO 3@ SnO 2 core–shell nanowire arrays on carbon cloth: a new class of anode for high-performance lithium-ion batteries
CN107148692B (en) Conductive composition for electrode, electrode using same, and lithium ion secondary battery
JP6642447B2 (en) Carbon nanotube, method for producing the same, and lithium ion secondary battery using carbon nanotube
JP2021514917A (en) Silicon-carbon nanomaterials, their manufacturing methods, and their use
EP3512012B1 (en) Conductive composition for electrodes, and electrode and battery using same
WO2018207769A1 (en) Modified activated carbon and method for producing same
KR101975033B1 (en) Graphene having pores made by irregular and random, and Manufacturing method of the same
JP2015037057A (en) Composite active material for lithium secondary battery and production method therefor
CN109665523A (en) A kind of preparation method and supercapacitor of graphene composite stone oil coke matrix activated carbon
Zhang et al. Synthesis of Fe 2 O 3–Ni (OH) 2/graphene nanocomposite by one-step hydrothermal method for high-performance supercapacitor
JP6207219B2 (en) Carbon black and battery electrode using the same
Rafique et al. Fabrication of novel perovskite oxide BaxMn1− xO3 electrode for supercapacitors
JP2012006826A (en) Massive graphene oxide, massive graphene, and method of producing these
Zhu et al. A facial solvothermal reduction route for the production of Li4Ti5O12/graphene composites with enhanced electrochemical performance
KR20170071336A (en) Cathode for lithium air battery, preparation method thereof, and lithium air battery comprising the same
Fu et al. Facile synthesis of N-doped carbon-coated Li 4 Ti 5 O 12 anode for application in high-rate lithium ion batteries
Zhang et al. Synthesis of porous Si/C by pyrolyzing toluene as anode in lithium-ion batteries with excellent lithium storage performance
CN115954452A (en) Olivine type positive electrode material, preparation method and application thereof, and lithium ion battery
JP2008181949A (en) Electrode material for electric double-layer capacitor and the electric double-layer capacitor
Cao et al. Hydrogen bonding-assisted synthesis of silica/oxidized mesocarbon microbeads encapsulated in amorphous carbon as stable anode for optimized/enhanced lithium storage
Liu et al. Investigation of N-doped carbon-coated lithium zinc titanate using chitin as a carbon source for lithium-ion batteries

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160425

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170307

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20170508

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170509

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170627

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170818

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170829

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170905

R150 Certificate of patent or registration of utility model

Ref document number: 6207219

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250