JP2014210950A - Rolled copper foil with copper plated layer - Google Patents

Rolled copper foil with copper plated layer Download PDF

Info

Publication number
JP2014210950A
JP2014210950A JP2013087137A JP2013087137A JP2014210950A JP 2014210950 A JP2014210950 A JP 2014210950A JP 2013087137 A JP2013087137 A JP 2013087137A JP 2013087137 A JP2013087137 A JP 2013087137A JP 2014210950 A JP2014210950 A JP 2014210950A
Authority
JP
Japan
Prior art keywords
copper foil
plating layer
copper
rolled copper
rolled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013087137A
Other languages
Japanese (ja)
Inventor
室賀 岳海
Takemi Muroga
岳海 室賀
千鶴 後藤
Chizuru Goto
千鶴 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SH Copper Products Co Ltd
Original Assignee
SH Copper Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SH Copper Products Co Ltd filed Critical SH Copper Products Co Ltd
Priority to JP2013087137A priority Critical patent/JP2014210950A/en
Priority to KR1020140039123A priority patent/KR102220896B1/en
Priority to CN201410138247.XA priority patent/CN104109888A/en
Priority to TW103113689A priority patent/TWI633196B/en
Publication of JP2014210950A publication Critical patent/JP2014210950A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/40Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling foils which present special problems, e.g. because of thinness
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • C25D7/0614Strips or foils

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Metal Rolling (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

PROBLEM TO BE SOLVED: To impart excellent bending resistance to rolled copper foil with copper plated player after a recrystallization annealing step even when a copper plated layer is formed.SOLUTION: A rolled copper foil with a copper plated layer includes a rolled copper foil after a final cold rolling step and before a recrystallization annealing step, and a copper plated layer formed at least on one surface of the rolled copper foil, and is characterized in that, when fractions of intensity values of diffraction peaks obtained by X-ray diffraction by a 2θ/θ method for {111}planes, {002} planes, {022} planes, in a plurality of crystal planes, of the rolled copper foil and the copper plated layer are defined as P{111}, P{002}, P{022} and P{111}, P{002}, P{022}, respectively, it satisfies P{111}≥15.0, and is in any of a state of P{111}>(P{111}+5), a state of P{002}<(P{002}-10) or P{002}>(P{002}+10) and a state of P{022}<(P{022}-10) or P{022}>(P{022}+10).

Description

本発明は、銅めっき層付き圧延銅箔に関し、特に、フレキシブルプリント配線板に用いられる銅めっき層付き圧延銅箔に関する。   The present invention relates to a rolled copper foil with a copper plating layer, and particularly relates to a rolled copper foil with a copper plating layer used for a flexible printed wiring board.

フレキシブルプリント配線板(FPC:Flexible Printed Circuit)は、薄くて可撓性に優れることから、電子機器等への実装形態における自由度が高い。そのため、FPCは、折り畳み式携帯電話の折り曲げ部や、デジタルカメラ、プリンタヘッド等の可動部のほか、ハードディスクドライブ(HDD:Hard Disk Drive)やデジタルバーサタイルディスク(DVD:Digital Versatile Disk)やコンパクトディスク(CD:Compact Disk)等のディスク関連機器の可動部の配線等に用いられることが多い。したがって、FPCやその配線材として用いられる圧延銅箔には、高屈曲特性、つまり、繰り返しの曲げに耐える優れた耐屈曲性が要求されてきた。   A flexible printed circuit (FPC) is thin and excellent in flexibility, and thus has a high degree of freedom in mounting form on an electronic device or the like. For this reason, FPCs are not only for folding parts of foldable mobile phones, but also for moving parts such as digital cameras and printer heads, as well as hard disk drives (HDDs), digital versatile disks (DVDs), and compact disks (DVDs). It is often used for wiring of movable parts of disk related equipment such as CD (Compact Disk). Therefore, the rolled copper foil used as FPC and its wiring material has been required to have high bending properties, that is, excellent bending resistance that can withstand repeated bending.

FPC用の圧延銅箔は、例えば熱間圧延、冷間圧延等の工程を経て製造される。その後のFPCの製造工程において、圧延銅箔は、接着剤を介し或いは直接的に、ポリイミド等の樹脂からなるFPCのベースフィルム(基材)と加熱等により貼り合わされる。基材上の圧延銅箔は、エッチング等の表面加工を施されて配線となる。圧延銅箔の耐屈曲性は、圧延されて硬化した冷間圧延後の硬質な状態よりも、再結晶により軟化した焼鈍後の状態の方が著しく向上する。そこで、例えば上述のFPCの製造工程においては、冷間圧延後の硬化した圧延銅箔を用いて伸びやしわ等の変形を避けつつ圧延銅箔を裁断し、基材上に重ね合わせる。その後、圧延銅箔と基材とを密着させ複合する工程も兼ねて加熱することにより、圧延銅箔の再結晶焼鈍を行って耐屈曲性の向上を図っている。   The rolled copper foil for FPC is manufactured through processes such as hot rolling and cold rolling, for example. In the subsequent FPC manufacturing process, the rolled copper foil is bonded to an FPC base film (base material) made of a resin such as polyimide by heating or the like via an adhesive or directly. The rolled copper foil on the base material is subjected to surface processing such as etching to become a wiring. The bending resistance of the rolled copper foil is significantly improved in the state after annealing softened by recrystallization than in the hard state after cold rolling that has been rolled and hardened. Thus, for example, in the FPC manufacturing process described above, the rolled copper foil is cut using the hardened rolled copper foil after cold rolling while avoiding deformation such as elongation and wrinkles, and is superimposed on the substrate. Thereafter, the rolled copper foil and the base material are heated together to be combined and heated, whereby the rolled copper foil is recrystallized and annealed to improve the bending resistance.

上述のFPCの製造工程を前提として、耐屈曲性に優れた圧延銅箔やその製造方法についてこれまでに種々の研究がなされてきた。その結果を受け、圧延銅箔の表面に立方体方位である{002}面({200}面)を発達させるほど耐屈曲性が向上することが数多く報告されている。   On the premise of the manufacturing process of the FPC described above, various studies have been made so far on a rolled copper foil excellent in bending resistance and its manufacturing method. As a result, it has been reported that the flex resistance is improved as the {002} plane ({200} plane) which is a cubic orientation is developed on the surface of the rolled copper foil.

例えば、特許文献1では、最終冷間圧延の直前の焼鈍を、再結晶粒の平均粒径が5μm〜20μmになる条件下で行う。また、最終冷間圧延での圧延加工度を90%以上とする。これにより、再結晶組織となるよう調質された状態において、圧延面のX線回折で求めた{200}面の強度をIとし、微粉末銅のX線回折で求めた{200}面の強度をIとしたとき、I/I>20である立方体集合組織を得る。 For example, in Patent Document 1, annealing immediately before the final cold rolling is performed under the condition that the average grain size of the recrystallized grains is 5 μm to 20 μm. Further, the rolling degree in the final cold rolling is set to 90% or more. As a result, in a state of being tempered to have a recrystallized structure, the strength of the {200} plane obtained by X-ray diffraction of the rolled surface is I, and the {200} plane obtained by X-ray diffraction of fine powder copper When the intensity is I 0 , a cubic texture with I / I 0 > 20 is obtained.

また、例えば、特許文献2では、最終冷間圧延前の立方体集合組織の発達度を高め、最終冷間圧延での加工度を93%以上とする。更に再結晶焼鈍を施すことにより、{200}面の積分強度がI/I≧40の、立方体集合組織が著しく発達した圧延銅箔を得る。 Further, for example, in Patent Document 2, the degree of development of the cube texture before the final cold rolling is increased, and the degree of processing in the final cold rolling is set to 93% or more. Further, by performing recrystallization annealing, a rolled copper foil having a remarkably developed cubic texture with an integral strength of {200} plane of I / I 0 ≧ 40 is obtained.

また、例えば、特許文献3では、最終冷間圧延工程における総加工度を94%以上とし、かつ1パスあたりの加工度を15%〜50%に制御する。これにより、再結晶焼鈍後には、所定の結晶粒配向状態が得られる。つまり、X線回折極点図測定により得られる圧延面の{200}面に対する{111}面の面内配向度Δβが10°以下となる。また、圧延面における立方体集合組織である{200}面の規格化した回折ピーク強度[a]と{200}面の双晶関係にある結晶領域の規格化した回折ピーク強度[b]との比が、[a]/[b]≧3となる。   Further, for example, in Patent Document 3, the total work degree in the final cold rolling process is set to 94% or more, and the work degree per pass is controlled to 15% to 50%. Thereby, a predetermined crystal grain orientation state is obtained after recrystallization annealing. That is, the in-plane orientation degree Δβ of the {111} plane with respect to the {200} plane of the rolled plane obtained by X-ray diffraction pole figure measurement is 10 ° or less. Further, the ratio between the normalized diffraction peak intensity [a] of the {200} plane which is a cubic texture in the rolled surface and the normalized diffraction peak intensity [b] of the crystal region in the twin relation of the {200} plane. However, [a] / [b] ≧ 3.

このように、従来技術では、最終冷間圧延工程の総加工度を高くすることで、再結晶焼鈍工程後に圧延銅箔の立方体集合組織を発達させて耐屈曲性の向上を図っている。   Thus, in the prior art, by increasing the total degree of work in the final cold rolling process, the cube texture of the rolled copper foil is developed after the recrystallization annealing process, thereby improving the bending resistance.

また、FPC用途の圧延銅箔では、基材との貼り合せ強度を向上させるため、例えば粗化粒を付着させる場合がある。またこの場合、例えば特許文献4,5のように、粗化粒を均一に付着させるため、圧延銅箔の片面または両面に予め銅めっき層を形成して表面の平滑化を図ったうえで、粗化粒を付着させることが多い。   Moreover, in the rolled copper foil for FPC use, in order to improve the bonding strength with the base material, for example, roughened particles may be adhered. In this case, for example, as in Patent Documents 4 and 5, in order to uniformly attach the roughened grains, after forming a copper plating layer on one side or both sides of the rolled copper foil in advance and smoothing the surface, Often rough grains are deposited.

特許第3009383号公報Japanese Patent No. 3009383 特許第3856616号公報Japanese Patent No. 3856616 特許第4285526号公報Japanese Patent No. 4285526 特開2005−340635号公報JP 2005-340635 A 特開2010−037585号公報JP 2010-037585 A

しかしながら、銅めっき層を形成した銅めっき層付き圧延銅箔では、例えば上述の特許文献1〜3の技術を用いて耐屈曲性を高めた圧延銅箔であっても、繰り返しの曲げによるとみられる疲労破断が発生してしまうことが多い。つまり、銅めっき層付き圧延銅箔では、耐屈曲性の悪化がみられることが多々あった。   However, in the rolled copper foil with a copper plating layer in which a copper plating layer is formed, for example, even a rolled copper foil having improved bending resistance using the techniques of Patent Documents 1 to 3 described above seems to be due to repeated bending. Fatigue fracture often occurs. That is, the rolled copper foil with a copper plating layer often has a deterioration in flex resistance.

本発明の目的は、銅めっき層が形成されていても再結晶焼鈍工程後に優れた耐屈曲性を具備させることが可能な銅めっき層付き圧延銅箔を提供することである。   The objective of this invention is providing the rolled copper foil with a copper plating layer which can be provided with the outstanding bending resistance after a recrystallization annealing process, even if the copper plating layer is formed.

本発明の第1の態様によれば、
主表面または裏面に平行な複数の結晶面を有する最終冷間圧延工程後、再結晶焼鈍工程前の圧延銅箔と、
前記圧延銅箔の主表面またはその裏面の少なくとも片側の面上に形成され、主表面、または前記圧延銅箔との界面となる裏面に平行な複数の結晶面を有する銅めっき層と、を備え、
前記圧延銅箔の前記複数の結晶面のうち、{111}面、{002}面、{022}面について2θ/θ法によるX線回折で得られる回折ピークの強度値を、それぞれI{111}、I{002}、I{022}とし、それぞれの前記回折ピークの強度値の分率P{111}、P{002}、P{022}を、
{111}=[I{111}/(I{111}+I{002}+I{022})]、
{002}=[I{002}/(I{111}+I{002}+I{022})]、
{022}=[I{022}/(I{111}+I{002}+I{022})]、
とし、
前記銅めっき層の前記複数の結晶面のうち、{111}面、{002}面、{022}面について2θ/θ法によるX線回折で得られる回折ピークの強度値を、それぞれI{111}、I{002}、I{022}とし、それぞれの前記回折ピークの強度値の分率P{111}、P{002}、P{022}を、
{111}=[I{111}/(I{111}+I{002}+I{022})]、
{002}=[I{002}/(I{111}+I{002}+I{022})]、
{022}=[I{022}/(I{111}+I{002}+I{022})]、
としたとき、
以下の式(1)、
{111}≧15.0・・・(1)
を満たし、更に、
以下の式(2)、
{111}>(P{111}+5)・・・(2)
を満たす状態、
以下の式(3)、(4)、
{002}<(P{002}−10)・・・(3)
{002}>(P{002}+10)・・・(4)
のいずれかを満たす状態、
以下の式(5)、(6)、
{022}<(P{022}−10)・・・(5)
{022}>(P{022}+10)・・・(6)
のいずれかを満たす状態、のうち、少なくともいずれかの状態となっている
銅めっき層付き圧延銅箔が提供される。
According to a first aspect of the invention,
After the final cold rolling process having a plurality of crystal planes parallel to the main surface or the back surface, rolled copper foil before the recrystallization annealing process,
A copper plating layer formed on at least one surface of the main surface of the rolled copper foil or the back surface thereof and having a plurality of crystal planes parallel to the main surface or the back surface serving as an interface with the rolled copper foil. ,
Among the plurality of crystal planes of the rolled copper foil, the intensity values of diffraction peaks obtained by X-ray diffraction by the 2θ / θ method for {111} plane, {002} plane, and {022} plane are respectively I R { 111}, I R {002}, I R {022}, and the fractions P R {111}, P R {002}, P R {022} of the intensity values of the respective diffraction peaks,
P R {111} = [I R {111} / (I R {111} + I R {002} + I R {022})],
P R {002} = [I R {002} / (I R {111} + I R {002} + I R {022})],
P R {022} = [I R {022} / (I R {111} + I R {002} + I R {022})],
age,
Among the plurality of crystal planes of the copper plating layer, intensity values of diffraction peaks obtained by X-ray diffraction by the 2θ / θ method for {111} plane, {002} plane, and {022} plane are respectively I M { 111}, I M {002}, I M {022}, and the fractions P M {111}, P M {002}, P M {022} of the intensity values of the respective diffraction peaks,
P M {111} = [I M {111} / (I M {111} + I M {002} + I M {022})],
P M {002} = [I M {002} / (I M {111} + I M {002} + I M {022})],
P M {022} = [I M {022} / (I M {111} + I M {002} + I M {022})],
When
The following formula (1),
P M {111} ≧ 15.0 (1)
In addition,
The following formula (2),
P M {111}> (P R {111} +5) (2)
Satisfy the condition,
The following formulas (3), (4),
P M {002} <(P R {002} −10) (3)
P M {002}> (P R {002} +10) (4)
A condition that satisfies either
The following formulas (5), (6),
P M {022} <(P R {022} -10) (5)
P M {022}> (P R {022} +10) (6)
A rolled copper foil with a copper plating layer that is in at least one of the states satisfying any of the above is provided.

本発明の第2の態様によれば、
以下の式(2)、(4)、(6)、
{111}>(P{111}+5)・・・(2)
{002}>(P{002}+10)・・・(4)
{022}>(P{022}+10)・・・(6)
の少なくともいずれかを満たす
第1の態様に記載の銅めっき層付き圧延銅箔が提供される。
According to a second aspect of the invention,
The following formulas (2), (4), (6),
P M {111}> (P R {111} +5) (2)
P M {002}> (P R {002} +10) (4)
P M {022}> (P R {022} +10) (6)
The rolled copper foil with a copper plating layer as described in the 1st aspect which satisfy | fills at least one of these is provided.

本発明の第3の態様によれば、
前記圧延銅箔は、
タフピッチ銅もしくは無酸素銅からなる純銅、又はタフピッチ銅もしくは無酸素銅を母相とした希薄銅合金からなり、
純銅型集合組織の形態をとる
第1又は第2の態様に記載の銅めっき層付き圧延銅箔が提供される。
According to a third aspect of the invention,
The rolled copper foil is
Made of pure copper made of tough pitch copper or oxygen-free copper, or a dilute copper alloy with tough pitch copper or oxygen-free copper as the parent phase,
A rolled copper foil with a copper plating layer according to the first or second aspect taking the form of a pure copper texture is provided.

本発明の第4の態様によれば、
前記銅めっき層と前記圧延銅箔との全体の厚さが、1μm以上20μm以下であり、
前記銅めっき層の厚さが、0.1μm以上1.0μm以下である
第1〜第3の態様に記載の銅めっき層付き圧延銅箔が提供される。
According to a fourth aspect of the invention,
The total thickness of the copper plating layer and the rolled copper foil is 1 μm or more and 20 μm or less,
The rolled copper foil with a copper plating layer according to the first to third aspects, in which the thickness of the copper plating layer is 0.1 μm or more and 1.0 μm or less.

本発明の第5の態様によれば、
フレキシブルプリント配線板用である
第1〜第4の態様のいずれかに記載の銅めっき層付き圧延銅箔が提供される。
According to a fifth aspect of the present invention,
The rolled copper foil with a copper plating layer in any one of the 1st-4th aspect which is an object for flexible printed wiring boards is provided.

本発明によれば、銅めっき層が形成されていても再結晶焼鈍工程後に優れた耐屈曲性を具備させることが可能な銅めっき層付き圧延銅箔が提供される。   ADVANTAGE OF THE INVENTION According to this invention, even if the copper plating layer is formed, the rolled copper foil with a copper plating layer which can be equipped with the outstanding bending resistance after a recrystallization annealing process is provided.

本発明の一実施形態に係る銅めっき層付き圧延銅箔の製造工程を示すフロー図である。It is a flowchart which shows the manufacturing process of the rolled copper foil with a copper plating layer which concerns on one Embodiment of this invention. 本発明の実施例に係るタフピッチ銅を用いた圧延銅箔における2θ/θ法によるX線回折の測定チャートである。It is a measurement chart of the X-ray diffraction by the 2theta / theta method in the rolled copper foil using the tough pitch copper which concerns on the Example of this invention. 本発明の実施例に係る無酸素銅を用いた圧延銅箔における2θ/θ法によるX線回折の測定チャートである。It is a measurement chart of the X-ray diffraction by the 2theta / theta method in the rolled copper foil using the oxygen-free copper which concerns on the Example of this invention. 本発明の実施例に係るAgを添加したタフピッチ銅を用いた圧延銅箔における2θ/θ法によるX線回折の測定チャートである。It is a measurement chart of the X-ray diffraction by the 2theta / theta method in the rolled copper foil using the tough pitch copper which added Ag which concerns on the Example of this invention. 本発明の実施例に係るSnを添加した無酸素銅を用いた圧延銅箔における2θ/θ法によるX線回折の測定チャートである。It is a measurement chart of the X-ray diffraction by the 2theta / theta method in the rolled copper foil using the oxygen-free copper which added Sn which concerns on the Example of this invention. 本発明の実施例1の2θ/θ法によるX線回折の測定チャートである。It is a measurement chart of the X-ray diffraction by 2 (theta) / (theta) method of Example 1 of this invention. 本発明の実施例2の2θ/θ法によるX線回折の測定チャートである。It is a measurement chart of the X-ray diffraction by 2 (theta) / (theta) method of Example 2 of this invention. 本発明の実施例3の2θ/θ法によるX線回折の測定チャートである。It is a measurement chart of the X-ray diffraction by 2 (theta) / (theta) method of Example 3 of this invention. 本発明の実施例4の2θ/θ法によるX線回折の測定チャートである。It is a measurement chart of the X-ray diffraction by 2 (theta) / (theta) method of Example 4 of this invention. 本発明の実施例5の2θ/θ法によるX線回折の測定チャートである。It is a measurement chart of the X-ray diffraction by 2 (theta) / (theta) method of Example 5 of this invention. 本発明の実施例6の2θ/θ法によるX線回折の測定チャートである。It is a measurement chart of the X-ray diffraction by 2 (theta) / (theta) method of Example 6 of this invention. 本発明の実施例7の2θ/θ法によるX線回折の測定チャートである。It is a measurement chart of the X-ray diffraction by 2 (theta) / (theta) method of Example 7 of this invention. 本発明の実施例8の2θ/θ法によるX線回折の測定チャートである。It is a measurement chart of the X-ray diffraction by 2 (theta) / (theta) method of Example 8 of this invention. 比較例1の2θ/θ法によるX線回折の測定チャートである。6 is a measurement chart of X-ray diffraction by 2θ / θ method of Comparative Example 1. 比較例2の2θ/θ法によるX線回折の測定チャートである。6 is a measurement chart of X-ray diffraction by 2θ / θ method of Comparative Example 2. 比較例3の2θ/θ法によるX線回折の測定チャートである。10 is a measurement chart of X-ray diffraction by 2θ / θ method of Comparative Example 3. 比較例4の2θ/θ法によるX線回折の測定チャートである。7 is a measurement chart of X-ray diffraction by 2θ / θ method of Comparative Example 4. 本発明の実施例及び比較例に係る銅めっき層付き圧延銅箔の耐屈曲性を測定する摺動屈曲試験装置の模式図である。It is a schematic diagram of the sliding bending test apparatus which measures the bending resistance of the rolled copper foil with a copper plating layer which concerns on the Example and comparative example of this invention. 本発明の実施例の圧延銅箔の厚さと屈曲破断回数との関係を示すグラフである。It is a graph which shows the relationship between the thickness of the rolled copper foil of the Example of this invention, and the frequency | count of bending fracture.

<本発明者等が得た知見> <Knowledge obtained by the present inventors>

上述のように、銅めっき層が形成された圧延銅箔では、上述の特許文献1〜3のような、加熱後の{002}面の比率を高め、優れた耐屈曲性を有する圧延銅箔であっても、疲労破断が発生するなど耐屈曲性の悪化がみられることがあった。   As described above, in the rolled copper foil in which the copper plating layer is formed, the rolled copper foil having an excellent bending resistance is obtained by increasing the ratio of the {002} plane after heating, as described in Patent Documents 1 to 3 above. Even in this case, the bending resistance may be deteriorated, for example, fatigue fracture may occur.

本発明者等は、このような破断が銅めっき層を起点に発生していることを突き止めた。銅めっき層で発生した破断は直ちに圧延銅箔へと伝播し、銅めっき層付き圧延銅箔全体でみたときに、耐屈曲性を悪化させているものと考えられる。   The inventors of the present invention have found that such a rupture occurs from the copper plating layer. It is considered that the breakage generated in the copper plating layer immediately propagates to the rolled copper foil and deteriorates the bending resistance when viewed in the whole rolled copper foil with the copper plating layer.

本発明者等は、鋭意研究の結果、所定の加熱により再結晶して優れた耐屈曲性を具備する圧延銅箔とは異なり、銅めっき層はこのときの加熱によってはほとんど再結晶しないことを突き止めた。つまり、銅めっき層には、めっきによる形成時の結晶構造が略そのまま残ると考えられる。したがって、銅めっき層が、充分な耐屈曲性を有することとなる結晶構造を、銅めっき層の形成当初から有していることが望ましい。   As a result of diligent research, the present inventors have found that the copper plating layer hardly recrystallizes due to heating at this time, unlike a rolled copper foil that is recrystallized by predetermined heating and has excellent bending resistance. I found it. That is, it is considered that the crystal structure at the time of formation by plating remains substantially as it is in the copper plating layer. Therefore, it is desirable that the copper plating layer has a crystal structure that has sufficient bending resistance from the beginning of the formation of the copper plating layer.

そこで、本発明者等は、更に研究を重ね、形成当初の銅めっき層の結晶構造を、これまでの銅めっき層とは異ならせ、銅めっき層付き圧延銅箔の全体的な耐屈曲性を向上させることに想到した。また、本発明者等は、このような結晶構造を有する銅めっき層を形成する方法についても見いだした。   Therefore, the present inventors have further researched and made the crystal structure of the initial copper plating layer different from that of the conventional copper plating layer, thereby improving the overall bending resistance of the rolled copper foil with the copper plating layer. I came up with an improvement. The present inventors have also found a method for forming a copper plating layer having such a crystal structure.

本発明は、発明者等が見いだしたこれらの知見に基づくものである。   The present invention is based on these findings found by the inventors.

<本発明の一実施形態>
(1)銅めっき層付き圧延銅箔の構成
まずは、本発明の一実施形態に係る銅めっき層付き圧延銅箔の構成について説明する。
<One Embodiment of the Present Invention>
(1) Configuration of Rolled Copper Foil with Copper Plating Layer First, the configuration of the rolled copper foil with a copper plating layer according to an embodiment of the present invention will be described.

本実施形態に係る銅めっき層付き圧延銅箔は、無酸素銅やタフピッチ銅、または無酸素銅やタフピッチ銅を母相とする希薄銅合金からなる圧延銅箔と、圧延銅箔の少なくとも片側の面上に形成された銅めっき層と、を備える。また、係る銅めっき層付き圧延銅箔は、例えばFPCの可撓性の配線材としての用途に用いられるよう、全体の厚さが1μm以上20μm以下となるよう構成されている。また、このうち、銅めっき層の厚さは0.1μm以上1.0μm以下となるよう構成されている。   The rolled copper foil with a copper plating layer according to the present embodiment is a rolled copper foil made of oxygen-free copper, tough pitch copper, or a dilute copper alloy having oxygen-free copper or tough pitch copper as a parent phase, and at least one side of the rolled copper foil. A copper plating layer formed on the surface. Moreover, the rolled copper foil with a copper plating layer is configured to have an overall thickness of 1 μm or more and 20 μm or less so as to be used for, for example, an FPC flexible wiring material. Among these, the thickness of the copper plating layer is configured to be 0.1 μm or more and 1.0 μm or less.

(圧延銅箔の概要)
銅めっき層付き圧延銅箔が備える圧延銅箔は、例えば主表面としての圧延面を備える板状に構成され、圧延面または裏面に平行な複数の結晶面を有する。この圧延銅箔は、例えば無酸素銅(OFC:Oxygen-Free Copper)やタフピッチ銅等の純銅を原材料とする鋳塊に、後述の熱間圧延工程や冷間圧延工程等を施し所定厚さとした、最終冷間圧延工程後、再結晶焼鈍工程前の圧延銅箔である。すなわち、本実施形態に係る圧延銅箔は、例えば総加工度が90%以上、好ましくは94%以上、より好ましくは96%以上の最終冷間圧延工程により、銅めっき層を含めた全体の厚さが例えば上述の厚さとなるよう構成されている。この後、上述のように、例えばFPCの基材との貼り合わせの工程を兼ねて銅めっき層付き圧延銅箔に再結晶焼鈍工程が施されると、再結晶に調質された圧延銅箔が、優れた耐屈曲性を具備するよう企図されている。
(Outline of rolled copper foil)
The rolled copper foil with which the rolled copper foil with a copper plating layer is provided is, for example, a plate having a rolled surface as the main surface, and has a plurality of crystal planes parallel to the rolled surface or the back surface. This rolled copper foil has a predetermined thickness by subjecting an ingot made of pure copper such as oxygen-free copper (OFC) or tough pitch copper to a hot rolling process or a cold rolling process, which will be described later. The rolled copper foil after the final cold rolling process and before the recrystallization annealing process. That is, the rolled copper foil according to the present embodiment has a total thickness including the copper plating layer by a final cold rolling step of, for example, a total workability of 90% or more, preferably 94% or more, more preferably 96% or more. Is configured to have the above-described thickness, for example. After that, as described above, for example, when the recrystallization annealing process is performed on the rolled copper foil with a copper plating layer also serving as a bonding process with the FPC base material, the rolled copper foil tempered for recrystallization Is intended to have excellent flex resistance.

圧延銅箔の原材料となる無酸素銅は、例えばJIS C1020等に規定の純度が99.96%以上の銅材である。酸素含有量は完全にゼロでなくともよく、例えば数ppm程度の酸素が含まれていてもよい。また、圧延銅箔の原材料となるタフピッチ銅は、例えばJIS C1100等に規定の純度が99.9%以上の銅材である。タフピッチ銅の場合、酸素含有量は例えば100ppm〜600ppm程度である。これらの原材料からなる圧延銅箔は、例えば純銅型集合組織(純金属型集合組織とも呼ばれる)の形態をとっていることが好ましい。或いは、圧延銅箔として、無酸素銅やタフピッチ銅にスズ(Sn)や銀(Ag)やホウ素(B)、チタン(Ti)等の所定の添加材を微量に加えて希薄銅合金とし、耐熱性等の諸特性が調整された原材料を用いてもよい。このとき、添加材の添加量が、母相の純銅による純銅型集合組織の結晶方位形態の形成を妨げない範囲とすることが好ましい。   The oxygen-free copper used as the raw material for the rolled copper foil is a copper material having a purity specified in JIS C1020 or the like of 99.96% or more, for example. The oxygen content may not be completely zero, and for example, oxygen of about several ppm may be included. Moreover, the tough pitch copper used as the raw material of the rolled copper foil is a copper material having a purity specified in JIS C1100, for example, of 99.9% or more. In the case of tough pitch copper, the oxygen content is, for example, about 100 ppm to 600 ppm. The rolled copper foil made of these raw materials is preferably in the form of, for example, a pure copper texture (also referred to as a pure metal texture). Alternatively, as a rolled copper foil, oxygen-free copper or tough pitch copper is added to a small amount of a predetermined additive such as tin (Sn), silver (Ag), boron (B), titanium (Ti) to form a diluted copper alloy, You may use the raw material in which various characteristics, such as property, were adjusted. At this time, it is preferable that the addition amount of the additive is in a range that does not hinder the formation of the crystal orientation form of the pure copper texture by the pure copper of the parent phase.

最終冷間圧延工程における圧延銅箔の総加工度は、最終冷間圧延工程前の加工対象物(銅の板材)の厚さをTとし、最終冷間圧延工程後の加工対象物の厚さをTとすると、総加工度(%)=[(T−T)/T]×100で表わされる。総加工度を上述の範囲内とすることで、再結晶焼鈍工程における加熱後の{002}面の比率が高まり、高い耐屈曲性を具備することとなる圧延銅箔が得られる。 The total working ratio of the rolled copper foil in the final cold rolling process, the final cold rolling step prior to the workpiece thickness of the (sheet of copper) and T B, the thickness of the final cold working object after rolling process When T a a is the total working ratio (%) = represented by [(T B -T a) / T B] × 100. By setting the total workability within the above range, the ratio of the {002} plane after heating in the recrystallization annealing step is increased, and a rolled copper foil that has high bending resistance can be obtained.

(銅めっき層の概要)
銅めっき層付き圧延銅箔が備える銅めっき層は、圧延銅箔の主表面としての圧延面、またはその裏面の、少なくとも片側の面上に、例えば電解めっき等を用いて形成されている。銅めっき層は、例えば銅めっき層付き圧延銅箔の最表面である主表面、または圧延銅箔との界面となる裏面に平行な複数の結晶面を有する。本実施形態に係る銅めっき層は、例えば圧電銅箔より薄く形成され、例えば0.01μm以上1.0μm以下の厚さに構成されている。
(Overview of copper plating layer)
The copper plating layer with which the rolled copper foil with a copper plating layer is provided is formed on the rolling surface as the main surface of the rolled copper foil, or on at least one surface of the back surface, for example, using electrolytic plating. The copper plating layer has, for example, a main surface that is the outermost surface of the rolled copper foil with a copper plating layer, or a plurality of crystal planes parallel to the back surface serving as an interface with the rolled copper foil. The copper plating layer according to the present embodiment is formed thinner than, for example, a piezoelectric copper foil, and has a thickness of, for example, 0.01 μm to 1.0 μm.

このような厚さに形成することで、例えば後述する粗化粒や防錆層の下地として銅めっき層により圧延銅箔の表面を平坦化し、粗化粒を均一に付着させたり、防錆層を均一に形成したりすることができる。また、このように銅めっき層を圧延銅箔よりも薄く形成することで、銅めっき層付き圧延銅箔の全体としての耐屈曲性の向上が図り易くなる。本実施形態においては、実用上の影響を生じさせないよう1.0μmの厚さを上限値として、銅めっき層が薄く形成されるほど好ましい。   By forming to such a thickness, for example, the surface of the rolled copper foil is flattened by a copper plating layer as a base of roughened grains and a rust preventive layer to be described later, and the roughened grains are uniformly attached, or the rust preventive layer Can be formed uniformly. In addition, by forming the copper plating layer thinner than the rolled copper foil in this way, it becomes easy to improve the bending resistance of the rolled copper foil with a copper plating layer as a whole. In the present embodiment, it is more preferable that the copper plating layer is formed thinner with an upper limit of 1.0 μm so as not to cause practical effects.

(銅めっき層の結晶構造)
銅めっき層付き圧延銅箔が備える銅めっき層の複数の結晶面は、上述の圧延銅箔の複数の結晶面に対し所定の状態を有している。このような状態は、2θ/θ法によるX線回折で得られる回折ピークを用いて、以下のように特定することができる。
(Crystal structure of copper plating layer)
The plurality of crystal planes of the copper plating layer included in the rolled copper foil with a copper plating layer have a predetermined state with respect to the plurality of crystal planes of the above-described rolled copper foil. Such a state can be specified as follows using a diffraction peak obtained by X-ray diffraction by the 2θ / θ method.

すなわち、圧延銅箔の複数の結晶面のうち、{111}面、{002}面、{022}面について2θ/θ法によるX線回折で得られる回折ピークの強度値を、それぞれI{111}、I{002}、I{022}とする。また、それぞれの回折ピークの強度値の分率をP{111}、P{002}、P{022}とする。 That is, the intensity values of diffraction peaks obtained by X-ray diffraction by the 2θ / θ method for the {111} plane, the {002} plane, and the {022} plane among the plurality of crystal planes of the rolled copper foil are respectively I R { 111}, I R {002}, I R {022}. Also, let the fraction of the intensity value of each diffraction peak be P R {111}, P R {002}, and P R {022}.

それぞれの回折ピークの強度値の分率は、
{111}=[I{111}/(I{111}+I{002}+I{022})]、
{002}=[I{002}/(I{111}+I{002}+I{022})]、
{022}=[I{022}/(I{111}+I{002}+I{022})]、で表わされる。
The fraction of the intensity value of each diffraction peak is
P R {111} = [I R {111} / (I R {111} + I R {002} + I R {022})],
P R {002} = [I R {002} / (I R {111} + I R {002} + I R {022})],
P R {022} = [I R {022} / (I R {111} + I R {002} + I R {022})].

また、銅めっき層の複数の結晶面のうち、{111}面、{002}面、{022}面について2θ/θ法によるX線回折で得られる回折ピークの強度値を、それぞれI{111}、I{002}、I{022}とする。また、それぞれの回折ピークの強度値の分率をP{111}、P{002}、P{022}とする。 Moreover, the intensity values of diffraction peaks obtained by X-ray diffraction by the 2θ / θ method with respect to the {111} plane, {002} plane, and {022} plane among the plurality of crystal planes of the copper plating layer are respectively I M { 111}, I M {002}, I M {022}. Also, let the fraction of the intensity value of each diffraction peak be P M {111}, P M {002}, and P M {022}.

それぞれの回折ピークの強度値の分率は、
{111}=[I{111}/(I{111}+I{002}+I{022})]、
{002}=[I{002}/(I{111}+I{002}+I{022})]、
{022}=[I{022}/(I{111}+I{002}+I{022})]、で表わされる。
The fraction of the intensity value of each diffraction peak is
P M {111} = [I M {111} / (I M {111} + I M {002} + I M {022})],
P M {002} = [I M {002} / (I M {111} + I M {002} + I M {022})],
P M {022} = [I M {022} / (I M {111} + I M {002} + I M {022})].

このとき、銅めっき層は、以下の式(1)、
{111}≧15.0・・・(1)
を満たす結晶構造を備える。
At this time, the copper plating layer has the following formula (1),
P M {111} ≧ 15.0 (1)
A crystal structure satisfying

更に、銅めっき層は、
以下の式(2)、
{111}>(P{111}+5)・・・(2)
を満たす状態、
以下の式(3)、(4)、
{002}<(P{002}−10)・・・(3)
{002}>(P{002}+10)・・・(4)
のいずれかを満たす状態、
以下の式(5)、(6)、
{022}<(P{022}−10)・・・(5)
{022}>(P{022}+10)・・・(6)
のいずれかを満たす状態、のうち、少なくともいずれかの状態となる結晶構造を備える。
Furthermore, the copper plating layer
The following formula (2),
P M {111}> (P R {111} +5) (2)
Satisfy the condition,
The following formulas (3), (4),
P M {002} <(P R {002} −10) (3)
P M {002}> (P R {002} +10) (4)
A condition that satisfies either
The following formulas (5), (6),
P M {022} <(P R {022} -10) (5)
P M {022}> (P R {022} +10) (6)
A crystal structure in which at least one of the states is satisfied.

また好ましくは、銅めっき層は、上述の式(2)、(4)、(6)、つまり、
{111}>(P{111}+5)・・・(2)
{002}>(P{002}+10)・・・(4)
{022}>(P{022}+10)・・・(6)
の少なくともいずれかを満たす結晶構造を備える。
Preferably, the copper plating layer has the above formulas (2), (4), (6), that is,
P M {111}> (P R {111} +5) (2)
P M {002}> (P R {002} +10) (4)
P M {022}> (P R {022} +10) (6)
A crystal structure satisfying at least one of the following.

銅めっき層が以上のような結晶構造を備えることの意義について以下に説明する。   The significance of the copper plating layer having the above crystal structure will be described below.

(結晶構造の作用)
上述のように、本実施形態における圧延銅箔は、再結晶焼鈍工程後に{002}面の比率が高まり、優れた耐屈曲性を具備することとなる。
(Action of crystal structure)
As described above, the rolled copper foil in the present embodiment has a high ratio of the {002} plane after the recrystallization annealing step and has excellent bending resistance.

一方、銅めっき層の結晶構造は、最終冷間圧延工程後、再結晶焼鈍工程前の状態において、上述の式(1)を満たし、更に、式(2)、(3)または(4)、(5)または(6)の少なくともいずれかの状態を満たしている。これにより、銅めっき層においては、再結晶焼鈍工程の前後を問わず、優れた耐屈曲性が得られる。   On the other hand, the crystal structure of the copper plating layer satisfies the above formula (1) in the state after the final cold rolling step and before the recrystallization annealing step, and further, the formula (2), (3) or (4), The condition of at least one of (5) and (6) is satisfied. Thereby, in a copper plating layer, the outstanding bending resistance is obtained regardless of before and after a recrystallization annealing process.

銅めっき層によらず、一般に、めっきにより層が形成されるときは、下地の結晶方位の影響を受けた液相エピタキシャル成長となり易い。つまり、例えば従来の銅めっき層付き圧延銅箔においては、銅めっき層が下地である圧延銅箔の結晶方位の影響を受けて液相エピタキシャル成長し、圧延銅箔の結晶方位と同様の結晶方位になり易かったと考えられる。後述するように、銅めっき層は、例えば最終冷間圧延工程後、再結晶焼鈍工程前の圧延銅箔に対して形成される。このとき、圧延銅箔の結晶方位は、圧延集合組織の結晶方位状態となっている。よって、銅めっき層も圧延集合組織の結晶方位と同様な状態になっているはずである。   Regardless of the copper plating layer, in general, when a layer is formed by plating, it tends to be liquid phase epitaxial growth affected by the crystal orientation of the base. That is, for example, in the conventional rolled copper foil with a copper plating layer, the copper plating layer is affected by the crystal orientation of the rolled copper foil that is the base, and is liquid phase epitaxially grown to the same crystal orientation as that of the rolled copper foil. It seems that it was easy. As will be described later, the copper plating layer is formed, for example, on the rolled copper foil after the final cold rolling process and before the recrystallization annealing process. At this time, the crystal orientation of the rolled copper foil is in the crystal orientation state of the rolled texture. Therefore, the copper plating layer should be in the same state as the crystal orientation of the rolling texture.

このような銅めっき層付き圧延銅箔を加熱して、再結晶により圧延銅箔を軟化させた場合、圧延銅箔の圧延集合組織の結晶方位は、再結晶集合組織の結晶方位へと変化し、圧延銅箔は優れた耐屈曲性を得ることとなる。しかしながら、上述のように、本発明者等によれば、このような加熱によっては、銅めっき層はほとんど再結晶しない。   When such a rolled copper foil with a copper plating layer is heated and the rolled copper foil is softened by recrystallization, the crystal orientation of the rolled texture of the rolled copper foil changes to the crystal orientation of the recrystallized texture. The rolled copper foil will obtain excellent bending resistance. However, as described above, according to the present inventors, the copper plating layer is hardly recrystallized by such heating.

再結晶焼鈍工程時、圧延銅箔の結晶方位の変化の駆動力は、最終冷間圧延工程における圧延加工によって圧延銅箔内に蓄積された加工歪と、再結晶焼鈍の加熱による熱エネルギーである。しかしながら、銅めっき層の結晶方位を変化させようとしても、このとき駆動力となり得るのは加熱による熱エネルギーのみである。よって、銅めっき層においては、駆動力不足のため結晶方位の変化がほとんど生じず、圧延集合組織の結晶方位状態にエピタキシャル成長したままの状態に留まると考えられる。このような結晶方位によっては、銅めっき層においては充分な耐屈曲性が得られないこととなってしまう。   During the recrystallization annealing process, the driving force for the change in crystal orientation of the rolled copper foil is the processing strain accumulated in the rolled copper foil by the rolling process in the final cold rolling process and the thermal energy due to the heating of the recrystallization annealing. . However, even if it is going to change the crystal orientation of a copper plating layer, only the thermal energy by heating can become a driving force at this time. Therefore, it is considered that in the copper plating layer, the crystal orientation hardly changes due to insufficient driving force and remains in the state of epitaxial growth in the crystal orientation state of the rolling texture. Depending on the crystal orientation, sufficient bending resistance cannot be obtained in the copper plating layer.

そこで、本発明者等は、銅めっき層の形成時において、銅めっき層の結晶組織が少なくとも圧延集合組織の結晶方位状態とならないよう、鋭意研究を行った。その結果、銅めっき層付き圧延銅箔が、最終冷間圧延工程後、再結晶焼鈍工程前の状態において、上述の式(1)を満たし、更に、式(2)、(3)または(4)、(5)または(6)の少なくともいずれかの状態を満たす結晶構造を有していれば、優れた耐屈曲性の銅めっき層となることを突き止めた。   Therefore, the present inventors have conducted intensive studies so that the crystal structure of the copper plating layer is not at least the crystal orientation state of the rolling texture during the formation of the copper plating layer. As a result, the rolled copper foil with a copper plating layer satisfies the above formula (1) after the final cold rolling step and before the recrystallization annealing step, and further, the formula (2), (3) or (4 ), (5) or (6), it has been found that if it has a crystal structure satisfying at least one of the states, it becomes an excellent bending-resistant copper plating layer.

このような銅めっき層が高い耐屈曲性を示すことについては、詳細なメカニズムを鋭意検討中であるが、上述のような所定の式を満たすことで、少なくとも銅めっき層の結晶構造がエピタキシャル状態とはなっていないということが言える。   As for the copper plating layer exhibiting high bending resistance, a detailed mechanism is under intensive study, but by satisfying the above-described formula, at least the crystal structure of the copper plating layer is in an epitaxial state. It can be said that it is not.

つまり、本実施形態に係る圧延銅箔の圧延集合組織について、2θ/θ法によるX線回折を行うと、{022}面が主ピークとして現れる。次いで、{002}面の回折ピークが2番目に強い強度を示す。一方で、{111}面の回折ピーク強度値は極めて小さい。   That is, when the rolled texture of the rolled copper foil according to the present embodiment is subjected to X-ray diffraction by the 2θ / θ method, the {022} plane appears as a main peak. Next, the diffraction peak on the {002} plane shows the second strongest intensity. On the other hand, the diffraction peak intensity value on the {111} plane is extremely small.

そこで、本発明者等は、{111}面、{002}面、{022}面の3つの回折ピークに注目し、それぞれの回折ピーク強度値の分率P{111}、P{022}、P{022}と、これらと対応する銅めっき層の回折ピーク強度値の分率P{111}、P{022}、P{022}とを比較することとした。これにより、圧延銅箔と銅めっき層の結晶方位の状態が同じか否かを判断することができる。 Therefore, the inventors pay attention to three diffraction peaks of {111} plane, {002} plane, and {022} plane, and the fractions P R {111} and P R {022 of the respective diffraction peak intensity values. }, P R {022} and the corresponding diffraction peak intensity fractions P M {111}, P M {022}, and P M {022} of the corresponding copper plating layer. Thereby, it can be judged whether the state of crystal orientation of a rolled copper foil and a copper plating layer is the same.

すなわち、本実施形態に係る圧延銅箔においては、例えば{111}面の回折ピーク強度値の分率P{111}は極めて小さいはずである。しかし、式(1)を満たすことで、本実施形態に係る銅めっき層の{111}面の回折ピーク強度値の分率P{111}はそのような極端に小さい分率でなく、所定の分率を保って銅めっき層の結晶組織中に存在することを示す。 That is, in the rolled copper foil according to the present embodiment, for example, the fraction P R {111} of the diffraction peak intensity value on the {111} plane should be extremely small. However, by satisfying the expression (1), the fraction P M {111} of the diffraction peak intensity value of the {111} plane of the copper plating layer according to the present embodiment is not such an extremely small fraction, but is predetermined. It is shown that it exists in the crystal structure of the copper plating layer while maintaining the fraction of.

また、これに加えて、銅めっき層が式(2)、(3)または(4)、(5)または(6)の少なくともいずれかを満たす結晶構造を備えていれば、エピタキシャル状態とはなっておらず、圧延銅箔の結晶方位とは異なった状態となっていることが言える。   In addition to this, if the copper plating layer has a crystal structure satisfying at least one of the formulas (2), (3) or (4), (5) or (6), the epitaxial state is obtained. It can be said that it is in a state different from the crystal orientation of the rolled copper foil.

つまり、式(2)は、銅めっき層のP{111}が、圧延銅箔のP{111}よりも充分に大きいことを意味し、銅めっき層の結晶方位状態が圧延銅箔とは異なることを示している。 That is, Formula (2) means that P M {111} of the copper plating layer is sufficiently larger than P R {111} of the rolled copper foil, and the crystal orientation state of the copper plating layer is that of the rolled copper foil. Indicates different things.

また、式(3)は、銅めっき層のP{002}が、圧延銅箔のP{002}よりも極めて小さいことを意味している。また、式(4)は、銅めっき層のP{002}が、圧延銅箔のP{002}よりも極めて大きいことを意味している。このように、式(3),(4)ともに、銅めっき層のP{002}が、圧延銅箔のP{002}とは異なることを示している。 Moreover, Formula (3) means that P M {002} of the copper plating layer is extremely smaller than P R {002} of the rolled copper foil. Moreover, Formula (4) means that P M {002} of the copper plating layer is extremely larger than P R {002} of the rolled copper foil. Thus, both formulas (3) and (4) indicate that P M {002} of the copper plating layer is different from P R {002} of the rolled copper foil.

また、式(5)は、銅めっき層のP{022}が、圧延銅箔のP{022}よりも極めて小さいことを意味している。また、式(6)は、銅めっき層のP{022}が、圧延銅箔のP{022}よりも極めて大きいことを意味している。このように、式(5),(6)ともに、銅めっき層のP{022}が圧延銅箔のP{022}とは異なることを示している。 Moreover, Formula (5) means that P M {022} of the copper plating layer is extremely smaller than P R {022} of the rolled copper foil. Moreover, Formula (6) means that P M {022} of the copper plating layer is extremely larger than P R {022} of the rolled copper foil. Thus, both formulas (5) and (6) indicate that P M {022} of the copper plating layer is different from P R {022} of the rolled copper foil.

以上のように、銅めっき層が、上述の式(2)、(3)または(4)、(5)または(6)のいずれかの状態でも満たせば、銅めっき層の結晶方位状態が、エピタキシャル成長したものではなく、圧延銅箔とは異なっていると言える。このとき、式(2)、(3)または(4)、(5)または(6)の状態のうち、1つのみならず複数の状態を満たしていてもよい。   As described above, if the copper plating layer satisfies any of the above formulas (2), (3) or (4), (5) or (6), the crystal orientation state of the copper plating layer is It is not epitaxially grown and can be said to be different from rolled copper foil. At this time, not only one state but also a plurality of states may be satisfied among the states of the equations (2), (3) or (4), (5) or (6).

また好ましくは、銅めっき層が、上述の式(2)、(4)、(6)の少なくともいずれかを満たすことにより、銅めっき層の結晶構造が圧延銅箔と異なっているばかりでなく、より高い耐屈曲性が得られ易い結晶構造となっていると言える。これら個々の式(2)、(4)、(6)を満たすことの意義については、鋭意検討中であるが、少なくとも{002}面が多く存在することで圧延銅箔等の銅材の耐屈曲性が向上することがわかっている。よって、例えば式(4)を満たすことにより、銅めっき層においても耐屈曲性が高まることが推測される。   Preferably, the copper plating layer satisfies not only the crystal structure of the copper plating layer from the rolled copper foil by satisfying at least one of the above formulas (2), (4), and (6), It can be said that the crystal structure has a higher bending resistance. Although the significance of satisfying these individual formulas (2), (4), and (6) is under intensive study, there are at least many {002} planes so that the resistance of copper materials such as rolled copper foils can be improved. It has been found that flexibility is improved. Therefore, for example, by satisfying the formula (4), it is presumed that the bending resistance is enhanced even in the copper plating layer.

また、一方で、銅めっき層が、上述の式(1)を満たさず、また或いは、上述の式(2)、(3)または(4)、(5)または(6)のいずれの状態も満たさない場合には、銅めっき層の結晶方位状態が、圧延銅箔の結晶方位に対してエピタキシャル成長したものであり、圧延銅箔と略同等であると言える。   On the other hand, the copper plating layer does not satisfy the above formula (1), or alternatively, any of the above formulas (2), (3) or (4), (5) or (6) When not satisfy | filling, it can be said that the crystal orientation state of a copper plating layer is epitaxially grown with respect to the crystal orientation of a rolled copper foil, and is substantially equivalent to a rolled copper foil.

(銅めっき層付き圧延銅箔の他の構成)
銅めっき層付き圧延銅箔の銅めっき層上には、例えば粗化銅めっき層、カプセル銅めっき層、防錆層がこの順に設けられていてもよい。粗化銅めっき層は、粗化粒を備える。粗化粒は、例えば銅(Cu)単体、または、銅に、鉄(Fe)、モリブデン(Mo)、ニッケル(Ni)、コバルト(Co)、スズ(Sn)、亜鉛(Zn)等を少なくとも1種類以上含む直径1μm程度の金属粒子である。カプセル銅めっき層は、粗化粒をコブ状突起へと成長させる、所謂、被せめっき層である。防錆層は、例えばニッケルめっき層、亜鉛めっき層、3価クロム化成処理層、シランカップリング層がこの順に形成された積層構造を備える。
(Other configurations of rolled copper foil with copper plating layer)
On the copper plating layer of the rolled copper foil with a copper plating layer, for example, a roughened copper plating layer, a capsule copper plating layer, and a rust prevention layer may be provided in this order. The roughened copper plating layer includes roughened grains. The roughened grains are, for example, copper (Cu) alone or at least one of iron (Fe), molybdenum (Mo), nickel (Ni), cobalt (Co), tin (Sn), zinc (Zn), and the like. It is a metal particle having a diameter of about 1 μm including more than one kind. The capsule copper plating layer is a so-called covering plating layer that grows roughened grains into bump-shaped protrusions. The anticorrosive layer has a laminated structure in which, for example, a nickel plating layer, a zinc plating layer, a trivalent chromium chemical conversion treatment layer, and a silane coupling layer are formed in this order.

(2)銅めっき層付き圧延銅箔の製造方法
本発明者等は、最終冷間圧延工程後、再結晶焼鈍工程前の圧延銅箔に対してエピタキシャル成長した結晶方位とは異なる結晶方位の状態、つまり、圧延集合組織とは異なる結晶方位の状態となった、本実施形態に係る銅めっき層を得るべく、鋭意研究を行った。
(2) Manufacturing method of rolled copper foil with copper plating layer The present inventors have a state of crystal orientation different from the crystal orientation epitaxially grown on the rolled copper foil after the final cold rolling step and before the recrystallization annealing step, That is, earnest research was conducted in order to obtain a copper plating layer according to the present embodiment in a crystal orientation different from the rolling texture.

具体的には、銅めっき層を形成する際のめっき浴に、銅めっき層が圧延銅箔に対してエピタキシャル成長しないよう抑制可能な薬剤(以下、エピタキシャル成長抑制剤、ノンエピタキシャル剤ともいう)を添加すればよいと考え、種々の添加剤を試した。その結果、電解めっき等で用いられる所定の添加剤に、銅めっき層のエピタキシャル成長を抑制するような、ノンエピタキシャル剤としての働きが認められた。具体的には、これまで光沢剤として用いられていた所定の添加剤に、ノンエピタキシャル剤としての新たな効果を見いだした。   Specifically, an agent capable of suppressing the copper plating layer from growing epitaxially on the rolled copper foil (hereinafter also referred to as an epitaxial growth inhibitor or non-epitaxial agent) is added to the plating bath when forming the copper plating layer. Various additives were tried, considering that it was sufficient. As a result, the action as a non-epitaxial agent that suppresses the epitaxial growth of the copper plating layer was recognized as a predetermined additive used in electrolytic plating or the like. Specifically, a new effect as a non-epitaxial agent has been found in a predetermined additive that has been used as a brightener.

次に、以上の知見に基づく、本発明の一実施形態に係る銅めっき層付き圧延銅箔の製造方法について、図1を用いて説明する。図1は、本実施形態に係る銅めっき層付き圧延銅箔の製造工程を示すフロー図である。   Next, the manufacturing method of the rolled copper foil with a copper plating layer based on one Embodiment of this invention based on the above knowledge is demonstrated using FIG. FIG. 1 is a flowchart showing a manufacturing process of a rolled copper foil with a copper plating layer according to the present embodiment.

(鋳塊の準備工程S10)
図1に示されているように、まずは、銅めっき層付き圧延銅箔の圧延銅箔部分を製造する。
(Ingot preparation step S10)
As shown in FIG. 1, first, a rolled copper foil portion of a rolled copper foil with a copper plating layer is manufactured.

すなわち、無酸素銅(OFC)やタフピッチ銅等の純銅を原材料として鋳造を行って鋳塊(インゴット)を準備する。鋳塊は、例えば所定厚さ、所定幅を備える板状に形成する。原材料となる無酸素銅やタフピッチ銅は、圧延銅箔の諸特性を調整するため、所定の添加材が添加された希薄銅合金となっていてもよい。   That is, an ingot is prepared by casting pure copper such as oxygen-free copper (OFC) or tough pitch copper as a raw material. The ingot is formed in a plate shape having a predetermined thickness and a predetermined width, for example. Oxygen-free copper or tough pitch copper used as a raw material may be a dilute copper alloy to which a predetermined additive is added in order to adjust various properties of the rolled copper foil.

添加材で調整可能な圧延銅箔の諸特性には、例えば耐熱性がある。上述のように、FPC用の圧延銅箔では、高い耐屈曲性を得るための再結晶焼鈍工程は、例えばFPCの基材との貼り合わせの工程を兼ねて行われる。貼り合わせの際の加熱温度は、例えばFPCの樹脂等からなる基材の硬化温度や、使用する接着剤の硬化温度等に合わせて設定され、温度条件の範囲は広く多種多様である。このように設定された加熱温度に圧延銅箔の軟化温度を合わせるべく、圧延銅箔の耐熱性を調整可能な添加材が、適宜、添加される場合がある。   Various characteristics of the rolled copper foil that can be adjusted with the additive include, for example, heat resistance. As described above, in the rolled copper foil for FPC, the recrystallization annealing step for obtaining high bending resistance is performed, for example, also as a bonding step with the FPC base material. The heating temperature at the time of bonding is set in accordance with, for example, the curing temperature of a substrate made of an FPC resin or the like, the curing temperature of an adhesive to be used, and the range of temperature conditions is wide and diverse. In order to adjust the softening temperature of the rolled copper foil to the heating temperature set in this way, an additive capable of adjusting the heat resistance of the rolled copper foil may be appropriately added.

本実施形態に使用される鋳塊として、添加材が無添加の鋳塊や、幾種類かの添加材を添加した鋳塊を以下の表1に例示する。なお、表1に示される添加材の添加量の範囲では、圧延銅箔の結晶方位の状態が、いずれも純銅型集合組織の形態をとる。   As an ingot used in the present embodiment, an ingot having no additive added, and an ingot added with several kinds of additives are exemplified in Table 1 below. In addition, in the range of the addition amount of the additive shown in Table 1, all the crystal orientation states of the rolled copper foil take the form of a pure copper type texture.

また、表1に示す添加材やその他の添加材として、耐熱性を上昇又は降下させる添加材の代表例には、例えば10ppm〜2000ppm程度のスズ(Sn)、銀(Ag)、ホウ素(B)、ニオブ(Nb)、チタン(Ti)、ニッケル(Ni)、ジルコニウム(Zr)、バナジウム(V)、マンガン(Mn)、ハフニウム(Hf)、タンタル(Ta)、及びカルシウム(Ca)のいずれか1つ又は複数の元素を添加した例がある。或いは、第1の添加元素としてAgを添加し、第2の添加元素として上述の元素のいずれか1つ又は複数の元素を添加した例がある。そのほか、クロム(Cr)、亜鉛(Zn)、ガリウム(Ga)、ゲルマニウム(Ge)、ヒ素(As)、カドミウム(Cd)、インジウム(In)、スズ(Sn)、アンチモン(Sb)、金(Au)等を微量添加することも可能である。   Moreover, as a representative example of the additive which raises or lowers the heat resistance as the additive shown in Table 1 and other additives, for example, tin (Sn), silver (Ag), boron (B) of about 10 ppm to 2000 ppm , Niobium (Nb), titanium (Ti), nickel (Ni), zirconium (Zr), vanadium (V), manganese (Mn), hafnium (Hf), tantalum (Ta), and calcium (Ca) There are examples of adding one or more elements. Alternatively, there is an example in which Ag is added as the first additive element and any one or more of the above-described elements are added as the second additive element. In addition, chromium (Cr), zinc (Zn), gallium (Ga), germanium (Ge), arsenic (As), cadmium (Cd), indium (In), tin (Sn), antimony (Sb), gold (Au) ) Etc. can also be added in small amounts.

なお、鋳塊の組成は、後述の最終冷間圧延工程S40を経た後の圧延銅箔においても略そのまま維持され、鋳塊中に添加材を加えた場合には、鋳塊と圧延銅箔とは略同じ添加材濃度となる。   Note that the composition of the ingot is maintained substantially as it is in the rolled copper foil after the final cold rolling step S40 described later, and when an additive is added to the ingot, the ingot and the rolled copper foil Have substantially the same additive concentration.

また、後述の焼鈍工程S32における温度条件は、銅材質や添加材による耐熱性に応じて適宜変更する。但し、上記銅材質や添加材、これに応じた焼鈍工程S32の温度条件の変更等は、本実施形態の効果に対してほとんど影響を与えない。   Moreover, the temperature conditions in the below-mentioned annealing process S32 are suitably changed according to the heat resistance by a copper material or an additive. However, the change of the temperature condition of the said copper material, an additive, and annealing process S32 according to this has little influence with respect to the effect of this embodiment.

(熱間圧延工程S20)
次に、準備した鋳塊に熱間圧延を施して、鋳造後の所定厚さよりも薄い板厚の板材とする。
(Hot rolling process S20)
Next, the prepared ingot is hot-rolled to obtain a plate material having a thickness smaller than a predetermined thickness after casting.

(繰り返し工程S30)
続いて、冷間圧延工程S31と焼鈍工程S32とを所定回数繰り返し実施する繰り返し工程S30を行う。すなわち、冷間圧延を施して加工硬化させた上記板材に、焼鈍処理を施して板材を焼き鈍すことにより加工硬化を緩和する。これを所定回数繰り返すことで、「生地」と称される銅条が得られる。銅材に耐熱性を調整する添加材等が加えられている場合は、銅材の耐熱性に応じて焼鈍処理の温度条件を適宜変更する。
(Repetition step S30)
Subsequently, a repeating step S30 is performed in which the cold rolling step S31 and the annealing step S32 are repeatedly performed a predetermined number of times. That is, work hardening is relieved by subjecting the plate material that has been cold-rolled and work hardened to an annealing treatment to anneal the plate material. By repeating this a predetermined number of times, a copper strip called “dough” is obtained. When an additive for adjusting heat resistance is added to the copper material, the temperature condition of the annealing treatment is appropriately changed according to the heat resistance of the copper material.

なお、繰り返し工程S30中、繰り返し途中の焼鈍工程S32を「中間焼鈍工程」と呼ぶ。また、繰り返しの最後、つまり、後述の最終冷間圧延工程S40の直前に行われる焼鈍工程S32を「最終焼鈍工程」又は「生地焼鈍工程」と呼ぶ。生地焼鈍工程では、上記の銅条(生地)に生地焼鈍処理を施し、焼鈍生地を得る。生地焼鈍工程においても、銅材の耐熱性に応じて温度条件を適宜変更する。このとき、生地焼鈍工程は、上記の各工程に起因する加工歪を充分に緩和することのできる温度条件、例えば完全焼鈍処理と略同等の温度条件で実施することが好ましい。   In addition, in the repetition process S30, the annealing process S32 in the middle of the repetition is referred to as an “intermediate annealing process”. Further, the annealing step S32 performed at the end of the repetition, that is, immediately before the final cold rolling step S40 described later is referred to as a “final annealing step” or a “dough annealing step”. In the dough annealing process, the above copper strip (fabric) is subjected to dough annealing to obtain an annealed dough. Also in the dough annealing step, the temperature condition is appropriately changed according to the heat resistance of the copper material. At this time, the dough annealing step is preferably performed under a temperature condition that can sufficiently relieve the processing strain caused by each of the above steps, for example, a temperature condition substantially equivalent to a complete annealing treatment.

(最終冷間圧延工程S40)
次に、最終冷間圧延工程S40を実施する。最終冷間圧延は仕上げ冷間圧延とも呼ばれ、仕上げとなる冷間圧延を複数回に亘って焼鈍生地に施して薄い銅箔状とする。このとき、高い耐屈曲性を有する圧延銅箔が得られるよう、最終冷間圧延工程S40内での総加工度を90%以上、好ましくは94%以上、より好ましくは96%以上とする。これにより、再結晶焼鈍工程後において、優れた耐屈曲性が得られ易い圧延銅箔となる。
(Final cold rolling process S40)
Next, the final cold rolling step S40 is performed. The final cold rolling is also called finish cold rolling, and the cold rolling to be finished is applied to the annealed fabric a plurality of times to form a thin copper foil. At this time, the total degree of work in the final cold rolling step S40 is 90% or more, preferably 94% or more, and more preferably 96% or more so that a rolled copper foil having high bending resistance can be obtained. Thereby, it becomes a rolled copper foil in which excellent bending resistance is easily obtained after the recrystallization annealing step.

以上により、本実施形態に係る銅めっき層付き圧延銅箔における圧延銅箔が製造される。   The rolled copper foil in the rolled copper foil with a copper plating layer concerning this embodiment is manufactured by the above.

(銅めっき層形成工程S50)
続いて、圧延銅箔の圧延面、またはその裏面の少なくとも片側の面上に、銅めっき層を形成する。
(Copper plating layer forming step S50)
Subsequently, a copper plating layer is formed on the rolled surface of the rolled copper foil or on at least one surface of the back surface thereof.

銅めっき層を形成するにあたっては、予め、圧延銅箔を脱脂浴、酸洗浄浴に順次浸漬し、圧延銅箔の表面を清浄にしておく。つまり、脱脂浴では、例えば水酸化ナトリウム(NaOH)水溶液等のアルカリ溶液を用いて陰極電解脱脂を行う。続く酸洗浄浴では、例えば硫酸(HSO)水溶液や銅エッチング液等の酸性溶液を用いて圧延銅箔の表面に酸洗浄を施し、表面に残存するアルカリ溶液の中和を図ると共に、表面に形成された銅酸化膜(CuO)等を除去する。 In forming the copper plating layer, the rolled copper foil is preliminarily immersed in a degreasing bath and an acid cleaning bath in advance to clean the surface of the rolled copper foil. That is, in the degreasing bath, cathode electrolytic degreasing is performed using an alkaline solution such as a sodium hydroxide (NaOH) aqueous solution. In the subsequent acid cleaning bath, for example, acid cleaning is performed on the surface of the rolled copper foil using an acidic solution such as a sulfuric acid (H 2 SO 4 ) aqueous solution or a copper etching solution to neutralize the alkali solution remaining on the surface, The copper oxide film (CuO) formed on the surface is removed.

銅めっき層の形成には、例えば電解めっき等を用いることができる。めっき浴としては、例えば硫酸銅(CuSO)と硫酸(HSO)とを主成分とする水溶液で満たされた硫酸銅−硫酸浴等の酸性銅めっき浴を用いることができる。ここでは、コスト面等の観点から硫酸銅−硫酸浴等を用いることとするが、銅めっき浴に用いることができる溶液等はこれに限定されない。 For example, electrolytic plating can be used for forming the copper plating layer. As the plating bath, for example, an acidic copper plating bath such as a copper sulfate-sulfuric acid bath filled with an aqueous solution mainly containing copper sulfate (CuSO 4 ) and sulfuric acid (H 2 SO 4 ) can be used. Here, a copper sulfate-sulfuric acid bath or the like is used from the viewpoint of cost and the like, but a solution that can be used for the copper plating bath is not limited thereto.

このとき、めっき電流密度を限界電流密度よりも小さくすることが好ましい。これにより、表面に凹凸が生じるのを抑制し、より平坦な銅めっき層が得られる。但し、めっき電流密度が高い方が生産性は向上する。そこで、めっき電流密度は、限界電流密度より小さい範囲で、かつ、可能な限り高く設定することが好ましい。めっき条件の目安を以下に例示する。但し、以下の条件はあくまでもめっき条件の一例であって、これに限定されない。硫酸銅−硫酸浴等の液組成や液温、電解条件は、広い範囲内から選択可能である。   At this time, it is preferable to make the plating current density smaller than the limit current density. Thereby, it is suppressed that an unevenness | corrugation arises on the surface, and a flatter copper plating layer is obtained. However, productivity is improved as the plating current density is higher. Therefore, the plating current density is preferably set as high as possible within a range smaller than the limit current density. The standard of plating conditions is illustrated below. However, the following conditions are merely examples of plating conditions and are not limited thereto. The liquid composition such as a copper sulfate-sulfuric acid bath, liquid temperature, and electrolysis conditions can be selected from a wide range.

硫酸銅五水和物:20g/L〜300g/L
硫酸:10g/L〜200g/L
液温:15℃〜50℃
めっき電流密度:1A/dm〜30A/dm(限界電流密度未満)
めっき時間:1秒間〜60秒間
Copper sulfate pentahydrate: 20 g / L to 300 g / L
Sulfuric acid: 10 g / L to 200 g / L
Liquid temperature: 15 ° C to 50 ° C
Plating current density: 1 A / dm 2 to 30 A / dm 2 (less than the limit current density)
Plating time: 1 second to 60 seconds

また、硫酸銅−硫酸浴には、添加剤として、例えばビス(3−スルホプロピル)ジスルフィド2ナトリウム(以下、SPSともいう)や、3−メルカプト−1−プロパンスルホン酸(以下、MPSともいう)等のメルカプト(−SH)基を持つ化合物を加える。また、他の添加剤として、ポリエチレングリコール(PEG:Poly-Ethylene Glycol)を主成分とする薬液、およびレベリング剤を加える。   Further, in the copper sulfate-sulfuric acid bath, as additives, for example, disodium bis (3-sulfopropyl) disulfide (hereinafter also referred to as SPS) or 3-mercapto-1-propanesulfonic acid (hereinafter also referred to as MPS). A compound having a mercapto (-SH) group such as is added. Further, as other additives, a chemical solution mainly composed of polyethylene glycol (PEG: Poly-Ethylene Glycol) and a leveling agent are added.

このような添加剤を添加した酸性銅めっき浴に表面が清浄化された圧延銅箔を浸漬し、圧延銅箔を陰極とする電解めっき処理を施して、圧延銅箔の片面あるいは両面に銅めっき層を形成する。これにより、最終冷間圧延工程後、再結晶焼鈍工程前の圧延銅箔に対してエピタキシャル成長した結晶方位とは異なる結晶方位の状態、つまり、圧延集合組織とは異なる結晶方位の状態となった、本実施形態に係る銅めっき層が得られる。つまり、このような薬液中のSPSやMPS等の成分が、エピタキシャル成長抑制剤(ノンエピタキシャル剤)として作用したこととなる。   Immerse the cleaned copper foil in an acidic copper plating bath with such an additive, apply electrolytic plating with the rolled copper foil as the cathode, and apply copper plating to one or both sides of the rolled copper foil. Form a layer. Thereby, after the final cold rolling process, the state of the crystal orientation different from the crystal orientation epitaxially grown on the rolled copper foil before the recrystallization annealing process, that is, the state of the crystal orientation different from the rolling texture, A copper plating layer according to this embodiment is obtained. That is, components such as SPS and MPS in such a chemical solution act as an epitaxial growth inhibitor (non-epitaxial agent).

通常、SPSやMPS等を主成分とする薬液は、銅めっき処理において光沢剤として働くよう用いられる。この場合、係る薬液は、通常、めっき液1リットルあたりに対し、SPSであれば5mg〜10mg程度となるよう添加される。   Usually, a chemical solution mainly composed of SPS, MPS, or the like is used so as to act as a brightener in the copper plating process. In this case, the chemical solution is usually added so as to be about 5 mg to 10 mg in the case of SPS with respect to 1 liter of the plating solution.

しかしながら、本発明者等は、例えばSPSやMPS等を通常の量よりも多く添加することで、最終冷間圧延工程後、再結晶焼鈍工程前の圧延銅箔に対してエピタキシャル成長した結晶方位とは異なる結晶方位の銅めっき層が得られることを見いだした。本発明者等によれば、銅めっき層の形成時、通常より多量に添加されたSPSやMPS等のノンエピタキシャル剤により、銅めっき層に何らかのエネルギーが蓄積されると推察される。また、このエネルギーは、銅めっき層が圧延銅箔の結晶方位に影響されずに結晶成長できる程度、つまり、銅めっき層が圧延銅箔に対してエピタキシャル成長しない程度の大きさを有していると考えられる。   However, the present inventors, for example, by adding more SPS, MPS, etc. than usual, what is the crystal orientation epitaxially grown on the rolled copper foil after the final cold rolling step and before the recrystallization annealing step It has been found that copper plating layers with different crystal orientations can be obtained. According to the present inventors, it is speculated that some energy is accumulated in the copper plating layer by the non-epitaxial agent such as SPS or MPS added in a larger amount than usual when the copper plating layer is formed. In addition, this energy has such a magnitude that the copper plating layer can be grown without being affected by the crystal orientation of the rolled copper foil, that is, the copper plating layer has a size that does not epitaxially grow on the rolled copper foil. Conceivable.

現在のところ、本発明者等は、銅めっき層へのこのようなエネルギーの付与は、以下のいずれかの作用により起きている可能性があると推察している。つまり、1つには、主に、通常の光沢剤として用いる場合よりもSPS等を多く添加したことによる作用であると考えられる。また、他には、SPS等を多量添加することに加え、このようなSPS等と他の薬液との何らかの相互作用であると考えられる。他の薬液としては、めっき液に添加される他の薬液の主成分、あるいは、主成分ではない成分、あるいはまた、薬液のみならずめっき液の何らかの成分等が考えられる。   At present, the present inventors presume that such application of energy to the copper plating layer may be caused by any of the following actions. That is, it is considered that one of the effects is mainly due to the addition of more SPS or the like than when used as a normal brightener. In addition to this, in addition to adding a large amount of SPS or the like, it is considered that this is some kind of interaction between such SPS and other chemicals. As other chemical solutions, the main components of other chemical solutions added to the plating solution, components that are not the main components, or some components of the plating solution as well as the chemical solutions are conceivable.

本発明者等が見いだしたSPS等のこのような効果や用途、使用法は、これらの化合物の光沢剤としての従来の効果や用途、使用法とは全く異なる新規なものである。   Such effects, uses, and usages of SPS and the like found by the present inventors are completely different from conventional effects, uses, and usages of these compounds as brighteners.

このことは、例えば上述した特許文献4,5の粗化箔と、上述の本実施形態に係る銅めっき層付き圧延銅箔とを比較してみても明らかである。   This is clear even when, for example, the above-described roughened foils of Patent Documents 4 and 5 are compared with the above-described rolled copper foil with a copper plating layer according to this embodiment.

特許文献4,5では、粗化コブを均一に付着させるため、圧延銅箔の表面に銅めっき層を形成している。このとき、電流密度を変化させて銅めっき層表面の平坦化を図ったり、また、銅めっき層表面のクレータと呼ばれる窪みを低減させたりすることで、その上に形成する粗化コブを均一化することが目的である。このような特許文献4,5においては、銅めっき層が圧延銅箔の結晶方位にエピタキシャル成長した状態となっていることが、次の理由より容易に推測できる。   In Patent Documents 4 and 5, a copper plating layer is formed on the surface of the rolled copper foil in order to uniformly attach the roughened bump. At this time, the current density is changed to flatten the surface of the copper plating layer, or the dents called craters on the surface of the copper plating layer are reduced to make the roughing bumps formed on the surface uniform. The purpose is to do. In Patent Documents 4 and 5, it can be easily estimated that the copper plating layer is epitaxially grown in the crystal orientation of the rolled copper foil for the following reason.

まず、特許文献4においては、そもそもSPS等の薬剤を用いていない。また、銅めっき層を形成する方法についての他の開示内容も、すべて公知の内容である。このことから、銅めっき層は、圧延銅箔の結晶方位にエピタキシャル成長した状態にならざるを得ないことが推定される。   First, in Patent Document 4, a drug such as SPS is not used in the first place. Moreover, all the other disclosure contents about the method of forming a copper plating layer are also publicly known contents. From this, it is presumed that the copper plating layer has to be epitaxially grown in the crystal orientation of the rolled copper foil.

また、特許文献5においては、SPSを用いた実施例についても開示されているものの、係る実施例の結果をみると、やはり、銅めっき層は圧延銅箔の結晶方位にエピタキシャル成長した状態になっていると推定される。具体的には、特許文献5の実施例1,4および比較例2は、いずれも銅めっき層の厚さが約0.1μmである。また、SPSを使用したか否かに関係なく屈曲寿命回数が4.1×10〜4.5×10回と互いに略同等の結果となっている。ここで、屈曲寿命回数は、耐屈曲性の指標の1つとすることができ、屈曲寿命回数が多いほど耐屈曲性が高いと言える。このように、SPSを使用した銅めっき層であっても、SPSを使用していない銅めっき層と同程度の耐屈曲性しか得られていないことから、圧延銅箔に対してエピタキシャル成長した状態であると考えられる。 Moreover, in patent document 5, although the Example using SPS is also disclosed, when the result of the Example concerned is seen, a copper plating layer will be in the state grown epitaxially in the crystal orientation of the rolled copper foil. It is estimated that Specifically, in Examples 1 and 4 and Comparative Example 2 of Patent Document 5, the thickness of the copper plating layer is about 0.1 μm. In addition, regardless of whether or not SPS is used, the flex lifespan is 4.1 × 10 6 to 4.5 × 10 6 times, which is substantially the same as each other. Here, the number of flexing lifetimes can be one of the indexes of flex resistance, and it can be said that the flex resistance is higher as the number of flex life is larger. Thus, even in the copper plating layer using SPS, only the same degree of bending resistance as that of the copper plating layer not using SPS has been obtained, so that it is epitaxially grown on the rolled copper foil. It is believed that there is.

このように、特許文献4,5では、圧延銅箔単体の耐屈曲性に対し、エピタキシャル成長した銅めっき層を付けることにより、銅めっき層付き圧延銅箔全体での耐屈曲性を悪化させてしまっていると考えられる。なお、特許文献4や特許文献5に記載の屈曲寿命回数と、後述する本発明の実施例等に記載の屈曲破断回数とでは、銅箔屈曲時の曲げ半径等、測定条件等が異なるため単純に比較することはできない。   As described above, in Patent Documents 4 and 5, the bending resistance of the entire rolled copper foil with a copper plating layer is deteriorated by attaching an epitaxially grown copper plating layer to the bending resistance of the rolled copper foil alone. It is thought that. It should be noted that the number of bending lives described in Patent Document 4 and Patent Document 5 and the number of bending breaks described in Examples and the like of the present invention described later differ simply because measurement conditions such as a bending radius at the time of copper foil bending differ. Cannot be compared.

(表面処理工程S60)
以上により形成された銅めっき層の表面に所定の処理を施し、本実施形態に係る銅めっき層付き圧延銅箔が製造される。
(Surface treatment step S60)
The surface of the copper plating layer formed as described above is subjected to a predetermined treatment, and the rolled copper foil with a copper plating layer according to this embodiment is manufactured.

ここで、所定の表面処理として、以下に示すように、例えば粗化銅めっき層、カプセル銅めっき層、防錆層を順次、銅めっき層上に形成するような処理を行ってもよい。但し、以下に説明するこれらの処理は行わなくともよい。   Here, as the predetermined surface treatment, as shown below, for example, a roughened copper plating layer, a capsule copper plating layer, and a rust prevention layer may be sequentially formed on the copper plating layer. However, these processes described below may not be performed.

まずは、銅めっき層に粗化銅めっき層を形成する例について説明する。   First, the example which forms a roughening copper plating layer in a copper plating layer is demonstrated.

粗化銅めっき層を形成するめっき浴としては、例えば硫酸銅−硫酸浴等の酸性銅めっき浴を用いることができる。また、酸性銅めっき浴には、鉄(Fe)、モリブデン(Mo)、ニッケル(Ni)、コバルト(Co)、スズ(Sn)、亜鉛(Zn)等のイオン成分が1種類以上配合されていてもよい。   As a plating bath for forming the roughened copper plating layer, for example, an acidic copper plating bath such as a copper sulfate-sulfuric acid bath can be used. The acidic copper plating bath contains one or more ionic components such as iron (Fe), molybdenum (Mo), nickel (Ni), cobalt (Co), tin (Sn), and zinc (Zn). Also good.

また、粗化銅めっきにおいては、銅めっき層を下地として、限界電流密度以上の高電流密度、つまり、いわゆる焼けめっきとなる電流密度で電解する。但し、このとき、硫酸銅−硫酸浴等の液組成や液温、電解条件は、広い範囲内から選択可能である。これにより、電着物や析出物が銅めっき層上に付着し、さらにこれらが肥大化して、例えば直径1μm程度の粗化粒が得られる。   Further, in roughened copper plating, electrolysis is performed with a copper plating layer as a base at a high current density equal to or higher than a limit current density, that is, a current density that is so-called burn plating. However, at this time, the liquid composition such as a copper sulfate-sulfuric acid bath, the liquid temperature, and the electrolysis conditions can be selected from a wide range. As a result, electrodeposits and deposits adhere to the copper plating layer, which further enlarges to obtain roughened grains having a diameter of, for example, about 1 μm.

続いて、カプセル銅めっき層を形成する例について説明する。   Then, the example which forms a capsule copper plating layer is demonstrated.

すなわち、上述のめっき浴の限界電流密度未満の電流により粗化銅めっき層の粗化粒に被せめっきを行って、粗化粒をコブ状銅粒へと成長させる。但し、粗化粒を微小なままに留めたい場合には、カプセル銅めっき層を形成しなくともよい。このとき、硫酸銅−硫酸浴等の液組成や液温、電解条件は、広い範囲内から選択可能である。また、このとき、めっき浴中に有機物添加材を添加してもよい。   That is, the roughened grains of the roughened copper plating layer are plated with a current less than the limit current density of the plating bath described above to grow the roughened grains into bump-shaped copper grains. However, when it is desired to keep the coarse grains fine, it is not necessary to form the capsule copper plating layer. At this time, the liquid composition such as a copper sulfate-sulfuric acid bath, the liquid temperature, and the electrolysis conditions can be selected from a wide range. At this time, an organic additive may be added to the plating bath.

次に、防錆層を形成する例について説明する。   Next, an example of forming a rust prevention layer will be described.

防錆層は、後処理めっき層とも呼ばれ、これにより充分な防錆性能を得ることができる。まずは、ニッケルめっき層またはニッケル合金めっき層を形成し、銅の拡散抑制を図る。続いて、亜鉛めっき層または亜鉛合金めっき層を形成し、耐熱性の向上を図る。次に、3価クロムタイプの反応型クロメート液等を用いて3価クロム化成処理層を形成する。その後、化成処理被膜として例えばシランカップリング層を形成し、FPCの基材等との密着性の向上を図る。   The rust preventive layer is also referred to as a post-treatment plated layer, and thereby sufficient rust preventive performance can be obtained. First, a nickel plating layer or a nickel alloy plating layer is formed to suppress copper diffusion. Subsequently, a zinc plating layer or a zinc alloy plating layer is formed to improve heat resistance. Next, a trivalent chromium chemical conversion treatment layer is formed using a trivalent chromium type reactive chromate solution or the like. Thereafter, for example, a silane coupling layer is formed as a chemical conversion coating, and adhesion with the FPC substrate is improved.

以上により、銅めっき層の表面処理を終了する。   Thus, the surface treatment of the copper plating layer is completed.

(3)フレキシブルプリント配線板の製造方法
次に、本発明の一実施形態に係る銅めっき層付き圧延銅箔を用いたフレキシブルプリント配線板(FPC)の製造方法について説明する。
(3) Manufacturing method of flexible printed wiring board Next, the manufacturing method of the flexible printed wiring board (FPC) using the rolled copper foil with a copper plating layer which concerns on one Embodiment of this invention is demonstrated.

(再結晶焼鈍工程(CCL工程))
まずは、本実施形態に係る銅めっき層付き圧延銅箔を所定のサイズに裁断し、例えばポリイミド等の樹脂からなるFPCの基材と貼り合わせてCCL(Copper Clad Laminate)を形成する。このとき、接着剤を介して貼り合わせを行う3層材CCLを形成する方法と、接着剤を介さず直接貼り合わせを行う2層材CCLを形成する方法のいずれを用いてもよい。接着剤を用いる場合には、加熱処理により、上述のシランカップリング剤等の接着剤を硬化させて銅めっき層付き圧延銅箔の銅めっき層およびそれに付着する粗化粒等を有する面と基材とを密着させ複合する。接着剤を用いない場合には、加熱・加圧により銅めっき層付き圧延銅箔の銅めっき層およびそれに付着する粗化粒等を有する面と基材とを直接密着させる。加熱温度や時間は、接着剤や基材の硬化温度等に合わせて適宜選択することができ、例えば150℃以上400℃以下の温度で、1分以上120分以下とすることができる。
(Recrystallization annealing process (CCL process))
First, the rolled copper foil with a copper plating layer according to the present embodiment is cut into a predetermined size, and bonded to an FPC base material made of a resin such as polyimide to form a CCL (Copper Clad Laminate). At this time, either a method of forming a three-layer material CCL that is bonded using an adhesive or a method of forming a two-layer material CCL that is directly bonded without using an adhesive may be used. In the case of using an adhesive, the surface and base having a copper plating layer of the rolled copper foil with a copper plating layer and roughened grains adhering to it by curing the above-mentioned adhesive such as a silane coupling agent by heat treatment. The material is closely adhered and combined. When the adhesive is not used, the surface of the rolled copper foil with a copper plating layer and the surface having roughened grains attached thereto is directly adhered to the substrate by heating and pressing. The heating temperature and time can be appropriately selected according to the curing temperature of the adhesive and the base material, and can be set to 1 to 120 minutes at a temperature of 150 to 400 ° C., for example.

上述のように、銅めっき層付き圧延銅箔が備える圧延銅箔の耐熱性は、このときの加熱温度に合わせて調整されている。したがって、最終冷間圧延工程S40により加工硬化した状態の圧延銅箔が、上記加熱により軟化し再結晶に調質される。つまり、基材に銅めっき層付き圧延銅箔を貼り合わせるCCL工程が、銅めっき層付き圧延銅箔の圧延銅箔に対する再結晶焼鈍工程を兼ねている。   As above-mentioned, the heat resistance of the rolled copper foil with which the rolled copper foil with a copper plating layer is equipped is adjusted according to the heating temperature at this time. Therefore, the rolled copper foil in the state of work hardening in the final cold rolling step S40 is softened by the heating and tempered to recrystallization. That is, the CCL process of bonding the rolled copper foil with the copper plating layer to the base material also serves as a recrystallization annealing process for the rolled copper foil of the rolled copper foil with the copper plating layer.

このように、CCL工程が再結晶焼鈍工程を兼ねることで、銅めっき層付き圧延銅箔を基材に貼り合わせるまでの工程では、圧延銅箔が最終冷間圧延工程S40後の加工硬化した状態で銅めっき層付き圧延銅箔を取り扱うことができ、銅めっき層付き圧延銅箔を基材に貼り合わせる際の、伸び、しわ、折れ等の変形を起こり難くすることができる。   Thus, in the process until the CCL process also serves as the recrystallization annealing process and the rolled copper foil with the copper plating layer is bonded to the base material, the rolled copper foil is work-hardened after the final cold rolling process S40. Thus, the rolled copper foil with a copper plating layer can be handled, and deformation such as elongation, wrinkle, and fold can be made difficult to occur when the rolled copper foil with a copper plating layer is bonded to a substrate.

また、上述のような圧延銅箔の軟化は、再結晶焼鈍工程により、調質された圧延銅箔、つまり、再結晶組織を有する圧延銅箔が得られたことを示している。具体的には、{002}面の比率が高まって、耐屈曲性に優れた圧延銅箔を得ることができる。   The softening of the rolled copper foil as described above indicates that a tempered rolled copper foil, that is, a rolled copper foil having a recrystallized structure, was obtained by the recrystallization annealing process. Specifically, the ratio of the {002} plane is increased, and a rolled copper foil having excellent bending resistance can be obtained.

一方で、銅めっき層は、圧延銅箔が有しているような加工歪等の再結晶の駆動力を有していない。よって、このような結晶組織が上述の圧延銅箔のように変化することは結晶学上、考え難い。つまり、銅めっき層においては、再結晶焼鈍工程の前後にわたって、その結晶方位は略一定に保たれる。このとき、銅めっき層の結晶方位は、エピタキシャル成長した状態ではなく、すなわち、圧延集合組織と同等の結晶方位にはなっていない。これにより、銅めっき層は、再結晶焼鈍工程の前後によらず、優れた耐屈曲性を備えている。   On the other hand, the copper plating layer does not have a driving force for recrystallization such as processing strain that a rolled copper foil has. Therefore, it is difficult to think in terms of crystallography that such a crystal structure changes as in the above-described rolled copper foil. That is, in the copper plating layer, the crystal orientation is kept substantially constant before and after the recrystallization annealing step. At this time, the crystal orientation of the copper plating layer is not in an epitaxially grown state, that is, the crystal orientation is not equivalent to that of the rolling texture. Thereby, the copper plating layer has excellent bending resistance regardless of before and after the recrystallization annealing step.

(表面加工工程)
次に、基材に貼り合わせた銅めっき層付き圧延銅箔に表面加工工程を施す。表面加工工程では、銅めっき層付き圧延銅箔に例えばエッチング等の手法を用いて銅配線等を形成する配線形成工程と、銅配線と他の電子部材との接続信頼性を向上させるためメッキ処理等の表面処理を施す表面処理工程と、銅配線等を保護するため銅配線上の一部を覆うようにソルダレジスト等の保護膜を形成する保護膜形成工程とを行う。
(Surface machining process)
Next, a surface processing step is performed on the rolled copper foil with a copper plating layer bonded to the base material. In the surface processing step, a wiring forming step for forming a copper wiring or the like on the rolled copper foil with a copper plating layer using a technique such as etching, and a plating process for improving the connection reliability between the copper wiring and other electronic members. And a protective film forming process for forming a protective film such as a solder resist so as to cover a part of the copper wiring in order to protect the copper wiring and the like.

以上により、本実施形態に係る銅めっき層付き圧延銅箔を用いたFPCが製造される。   By the above, FPC using the rolled copper foil with a copper plating layer concerning this embodiment is manufactured.

<本発明の他の実施形態>
以上、本発明の実施形態について具体的に説明したが、本発明は上述の実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能である。
<Other Embodiments of the Present Invention>
As mentioned above, although embodiment of this invention was described concretely, this invention is not limited to the above-mentioned embodiment, It can change variously in the range which does not deviate from the summary.

例えば、上述の実施形態においては、銅めっき層付き圧延銅箔が備える圧延銅箔の耐熱性を調整する添加材として主にSn,Ag等を用いることとしたが、添加材は、Sn,Agや上記代表例等に挙げたものに限られない。また、添加材により調整可能な諸特性は耐熱性に限られず、調整を必要とする諸特性に応じて添加材を適宜選択してもよい。   For example, in the above-described embodiment, Sn, Ag or the like is mainly used as an additive for adjusting the heat resistance of the rolled copper foil included in the rolled copper foil with a copper plating layer, but the additive is Sn, Ag. It is not limited to those listed in the above representative examples. Moreover, the various characteristics that can be adjusted by the additive are not limited to heat resistance, and the additive may be appropriately selected according to the various characteristics that require adjustment.

また、上述の実施形態においては、FPCの製造工程におけるCCL工程は圧延銅箔に対する再結晶焼鈍工程を兼ねることとしたが、再結晶焼鈍工程は、CCL工程とは別工程として行ってもよい。   In the above-described embodiment, the CCL process in the FPC manufacturing process also serves as a recrystallization annealing process for the rolled copper foil. However, the recrystallization annealing process may be performed as a separate process from the CCL process.

また、上述の実施形態においては、銅めっき層付き圧延銅箔はFPC用途に用いられることとしたが、銅めっき層付き圧延銅箔の用途はこれに限られず、例えばリチウムイオン二次電池の負極集電銅箔やその他の耐屈曲性を必要とする他の用途にも用いることができる。また、銅めっき層付き圧延銅箔の厚さについても、FPC用途をはじめとする各種用途に応じて、10μm以下の超極薄、或いは、20μm超などとしてもよい。   Moreover, in the above-mentioned embodiment, although the rolled copper foil with a copper plating layer was used for FPC use, the use of the rolled copper foil with a copper plating layer is not restricted to this, For example, the negative electrode of a lithium ion secondary battery It can also be used for current collector copper foil and other applications that require bending resistance. Also, the thickness of the rolled copper foil with a copper plating layer may be ultra-thin of 10 μm or less, or over 20 μm, depending on various uses including FPC.

また、上述の実施形態においては、銅めっき層を圧延銅箔より薄くすることとしたが、これに限られない。銅めっき層を例えば圧延銅箔より厚くしても、銅めっき層付き圧延銅箔の全体としての耐屈曲性を向上させる本発明の所定の効果は得られる。   Moreover, in the above-mentioned embodiment, although the copper plating layer was made thinner than a rolled copper foil, it is not restricted to this. Even if the copper plating layer is thicker than the rolled copper foil, for example, the predetermined effect of the present invention that improves the bending resistance of the rolled copper foil with a copper plating layer as a whole can be obtained.

また、上述の実施形態においては、圧延銅箔が純銅型集合組織の形態をとるとしたが、これに限られない。例えばFPC用途以外に用いる場合などには、合金型集合組織の形態を取っていてもよい。   Moreover, in the above-mentioned embodiment, although rolled copper foil assumed the form of the pure copper type | mold texture, it is not restricted to this. For example, when used for purposes other than FPC, it may take the form of an alloy-type texture.

また、上述の実施形態においては、銅めっき層上に粗化銅めっき層、カプセル銅めっき層、防錆層を設けることとしたが、これらの層の組み合わせは任意である。例えば、粗化粒を小さくする場合にはカプセル銅めっきは設けなくともよい。また、粗化銅めっき層やカプセル銅めっき層を設けずに、直接、防錆層を銅めっき層上に設けてもよい。また、銅めっき層付き圧延銅箔を適用する用途によっては、つまり、FPC用途以外の用途などでは、そもそも基材との密着性を考慮に入れなくともよく、銅めっき層上の構成を全て省略し、例えば無粗化とすることも可能である。   Moreover, in the above-mentioned embodiment, although the roughening copper plating layer, the capsule copper plating layer, and the antirust layer were provided on the copper plating layer, the combination of these layers is arbitrary. For example, when making coarse grains small, it is not necessary to provide capsule copper plating. Moreover, you may provide a rust prevention layer directly on a copper plating layer, without providing a roughening copper plating layer and a capsule copper plating layer. Also, depending on the application to which the rolled copper foil with a copper plating layer is applied, that is, in applications other than the FPC application, it is not necessary to consider the adhesiveness to the substrate in the first place, and all configurations on the copper plating layer are omitted. For example, it is possible to make it rough.

また、上述の実施形態においては、最終冷間圧延工程S40での総加工度を90%以上などとし、圧延銅箔において優れた耐屈曲性を得ることとしたが、最終冷間圧延工程における総加工度を例えば90%未満としても、耐屈曲性を向上させた銅めっき層の所定効果は、これとは独立して得られる。よって、ある程度の耐屈曲性が得られていればよい場合等には、圧延銅箔の総加工度を例えば90%未満、或いは80%未満等と低く抑え、製造工程における負荷を低減することができる。   Further, in the above-described embodiment, the total work degree in the final cold rolling step S40 is set to 90% or more and the like, and excellent bending resistance is obtained in the rolled copper foil. Even if the degree of processing is less than 90%, for example, the predetermined effect of the copper plating layer with improved bending resistance can be obtained independently. Therefore, when it is sufficient that a certain degree of bending resistance is obtained, the total processing degree of the rolled copper foil can be suppressed to, for example, less than 90% or less than 80%, and the load in the manufacturing process can be reduced. it can.

また、上述の実施形態においては、銅めっき層が圧延銅箔の結晶構造となっていない銅めっき層付き圧延銅箔の製造方法として、SPSやMPS等の添加剤を用いた電解めっき等にエピタキシャル成長抑制剤(ノンエピタキシャル剤)としての所定の効果が見いだされた。但し、これらSPSやMPSを用いることそれ自体は発明の本質ではなく、これら以外にも、ノンエピタキシャル剤としての働きを有する他の添加剤を用いてもよい。これによって、本発明の効果は充分に得られる。   Moreover, in the above-mentioned embodiment, as a manufacturing method of the rolled copper foil with a copper plating layer in which the copper plating layer does not have the crystal structure of the rolled copper foil, the epitaxial growth is performed by electrolytic plating using an additive such as SPS or MPS. A predetermined effect as an inhibitor (non-epitaxial agent) was found. However, the use of these SPS and MPS is not the essence of the invention, and other additives having a function as a non-epitaxial agent may be used in addition to these. Thereby, the effect of the present invention can be sufficiently obtained.

本発明の主眼は、あくまで、銅めっき層付き圧延銅箔の銅めっき層がエピタキシャル成長しておらず圧延銅箔と同様の結晶構造とはなっていない点と、これにより銅めっき層において優れた耐屈曲性が得られるという点と、にある。   The main point of the present invention is that the copper plating layer of the rolled copper foil with a copper plating layer is not epitaxially grown and does not have the same crystal structure as that of the rolled copper foil. It is in the point that flexibility is obtained.

なお、本発明の効果を奏するために、上記に挙げた工程のすべてが必須であるとは限らない。上述の実施形態や後述の実施例で挙げる種々の条件もあくまで例示であって、適宜変更可能である。   In addition, in order to show the effect of this invention, not all the processes mentioned above are necessarily essential. The various conditions given in the above-described embodiment and examples described later are merely examples, and can be changed as appropriate.

次に、本発明に係る実施例について比較例とともに説明する。   Next, examples according to the present invention will be described together with comparative examples.

(1)銅めっき層付き圧延銅箔の製作
実施例1〜32および比較例1〜16に係る銅めっき層付き圧延銅箔の製作手順について以下に説明する。
(1) Manufacture of rolled copper foil with copper plating layer The manufacturing procedure of the rolled copper foil with copper plating layers according to Examples 1 to 32 and Comparative Examples 1 to 16 will be described below.

(圧延銅箔の製作)
まずは、圧延銅箔を製作した。用いた原材料は、純度が99.9%のタフピッチ銅、純度が99.99%の無酸素銅、180ppm〜220ppmの範囲内の添加量に制御したAgを添加した純度が99.9%のタフピッチ銅、30ppm〜90ppmの範囲内の添加量に制御したSnを添加した純度が99.99%の無酸素銅の4種類である。これらの鋳塊から、上述の実施形態と同様の手順及び方法で圧延銅箔を得た。このとき、実施例および比較例の両方について、厚さが8.0μm、11.0μm、16.5μm、17.0μmの圧延銅箔を製作した。また、このとき、実施例および比較例における各種製作条件は一緒とした。
(Production of rolled copper foil)
First, rolled copper foil was manufactured. The raw materials used were tough pitch copper with a purity of 99.9%, oxygen-free copper with a purity of 99.99%, and a purity of 99.9% with the addition of Ag controlled to an addition amount in the range of 180 ppm to 220 ppm. There are four types of copper, oxygen-free copper having a purity of 99.99% with Sn added to an addition amount in the range of 30 ppm to 90 ppm. From these ingots, rolled copper foil was obtained by the same procedure and method as in the above embodiment. At this time, rolled copper foils having thicknesses of 8.0 μm, 11.0 μm, 16.5 μm, and 17.0 μm were manufactured for both the example and the comparative example. At this time, various production conditions in the examples and comparative examples were the same.

このとき、熱間圧延工程にて得た厚さ8mmの板材を、中間焼鈍工程にて、それぞれの銅材質や銅条の厚さに応じて、約600℃〜800℃の温度で30秒間〜2分間保持した。また、生地焼鈍工程においてもそれぞれの銅材質や生地材の厚さに応じて、約500〜750℃の温度で約30秒間〜2分間、生地を保持した。このように、例えば材質が同じであっても、銅材の厚さに応じて耐熱性が変化するため、薄くなるにつれて温度を下げることができる。   At this time, the plate material having a thickness of 8 mm obtained in the hot rolling step is subjected to an intermediate annealing step at a temperature of about 600 ° C. to 800 ° C. for 30 seconds in accordance with the thickness of each copper material and copper strip. Hold for 2 minutes. Also, in the dough annealing step, the dough was held at a temperature of about 500 to 750 ° C. for about 30 seconds to 2 minutes depending on the thickness of each copper material and dough material. Thus, even if the material is the same, for example, the heat resistance changes according to the thickness of the copper material, so the temperature can be lowered as the thickness becomes thinner.

また、最終冷間圧延工程における、材質及び最終的に得られる圧延銅箔の厚さtに応じた総加工度を以下に示す。   Moreover, the total workability according to the material and the thickness t of the finally obtained rolled copper foil in the final cold rolling process is shown below.

● タフピッチ銅を用いた圧延銅箔:総加工度90.0%〜91.8%
・ t8.0μm: t80μm→(90.0%)→ t8.0μm
・t11.0μm: t125μm→(91.2%)→t11.0μm
・t16.5μm: t200μm→(91.8%)→t16.5μm
・t17.0μm: t200μm→(91.5%)→t17.0μm
● Rolled copper foil using tough pitch copper: Total workability 90.0% to 91.8%
T8.0 μm: t80 μm → (90.0%) → t8.0 μm
T11.0 μm: t125 μm → (91.2%) → t11.0 μm
T16.5 μm: t200 μm → (91.8%) → t16.5 μm
T17.0 μm: t200 μm → (91.5%) → t17.0 μm

● 無酸素銅を用いた圧延銅箔:総加工度94.3%〜94.6%
・ t8.0μm: t140μm→(94.3%)→ t8.0μm
・t11.0μm: t200μm→(94.5%)→t11.0μm
・t16.5μm: t300μm→(94.5%)→t16.5μm
・t17.0μm: t315μm→(94,6%)→t17.0μm
● Rolled copper foil using oxygen-free copper: Total processing degree: 94.3% -94.6%
T8.0 μm: t140 μm → (94.3%) → t8.0 μm
T11.0 μm: t200 μm → (94.5%) → t11.0 μm
T16.5 μm: t300 μm → (94.5%) → t16.5 μm
T17.0 μm: t315 μm → (94, 6%) → t17.0 μm

● Agを添加したタフピッチ銅を用いた圧延銅箔:総加工度96.9%〜97.8%
・ t8.0μm: t360μm→(97.8%)→ t8.0μm
・t11.0μm: t400μm→(97.3%)→t11.0μm
・t16.5μm: t550μm→(97.0%)→t16.5μm
・t17.0μm: t550μm→(96.9%)→t17.0μm
● Rolled copper foil using tough pitch copper to which Ag is added: Total working degree 96.9% to 97.8%
・ T8.0μm: t360μm → (97.8%) → t8.0μm
T11.0 μm: t400 μm → (97.3%) → t11.0 μm
T16.5 μm: t550 μm → (97.0%) → t16.5 μm
T17.0 μm: t550 μm → (96.9%) → t17.0 μm

● Snを添加した無酸素銅を用いた圧延銅箔:総加工度96.9%〜97.8%
・ t8.0μm: t360μm→(97.8%)→ t8.0μm
・t11.0μm: t400μm→(97.3%)→t11.0μm
・t16.5μm: t550μm→(97.0%)→t16.5μm
・t17.0μm: t550μm→(96.9%)→t17.0μm
● Rolled copper foil using oxygen-free copper to which Sn is added: Total processing degree 96.9% to 97.8%
・ T8.0μm: t360μm → (97.8%) → t8.0μm
T11.0 μm: t400 μm → (97.3%) → t11.0 μm
T16.5 μm: t550 μm → (97.0%) → t16.5 μm
T17.0 μm: t550 μm → (96.9%) → t17.0 μm

(銅めっき層付き圧延銅箔の製作)
次に、上述のように得られた圧延銅箔に銅めっきを施して、銅めっき層付き圧延銅箔を製作した。
(Production of rolled copper foil with copper plating layer)
Next, the rolled copper foil obtained as described above was subjected to copper plating to produce a rolled copper foil with a copper plating layer.

まず、圧延銅箔の表面を清浄化する電解脱脂では、水酸化ナトリウム40g/L、炭酸ナトリウム20g/Lを含む水溶液中で、液温40℃、電流密度10A/dmにて10秒間の処理を行った。 First, in electrolytic degreasing to clean the surface of the rolled copper foil, a treatment for 10 seconds at a liquid temperature of 40 ° C. and a current density of 10 A / dm 2 in an aqueous solution containing 40 g / L of sodium hydroxide and 20 g / L of sodium carbonate. Went.

圧延銅箔の表面に残存するアルカリ溶液の中和および銅の酸化膜を除去する酸洗処理では、硫酸150g/Lを含む水溶液中で、液温25℃にて10秒間浸漬した。   In the pickling treatment for neutralizing the alkaline solution remaining on the surface of the rolled copper foil and removing the copper oxide film, the substrate was immersed in an aqueous solution containing 150 g / L of sulfuric acid at a liquid temperature of 25 ° C. for 10 seconds.

圧延銅箔を陰極とする電解処理を施し、8.0μmの圧延銅箔に対しては厚さ0.1μm、厚さ11.0μmの圧延銅箔に対しては厚さ0.4μm、厚さ16.5μmの圧延銅箔に対しては厚さ0.7μm、厚さ17.0μmの圧延銅箔に対しては厚さ1.0μmの銅めっき層をそれぞれ形成した。圧延銅箔の厚さと共に銅めっき層の厚さを増減させているのは、量産性や生産コストの観点からであって、このこと自体で、本実施例の効果が左右されるわけではない。   Electrolytic treatment using the rolled copper foil as a cathode is performed. The rolled copper foil of 8.0 μm has a thickness of 0.1 μm and the rolled copper foil of 11.0 μm has a thickness of 0.4 μm. A copper plating layer having a thickness of 1.0 μm was formed on a rolled copper foil having a thickness of 0.7 μm and a thickness of 17.0 μm on a rolled copper foil having a thickness of 16.5 μm. The reason why the thickness of the copper plating layer is increased or decreased together with the thickness of the rolled copper foil is from the viewpoint of mass productivity and production cost, and this does not affect the effect of this embodiment. .

このとき、実施例1〜32および一部の比較例においては、めっき液に添加するSPSの添加量を変化させた。また、一部の比較例においては、SPSの添加を行わなかった。以下の表2に、銅めっきにおける詳細条件を示す。   At this time, in Examples 1-32 and some comparative examples, the amount of SPS added to the plating solution was changed. In some comparative examples, SPS was not added. Table 2 below shows detailed conditions in copper plating.

表2の条件下で、実施例および比較例のいずれにおいても、同程度の平坦性を有する銅めっき層が得られた。銅めっき層の表面粗さは、十点平均粗さRzjis(JIS B0601:2001)で0.4μm〜0.7μmであった。   Under the conditions shown in Table 2, a copper plating layer having the same level of flatness was obtained in both the examples and the comparative examples. The surface roughness of the copper plating layer was 0.4 μm to 0.7 μm in terms of ten-point average roughness Rzjis (JIS B0601: 2001).

以上により、圧延銅箔にタフピッチ銅を用いた実施例1〜8および比較例1〜4、圧延銅箔に無酸素銅を用いた実施例9〜16および比較例5〜8、圧延銅箔にAgを添加したタフピッチ銅を用いた実施例17〜24および比較例9〜12、圧延銅箔にSnを添加した無酸素銅を用いた実施例25〜32および比較例13〜16に係る銅めっき層付き圧延銅箔が得られた。   From the above, Examples 1 to 8 and Comparative Examples 1 to 4 using tough pitch copper for rolled copper foil, Examples 9 to 16 and Comparative Examples 5 to 8 using oxygen-free copper for rolled copper foil, and rolled copper foil Copper plating according to Examples 17 to 24 and Comparative Examples 9 to 12 using tough pitch copper added with Ag, Examples 25 to 32 using oxygen-free copper with Sn added to a rolled copper foil, and Comparative Examples 13 to 16 A layered rolled copper foil was obtained.

(2)2θ/θ法によるX線回折
以上のように得られた実施例および比較例に係る銅めっき層付き圧延銅箔の銅めっき層、圧延銅箔について、結晶方位をX線回折装置にて測定した。圧延銅箔の結晶方位については、銅めっき層を形成する前の状態で測定を行った。X線回折装置としては、株式会社リガク製のX線回折装置(型式:Ultima IV)を用いた。表3に測定条件をまとめて示す。
(2) X-ray diffraction by 2θ / θ method About the copper plating layer and the rolled copper foil of the rolled copper foil with a copper plating layer according to the examples and comparative examples obtained as described above, the crystal orientation is changed to the X-ray diffraction device. Measured. About the crystal orientation of rolled copper foil, it measured in the state before forming a copper plating layer. As the X-ray diffractometer, an X-ray diffractometer (Model: Ultimate IV) manufactured by Rigaku Corporation was used. Table 3 summarizes the measurement conditions.

銅めっき層の結晶方位を測定する際には、銅めっき層の厚さに応じてX線の出力やスリット等を適宜変更した。具体的には、銅めっき層が薄くなるほど、出力を小さくし、かつ、スリット幅及びスリット角度を小さくした。なお、本発明に係る{111}面、{002}面、{022}面の測定角度(2θ)の範囲としては、40°〜80°で充分であるが、測定は40°〜140°間で行った。これにより、2θが80°よりも高角側の結晶面である、{113}面、{133}面、{024}面の情報も参考として得た。高角側での測定により、これらの{113}面、{133}面、{024}面は回折ピーク強度が極めて小さいことを確認した。このことから、これらの結晶面は、耐屈曲性に対してはほとんど影響が無く、考慮しなくても良いことが確認できた。   When measuring the crystal orientation of the copper plating layer, the X-ray output, slits, and the like were appropriately changed according to the thickness of the copper plating layer. Specifically, the thinner the copper plating layer, the smaller the output and the smaller the slit width and slit angle. In addition, as a range of the measurement angle (2θ) of the {111} plane, {002} plane, and {022} plane according to the present invention, 40 ° to 80 ° is sufficient, but the measurement is between 40 ° and 140 °. I went there. Thereby, information on {113} plane, {133} plane, and {024} plane, which are crystal planes with 2θ higher than 80 °, was also obtained for reference. By measurement on the high angle side, it was confirmed that these {113} plane, {133} plane, and {024} plane had extremely small diffraction peak intensity. From this, it has been confirmed that these crystal faces have almost no influence on the bending resistance and need not be considered.

まずは、上述した原材料や総加工度等の異なる4種類の圧延銅箔のうち、代表例の測定結果を以下の表4及び図2〜図5に示す。4種類の圧延銅箔とは、すなわち、タフピッチ銅を用いた圧延銅箔、無酸素銅を用いた圧延銅箔、Agを添加したタフピッチ銅を用いた圧延銅箔、Snを添加した無酸素銅を用いた圧延銅箔である。圧延銅箔の製作条件は、実施例と比較例とで共通としており、全部の実施例および比較例の測定結果がこれら4種類の代表例に体現されている。   First, the measurement result of a representative example is shown in the following Table 4 and FIGS. 2-5 in 4 types of rolled copper foil from which the raw material mentioned above and total workability differ. The four types of rolled copper foil are: rolled copper foil using tough pitch copper, rolled copper foil using oxygen-free copper, rolled copper foil using tough pitch copper added with Ag, oxygen-free copper added with Sn It is a rolled copper foil using The production conditions of the rolled copper foil are common to the examples and comparative examples, and the measurement results of all examples and comparative examples are embodied in these four types of representative examples.

また、実施例1〜32および比較例1〜16が備える銅めっき層の測定結果を以下の表5〜表8及び図6〜図17に示す。すなわち、表5が、圧延銅箔にタフピッチ銅を用いた実施例1〜8および比較例1〜4の結果である。また、表6が、圧延銅箔に無酸素銅を用いた実施例9〜16および比較例5〜8の結果である。また、表7が、圧延銅箔にAgを添加したタフピッチ銅を用いた実施例17〜24および比較例9〜12の結果である。また、表8が、圧延銅箔にSnを添加した無酸素銅を用いた実施例25〜32および比較例13〜16の結果である。各表において、「式(1)〜(6)に係る要件」として、式(1)を満たし、且つ、式(2)、(3)または(4)、(5)または(6)の少なくともいずれかの状態を満たしている場合、「満たしている」と表記した。また、式(1)を満たしていないか、あるいは、式(2)、(3)または(4)、(5)または(6)の少なくともいずれの状態をも満たしていない場合の少なくとも一方に該当する場合、「満たさない」と表記した。   Moreover, the measurement result of the copper plating layer with which Examples 1-32 and Comparative Examples 1-16 are provided is shown in the following Table 5-Table 8 and FIGS. 6-17. That is, Table 5 shows the results of Examples 1 to 8 and Comparative Examples 1 to 4 using tough pitch copper as the rolled copper foil. Table 6 shows the results of Examples 9 to 16 and Comparative Examples 5 to 8 in which oxygen-free copper was used for the rolled copper foil. Table 7 shows the results of Examples 17 to 24 and Comparative Examples 9 to 12 using tough pitch copper obtained by adding Ag to the rolled copper foil. Table 8 shows the results of Examples 25 to 32 and Comparative Examples 13 to 16 using oxygen-free copper obtained by adding Sn to the rolled copper foil. In each table, “requirements related to the formulas (1) to (6)” satisfy the formula (1) and at least the formulas (2), (3) or (4), (5) or (6) When any of the conditions is satisfied, it is described as “satisfied”. Moreover, it corresponds to at least one of the cases where Expression (1) is not satisfied, or Expression (2), (3) or (4), (5) or (6) is not satisfied When we do, we wrote "do not meet".

表5〜表8より、実施例における4種類の銅材質の圧延銅箔は、その材質に関係なく、また、厚さに関係なく、式(1)を満たしていた。更に、式(2)、(3)または(4)、(5)または(6)の少なくともいずれかの状態を満たしていた。   From Table 5 to Table 8, the rolled copper foil of the four types of copper materials in the examples satisfied the formula (1) regardless of the material and regardless of the thickness. Furthermore, at least one of the formulas (2), (3) or (4), (5) or (6) was satisfied.

また、一方、銅めっきの際、SPSの添加量が少ない、あるいは添加しなかった比較例における4種類の銅材質の圧延銅箔は、その材質に関係なく、また、厚さに関係なく、式(1)の範囲から外れていた。更に、式(2)〜式(6)全てにおいて規定範囲から外れていた。なお、これら比較例の測定結果から、上述の式(1)における要件(≧15.0)はかなり余裕を持たせた値であることがわかる。したがって、式(1)単独でみても、銅めっき層が式(1)を満たすか否かによって、圧延銅箔と同様の結晶構造となっているか否かはかなり明白であると言える。   On the other hand, in the case of copper plating, the amount of SPS added is small, or four types of rolled copper foils in the comparative example in which no SPS was added, regardless of the material, and regardless of the thickness, It was out of the range of (1). Further, all of the formulas (2) to (6) were out of the specified range. From the measurement results of these comparative examples, it can be seen that the requirement (≧ 15.0) in the above equation (1) is a value with a considerable margin. Therefore, even if it sees Formula (1) independently, it can be said that it is quite obvious whether the copper plating layer has the same crystal structure as a rolled copper foil by whether Formula (1) is satisfy | filled.

(3)屈曲疲労寿命試験
次に、各圧延銅箔および各銅めっき層付き圧延銅箔の耐屈曲性を調べるため、各圧延銅箔および各銅めっき層付き圧延銅箔が破断するまでの繰返し曲げ回数(屈曲破断回数)を測定する屈曲疲労寿命試験を行った。係る試験は、信越エンジニアリング株式会社製のFPC高速屈曲試験機(型式:SEK−31B2S)を用い、IPC(米国プリント回路工業会)規格に準拠して行った。図18には、このようなFPC高速屈曲試験機等も含む、一般的な摺動屈曲試験装置10の模式図を示す。
(3) Bending fatigue life test Next, in order to investigate the bending resistance of each rolled copper foil and each rolled copper foil with a copper plating layer, repeated until each rolled copper foil and each rolled copper foil with a copper plating layer broke A bending fatigue life test was performed to measure the number of bendings (number of bending breaks). Such a test was performed using an FPC high-speed bending tester (model: SEK-31B2S) manufactured by Shin-Etsu Engineering Co., Ltd. in accordance with the IPC (American Printed Circuit Industry Association) standard. FIG. 18 shows a schematic diagram of a general sliding bending test apparatus 10 including such an FPC high-speed bending tester.

まずは、各銅めっき層付き圧延銅箔、および銅めっき層のない各圧延銅箔を幅12.5mm、長さ220mm(圧延方向に220mm)に切り取った試料片50に、上述の再結晶焼鈍工程に倣い、300℃、5分間の再結晶焼鈍を施した。係る条件は、フレキシブルプリント配線板のCCL工程で、基材との密着の際に圧延銅箔が実際に受ける熱量の一例を模している。   First, the above-described recrystallization annealing step is performed on the sample piece 50 obtained by cutting each rolled copper foil with a copper plating layer and each rolled copper foil without a copper plating layer into a width of 12.5 mm and a length of 220 mm (220 mm in the rolling direction). Following this, recrystallization annealing was performed at 300 ° C. for 5 minutes. Such a condition imitates an example of the amount of heat that the rolled copper foil actually receives in close contact with the substrate in the CCL process of the flexible printed wiring board.

次に、図18に示されているように、試料片50を、摺動屈曲試験装置10の試料固定板11にネジ12で固定した。続いて、試料片50を振動伝達部13に接触させて貼り付け、発振駆動体14により振動伝達部13を上下方向に振動させて試料片50に振動を伝達し、屈曲疲労寿命試験を実施した。屈曲疲労寿命の測定条件としては、曲げ半径10rを1.5mmとし、ストローク10sを10mmとし、振幅数を25Hzとした。係る条件下、各試料片50を3枚ずつ測定し、破断が発生するまでの回数(屈曲破断回数)の平均値を比較した。   Next, as shown in FIG. 18, the sample piece 50 was fixed to the sample fixing plate 11 of the sliding bending test apparatus 10 with screws 12. Subsequently, the specimen piece 50 was attached in contact with the vibration transmission section 13, and the vibration transmission section 13 was vibrated in the vertical direction by the oscillation driver 14 to transmit vibration to the specimen piece 50, and a bending fatigue life test was performed. . As the measurement conditions for the bending fatigue life, the bending radius 10r was 1.5 mm, the stroke 10 s was 10 mm, and the amplitude number was 25 Hz. Under such conditions, each of the sample pieces 50 was measured three times, and the average value of the number of times until the rupture occurred (the number of bending breaks) was compared.

これにより、得られた測定結果から、上述した原材料や総加工度等の異なる4種類の圧延銅箔の単体での測定結果を以下の表9に示す。表9における屈曲破断回数の数値は、各3枚ずつの測定結果の平均値である。   Table 9 below shows the measurement results of the four types of rolled copper foils having different raw materials and total workability from the obtained measurement results. The numerical value of the number of bending breaks in Table 9 is an average value of the measurement results of three pieces each.

4種類の圧延銅箔は、それぞれ最終冷間圧延工程の総加工度が90%以上、より好ましい条件として94%以上、さらに好ましい条件として96%以上となっている。このため、総加工度の高さに応じて、それぞれが優れた耐屈曲性を備えた圧延銅箔となっていることがわかる。   The four types of rolled copper foils each have a total workability of 90% or more in the final cold rolling step, 94% or more as a more preferable condition, and 96% or more as a more preferable condition. For this reason, it turns out that each becomes the rolled copper foil provided with the outstanding bending resistance according to the height of the total workability.

また、各銅めっき層付き圧延銅箔について、得られた測定結果を以下の表10〜表13に示す。すなわち、表10が、圧延銅箔にタフピッチ銅を用いた実施例1〜8および比較例1〜4の結果である。また、表11が、圧延銅箔に無酸素銅を用いた実施例9〜16および比較例5〜8の結果である。また、表12が、圧延銅箔にAgを添加したタフピッチ銅を用いた実施例17〜24および比較例9〜12の結果である。また、表13が、圧延銅箔にSnを添加した無酸素銅を用いた実施例25〜32および比較例13〜16の結果である。なお、各表における屈曲破断回数の数値は、各3枚ずつの測定結果の平均値である。また、各表の右端に、圧延銅箔単体での屈曲破断回数に対する各銅めっき層付き圧延銅箔の屈曲破断回数の低下率を示した。   Moreover, about the rolled copper foil with each copper plating layer, the obtained measurement result is shown in the following Tables 10-13. That is, Table 10 shows the results of Examples 1 to 8 and Comparative Examples 1 to 4 using tough pitch copper as the rolled copper foil. Table 11 shows the results of Examples 9 to 16 and Comparative Examples 5 to 8 in which oxygen-free copper was used for the rolled copper foil. Table 12 shows the results of Examples 17 to 24 and Comparative Examples 9 to 12 using tough pitch copper obtained by adding Ag to the rolled copper foil. Table 13 shows the results of Examples 25 to 32 and Comparative Examples 13 to 16 using oxygen-free copper obtained by adding Sn to the rolled copper foil. In addition, the numerical value of the number of bending breaks in each table is an average value of the measurement results for each three sheets. Moreover, the decreasing rate of the bending fracture | rupture number of each rolled copper foil with a copper plating layer with respect to the bending fracture | rupture number in the rolling copper foil single-piece | unit was shown on the right end of each table | surface.

ここで、各表には、厚さの異なる銅めっき層付き圧延銅箔の測定値が混在している。銅めっき層付き圧延銅箔の厚さは破断までの屈曲破断回数、すなわち、耐屈曲性に影響を与えるため留意が必要である。つまり、材料が略同一であれば、一般に厚さが増すほど破断までの屈曲破断回数は低下する。よって、各表に示す各銅めっき層付き圧延銅箔においては、全体の厚さ((総厚さ)や圧延銅箔単体の厚さが増すほど耐屈曲性は低くなる。なお、圧延銅箔に対し層厚が薄い銅めっき層の厚さ自体は、それほど大きくは影響しない。   Here, the measured values of the rolled copper foil with copper plating layers having different thicknesses are mixed in each table. Care must be taken because the thickness of the rolled copper foil with a copper plating layer affects the number of bending breaks until breakage, that is, the bending resistance. That is, if the materials are substantially the same, the number of bending breaks until breakage generally decreases as the thickness increases. Therefore, in each rolled copper foil with a copper plating layer shown in each table, the bending resistance decreases as the overall thickness ((total thickness) or the thickness of the rolled copper foil alone increases. On the other hand, the thickness of the copper plating layer with a small layer thickness does not affect so much.

圧延銅箔に4種類の銅材質を用いた実施例1〜32では、銅めっき層付き圧延銅箔全体としての耐屈曲性は、いずれもそれらに対応する比較例よりも大幅に改善している。また、4種類の銅材質の圧延銅箔に対応する銅めっき層付き圧延銅箔の耐屈曲性の改善の程度(度合い)をみると、圧延銅箔の銅材質や耐屈曲性には依存せず、銅めっき層が薄いほど良好である。   In Examples 1 to 32 using four types of copper materials for the rolled copper foil, the bending resistance of the rolled copper foil with a copper plating layer as a whole is significantly improved as compared with the corresponding comparative examples. . The degree (degree) of improvement in bending resistance of the rolled copper foil with a copper plating layer corresponding to the rolled copper foil of four types of copper material depends on the copper material and bending resistance of the rolled copper foil. The thinner the copper plating layer, the better.

以下の表14には、実施例1〜32および比較例1〜16のこれらの測定結果を銅めっき層および圧延銅箔の厚さごとにまとめて示した。また、図19では、実施例1〜32に係る4種類の銅材質の圧延銅箔それぞれについて、厚さと屈曲破断回数との関係をグラフに示した。グラフの横軸は、圧延銅箔の厚さ(μm)であり、縦軸は、屈曲破断回数(回)である。また、グラフ上の△印は、圧延銅箔にタフピッチ銅を用いた例である。また、□印は、圧延銅箔に無酸素銅を用いた例である。また、◆印は、圧延銅箔にAgを添加したタフピッチ銅を用いた例である。また、○印は、圧延銅箔にSnを添加した無酸素銅を用いた例である。   Table 14 below collectively shows the measurement results of Examples 1 to 32 and Comparative Examples 1 to 16 for each thickness of the copper plating layer and the rolled copper foil. FIG. 19 is a graph showing the relationship between the thickness and the number of bending breaks for each of the four types of rolled copper foils of copper materials according to Examples 1 to 32. The horizontal axis of the graph is the thickness (μm) of the rolled copper foil, and the vertical axis is the number of bending breaks (times). Moreover, the Δ mark on the graph is an example in which tough pitch copper is used for the rolled copper foil. The □ marks are examples in which oxygen-free copper is used for the rolled copper foil. Moreover, ♦ is an example using tough pitch copper obtained by adding Ag to a rolled copper foil. Moreover, a circle mark is an example using oxygen-free copper obtained by adding Sn to a rolled copper foil.

表14によれば、圧延銅箔単体の屈曲破断回数に対する銅めっき層付き圧延銅箔の屈曲破断回数の低下率は、いずれの厚さにおいても実施例の方が比較例よりも少なかった。   According to Table 14, the rate of decrease in the number of bending ruptures of the rolled copper foil with a copper plating layer relative to the number of bending ruptures of the rolled copper foil alone was less in the example than in the comparative example at any thickness.

また、図19からも明らかなように、一般的に屈曲破断回数は、銅材質間でみると厚さが増すほど低下する。ここで、実施例および比較例に係る銅めっき層付き圧延銅箔も、銅めっき層の結晶構造や特性如何に関わらず、銅めっき層が付いて厚さが増したことのみによる屈曲破断回数への影響がある。つまり、所望の銅めっき層においてであっても、圧延銅箔単体の場合より屈曲破断回数が低下することは必然的である。   Further, as is apparent from FIG. 19, the number of bending breaks generally decreases as the thickness increases between copper materials. Here, the rolled copper foil with a copper plating layer according to the example and the comparative example also has a copper plating layer attached to the number of bending breaks due to the increase in thickness regardless of the crystal structure and characteristics of the copper plating layer. There is an influence. That is, even in a desired copper plating layer, the number of bending breaks is inevitably lower than that of a rolled copper foil alone.

このことを踏まえた上で、実施例の測定結果をみると、実施例に係る銅めっき層付き圧延銅箔の圧延銅箔単体に対する屈曲破断回数の低下率は、いずれもごく小さく、ほとんど厚さが増した分の影響しか受けていないと考えられる。つまり、銅めっき層の結晶構造等による悪影響は、ほとんど生じていないと考えられる。   Based on this, when looking at the measurement results of the examples, the rate of decrease in the number of bending breaks of the rolled copper foil with a copper plating layer according to the example with respect to the rolled copper foil alone is very small, almost the thickness It is thought that it was only affected by the increase in. That is, it is considered that there is almost no adverse effect due to the crystal structure of the copper plating layer.

一方、SPSの添加量が少ない、あるいは添加しなかった比較例の測定結果をみると、圧延銅箔単体に対する屈曲破断回数の低下率は、いずれも非常に大きく、厚さが増した分の影響以外の影響、つまり、銅めっき層の結晶構造等による悪影響が生じていることがうかがえる。   On the other hand, when the measurement result of the comparative example with little or no addition of SPS is seen, the rate of decrease in the number of bending breaks with respect to the rolled copper foil alone is very large, and the effect of the increase in thickness. It can be seen that there is an adverse effect due to the influence other than the above, that is, the crystal structure of the copper plating layer.

以上のように、最終冷間圧延工程後、再結晶焼鈍工程前の圧延銅箔に対してエピタキシャル成長した結晶方位とは異なる方位、つまり、圧延集合組織と同等な結晶方位となっていない銅めっき層を形成することにより、銅めっき層付き圧延銅箔の耐屈曲性を向上できることがわかった。   As described above, after the final cold rolling step, a copper plating layer that is different from the crystal orientation epitaxially grown on the rolled copper foil before the recrystallization annealing step, that is, a crystal orientation that is not equivalent to the rolling texture. It was found that the bending resistance of the rolled copper foil with a copper plating layer can be improved by forming.

また、このような銅めっき層を得る際に用いるSPSの添加量には、好ましい範囲が存在すると考えられる。少なくとも本実施例の範囲内では、めっき液1リットルあたりSPSの添加量は20mg〜150mgで充分な効果が確認できており、この範囲内では効果の差異はみられなかった。また、SPSが10mg以下では本発明の効果は全く認められなかった。したがって、10mg超〜20mg未満の範囲内に、本発明の効果が出現するポイントがあると考えられる。また、SPSが150mg超の場合であっても、本発明の効果はしばらく継続的に得られると推測される。ただし、量産性や添加剤にかかるコストの観点から、SPSを150mgよりも多く添加することにはメリットは認められない。   Moreover, it is thought that there exists a preferable range in the addition amount of SPS used when obtaining such a copper plating layer. At least within the range of this example, a sufficient effect could be confirmed when the amount of SPS added per liter of the plating solution was 20 mg to 150 mg, and no difference in effect was observed within this range. Further, when the SPS was 10 mg or less, the effect of the present invention was not recognized at all. Therefore, it is considered that there is a point where the effect of the present invention appears within the range of more than 10 mg to less than 20 mg. Moreover, even if SPS is more than 150 mg, it is estimated that the effect of the present invention can be continuously obtained for a while. However, from the viewpoint of mass productivity and the cost of additives, there is no merit in adding more than 150 mg of SPS.

以上のことから,めっき液1リットル当たりのSPS量の下限値としては、効果が明確となっている20mgとすることができる。また、めっき液1リットル当たりのSPS量の上限値としては150mgとすることができる。   From the above, the lower limit of the amount of SPS per liter of plating solution can be 20 mg at which the effect is clear. The upper limit of the amount of SPS per liter of plating solution can be 150 mg.

なお、上述したように、圧延銅箔とその上に形成する銅めっき層の組み合わせは、本実施例で示したものでなくともよい。例えば、厚さ8.0μmの圧延銅箔に厚さ1.0μmの銅めっき層を付けてもよく、厚さ17.0μmの圧延銅箔に厚さ0.1μmの銅めっき層を付けてもよい。これらのような構成においても、上述のような本発明の効果は得られる。   In addition, as above-mentioned, the combination of a rolled copper foil and the copper plating layer formed on it does not need to be what was shown in the present Example. For example, a 1.0 μm thick copper plating layer may be attached to a 8.0 μm thick rolled copper foil, or a 0.1 μm thick copper plating layer may be attached to a 17.0 μm thick rolled copper foil. Good. Even in such a configuration, the above-described effects of the present invention can be obtained.

10 摺動屈曲試験装置
11 試料固定板
12 ネジ
13 振動伝達部
14 発振駆動体
50 試料片
DESCRIPTION OF SYMBOLS 10 Sliding bending test apparatus 11 Sample fixing plate 12 Screw 13 Vibration transmission part 14 Oscillation drive body 50 Sample piece

Claims (5)

主表面または裏面に平行な複数の結晶面を有する最終冷間圧延工程後、再結晶焼鈍工程前の圧延銅箔と、
前記圧延銅箔の主表面またはその裏面の少なくとも片側の面上に形成され、主表面、または前記圧延銅箔との界面となる裏面に平行な複数の結晶面を有する銅めっき層と、を備え、
前記圧延銅箔の前記複数の結晶面のうち、{111}面、{002}面、{022}面について2θ/θ法によるX線回折で得られる回折ピークの強度値を、それぞれI{111}、I{002}、I{022}とし、それぞれの前記回折ピークの強度値の分率P{111}、P{002}、P{022}を、
{111}=[I{111}/(I{111}+I{002}+I{022})]、
{002}=[I{002}/(I{111}+I{002}+I{022})]、
{022}=[I{022}/(I{111}+I{002}+I{022})]、
とし、
前記銅めっき層の前記複数の結晶面のうち、{111}面、{002}面、{022}面について2θ/θ法によるX線回折で得られる回折ピークの強度値を、それぞれI{111}、I{002}、I{022}とし、それぞれの前記回折ピークの強度値の分率P{111}、P{002}、P{022}を、
{111}=[I{111}/(I{111}+I{002}+I{022})]、
{002}=[I{002}/(I{111}+I{002}+I{022})]、
{022}=[I{022}/(I{111}+I{002}+I{022})]、
としたとき、
以下の式(1)、
{111}≧15.0・・・(1)
を満たし、更に、
以下の式(2)、
{111}>(P{111}+5)・・・(2)
を満たす状態、
以下の式(3)、(4)、
{002}<(P{002}−10)・・・(3)
{002}>(P{002}+10)・・・(4)
のいずれかを満たす状態、
以下の式(5)、(6)、
{022}<(P{022}−10)・・・(5)
{022}>(P{022}+10)・・・(6)
のいずれかを満たす状態、のうち、少なくともいずれかの状態となっている
ことを特徴とする銅めっき層付き圧延銅箔。
After the final cold rolling process having a plurality of crystal planes parallel to the main surface or the back surface, rolled copper foil before the recrystallization annealing process,
A copper plating layer formed on at least one surface of the main surface of the rolled copper foil or the back surface thereof and having a plurality of crystal planes parallel to the main surface or the back surface serving as an interface with the rolled copper foil. ,
Among the plurality of crystal planes of the rolled copper foil, the intensity values of diffraction peaks obtained by X-ray diffraction by the 2θ / θ method for {111} plane, {002} plane, and {022} plane are respectively I R { 111}, I R {002}, I R {022}, and the fractions P R {111}, P R {002}, P R {022} of the intensity values of the respective diffraction peaks,
P R {111} = [I R {111} / (I R {111} + I R {002} + I R {022})],
P R {002} = [I R {002} / (I R {111} + I R {002} + I R {022})],
P R {022} = [I R {022} / (I R {111} + I R {002} + I R {022})],
age,
Among the plurality of crystal planes of the copper plating layer, intensity values of diffraction peaks obtained by X-ray diffraction by the 2θ / θ method for {111} plane, {002} plane, and {022} plane are respectively I M { 111}, I M {002}, I M {022}, and the fractions P M {111}, P M {002}, P M {022} of the intensity values of the respective diffraction peaks,
P M {111} = [I M {111} / (I M {111} + I M {002} + I M {022})],
P M {002} = [I M {002} / (I M {111} + I M {002} + I M {022})],
P M {022} = [I M {022} / (I M {111} + I M {002} + I M {022})],
When
The following formula (1),
P M {111} ≧ 15.0 (1)
In addition,
The following formula (2),
P M {111}> (P R {111} +5) (2)
Satisfy the condition,
The following formulas (3), (4),
P M {002} <(P R {002} −10) (3)
P M {002}> (P R {002} +10) (4)
A condition that satisfies either
The following formulas (5), (6),
P M {022} <(P R {022} -10) (5)
P M {022}> (P R {022} +10) (6)
A rolled copper foil with a copper plating layer, which is at least one of the states satisfying any of the above.
以下の式(2)、(4)、(6)、
{111}>(P{111}+5)・・・(2)
{002}>(P{002}+10)・・・(4)
{022}>(P{022}+10)・・・(6)
の少なくともいずれかを満たす
ことを特徴とする請求項1に記載の銅めっき層付き圧延銅箔。
The following formulas (2), (4), (6),
P M {111}> (P R {111} +5) (2)
P M {002}> (P R {002} +10) (4)
P M {022}> (P R {022} +10) (6)
The rolled copper foil with a copper plating layer according to claim 1, wherein at least one of the requirements is satisfied.
前記圧延銅箔は、
タフピッチ銅もしくは無酸素銅からなる純銅、又はタフピッチ銅もしくは無酸素銅を母相とした希薄銅合金からなり、
純銅型集合組織の形態をとる
ことを特徴とする請求項1又は2に記載の銅めっき層付き圧延銅箔。
The rolled copper foil is
Made of pure copper made of tough pitch copper or oxygen-free copper, or a dilute copper alloy with tough pitch copper or oxygen-free copper as the parent phase,
The rolled copper foil with a copper plating layer according to claim 1 or 2, wherein the rolled copper foil is in the form of a pure copper texture.
前記銅めっき層と前記圧延銅箔との全体の厚さが、1μm以上20μm以下であり、
前記銅めっき層の厚さが、0.1μm以上1.0μm以下である
ことを特徴とする請求項1〜3のいずれかに記載の銅めっき層付き圧延銅箔。
The total thickness of the copper plating layer and the rolled copper foil is 1 μm or more and 20 μm or less,
The thickness of the said copper plating layer is 0.1 micrometer or more and 1.0 micrometer or less, The rolled copper foil with a copper plating layer in any one of Claims 1-3 characterized by the above-mentioned.
フレキシブルプリント配線板用である
ことを特徴とする請求項1〜4のいずれかに記載の銅めっき層付き圧延銅箔。
It is an object for flexible printed wiring boards, The rolled copper foil with a copper plating layer in any one of Claims 1-4 characterized by the above-mentioned.
JP2013087137A 2013-04-18 2013-04-18 Rolled copper foil with copper plated layer Pending JP2014210950A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2013087137A JP2014210950A (en) 2013-04-18 2013-04-18 Rolled copper foil with copper plated layer
KR1020140039123A KR102220896B1 (en) 2013-04-18 2014-04-02 Rolled copper foil with copper plating layer
CN201410138247.XA CN104109888A (en) 2013-04-18 2014-04-08 Rolled copper foil with copper plated layer
TW103113689A TWI633196B (en) 2013-04-18 2014-04-15 Rolled copper foil with copper plating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013087137A JP2014210950A (en) 2013-04-18 2013-04-18 Rolled copper foil with copper plated layer

Publications (1)

Publication Number Publication Date
JP2014210950A true JP2014210950A (en) 2014-11-13

Family

ID=51706871

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013087137A Pending JP2014210950A (en) 2013-04-18 2013-04-18 Rolled copper foil with copper plated layer

Country Status (4)

Country Link
JP (1) JP2014210950A (en)
KR (1) KR102220896B1 (en)
CN (1) CN104109888A (en)
TW (1) TWI633196B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102332285B1 (en) * 2021-05-17 2021-12-01 주식회사 근우 Manufacturing method of copper busbar with improved heat generation
CN114682643A (en) * 2022-04-06 2022-07-01 安徽众源新材料股份有限公司 Production process of ultrathin copper strip

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102104252B1 (en) * 2017-06-07 2020-04-24 가부시키가이샤 에스에이치 카퍼프로덕츠 Oxygen free copper plate and ceramics wiring board
CN107891636B (en) * 2017-11-22 2019-09-10 无锡乐普金属科技有限公司 Copper-molybdenum copper-copper composite plate preparation method
CN108364853A (en) * 2018-01-30 2018-08-03 中国科学院物理研究所 A kind of flexible metal substrate and its preparation method and application
TWI740697B (en) * 2020-10-27 2021-09-21 財團法人工業技術研究院 Copper plating structure and package structure including the same
CN113564651B (en) * 2021-09-24 2021-12-14 江东电子材料有限公司 Copper foil and processing method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007107037A (en) * 2005-10-12 2007-04-26 Nikko Kinzoku Kk Copper or copper-alloy foil for circuit
JP2007238968A (en) * 2006-03-06 2007-09-20 Furukawa Electric Co Ltd:The Copper foil, method for manufacturing copper foil, and multilayered circuit board using the copper foil
JP2010037585A (en) * 2008-08-01 2010-02-18 Hitachi Cable Ltd Copper foil and copper foil manufacturing method
JP2011009267A (en) * 2009-06-23 2011-01-13 Hitachi Cable Ltd Copper foil for printed wiring board, and method of manufacturing the same
JP2011179053A (en) * 2010-02-26 2011-09-15 Hitachi Cable Ltd Roughened foil and method of producing the same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3009383U (en) 1994-08-17 1995-04-04 有限会社バディー Planting materials for hydroponics
JP3856616B2 (en) 2000-03-06 2006-12-13 日鉱金属株式会社 Rolled copper foil and method for producing the same
JP2005340635A (en) 2004-05-28 2005-12-08 Hitachi Cable Ltd Rolled copper foil for printed wiring board, and its production process
JP4285526B2 (en) 2006-10-26 2009-06-24 日立電線株式会社 Rolled copper foil and method for producing the same
US7789977B2 (en) * 2006-10-26 2010-09-07 Hitachi Cable, Ltd. Rolled copper foil and manufacturing method thereof
US20110171491A1 (en) * 2008-07-07 2011-07-14 Furukawa Electric Co., Ltd. Electrodeposited copper foil and copper clad laminate

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007107037A (en) * 2005-10-12 2007-04-26 Nikko Kinzoku Kk Copper or copper-alloy foil for circuit
JP2007238968A (en) * 2006-03-06 2007-09-20 Furukawa Electric Co Ltd:The Copper foil, method for manufacturing copper foil, and multilayered circuit board using the copper foil
JP2010037585A (en) * 2008-08-01 2010-02-18 Hitachi Cable Ltd Copper foil and copper foil manufacturing method
JP2011009267A (en) * 2009-06-23 2011-01-13 Hitachi Cable Ltd Copper foil for printed wiring board, and method of manufacturing the same
JP2011179053A (en) * 2010-02-26 2011-09-15 Hitachi Cable Ltd Roughened foil and method of producing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102332285B1 (en) * 2021-05-17 2021-12-01 주식회사 근우 Manufacturing method of copper busbar with improved heat generation
CN114682643A (en) * 2022-04-06 2022-07-01 安徽众源新材料股份有限公司 Production process of ultrathin copper strip

Also Published As

Publication number Publication date
KR20140125720A (en) 2014-10-29
TWI633196B (en) 2018-08-21
CN104109888A (en) 2014-10-22
KR102220896B1 (en) 2021-02-25
TW201440915A (en) 2014-11-01

Similar Documents

Publication Publication Date Title
TWI633196B (en) Rolled copper foil with copper plating
US9428840B2 (en) High strength, high heat resistance electrodeposited copper foil and manufacturing method for same
JP5255229B2 (en) Electrolytic copper foil, surface-treated copper foil using the electrolytic copper foil, copper-clad laminate using the surface-treated copper foil, and method for producing the electrolytic copper foil
JP2017128804A (en) Copper foil, copper-clad laminate, method of manufacturing printed wiring board, method of manufacturing electronic device, method of manufacturing transmission line, and method of manufacturing antenna
JP4916154B2 (en) Copper or copper alloy foil for circuit
JP2017130658A (en) Copper foil, copper-clad laminate, method of manufacturing printed wiring board, method of manufacturing electronic device, method of manufacturing transmission line, and method of manufacturing antenna
WO2007125994A1 (en) Electrolytic copper foil, surface treated copper foil using the electrolytic copper foil, copper-clad laminated plate using the surface treated copper foil, and method for manufacturing the electrolytic copper foil
KR101807453B1 (en) Copper foil with carrier, manufacturing method for copper foil with carrier, copper clad laminate sheet and printed wiring board obtained using copper foil with carrier
JP2013234383A (en) Hot rolled copper foil, coppered laminated plate, flexible printed wiring plate and its manufacturing method
JP2014152352A (en) Composite copper foil and production method thereof
JP3962291B2 (en) Rolled copper foil for copper clad laminate and method for producing the same
JP5245813B2 (en) Rolled copper foil
JP5700834B2 (en) High strength copper alloy sheet with excellent oxide film adhesion
JP6367687B2 (en) Surface-treated copper foil and laminate
JP2014100905A (en) Copper foil with carrier, copper-clad laminate using the same, printed wiring board, printed circuit board and method producing printed wiring board
JP4477665B2 (en) Electrolytic copper foil and wiring board
JP2015124426A (en) Surface-treated copper foil and laminate
JP5822928B2 (en) Electrolytic copper foil having high strength and low warpage and method for producing the same
JP7132435B2 (en) LAMINATED STRUCTURE, FLEXIBLE COPPER FILM LAMINATED CONTAINING SAME, AND METHOD FOR MANUFACTURING SAME LAMINATED STRUCTURE
TW201418005A (en) Rolled copper foil having copper plating layer
JP2009149977A (en) Surface-treated copper foil, surface treatment method for the same, and laminated circuit board
JP2014152344A (en) Composite copper foil and production method thereof
JP3911173B2 (en) Rolled copper foil for copper clad laminate and method for producing the same (2)
JP2013055162A (en) Copper foil for flexible printed wiring board, copper clad laminate, flexible printed wiring board, and electronic apparatus
JP2014152343A (en) Composite copper foil and production method thereof

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140917

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150918

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160802

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170214