JP2014211944A - Electrode plate for nonaqueous secondary battery and nonaqueous secondary battery using the same - Google Patents

Electrode plate for nonaqueous secondary battery and nonaqueous secondary battery using the same Download PDF

Info

Publication number
JP2014211944A
JP2014211944A JP2011185503A JP2011185503A JP2014211944A JP 2014211944 A JP2014211944 A JP 2014211944A JP 2011185503 A JP2011185503 A JP 2011185503A JP 2011185503 A JP2011185503 A JP 2011185503A JP 2014211944 A JP2014211944 A JP 2014211944A
Authority
JP
Japan
Prior art keywords
mixture layer
negative electrode
electrode plate
lithium
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011185503A
Other languages
Japanese (ja)
Inventor
元貴 衣川
Motoki Kinugawa
元貴 衣川
智文 柳
Tomofumi Yanagi
智文 柳
渡邉 耕三
Kozo Watanabe
耕三 渡邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2011185503A priority Critical patent/JP2014211944A/en
Priority to PCT/JP2012/005442 priority patent/WO2013031213A1/en
Publication of JP2014211944A publication Critical patent/JP2014211944A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide an electrode plate for a nonaqueous secondary battery and a nonaqueous secondary battery, which improve lithium acceptability, prevent charge concentration at a mixture layer end, and suppress lithium deposition at the mixture layer end.SOLUTION: There is provided a nonaqueous secondary battery with excellent cycle characteristics, in which lithium deposition is suppressed by making the thickness of an end of a negative electrode mixture layer 13 of an electrode plate for the nonaqueous secondary battery thinner than that of a part other than the end of the negative electrode mixture layer 13, and covering a surface of the end of the mixture layer 13 with a surface layer 14 having high reactivity with lithium and suppressing a lithium deposition.

Description

本発明は、リチウムイオン電池に代表される非水系二次電池用電極板およびこれを用いた非水系二次電池に関するものである。   The present invention relates to an electrode plate for a non-aqueous secondary battery represented by a lithium ion battery and a non-aqueous secondary battery using the same.

近年、電気自動車用の電源として利用が広がりつつあるリチウムイオン二次電池は、負極板にリチウムの吸蔵・放出が可能な炭素質材料等を用い、正極板にLiCoO2等の遷移金属とリチウム含有複合酸化物を正極活物質として用いており、これによって、高電位で高放電容量の二次電池を実現しているが、近年の電気自動車用電源の需要増加に伴ってさらなる高容量化、長寿命化、高安全性が望まれている。 In recent years, lithium ion secondary batteries, which are increasingly used as power sources for electric vehicles, use a carbonaceous material capable of occluding and releasing lithium in the negative electrode plate, and contain a transition metal such as LiCoO 2 and lithium in the positive electrode plate The composite oxide is used as the positive electrode active material, and as a result, a secondary battery with a high potential and a high discharge capacity is realized. Life expectancy and high safety are desired.

ここで、高容量化、長寿命化、高安全性電池を実現するための電極板としては、正極板および負極板ともに各々の構成材料を塗料化した電極合剤塗料を集電体の上に塗布する方法が用いられており、さらには合剤層を複数層塗布する方法も提案されている。   Here, as an electrode plate for realizing a high capacity, long life, and high safety battery, an electrode mixture paint made by coating each constituent material on both the positive electrode plate and the negative electrode plate is placed on the current collector. The method of apply | coating is used, Furthermore, the method of apply | coating multiple layers of mixture layers is also proposed.

この際、複数層塗布する表面層の材料特性によって、一層の長寿命化、高安全性が可能となる。   At this time, a longer life and higher safety can be achieved depending on the material properties of the surface layer to be applied.

一方で、上記のように集電体に合剤層を塗布する際に、合剤層の端部がペーストの表面張力により盛上りが形成されるため、盛り上がり端部の位置を規定することで、内部短絡を防止する方法が提案されている。(例えば、特許文献1参照)。   On the other hand, when the mixture layer is applied to the current collector as described above, the end portion of the mixture layer is swelled by the surface tension of the paste. A method for preventing an internal short circuit has been proposed. (For example, refer to Patent Document 1).

特開2010−262773号公報JP 2010-262773 A

しかしながら、上述した特許文献1に示される従来技術では、正極板と負極板との距離は、合剤層端部が盛上っている分だけ、合剤層の端部に対応する部分において近くなる。その結果、合剤層の端部に電荷が集中しリチウムが析出することでサイクル特性低下の課題が発生するものとなっていた。   However, in the prior art disclosed in Patent Document 1 described above, the distance between the positive electrode plate and the negative electrode plate is close to the portion corresponding to the end portion of the mixture layer, as much as the end portion of the mixture layer is raised. Become. As a result, charge concentrates on the end portion of the mixture layer and lithium is deposited, which causes a problem of deterioration in cycle characteristics.

本発明は前記従来の課題を解決するもので、合剤層の端部の厚みを合剤層の端部以外の厚みよりも薄くするとともに、合剤層の端部表面をリチウムの反応性が高くリチウム析出を抑制する表面層で覆うことで、リチウム受入性を向上させ、合剤層端部の電荷集中を防ぐことができ、合剤層端部でのリチウム析出を抑制する非水系二次電池用電極板および非水系二次電池を提供することを目的としている。   The present invention solves the above-mentioned conventional problems, and the thickness of the end portion of the mixture layer is made thinner than the thickness of the mixture layer other than the end portion, and the surface of the end portion of the mixture layer has lithium reactivity. Non-aqueous secondary that suppresses lithium deposition at the end of the mixture layer by improving the lithium acceptability and preventing charge concentration at the end of the mixture layer by covering it with a surface layer that highly suppresses lithium precipitation An object of the present invention is to provide a battery electrode plate and a non-aqueous secondary battery.

上記目的を達成するために本発明の非水系二次電池用電極板およびこれを用いた非水系二次電池は、合剤層の端部の厚みを合剤層の端部以外の厚みよりも薄くするとともに、合剤層の端部表面をリチウムの反応性が高くリチウム析出を抑制する表面層で覆ったことを特徴とする。   In order to achieve the above object, the electrode plate for a non-aqueous secondary battery and the non-aqueous secondary battery using the same according to the present invention have a thickness of the end portion of the mixture layer smaller than a thickness other than the end portion of the mixture layer. The surface of the mixture layer is covered with a surface layer that is highly reactive to lithium and suppresses lithium deposition.

本発明によれば、合剤層の端部でのリチウム析出を抑制し、充放電サイクル特性に優れ
た非水系二次電池を得ることができる。
ADVANTAGE OF THE INVENTION According to this invention, the lithium precipitation in the edge part of a mixture layer can be suppressed, and the non-aqueous secondary battery excellent in the charge / discharge cycle characteristic can be obtained.

本発明の第1の実施の形態における非水系二次電池の一部切欠斜視図1 is a partially cutaway perspective view of a nonaqueous secondary battery according to a first embodiment of the present invention. 本発明の第1の実施の形態における非水系二次電池用電極板の断面の模式図The schematic diagram of the cross section of the electrode plate for non-aqueous secondary batteries in the 1st Embodiment of this invention 本発明の一実施の形態における非水系二次電池用電極板の表面の模式図The schematic diagram of the surface of the electrode plate for non-aqueous secondary batteries in one embodiment of the present invention 本発明の第2の実施の形態における非水系二次電池用電極板の断面の模式図The schematic diagram of the cross section of the electrode plate for non-aqueous secondary batteries in the 2nd Embodiment of this invention 本発明の第3の実施の形態における非水系二次電池用電極板の断面の模式図The schematic diagram of the cross section of the electrode plate for non-aqueous secondary batteries in the 3rd Embodiment of this invention 本発明の別の実施の形態における非水系二次電池用電極板の表面の模式図The schematic diagram of the surface of the electrode plate for non-aqueous secondary batteries in another embodiment of the present invention 比較例における非水系二次電池用電極板の断面の模式図Schematic diagram of cross section of electrode plate for non-aqueous secondary battery in comparative example

本発明の第1の発明は、合剤層の端部の厚みを合剤層の端部以外の厚みよりも薄くするとともに、合剤層の端部表面をリチウムの反応性が高くリチウム析出を抑制する表面層で覆うことにより、合剤層の端部のリチウム反応性を平滑化させ、合剤層の端部での電荷集中を防ぐことでリチウム析出を抑制でき、サイクル特性を向上させることができる。   According to the first aspect of the present invention, the thickness of the end portion of the mixture layer is made thinner than the thickness other than the end portion of the mixture layer, and the surface of the end portion of the mixture layer is lithium-reactive and lithium is deposited. By covering with a suppressing surface layer, the lithium reactivity at the end of the mixture layer can be smoothed, and lithium precipitation can be suppressed by preventing charge concentration at the end of the mixture layer, thereby improving cycle characteristics. Can do.

本発明の第2の発明は、前記合剤層の端部の厚みは、前記合剤層の端部に向かうにつれて薄くすることで、合剤層の端部表面を表面層で覆うことにより、合剤層の端部のリチウム反応性を平滑化させ、合剤層の端部での電荷集中を防ぐことでリチウム析出を抑制でき、サイクル特性を向上させることができる。   According to a second aspect of the present invention, the thickness of the end portion of the mixture layer is reduced as it goes toward the end portion of the mixture layer, thereby covering the end portion surface of the mixture layer with a surface layer. By smoothing the lithium reactivity at the end of the mixture layer and preventing charge concentration at the end of the mixture layer, lithium deposition can be suppressed and cycle characteristics can be improved.

本発明の第3の発明は、合剤層の端部表面を覆う表面層の厚みを合剤層の端部表面以外を覆う表面層の厚み以上にすることで、合剤層の端部表面を表面層で覆うことにより、合剤層の端部のリチウム反応性を平滑化させ、合剤層の端部での電荷集中を防ぐことでリチウム析出を抑制でき、サイクル特性を向上させることができる。   3rd invention of this invention makes the thickness of the surface layer which covers the edge part surface of a mixture layer more than the thickness of the surface layer which covers other than the edge part surface of a mixture layer, The edge part surface of a mixture layer By covering the surface with a surface layer, the lithium reactivity at the end of the mixture layer can be smoothed, and lithium precipitation can be suppressed by preventing charge concentration at the end of the mixture layer, thereby improving cycle characteristics. it can.

本発明の第4の発明は、表面層の厚みを合剤層の端部に向かうにつれて徐々に厚くすることで、合剤層の端部表面を表面層で覆うことにより、合剤層の端部のリチウム反応性を平滑化させ、合剤層の端部での電荷集中を防ぐことでリチウム析出を抑制でき、サイクル特性を向上させることができる。   According to a fourth aspect of the present invention, by gradually increasing the thickness of the surface layer toward the end portion of the mixture layer, the end surface of the mixture layer is covered with the surface layer to thereby end the mixture layer. By smoothing the lithium reactivity of the part and preventing charge concentration at the end of the mixture layer, lithium precipitation can be suppressed and cycle characteristics can be improved.

本発明の第5の発明は、表面層が合剤層の端部表面および集電体を覆うことによって、充放電時の電極板の合剤層端部の脱落を防止し、合剤層端部でのリチウム析出を抑制することができる。   According to a fifth aspect of the present invention, the surface layer covers the end surface of the mixture layer and the current collector, thereby preventing the end of the mixture layer end of the electrode plate during charging and discharging. Lithium precipitation at the part can be suppressed.

本発明の第6の発明は、電極板長手方向の合剤層の両端部もしくは両端部の合剤層のどちらか一方の端部を表面層で覆うことで、合剤層の端部のリチウム反応性を平滑化させ、合剤層の端部での電荷集中を防ぐことでリチウム析出を抑制でき、サイクル特性を向上させることができる。   According to a sixth aspect of the present invention, the end portion of the mixture layer is covered with a surface layer by covering either one end of the mixture layer in the longitudinal direction of the electrode plate or the other end of the mixture layer with a surface layer. By smoothing the reactivity and preventing charge concentration at the end of the mixture layer, lithium deposition can be suppressed and cycle characteristics can be improved.

本発明の第7の発明は、電極板幅方向の合剤層の両端部もしくは両端部の合剤層のどちらか一方の端部を表面層で覆うことで、合剤層の端部のリチウム反応性を平滑化させ、合剤層の端部での電荷集中を防ぐことでリチウム析出を抑制でき、サイクル特性を向上させることができる。   The seventh invention of the present invention is to cover either one of the both end portions of the mixture layer in the electrode plate width direction or the end portion of the mixture layer with a surface layer, so that the lithium at the end portion of the mixture layer By smoothing the reactivity and preventing charge concentration at the end of the mixture layer, lithium deposition can be suppressed and cycle characteristics can be improved.

本発明の第8の発明は、表面層に、リチウムニッケル酸複合酸化物などのニッケル系複合酸化物、リチウムコバルト酸複合酸化物などのコバルト系複合酸化物、コバルト酸ナノ粒子、コバルト酸窒化物、リチウムマンガン酸複合酸化物などのマンガン系複合酸化物、リチウムクロム酸複合酸化物などのクロム系複合酸化物、リチウムリン酸鉄複合酸化物な
どのリン酸鉄系複合酸化物、五酸化バナジウムなどのバナジウム系複合酸化物、グラファイト、ハードカーボン、リチウムチタン複合酸化物などのチタン系複合酸化物、酸化スズガラス、シリカ系合金組成材料および金属リチウムのいずれかを用いることによって、電極板表面でのリチウムの反応性を平滑化させ、電極群でのリチウム析出を抑制することができる。
In an eighth aspect of the present invention, the surface layer includes a nickel-based composite oxide such as lithium nickel acid composite oxide, a cobalt-based composite oxide such as lithium cobalt acid composite oxide, cobalt acid nanoparticles, and cobalt oxynitride. , Manganese complex oxides such as lithium manganate complex oxides, chromium complex oxides such as lithium chromate complex oxides, iron phosphate complex oxides such as lithium iron phosphate complex oxides, vanadium pentoxide, etc. Lithium on the electrode plate surface by using any one of vanadium-based composite oxide, titanium-based composite oxide such as graphite, hard carbon, lithium-titanium composite oxide, tin oxide glass, silica-based alloy composition material and metallic lithium This can smoothen the reactivity and suppress lithium deposition at the electrode group.

本発明の第9の発明は、少なくともリチウム含有複合酸化物よりなる正極活物質と導電材および結着材を分散媒にて混練分散した正極合剤塗料を正極集電体の上に付着させて正極合剤層を形成した正極板と少なくともリチウムを保持しうる材料よりなる負極活物質を負極集電体の上に担持した負極板との間に多孔質絶縁体を介在させ積層または渦巻状に捲回して構成した電極群を非水系電解液とともに電池ケースに封入した非水系二次電池であって、電極板に第1〜8のいずれかの発明に記載の非水系二次電池用電極板を用いたことにより、安全性と充放電サイクル特性に優れた非水系二次電池を得ることができる。   According to a ninth aspect of the present invention, a positive electrode mixture paint obtained by kneading and dispersing at least a positive electrode active material comprising a lithium-containing composite oxide, a conductive material, and a binder with a dispersion medium is adhered onto a positive electrode current collector. A porous insulator is interposed between the positive electrode plate on which the positive electrode mixture layer is formed and the negative electrode plate on which a negative electrode active material made of a material capable of holding at least lithium is supported. A non-aqueous secondary battery in which an electrode group formed by winding is enclosed in a battery case together with a non-aqueous electrolyte, and the electrode plate is a non-aqueous secondary battery electrode according to any one of the first to eighth aspects of the invention. By using the plate, a nonaqueous secondary battery excellent in safety and charge / discharge cycle characteristics can be obtained.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。
(実施の形態1)
図1は本発明における非水系二次電池の一例としての円筒形リチウムイオン二次電池11の一部切欠斜視図を示すものである。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments.
(Embodiment 1)
FIG. 1 is a partially cutaway perspective view of a cylindrical lithium ion secondary battery 11 as an example of a non-aqueous secondary battery in the present invention.

円筒形リチウムイオン二次電池11は、リチウム含有複合酸化物を正極活物質とする正極板1と、リチウムを保持しうる材料を負極活物質とする負極板2とを多孔質絶縁体3としてのセパレータを介して渦巻状に巻回して電極群4が作製される。   A cylindrical lithium ion secondary battery 11 includes a positive electrode plate 1 using a lithium-containing composite oxide as a positive electrode active material and a negative electrode plate 2 using a material capable of holding lithium as a negative electrode active material as a porous insulator 3. The electrode group 4 is produced by spirally winding the separator.

電極群4は、外装体である有底円筒形の電池ケース5の内部に絶縁板6により電池ケース5とは絶縁されて収容される一方で、電極群4の下部より導出した負極リード7が電池ケース5の底部に接続されるとともに、電極群4の上部より導出した正極リード8が封口板9に接続される。この渦巻状の電極群4を有底円筒形の電池ケース5の内部に収容し、次いでこの電池ケース5に所定量の非水溶媒からなる非水電解液を注液した後、電池ケース5の開口部にガスケット10を周縁に取り付けた封口板9を挿入し、電池ケース5の開口部を内方向に折り曲げて封口している。   The electrode group 4 is housed inside a bottomed cylindrical battery case 5 that is an exterior body, insulated from the battery case 5 by an insulating plate 6, while a negative electrode lead 7 led out from the lower part of the electrode group 4 is provided. The positive electrode lead 8 led out from the upper part of the electrode group 4 is connected to the sealing plate 9 while being connected to the bottom of the battery case 5. The spiral electrode group 4 is housed inside a bottomed cylindrical battery case 5, and then a non-aqueous electrolyte composed of a predetermined amount of a non-aqueous solvent is injected into the battery case 5. A sealing plate 9 with a gasket 10 attached to the periphery is inserted into the opening, and the opening of the battery case 5 is folded inward to seal it.

図2は本発明の一実施の形態における負極板2の断面の模式図を示すものである。さらに、図3は本発明の一実施の形態における負極板2の表面の模式図を示すものである。
負極板2は、負極集電体12の表面に、負極合剤層13を形成してなる。この際、負極合剤層13の負極板長手方向の両端部の厚みは、負極合剤層13の端部に向かうにつれて薄くなるように構成されている。ここで、負極合剤層13の端部とは、負極合剤層13を負極集電体12に塗り始めまたは塗り終わった位置から20mm以下の部分をいう。
そして、両端部表面を含む負極合剤層13の表面に、リチウムの反応性が高くリチウム析出を抑制する表面層14を均一の厚さで塗布して、負極合剤層13表面を表面層14で覆うように構成する。したがって、負極合剤層13の表層部を表面層14で塗布端部を均一に完全に覆い隠している状態を示している。そして、負極合剤層13の外周側端部近傍の負極集電体12上に、負極リード7が接合されている。
FIG. 2 shows a schematic diagram of a cross section of the negative electrode plate 2 in one embodiment of the present invention. Further, FIG. 3 shows a schematic view of the surface of the negative electrode plate 2 in one embodiment of the present invention.
The negative electrode plate 2 is formed by forming a negative electrode mixture layer 13 on the surface of the negative electrode current collector 12. At this time, the thickness of both ends of the negative electrode mixture layer 13 in the longitudinal direction of the negative electrode plate is configured to become thinner toward the end of the negative electrode mixture layer 13. Here, the end portion of the negative electrode mixture layer 13 refers to a portion of 20 mm or less from the position at which the negative electrode mixture layer 13 starts to be applied to the negative electrode current collector 12 or has been applied.
Then, a surface layer 14 that has high lithium reactivity and suppresses lithium precipitation is applied to the surface of the negative electrode mixture layer 13 including both end surfaces with a uniform thickness, so that the surface of the negative electrode mixture layer 13 is the surface layer 14. It is configured to cover with. Accordingly, the surface layer portion of the negative electrode mixture layer 13 is covered with the surface layer 14 so that the coating end portion is completely and completely covered. The negative electrode lead 7 is bonded onto the negative electrode current collector 12 in the vicinity of the outer peripheral side end of the negative electrode mixture layer 13.

負極活物質として各種天然黒鉛および人造黒鉛、シリサイドなどのシリコン系複合材料、および各種合金組成材料を用いることができる。   As the negative electrode active material, various natural graphites and artificial graphites, silicon-based composite materials such as silicide, and various alloy composition materials can be used.

負極用結着材としてはPVdFおよびその変性体をはじめ各種バインダーを用いることができるが、リチウムイオン受入れ性向上の観点から、スチレン−ブタジエン共重合体ゴム粒子(SBR)およびその変性体に、カルボキシメチルセルロース(CMC)をはじめ
とするセルロース系樹脂等を併用したり少量添加するのがより好ましいといえる。
Various binders such as PVdF and modified products thereof can be used as the binder for the negative electrode. From the viewpoint of improving lithium ion acceptability, styrene-butadiene copolymer rubber particles (SBR) and modified products thereof are added to carboxy. It can be said that it is more preferable to use a cellulose resin such as methylcellulose (CMC) or the like in combination or to add a small amount.

次に表面層14の活物質と導電剤および結着材を適切な分散媒中に入れ、プラネタリーミキサー等の分散機により混合分散して、負極合剤層13への塗布に最適な粘度に調整して混練を行い、表面層14に塗布する塗料を作製した。   Next, the active material of the surface layer 14, the conductive agent, and the binder are put in an appropriate dispersion medium, and mixed and dispersed by a dispersing machine such as a planetary mixer to obtain an optimum viscosity for application to the negative electrode mixture layer 13. Adjustment was performed and kneading was performed to prepare a coating applied to the surface layer 14.

表面層14の活物質として、リチウムチタン複合酸化物などのチタン系複合酸化物および各種合金組成材料を用いることができる。このとき、表面層14の活物質として使用する複合酸化物の粒子径が合剤層の活物質として使用する黒鉛、シリコン系複合材料、および各種合金組成材料よりも小さく、粒子表面積が大きいために負極合剤層13や負極集電体12との接触面積が増え、結着性が高くなる。
一方、表面層結着材としては負極結着材と同様にPVdFおよびその変性体をはじめ各種バインダーを用いることができるが、リチウムイオン受入れ性向上の観点から、スチレン−ブタジエン共重合体ゴム粒子(SBR)およびその変性体に、カルボキシメチルセルロース(CMC)をはじめとするセルロース系樹脂等を併用したり、少量添加するのがより好ましいといえる。
As the active material of the surface layer 14, titanium-based composite oxides such as lithium titanium composite oxide and various alloy composition materials can be used. At this time, the particle diameter of the composite oxide used as the active material of the surface layer 14 is smaller than that of graphite, silicon composite materials, and various alloy composition materials used as the active material of the mixture layer, and the particle surface area is large. The contact area with the negative electrode mixture layer 13 and the negative electrode current collector 12 increases, and the binding property increases.
On the other hand, as the surface layer binder, PVdF and its various modified binders can be used in the same manner as the negative electrode binder. From the viewpoint of improving lithium ion acceptability, styrene-butadiene copolymer rubber particles ( It can be said that it is more preferable to use a cellulose resin such as carboxymethylcellulose (CMC) in combination with SBR) and its modified product, or to add a small amount thereof.

このときの導電材としては、例えばアセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラック等のカーボンブラックやカーボンナノチューブ、VGCFなど各種グラファイトを単独、あるいは組み合わせて用いても良い。   As the conductive material at this time, for example, carbon black such as acetylene black, ketjen black, channel black, furnace black, lamp black, thermal black, and various graphites such as carbon nanotubes and VGCF may be used alone or in combination.

上記のように作製した負極合剤塗料と表面層塗料を銅箔の負極集電体12の上に負極合剤層13を塗布し、さらに負極合剤層13の表面にダイコーターにて表面層14を塗布乾燥後プレスにて所定厚みまで圧縮し、所定の負極板2を得ることができる。そして、群構成する際の捲き外側の前記合剤層の端部近傍の集電体12上に、負極リード7を接合する。   The negative electrode mixture paint and the surface layer paint produced as described above were applied on the negative electrode current collector 12 made of copper foil, and the surface layer of the negative electrode mixture layer 13 was further coated with a die coater. 14 is applied and dried, and then compressed to a predetermined thickness by a press, whereby a predetermined negative electrode plate 2 can be obtained. Then, the negative electrode lead 7 is bonded onto the current collector 12 in the vicinity of the end portion of the mixture layer on the outer side when forming the group.

正極板1については、正極活物質として、例えばコバルト酸リチウムおよびその変性体(コバルト酸リチウムにアルミニウムやマグネシウムを固溶させたものなど)、ニッケル酸リチウムおよびその変性体(一部ニッケルをコバルト置換させたものなど)、マンガン酸リチウムおよびその変性体などの複合酸化物を挙げることができる。   For the positive electrode plate 1, as the positive electrode active material, for example, lithium cobaltate and modified products thereof (such as lithium cobaltate in which aluminum or magnesium is dissolved), lithium nickelate and modified products thereof (partially nickel is substituted with cobalt) And composite oxides such as lithium manganate and modified products thereof.

このときの導電材としては、例えばアセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラック等のカーボンブラック、各種グラファイトを単独、あるいは組み合わせて用いても良い。   As the conductive material at this time, for example, carbon black such as acetylene black, ketjen black, channel black, furnace black, lamp black and thermal black, and various graphites may be used alone or in combination.

また、正極用結着材としては、例えばポリフッ化ビニリデン(PVdF)、ポリフッ化ビニリデンの変性体、ポリテトラフルオロエチレン(PTFE)、アクリレート単位を有するゴム粒子結着材などを用いることができ、この際に反応性官能基を導入したアクリレートモノマー、またはアクリレートオリゴマーを結着材中に混入させることも可能である。   As the positive electrode binder, for example, polyvinylidene fluoride (PVdF), a modified polyvinylidene fluoride, polytetrafluoroethylene (PTFE), a rubber particle binder having an acrylate unit, and the like can be used. In this case, an acrylate monomer or an acrylate oligomer into which a reactive functional group is introduced may be mixed in the binder.

非水電解液については、電解質塩としてLiPFおよびLiBFなどの各種リチウム化合物を用いることができる。また溶媒としてエチレンカーボネート(EC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、メチルエチルカーボネート(MEC)を単独および組み合わせて用いることができる。また正負極板上に良好な皮膜を形成させたり、過充電時の安定性を保証するために、ビニレンカーボネート(VC)やシクロヘキシルベンゼン(CHB)およびその変性体を用いることも好ましい。
多孔質絶縁体3としてのセパレータについては、リチウムイオン二次電池の使用範囲に耐
えうる組成であれば特に限定されないが、ポリエチレン・ポリプロピレンなどのオレフィン系樹脂の微多孔フィルムを、単一あるいは複合して用いるのが一般的でありまた態様として好ましい。この多孔質絶縁体3としてのセパレータの厚みは特に限定されないが、10〜25μmとすれば良い。
For the non-aqueous electrolyte, various lithium compounds such as LiPF 6 and LiBF 4 can be used as the electrolyte salt. Further, ethylene carbonate (EC), dimethyl carbonate (DMC), diethyl carbonate (DEC), and methyl ethyl carbonate (MEC) can be used alone or in combination as a solvent. It is also preferable to use vinylene carbonate (VC), cyclohexylbenzene (CHB), and modified products thereof in order to form a good film on the positive and negative electrode plates and to ensure stability during overcharge.
The separator as the porous insulator 3 is not particularly limited as long as it has a composition that can withstand the range of use of the lithium ion secondary battery. However, a microporous film of an olefin-based resin such as polyethylene / polypropylene can be used alone or in combination. It is generally used as a preferred embodiment. The thickness of the separator as the porous insulator 3 is not particularly limited, but may be 10 to 25 μm.

以上のように構成された非水系二次電池について、以下、その動作、作用を説明する。正極板1と負極板2を多孔質絶縁体3で介在させ渦巻状に捲回して構成した電極群4において、電極群4の外周側の負極集電体12上に、負極リード7が接合されている。そのため、負極合剤層13の電極群4の外周側端部には、電荷が集中しリチウムが析出しやすい。また、正極板1と負極板2を多孔質絶縁体3で介在させ渦巻状に捲回して電極群4を形成する際には、電極群4の内周側を、電極群4の外周側よりも張力をかけて捲回しなければならない。そのため、電極群4内周側の正極板1と負極板2との距離は、電極群4の外周側の正極板1と負極板2との距離よにも近くなり、負極合剤層13の電極群4の内周側端部には、リチウムが析出しやすい。   About the non-aqueous secondary battery comprised as mentioned above, the operation | movement and an effect | action are demonstrated below. In an electrode group 4 configured by winding a positive electrode plate 1 and a negative electrode plate 2 with a porous insulator 3 and winding them in a spiral shape, a negative electrode lead 7 is joined on a negative electrode current collector 12 on the outer peripheral side of the electrode group 4. ing. Therefore, electric charges concentrate on the outer peripheral side end of the electrode group 4 of the negative electrode mixture layer 13 and lithium is likely to be deposited. Further, when the electrode group 4 is formed by winding the positive electrode plate 1 and the negative electrode plate 2 with the porous insulator 3 in a spiral shape, the inner peripheral side of the electrode group 4 is changed from the outer peripheral side of the electrode group 4. Must be wound with tension. Therefore, the distance between the positive electrode plate 1 and the negative electrode plate 2 on the inner peripheral side of the electrode group 4 is closer to the distance between the positive electrode plate 1 and the negative electrode plate 2 on the outer peripheral side of the electrode group 4. Lithium tends to be deposited at the inner peripheral side end of the electrode group 4.

しかしながら、負極合剤層13の両端部の厚みを負極合剤層13の両端部以外の厚みよりも薄くするとともに、負極合剤層13の両端部表面をリチウムの反応性が高くリチウム析出を抑制する表面層14で覆うことで、局所的なリチウム析出を抑制できる。
(実施の形態2)
図4は本発明の第2の実施の形態における非水系二次電池用負極板2の断面の模式図である。負極板2は、負極集電体12の表面に、活物質の負極合剤層13を形成してなる。この際、負極板長手方向の負極合剤層13の両端部の厚みは、負極合剤層13の端部に向かうにつれて薄くなるように構成されている。そして、負極合剤層13の両端部表面を含む負極合剤層13の表面に、リチウムの反応性が高くリチウム析出を抑制する表面層14を、負極合剤層13の端部に向かうにつれて厚くなるように塗布して、負極合剤層13の表面を表面層14で覆うように構成する。したがって、負極合剤層13の表層部を表面層14で塗布端部を完全に覆い隠している状態を示している。
以上のように構成された非水系二次電池用負極板2は、表面層14を、負極合剤層13の端部に向かうにつれて厚くなるように塗布することにより、負極合剤層13の両端部のリチウム反応性を向上させることができ、良好なサイクル特性を得ることができる。
(実施の形態3)
図5は本発明の第3の実施の形態における非水系二次電池用負極板2の断面の模式図である。負極板2は、負極集電体12の表面に、負極合剤層13を形成してなる。この際、負極板長手方向の負極合剤層13の端部の厚みは、負極合剤層13の端部に向かうにつれて薄くなるように構成されている。そして、負極合剤層13の端部表面を含む合剤層表面に、リチウムの反応性が高くリチウム析出を抑制する表面層14を、負極合剤層13の端部に向かうにつれて厚くなるように塗布するとともに、負極合剤層13の端部表面だけでなく負極集電体12をも覆うように構成する。
以上のように構成された非水系二次電池用負極板は、負極合剤層13の両端部のリチウム反応性を向上させることができるとともに、負極合剤層13の端部表面および負極集電体12を覆うことにより結着性の高い表面層14を負極集電体12と接触させることができ、充放電時の負極板2の収縮による端部の合剤脱落を防止でき、良好なサイクル特性を得ることができる。
However, the thickness of both ends of the negative electrode mixture layer 13 is made thinner than the thickness of the negative electrode mixture layer 13 other than both ends, and the surface of both ends of the negative electrode mixture layer 13 has high lithium reactivity and suppresses lithium precipitation. By covering with the surface layer 14 to perform, local lithium precipitation can be suppressed.
(Embodiment 2)
FIG. 4 is a schematic view of a cross section of the negative electrode plate 2 for a non-aqueous secondary battery according to the second embodiment of the present invention. The negative electrode plate 2 is formed by forming a negative electrode mixture layer 13 of an active material on the surface of a negative electrode current collector 12. At this time, the thickness of both end portions of the negative electrode mixture layer 13 in the longitudinal direction of the negative electrode plate is configured to become thinner toward the end portion of the negative electrode mixture layer 13. Then, the surface layer 14 that has high lithium reactivity and suppresses lithium precipitation on the surface of the negative electrode mixture layer 13 including the surfaces of both end portions of the negative electrode mixture layer 13 becomes thicker toward the end of the negative electrode mixture layer 13. The surface of the negative electrode mixture layer 13 is covered with the surface layer 14. Therefore, the surface layer portion of the negative electrode mixture layer 13 is completely covered and covered with the surface layer 14.
The negative electrode plate 2 for a non-aqueous secondary battery configured as described above is applied to the both ends of the negative electrode mixture layer 13 by applying the surface layer 14 so as to increase in thickness toward the end of the negative electrode mixture layer 13. The lithium reactivity of the part can be improved, and good cycle characteristics can be obtained.
(Embodiment 3)
FIG. 5 is a schematic view of a cross section of the negative electrode plate 2 for a non-aqueous secondary battery in the third embodiment of the present invention. The negative electrode plate 2 is formed by forming a negative electrode mixture layer 13 on the surface of the negative electrode current collector 12. At this time, the thickness of the end portion of the negative electrode mixture layer 13 in the longitudinal direction of the negative electrode plate is configured to become thinner toward the end portion of the negative electrode mixture layer 13. Then, on the surface of the mixture layer including the surface of the end portion of the negative electrode mixture layer 13, the surface layer 14 having high lithium reactivity and suppressing lithium precipitation is made thicker toward the end portion of the negative electrode mixture layer 13. In addition to coating, it is configured to cover not only the end surface of the negative electrode mixture layer 13 but also the negative electrode current collector 12.
The negative electrode plate for a non-aqueous secondary battery configured as described above can improve the lithium reactivity at both ends of the negative electrode mixture layer 13, and the end surface of the negative electrode mixture layer 13 and the negative electrode current collector. By covering the body 12, the surface layer 14 having a high binding property can be brought into contact with the negative electrode current collector 12, and it is possible to prevent the end mixture from falling off due to the contraction of the negative electrode plate 2 during charge and discharge, and a good cycle Characteristics can be obtained.

なお、本実施の形態では、負極合剤層13の両端部の厚みを前記合剤層の端部以外の厚みよりも薄くしているが、負極合剤層13の一方端部の厚みを負極合剤層13の端部以外の厚みよりも薄くしてもよい。
さらに、負極板長手方向の負極合剤層13の両端部の厚みは、両端部以外の部分よりも薄くなるように構成したが、図6で示すように、負極板2の幅方向の負極合剤層13の両端部の厚みを、両端部以外の部分よりも薄くなるように構成してもよい。この際、負極合剤
層13を塗布した部分と、負極合剤層13を塗布していない部分を設け、負極集電体12の幅方向で合剤層13を塗布していない部分にリード7を接合してもよい。
In the present embodiment, the thickness of both end portions of the negative electrode mixture layer 13 is made thinner than the thickness other than the end portions of the mixture layer, but the thickness of one end portion of the negative electrode mixture layer 13 is made negative. You may make it thinner than thickness other than the edge part of the mixture layer 13. FIG.
Furthermore, although the thickness of the both ends of the negative electrode mixture layer 13 in the longitudinal direction of the negative electrode plate is configured to be thinner than the portions other than the both ends, the negative electrode mixture in the width direction of the negative electrode plate 2 as shown in FIG. You may comprise so that the thickness of the both ends of the agent layer 13 may become thinner than parts other than both ends. At this time, a portion where the negative electrode mixture layer 13 is applied and a portion where the negative electrode mixture layer 13 is not applied are provided, and the lead 7 is provided in a portion where the mixture layer 13 is not applied in the width direction of the negative electrode current collector 12. May be joined.

本実施の形態では、正極板1と負極板2との間に多孔質絶縁体3を介在させ渦巻状に捲回して電極群4を形成したが、積層して電極群4を形成してもよい。   In the present embodiment, the electrode group 4 is formed by interposing the porous insulator 3 between the positive electrode plate 1 and the negative electrode plate 2 and winding it in a spiral shape. Good.

また、本実施の形態では負極合剤層13の上に表面層14が形成される例を示したが、表面層を形成するのは正負極いずれでもよい。
以下、本発明における非水系二次電池用電極板2およびこれを用いた非水系二次電池11の一実施の形態を示す。
Moreover, although the example in which the surface layer 14 is formed on the negative electrode mixture layer 13 has been described in the present embodiment, the positive and negative electrodes may be formed to form the surface layer.
Hereinafter, an embodiment of a non-aqueous secondary battery electrode plate 2 and a non-aqueous secondary battery 11 using the same according to the present invention will be described.

図2に示したものと同じ構造の負極板を用いた非水系二次電池11を作製した実施例1について説明する。   Example 1 in which a nonaqueous secondary battery 11 using a negative electrode plate having the same structure as that shown in FIG. 2 was produced will be described.

まず、負極活物質として人造黒鉛を100重量部、結着材としてスチレン−ブタジエン共重合体ゴム粒子分散体(固形分40重量%)を負極活物質100重量部に対して2.5重量部(結着材の固形分換算で1重量部)、増粘剤としてカルボキシメチルセルロースを負極活物質100重量部に対して1重量部、および適量の水とともに双腕式練合機にて攪拌し、負極合剤塗料を作製した。さらに、表面層の活物質としてリチウムチタン複合酸化物を100重量部、結着材としてスチレン−ブタジエン共重合体ゴム粒子分散体(固形分40重量%)を表面層の活物質100重量部に対して2.5重量部(結着材の固形分換算で1重量部)、増粘剤としてカルボキシメチルセルロースを表面層の活物質100重量部に対して1重量部、導電材としてアセチレンブラックを、表面層活物質100重量部に対して3.0重量部、および適量の水とともに双腕式練合機にて攪拌し、表面層塗料を作製した。これらの塗料をはじめに10μm厚の銅箔からなる負極集電体12に負極合剤塗料を塗布乾燥し、次いで負極合剤塗料の表層部に表面層塗料を負極合剤層100重量部に対して20重量部となるように塗布乾燥し、総厚が200μmとなるようにプレスし、負極板2を作製した。   First, 100 parts by weight of artificial graphite as a negative electrode active material, and 2.5 parts by weight of styrene-butadiene copolymer rubber particle dispersion (solid content 40% by weight) as a binder with respect to 100 parts by weight of the negative electrode active material ( 1 part by weight in terms of solid content of the binder), 1 part by weight of carboxymethyl cellulose as a thickener with respect to 100 parts by weight of the negative electrode active material, and an appropriate amount of water, and agitation in a double arm kneader. A mixture paint was prepared. Further, 100 parts by weight of lithium titanium composite oxide as the active material for the surface layer, and styrene-butadiene copolymer rubber particle dispersion (solid content 40% by weight) as the binder for 100 parts by weight of the active material for the surface layer. 2.5 parts by weight (1 part by weight in terms of solid content of the binder), carboxymethyl cellulose as a thickener, 1 part by weight with respect to 100 parts by weight of the active material of the surface layer, acetylene black as the conductive material, surface The mixture was stirred with a double arm kneader together with 3.0 parts by weight of water and 100 parts by weight of the layered active material to prepare a surface layer paint. First, a negative electrode mixture paint is applied to and dried on a negative electrode current collector 12 made of a copper foil having a thickness of 10 μm, and then the surface layer paint is applied to the surface layer portion of the negative electrode mixture paint with respect to 100 parts by weight of the negative electrode mixture layer. The coating was dried to 20 parts by weight, and pressed to a total thickness of 200 μm to prepare the negative electrode plate 2.

このとき、負極板長手方向の負極合剤層13の両端部の厚みは、負極合剤層13の端部に向かうにつれて薄くなるように構成するとともに、負極合剤層13の両端部表面を含む合剤層表面に、リチウムの反応性が高くリチウム析出を抑制する表面層14を均一の厚さで塗布して、負極合剤層13表面を表面層14で完全に覆うように構成する。   At this time, the thickness of the both ends of the negative electrode mixture layer 13 in the longitudinal direction of the negative electrode plate is configured to become thinner toward the end of the negative electrode mixture layer 13 and includes the surfaces of both ends of the negative electrode mixture layer 13. A surface layer 14 having a high lithium reactivity and suppressing lithium precipitation is applied to the surface of the mixture layer with a uniform thickness so that the surface of the negative electrode mixture layer 13 is completely covered with the surface layer 14.

一方、正極活物質としてコバルト酸リチウムを100重量部、導電材としてアセチレンブラックを正極活物質100重量部に対して2重量部、結着材としてポリフッ化ビニリデンを正極活物質100重量部に対して2重量部とを適量のN−メチル−2−ピロリドンと共に双腕式練合機にて攪拌し混練することで、正極合剤塗料を作製した。この塗料を15μm厚のアルミニウム箔からなる正極集電体に塗布乾燥し、総厚が170μmとなるようにプレスした。   Meanwhile, 100 parts by weight of lithium cobaltate as a positive electrode active material, 2 parts by weight of acetylene black as a conductive material with respect to 100 parts by weight of the positive electrode active material, and polyvinylidene fluoride as a binder with respect to 100 parts by weight of the positive electrode active material. A positive electrode mixture paint was prepared by stirring and kneading 2 parts by weight with an appropriate amount of N-methyl-2-pyrrolidone in a double-arm kneader. This paint was applied to a positive electrode current collector made of an aluminum foil having a thickness of 15 μm, dried, and pressed to a total thickness of 170 μm.

さらに、図1に示すように、これらの正極板1および負極板2を20μm厚のポリエチレン微多孔フィルムを多孔質絶縁体3としてのセパレータとして巻回し電極群4を構成し、所定の長さで切断して電池ケース5の内に挿入し、EC・DMC・MEC混合溶媒にLiPF6を1MとVCを3重量部溶解させた非水電解液を、5.5g添加して封口し作製した円筒形リチウムイオン二次電池11を実施例1とした。   Further, as shown in FIG. 1, the positive electrode plate 1 and the negative electrode plate 2 are wound using a polyethylene microporous film having a thickness of 20 μm as a separator as a porous insulator 3 to form an electrode group 4, which has a predetermined length. Cut and inserted into the battery case 5 and sealed by adding 5.5 g of a nonaqueous electrolytic solution in which 3 parts by weight of LiPF6 and 3 parts by weight of VC were dissolved in a mixed solvent of EC, DMC and MEC. The lithium ion secondary battery 11 was taken as Example 1.

実施例1との違いは、電極群4内周側の負極合剤層13端部が表面層14で完全に覆わ
れるように塗布し、電極群4外周側の負極合剤層13端部が表面層14で覆われていない負極板2を得たことである。実施例1と同様の方法で負極合剤塗料と表面層塗料を作製し、合剤塗料を10μm厚の銅箔からなる負極集電体12に塗布乾燥して形成する負極合剤層100重量部に対して表面層塗料を20重量部となるように塗布乾燥し、総厚が200μmとなるようにプレスし、負極板2を作製した。
一方、実施例1と同様の正極板1を作製し、これらの正極板1および負極板2を実施例1と同様の方法で作製した円筒形リチウムイオン二次電池11を実施例2とした。
このとき、負極合剤層13が表面層14で完全に覆われている一端部は電極群4を構成する際に、内周側になるように構成し、所定の長さで切断して電池ケース5の内に挿入し、非水電解液を、5.5g添加して封口し作製した円筒形リチウムイオン二次電池11を実施例2とした。
The difference from Example 1 is that the end of the negative electrode mixture layer 13 on the inner peripheral side of the electrode group 4 is applied so that it is completely covered with the surface layer 14, and the end of the negative electrode mixture layer 13 on the outer peripheral side of the electrode group 4 is That is, the negative electrode plate 2 not covered with the surface layer 14 was obtained. 100 parts by weight of a negative electrode mixture layer formed by preparing a negative electrode mixture paint and a surface layer paint in the same manner as in Example 1, and applying and drying the mixture paint onto a negative electrode current collector 12 made of a copper foil having a thickness of 10 μm. Then, the surface layer coating was applied and dried so as to be 20 parts by weight, and pressed so that the total thickness became 200 μm, and the negative electrode plate 2 was produced.
On the other hand, a positive electrode plate 1 similar to that in Example 1 was produced, and a cylindrical lithium ion secondary battery 11 in which these positive electrode plate 1 and negative electrode plate 2 were produced in the same manner as in Example 1 was used as Example 2.
At this time, the one end part where the negative electrode mixture layer 13 is completely covered with the surface layer 14 is formed so as to be on the inner peripheral side when the electrode group 4 is formed, and the battery is cut by a predetermined length. The cylindrical lithium ion secondary battery 11 inserted into the case 5 and sealed by adding 5.5 g of a non-aqueous electrolyte was used as Example 2.

実施例1との違いは、電極群4外周側の負極合剤層13の端部が表層部に設けた表面層で完全に覆われるように塗布し、電極群4内周側の負極合剤層13の端部が表面層14で覆われていない負極板2を得たことである。実施例1と同様の方法で負極合剤塗料と表面層塗料を作製し、合剤塗料を10μm厚の銅箔からなる負極集電体12に塗布乾燥して形成する負極合剤層100重量部に対して表面層塗料を20重量部となるように塗布乾燥し、総厚が200μmとなるようにプレスし、負極板2を作製した。
一方、実施例1と同様の正極板1を作製し、これらの正極板1および負極板2を実施例1と同様の方法で作製した円筒形リチウムイオン二次電池11を実施例3とした。
このとき、負極合剤層13が表面層14で完全に覆われている一端部は電極群4を構成する際に、外周側になるように構成し、所定の長さで切断して電池ケース5の内に挿入し、非水電解液を、5.5g添加して封口し作製した円筒形リチウムイオン二次電池11を実施例3とした。
The difference from Example 1 is that the end of the negative electrode mixture layer 13 on the outer peripheral side of the electrode group 4 is applied so that it is completely covered with the surface layer provided on the surface layer part, and the negative electrode mixture on the inner peripheral side of the electrode group 4 That is, the negative electrode plate 2 in which the end portion of the layer 13 is not covered with the surface layer 14 is obtained. 100 parts by weight of a negative electrode mixture layer formed by preparing a negative electrode mixture paint and a surface layer paint in the same manner as in Example 1, and applying and drying the mixture paint onto a negative electrode current collector 12 made of a copper foil having a thickness of 10 μm. Then, the surface layer coating was applied and dried so as to be 20 parts by weight, and pressed so that the total thickness became 200 μm, and the negative electrode plate 2 was produced.
On the other hand, a positive electrode plate 1 similar to that in Example 1 was produced, and a cylindrical lithium ion secondary battery 11 in which these positive electrode plate 1 and negative electrode plate 2 were produced in the same manner as in Example 1 was used as Example 3.
At this time, one end of the negative electrode mixture layer 13 that is completely covered with the surface layer 14 is configured to be on the outer peripheral side when the electrode group 4 is formed, and is cut to a predetermined length to form a battery case. Example 3 was a cylindrical lithium ion secondary battery 11 that was inserted into 5 and sealed by adding 5.5 g of a non-aqueous electrolyte.

図4に示したのと同じ構造の負極板2を用いた非水系二次電池11を作製した。実施例1と同様の方法で負極合剤塗料と表面層塗料を作製し、負極合剤塗料を10μm厚の銅箔からなる負極集電体12に形成する負極合剤層100重量部に対して表面層塗料を20重量部となるように乾燥前に同時タイミングでこれらの塗料を塗布し、その後乾燥させた後、総厚が200μmとなるようにプレスし、負極板2を作成した。このとき始端部および終端部で表面層14を形成する際のダイコーターの吐出圧力を上げることで端部の表面層14の膜厚を徐々に厚くし、目的の負極板2を得た。   A non-aqueous secondary battery 11 using the negative electrode plate 2 having the same structure as shown in FIG. 4 was produced. A negative electrode mixture paint and a surface layer paint are produced in the same manner as in Example 1, and the negative electrode mixture paint is formed on the negative electrode current collector 12 made of a copper foil having a thickness of 10 μm. These paints were applied at the same time before drying so that the surface layer paint was 20 parts by weight, and then dried, and then pressed to a total thickness of 200 μm to prepare the negative electrode plate 2. At this time, by increasing the discharge pressure of the die coater at the time of forming the surface layer 14 at the start end portion and the end portion, the film thickness of the surface layer 14 at the end portion was gradually increased to obtain the target negative electrode plate 2.

一方、実施例1と同様の正極板1を作製し、これらの正極板1および負極板2を実施例1と同様の方法で作製した円筒形リチウムイオン二次電池11を実施例4とした。   On the other hand, a positive electrode plate 1 similar to that in Example 1 was produced, and a cylindrical lithium ion secondary battery 11 in which these positive electrode plate 1 and negative electrode plate 2 were produced in the same manner as in Example 1 was used as Example 4.

図5に示したのと同じ構造の負極板2を用いた非水系二次電池11を作製した。実施例1と同様の方法で負極合剤塗料と表面層塗料を作製し、負極合剤塗料を10μm厚の銅箔からなる負極集電体12に形成する負極合剤層100重量部に対して表面層塗料を20重量部となるように塗布し、その後乾燥させた後、総厚が200μmとなるようにプレスし、負極板2を作成した。このとき始端部および終端部で表面層14を形成する際のダイコーターの吐出タイミングをずらすことで端部の表面層14が単一層として負極集電体12に接着する箇所を設け、目的の負極板2を得た。   A non-aqueous secondary battery 11 using the negative electrode plate 2 having the same structure as that shown in FIG. 5 was produced. A negative electrode mixture paint and a surface layer paint are produced in the same manner as in Example 1, and the negative electrode mixture paint is formed on the negative electrode current collector 12 made of a copper foil having a thickness of 10 μm. The surface layer coating material was applied to 20 parts by weight and then dried, and then pressed to a total thickness of 200 μm to prepare the negative electrode plate 2. At this time, by shifting the discharge timing of the die coater when forming the surface layer 14 at the start end portion and the end portion, a location where the end surface layer 14 adheres to the negative electrode current collector 12 as a single layer is provided. Plate 2 was obtained.

一方、実施例1と同様の正極板1を作製し、これらの正極板1および負極板2を実施例1と同様の方法で作製した円筒形リチウムイオン二次電池11を実施例5とした。   On the other hand, a positive electrode plate 1 similar to that in Example 1 was produced, and a cylindrical lithium ion secondary battery 11 in which these positive electrode plate 1 and negative electrode plate 2 were produced in the same manner as in Example 1 was used as Example 5.

(比較例1)
図7は比較例における非水系二次電池用負極板2の断面の模式図であり、少なくとも負極活物質および結着材より構成される負極合剤塗料と機能性活物質および導電材と結着材からなる表面層14を負極集電体12の上に塗布乾燥させて形成される。このとき、図2と同様に表面層14が負極合剤層13の表層部に形成されるが、図7は表面層14を塗布する際のタイミングをずらすことで負極合剤層13の両端部で、負極合剤層13が露出する状態を示している。
(Comparative Example 1)
FIG. 7 is a schematic diagram of a cross-section of the negative electrode plate 2 for a non-aqueous secondary battery in a comparative example, and a negative electrode mixture paint composed of at least a negative electrode active material and a binder, a functional active material, and a conductive material. A surface layer 14 made of a material is formed on the negative electrode current collector 12 by drying. At this time, the surface layer 14 is formed on the surface layer portion of the negative electrode mixture layer 13 as in FIG. 2, but FIG. 7 shows both ends of the negative electrode mixture layer 13 by shifting the timing when the surface layer 14 is applied. In this state, the negative electrode mixture layer 13 is exposed.

実施例1と同様の方法で負極合剤塗料と表面層塗料を作製し、この塗料を10μm厚の銅箔からなる負極集電体12に塗布乾燥し、総厚が200μmとなるようにプレスし、図7に示した一端部が一部負極合剤層13を覆わない負極板2を得た。   A negative electrode mixture paint and a surface layer paint were prepared in the same manner as in Example 1. The paint was applied to a negative electrode current collector 12 made of 10 μm thick copper foil, and pressed to a total thickness of 200 μm. The negative electrode plate 2 in which one end portion shown in FIG. 7 did not partially cover the negative electrode mixture layer 13 was obtained.

一方、実施例1と同様の正極板1を作製し、これらの正極板1および負極板2を実施例1と同様の方法で作製した円筒形リチウムイオン二次電池11を比較例1とした。   On the other hand, a positive electrode plate 1 similar to that in Example 1 was produced, and a cylindrical lithium ion secondary battery 11 in which these positive electrode plate 1 and negative electrode plate 2 were produced in the same manner as in Example 1 was used as Comparative Example 1.

そして、上記の条件で作成された円筒形リチウムイオン二次電池11について、以下の内容でサイクル特性について評価を行った。500サイクル後の容量維持率としては、封口後の完成電池について慣らし充放電を2回行い、45℃環境で7日間保存した後、以下の充放電サイクルを500回繰り返した。   And about the cylindrical lithium ion secondary battery 11 created on said conditions, the cycle characteristics were evaluated by the following content. As the capacity maintenance rate after 500 cycles, the completed battery after sealing was conditioned and discharged twice and stored for 7 days in a 45 ° C. environment, and then the following charge / discharge cycle was repeated 500 times.

ここで、充電については定電圧4.2V、1400mAで充電を行い、充電電流が100mAまで低下したとき充電を終了し、放電は2000mAの定電流で終止電圧3Vまで放電することを1サイクルとして、1サイクル目に対する500サイクル目の放電容量比を500サイクル後の容量維持率として測定を行った。さらに、充放電サイクルを500回繰り返した後に電極群内部でのリチウム析出の状態を観察した。   Here, charging is performed at a constant voltage of 4.2 V and 1400 mA, and when the charging current is reduced to 100 mA, the charging is terminated, and discharging is performed at a constant current of 2000 mA to a final voltage of 3 V as one cycle. The discharge capacity ratio of the 500th cycle to the first cycle was measured as the capacity retention rate after 500 cycles. Furthermore, after repeating the charge / discharge cycle 500 times, the state of lithium deposition inside the electrode group was observed.

以上の項目について評価した内容を(表1)に示す。   The contents evaluated for the above items are shown in (Table 1).

(表1)に示したように、負極合剤層13端部を表面層14で覆うことで、合剤層13端部のリチウム析出を抑制でき、500サイクル後の電池容量の維持率は高い。さらに、実施例2、3にように負極合剤層13の一方の端部を表面層14で覆うことで内周側端部または外周側端部の負極合剤層13のリチウム析出を抑制できるが、外周側に位置する負極合剤層13の端部を表面層14で覆う方が内周側に位置する負極合剤層13端部を表面
層14で覆うよりも500サイクル後の電池容量の維持率は高くなる。これは、負極リード7の位置が負極合剤層13外周側近傍の負極集電体12に設置されているためにリチウム析出しやすい集電部近傍での抑制効果が大きいと推定できる。
As shown in Table 1, by covering the end portion of the negative electrode mixture layer 13 with the surface layer 14, lithium deposition at the end portion of the mixture layer 13 can be suppressed, and the battery capacity retention rate after 500 cycles is high. . Furthermore, as in Examples 2 and 3, covering one end of the negative electrode mixture layer 13 with the surface layer 14 can suppress lithium precipitation of the negative electrode mixture layer 13 at the inner peripheral side end or the outer peripheral side end. However, the battery capacity after 500 cycles is that the end portion of the negative electrode mixture layer 13 located on the outer peripheral side is covered with the surface layer 14 than the end portion of the negative electrode mixture layer 13 located on the inner peripheral side is covered with the surface layer 14. The maintenance rate is high. It can be estimated that this is because the position of the negative electrode lead 7 is installed in the negative electrode current collector 12 in the vicinity of the outer periphery of the negative electrode mixture layer 13, so that the suppression effect in the vicinity of the current collecting portion where lithium is likely to precipitate is large.

また、負極合剤層13端部での表面層14の厚みを徐々に増やした実施例4でのリチウム析出は実施例1と同様に抑制されていた。500サイクル後の電池容量の維持率は実施例1よりも良化し、内周側および外周側での表面層14の作用が、表面層14の厚みを増やすことで促進されたと推定できる。   Moreover, the lithium precipitation in Example 4 which gradually increased the thickness of the surface layer 14 at the end portion of the negative electrode mixture layer 13 was suppressed as in Example 1. It can be estimated that the maintenance rate of the battery capacity after 500 cycles is better than that of Example 1, and the action of the surface layer 14 on the inner peripheral side and the outer peripheral side is promoted by increasing the thickness of the surface layer 14.

そして、表面層14を負極合剤層13の端部および負極集電体12に結着させた実施例5でのリチウム析出は実施例1と同様に抑制されていた。さらに、500サイクル後の電池容量の維持率は実施例1よりも良化し、内周側および外周側での表面層14の作用が促進されたと同時に表面層14と負極集電体12との結着力が高く、負極合剤層13の端部の合剤脱落も防止できたと推定できる。   The lithium deposition in Example 5 in which the surface layer 14 was bound to the end of the negative electrode mixture layer 13 and the negative electrode current collector 12 was suppressed in the same manner as in Example 1. Furthermore, the maintenance rate of the battery capacity after 500 cycles was improved from that in Example 1, and the action of the surface layer 14 on the inner and outer peripheral sides was promoted, and at the same time, the connection between the surface layer 14 and the negative electrode current collector 12 was increased. It can be estimated that the adhering force was high and the mixture mixture at the end of the negative electrode mixture layer 13 was prevented from falling off.

一方で、比較例1で示されるように、負極合剤層13の両端部を表面層14で覆わない場合、負極合剤層13の内周側端部と外周側端部でリチウムが析出し、500サイクル後の電池容量の維持率は低下した。
以上、負極合剤層13の端部を表面層14で覆うことによって、負極合剤層13の端部におけるリチウム析出を抑制することができ、さらに、結着力の高い表面層14と負極集電体12を接触させることで負極合剤層13の端部の合剤脱落も防止でき、500サイクル後の電池容量の維持率が向上したものと推定できる。
なお、実施例1〜5においては、負極板2の負極合剤層13の表面層14を設けることでリチウムの反応性を向上させたが、この方法に限定されるものではなく、例えば、正極板1の正極合剤層に表面層を設けてリチウム反応性を向上させることで同様の効果を得ることができる。
On the other hand, as shown in Comparative Example 1, when both ends of the negative electrode mixture layer 13 are not covered with the surface layer 14, lithium is deposited at the inner peripheral side end and the outer peripheral side end of the negative electrode mixture layer 13. The maintenance rate of the battery capacity after 500 cycles decreased.
As described above, by covering the end portion of the negative electrode mixture layer 13 with the surface layer 14, lithium deposition at the end portion of the negative electrode mixture layer 13 can be suppressed, and the surface layer 14 having a high binding force and the negative electrode current collector can be suppressed. By bringing the body 12 into contact with each other, it is possible to prevent the mixture from falling off at the end of the negative electrode mixture layer 13 and to improve the battery capacity retention rate after 500 cycles.
In Examples 1 to 5, the reactivity of lithium was improved by providing the surface layer 14 of the negative electrode mixture layer 13 of the negative electrode plate 2, but the method is not limited to this method. A similar effect can be obtained by providing a surface layer on the positive electrode mixture layer of the plate 1 to improve lithium reactivity.

本発明に係る非水系二次電池用電極板は、電極合剤層における端部を表面層で覆うことで、従来の非水系二次電池より電極板の端部での局所的な電荷集中を抑えることができ、充放電サイクル特性に優れているので、電子機器および通信機器の多機能化や電気自動車への応用に伴って長寿命化が望まれているポータブル用電源やEV用電源等として有用である。   The electrode plate for a non-aqueous secondary battery according to the present invention covers the end portion of the electrode mixture layer with a surface layer, so that local charge concentration at the end portion of the electrode plate is more than that of the conventional non-aqueous secondary battery. As it can be suppressed and has excellent charge / discharge cycle characteristics, it can be used as a portable power supply or EV power supply that is expected to have a long life with the application of multi-function electronic devices and communication devices and electric vehicles. Useful.

1 正極板
2 負極板
3 多孔質絶縁体
4 電極群
5 電池ケース
6 絶縁板
7 負極リード
8 正極リード
9 封口板
10 封口ガスケット
11 リチウムイオン二次電池
12 負極集電体
13 負極合剤層
14 表面層
DESCRIPTION OF SYMBOLS 1 Positive electrode plate 2 Negative electrode plate 3 Porous insulator 4 Electrode group 5 Battery case 6 Insulating plate 7 Negative electrode lead 8 Positive electrode lead 9 Sealing plate 10 Sealing gasket 11 Lithium ion secondary battery 12 Negative electrode collector 13 Negative electrode mixture layer 14 Surface layer

Claims (9)

集電体の表面に活物質を含む合剤層を形成してなる電池用電極板において、前記合剤層の端部の厚みを前記合剤層の端部以外の厚みよりも薄くするとともに、前記合剤層の端部表面をリチウムの反応性が高くリチウム析出を抑制する表面層で覆ったことを特徴とする非水系二次電池用電極板。 In the battery electrode plate formed by forming a mixture layer containing an active material on the surface of the current collector, the thickness of the end portion of the mixture layer is made thinner than the thickness other than the end portion of the mixture layer, An electrode plate for a non-aqueous secondary battery, wherein an end surface of the mixture layer is covered with a surface layer having high lithium reactivity and suppressing lithium precipitation. 前記合剤層の端部の厚みは、前記合剤層の端部に向かうにつれて薄くすることを特徴とした請求項1に記載の非水系二次電池用電極板。 2. The electrode plate for a non-aqueous secondary battery according to claim 1, wherein the thickness of the end portion of the mixture layer is reduced toward the end portion of the mixture layer. 前記合剤層の端部表面を覆う前記表面層の厚みを、前記合剤層の端部表面以外を覆う前記表面層の厚み以上にしたことを特徴とする請求項1または2に記載の非水系二次電池用電極板。 The thickness of the said surface layer which covers the edge part surface of the said mixture layer was made more than the thickness of the said surface layer which covers other than the edge part surface of the said mixture layer, The non-of Claim 1 or 2 characterized by the above-mentioned. Electrode plate for aqueous secondary battery. 前記表面層の厚みを、前記合剤層の端部に向かうにつれて徐々に厚くすることを特徴とした請求項3に記載の非水系二次電池用電極板 The electrode plate for a non-aqueous secondary battery according to claim 3, wherein the thickness of the surface layer is gradually increased toward the end of the mixture layer. 前記表面層は、前記合剤層の端部表面および前記集電体を覆うことを特徴とする請求項1〜4に記載の非水系二次電池用電極板。 The said surface layer covers the edge part surface of the said mixture layer, and the said electrical power collector, The electrode plate for non-aqueous secondary batteries of Claims 1-4 characterized by the above-mentioned. 前記合剤層の端部は、電極板長手方向の前記合剤層の両端部もしくは両端部の前記合剤層のどちらか一方の端部であることを特徴にした請求項1〜5に記載の非水系二次電池用電極板。 The end portion of the mixture layer is either one of the end portions of the mixture layer in the longitudinal direction of the electrode plate or one of the end portions of the mixture layer at both ends. Electrode plate for non-aqueous secondary battery. 前記合剤層の端部は、電極板幅方向の前記合剤層の両端部もしくは両端部の前記合剤層のどちらか一方の端部であることを特徴にした請求項1〜5に記載の非水系二次電池用電極板。 The end portion of the mixture layer is either one of the end portions of the mixture layer in the electrode plate width direction or one of the end portions of the mixture layer at both ends. Electrode plate for non-aqueous secondary battery. 前記表面層に、リチウムニッケル酸複合酸化物などのニッケル系複合酸化物、リチウムコバルト酸複合酸化物などのコバルト系複合酸化物、コバルト酸ナノ粒子、コバルト酸窒化物、リチウムマンガン酸複合酸化物などのマンガン系複合酸化物、リチウムクロム酸複合酸化物などのクロム系複合酸化物、リチウムリン酸鉄複合酸化物などのリン酸鉄系複合酸化物、五酸化バナジウムなどのバナジウム系複合酸化物、グラファイト、ハードカーボン、リチウムチタン複合酸化物などのチタン系複合酸化物、酸化スズガラス、シリカ系合金組成材料および金属リチウムのいずれかを用いた請求項1〜7に記載の非水系二次電池用電極板。 On the surface layer, nickel-based composite oxide such as lithium nickel acid composite oxide, cobalt-based composite oxide such as lithium cobalt acid composite oxide, cobalt acid nanoparticles, cobalt oxynitride, lithium manganate composite oxide, etc. Manganese complex oxides, chromium complex oxides such as lithium chromate complex oxides, iron phosphate complex oxides such as lithium iron phosphate complex oxides, vanadium complex oxides such as vanadium pentoxide, graphite The electrode plate for non-aqueous secondary batteries according to claim 1, wherein any one of titanium composite oxide such as hard carbon and lithium titanium composite oxide, tin oxide glass, silica-based alloy composition material, and metallic lithium is used. . 少なくともリチウム含有複合酸化物よりなる正極活物質と導電材および結着材を分散媒にて混練分散した正極合剤塗料を正極集電体の上に付着させて正極合剤層を形成した正極板と少なくともリチウムを保持しうる材料よりなる負極活物質を負極集電体の上に担持した負極板との間に多孔質絶縁体を介在させ積層または渦巻状に捲回して構成した電極群を非水系電解液とともに外装体内に封入してなる非水系二次電池において、前記正極板および負極板に請求項1〜8のいずれか一つに記載の非水系二次電池用電極板を用いたことを特徴とする非水系二次電池。 A positive electrode plate having a positive electrode mixture layer formed by adhering a positive electrode mixture coating material obtained by kneading and dispersing a positive electrode active material comprising at least a lithium-containing composite oxide, a conductive material, and a binder in a dispersion medium onto a positive electrode current collector And a negative electrode active material made of a material capable of holding at least lithium, and a negative electrode plate carrying a negative electrode current collector on a negative electrode plate. In the non-aqueous secondary battery enclosed in an exterior body with an aqueous electrolyte solution, the electrode plate for non-aqueous secondary batteries as described in any one of Claims 1-8 was used for the said positive electrode plate and the negative electrode plate. A non-aqueous secondary battery.
JP2011185503A 2011-08-29 2011-08-29 Electrode plate for nonaqueous secondary battery and nonaqueous secondary battery using the same Withdrawn JP2014211944A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011185503A JP2014211944A (en) 2011-08-29 2011-08-29 Electrode plate for nonaqueous secondary battery and nonaqueous secondary battery using the same
PCT/JP2012/005442 WO2013031213A1 (en) 2011-08-29 2012-08-29 Electrode plate for non-aqueous secondary battery and non-aqueous secondary battery using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011185503A JP2014211944A (en) 2011-08-29 2011-08-29 Electrode plate for nonaqueous secondary battery and nonaqueous secondary battery using the same

Publications (1)

Publication Number Publication Date
JP2014211944A true JP2014211944A (en) 2014-11-13

Family

ID=51931577

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011185503A Withdrawn JP2014211944A (en) 2011-08-29 2011-08-29 Electrode plate for nonaqueous secondary battery and nonaqueous secondary battery using the same

Country Status (1)

Country Link
JP (1) JP2014211944A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016121734A1 (en) * 2015-01-30 2016-08-04 Necエナジーデバイス株式会社 Secondary battery
JP2017157515A (en) * 2016-03-04 2017-09-07 株式会社Gsユアサ Power storage element
CN109841794A (en) * 2019-03-29 2019-06-04 宁德新能源科技有限公司 Electrode plates and electrochemical appliance comprising the electrode plates
JP2020510980A (en) * 2017-11-09 2020-04-09 エルジー・ケム・リミテッド Strip type electrode used for cylindrical jelly roll and lithium secondary battery including the same
US11682765B2 (en) 2019-03-29 2023-06-20 Dongguan Poweramp Technology Limited Electrode and electrochemical device including the same
US11728474B2 (en) 2019-03-29 2023-08-15 Dongguan Poweramp Technology Limited Electrode and electrochemical device including the same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016121734A1 (en) * 2015-01-30 2016-08-04 Necエナジーデバイス株式会社 Secondary battery
US10217988B2 (en) 2015-01-30 2019-02-26 Nec Energy Devices, Ltd. Secondary battery
JP2017157515A (en) * 2016-03-04 2017-09-07 株式会社Gsユアサ Power storage element
JP2020510980A (en) * 2017-11-09 2020-04-09 エルジー・ケム・リミテッド Strip type electrode used for cylindrical jelly roll and lithium secondary battery including the same
JP7041811B2 (en) 2017-11-09 2022-03-25 エルジー エナジー ソリューション リミテッド Strip type electrodes used for cylindrical jelly rolls and lithium secondary batteries containing them
US11637274B2 (en) 2017-11-09 2023-04-25 Lg Energy Solution, Ltd. Strip-shaped electrode used for cylindrical jelly roll and lithium secondary battery comprising same
CN109841794A (en) * 2019-03-29 2019-06-04 宁德新能源科技有限公司 Electrode plates and electrochemical appliance comprising the electrode plates
US11682765B2 (en) 2019-03-29 2023-06-20 Dongguan Poweramp Technology Limited Electrode and electrochemical device including the same
US11728474B2 (en) 2019-03-29 2023-08-15 Dongguan Poweramp Technology Limited Electrode and electrochemical device including the same

Similar Documents

Publication Publication Date Title
JP5787196B2 (en) Lithium ion secondary battery
WO2015115051A1 (en) Nonaqueous-electrolyte secondary-battery negative electrode
CN110268557B (en) Prelithiation using lithium metal and inorganic composite layers
JP6219302B2 (en) Electrode plate for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery using the same, and method for producing the same
JP2013149403A (en) Lithium ion secondary battery negative electrode, lithium ion secondary battery electrode using the same, and manufacturing method thereof
WO2015098021A1 (en) Negative electrode for non-aqueous electrolyte secondary battery
JPWO2016147564A1 (en) Nonaqueous electrolyte secondary battery
WO2014073113A1 (en) Nonaqueous electrolyte secondary battery
JP7013773B2 (en) Non-aqueous electrolyte secondary battery and its manufacturing method
JP6750196B2 (en) Non-aqueous lithium battery and method of using the same
JP2014211944A (en) Electrode plate for nonaqueous secondary battery and nonaqueous secondary battery using the same
JP5258499B2 (en) Non-aqueous secondary battery
JP2018092707A (en) Method for manufacturing positive electrode plate, method for manufacturing nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JPWO2011052122A1 (en) Non-aqueous electrolyte secondary battery current collector, electrode, non-aqueous electrolyte secondary battery, and manufacturing method thereof
JP2014211945A (en) Electrode plate for nonaqueous secondary battery and nonaqueous secondary battery using the same
JP2007328977A (en) Electrode plate for non-aqueous secondary battery, its manufacturing method, and non-aqueous secondary battery
CN106663784B (en) Lithium ion secondary battery
WO2014128946A1 (en) Lithium-ion secondary cell negative electrode, lithium-ion secondary cell using lithium-ion secondary cell negative electrode, and method for manufacturing said electrode and said cell
JP2021026885A (en) Nonaqueous electrolyte secondary battery
JP2012033372A (en) Positive electrode plate for nonaqueous secondary battery and nonaqueous secondary battery using the same
JP2011192506A (en) Electrode plate for nonaqueous secondary battery, and nonaqueous secondary battery using the same
JP6249242B2 (en) Nonaqueous electrolyte secondary battery
JP2017152122A (en) Negative electrode active material for lithium ion secondary batteries, negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP6493766B2 (en) Lithium ion secondary battery
WO2013031213A1 (en) Electrode plate for non-aqueous secondary battery and non-aqueous secondary battery using same

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20141104