JP2014203923A - Resin mold coil and mold transformer - Google Patents

Resin mold coil and mold transformer Download PDF

Info

Publication number
JP2014203923A
JP2014203923A JP2013077835A JP2013077835A JP2014203923A JP 2014203923 A JP2014203923 A JP 2014203923A JP 2013077835 A JP2013077835 A JP 2013077835A JP 2013077835 A JP2013077835 A JP 2013077835A JP 2014203923 A JP2014203923 A JP 2014203923A
Authority
JP
Japan
Prior art keywords
conductor
coil
resin
mold
insulating material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013077835A
Other languages
Japanese (ja)
Inventor
宏隆 華表
Hirotaka Hanaomote
宏隆 華表
亮太 棚次
Ryota Tanatsugi
亮太 棚次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2013077835A priority Critical patent/JP2014203923A/en
Publication of JP2014203923A publication Critical patent/JP2014203923A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a resin mold coil and a mold transformer having excellent long term reliability in which void defects remain little in a mold material.SOLUTION: A resin mold coil 1 includes a cylindrical core 2 formed of an insulating protective film, a coil formed by winding a conductor 3 around the outer periphery of the core 2 so as to form a plurality of layers, a cylindrical interlayer insulation material 4 interposed between respective layers of the coil, and a mold material 5 covering the periphery of the conductor 3. The mold material 5 is a cured resin formed by curing liquid thermally-curable resin thermally. The interlayer insulation material 4 is composed of an insulating sheet formed cylindrically, and insulates between respective layers of the coil. Between the conductor 3 and the interlayer insulation material 4 adjacent in the axial direction, an a void having an almost triangular cross section at right angle to the continuous direction is formed as continuing spirally along the conductor 3 so as to be surrounded by the conductor 3 and the interlayer insulation material 4. The interlayer insulation material 4 has a plurality of through holes for injecting the liquid thermally-curable resin into the void.

Description

本発明は、モールド変圧器、計器用変圧器(PT:Potential Transformer )、計器用変流器(CT:Current Transformer )等に用いられる樹脂モールドコイルに関する。また、本発明は、樹脂モールドコイルを備えるモールド変圧器に関する。   The present invention relates to a resin molded coil used for a molded transformer, an instrument transformer (PT), a current transformer (CT), and the like. The present invention also relates to a molded transformer including a resin molded coil.

大電力を変換するためのモールド変圧器においては、エポキシ樹脂等の熱硬化性樹脂によるモールド注型が用いられている。このモールドにより、高電圧となるコイルの導体の周囲を高い絶縁耐力を持つエポキシ樹脂等の固体絶縁物で封止しているが、実際には導体の周囲に空隙欠陥が存在しないように完全に封止することは困難であり、ある程度の量の空隙欠陥が残存している。   In a mold transformer for converting large electric power, mold casting using a thermosetting resin such as an epoxy resin is used. With this mold, the conductor of the coil with high voltage is sealed with a solid insulation such as epoxy resin with high dielectric strength, but in reality it is completely so that there are no air gap defects around the conductor. Sealing is difficult and a certain amount of void defects remain.

空隙欠陥が残存する原因としては、主に以下の3点が挙げられる。
(1)高電圧・大容量となる電力機器は寸法が大きくなり、樹脂を注型させる体積も大きくなる。樹脂注型体積が大きくなれば、内部に残存するガスや水分の量が多くなり、モールド時にそれらが一箇所に凝集して空隙欠陥として残存し易くなる。
(2)大きな電位差を持つ導体間や高圧導体と接地面との間では、物理的な距離を離した状態でモールドを行う必要がある。この絶縁距離を確保するためには高圧部位を絶縁材で物理的に保持する必要があり、この絶縁材が樹脂の含浸を妨げる。
The following three points are mainly cited as causes of the void defects remaining.
(1) High-voltage and large-capacity power equipment has large dimensions and a large volume for casting resin. If the resin casting volume is increased, the amount of gas and moisture remaining inside increases, and they tend to aggregate at one place during molding and remain as void defects.
(2) It is necessary to perform molding with a physical distance between conductors having a large potential difference or between a high-voltage conductor and a ground plane. In order to secure this insulation distance, it is necessary to physically hold the high-pressure portion with an insulating material, and this insulating material prevents impregnation of the resin.

(3)導通面積を確保する目的で導体の断面形状は円形とするため、隣接する導体と絶縁材との間には、螺旋状に連続し連続方向直角断面が略三角形状である空隙部が生じる。導体は絶縁材に対して締め付けて巻き回されているため、この空隙部は殆ど密閉された状態となる上、この空隙部は樹脂注型体積に対して非常に小さい領域であるため、未含浸部として残存し易い。   (3) Since the cross-sectional shape of the conductor is circular for the purpose of ensuring the conduction area, there is a space between the adjacent conductor and the insulating material that is spirally continuous and has a substantially triangular cross section in the continuous direction. Arise. Since the conductor is tightened and wound around the insulating material, the gap is almost sealed and the gap is a very small area with respect to the resin casting volume. It tends to remain as a part.

空隙部内が常圧の空気であるとすれば、その絶縁特性は、ギャップ長1cmに対する絶縁破壊電圧が約30kVである。これに対して、エポキシ樹脂のバルク絶縁破壊電圧は、ギャップ長1cmに対して約400kVである。さらに、硬化したエポキシ樹脂の内部に空隙欠陥が存在すると、誘電率が小さい空隙欠陥内に電界集中が生じて、数kVでも部分放電が発生する可能性がある。部分放電が発生すると、放電による化学反応でエポキシ樹脂等の絶縁物の劣化が進行し、電気機器の長期信頼性が低下する。
このように、固体絶縁機器の絶縁信頼性確保には部分放電を発生させないことが重要であり、そのためには空隙欠陥が生じないように樹脂モールドを行うことが機器製造の要点となる。特に、モールド変圧器の場合には、変圧器の高圧導体が樹脂内に埋め込まれる構造であるため、この導体の周囲への樹脂の含浸を充分に行うことが重要となる。
Assuming that the air in the air gap is atmospheric pressure, the insulation characteristic is that the dielectric breakdown voltage for a gap length of 1 cm is about 30 kV. On the other hand, the bulk breakdown voltage of epoxy resin is about 400 kV for a gap length of 1 cm. Furthermore, if void defects exist in the cured epoxy resin, electric field concentration occurs in the void defects having a small dielectric constant, and partial discharge may occur even at several kV. When partial discharge occurs, deterioration of an insulator such as an epoxy resin proceeds due to a chemical reaction caused by the discharge, and the long-term reliability of the electric device is lowered.
As described above, it is important not to generate a partial discharge in order to ensure the insulation reliability of the solid insulation device, and for that purpose, resin molding is performed to prevent gap defects from occurring. In particular, in the case of a molded transformer, since the high voltage conductor of the transformer is embedded in the resin, it is important to sufficiently impregnate the resin around the conductor.

一般的なモールド変圧器は、樹脂モールドコイルと鉄心とを備えている。この樹脂モールドコイルは、図8に示すように、保護フィルムを円筒状に形成した芯部102と、導体103を芯部102の外周に複数層をなすように巻き付けてなるコイルと、コイルの各層間にそれぞれ介装された筒状の層間絶縁材104と、を備えている。この層間絶縁材104は、円筒状に形成した絶縁シートで構成されている。そして、導体103の周囲がエポキシ樹脂等の熱硬化性樹脂により覆われてモールドされた構造となっている。   A general mold transformer includes a resin mold coil and an iron core. As shown in FIG. 8, the resin mold coil includes a core portion 102 in which a protective film is formed in a cylindrical shape, a coil in which a conductor 103 is wound around the outer periphery of the core portion 102 so as to form a plurality of layers, And a cylindrical interlayer insulating material 104 interposed between the layers. The interlayer insulating material 104 is composed of a cylindrical insulating sheet. The periphery of the conductor 103 is covered and molded with a thermosetting resin such as an epoxy resin.

このような樹脂モールドコイルを製造する場合は、まず、円柱状に形成された内金型の外周面に保護フィルムを円筒状に巻き付けて芯部102を形成した後、芯部102の外周に導体103を複数層(図8の例では4層)をなすように巻き付けてコイルとする。このとき、コイルの各層間には、円筒状に形成した絶縁シートを層間絶縁材104としてそれぞれ介在させる。   When manufacturing such a resin-molded coil, first, a core film 102 is formed by winding a protective film in a cylindrical shape on the outer peripheral surface of a cylindrical inner mold, and then a conductor is formed on the outer periphery of the core section 102. 103 is wound to form a plurality of layers (four layers in the example of FIG. 8) to form a coil. At this time, a cylindrical insulating sheet is interposed as an interlayer insulating material 104 between each layer of the coil.

その後、内金型を外金型の内側に装着し、外金型に形成された樹脂注入口から外金型内に液状(未硬化)の熱硬化性樹脂を注入する。このとき、外金型内に注入された熱硬化性樹脂は、芯部102と導体103に囲まれて形成される空隙部及び導体103と層間絶縁材104に囲まれて形成される空隙部にそれぞれ流入して、導体103の周囲に配される。そして、熱硬化性樹脂を熱硬化させて、導体103の周囲を硬化樹脂105によりモールドする。   Thereafter, the inner mold is mounted inside the outer mold, and a liquid (uncured) thermosetting resin is injected into the outer mold from a resin injection port formed in the outer mold. At this time, the thermosetting resin injected into the outer mold is formed in the void formed by being surrounded by the core 102 and the conductor 103 and in the void formed by being surrounded by the conductor 103 and the interlayer insulating material 104. Each flows in and is arranged around the conductor 103. Then, the thermosetting resin is thermally cured, and the periphery of the conductor 103 is molded with the cured resin 105.

このような方法で製造される樹脂モールドコイルは、通常、図8に示す巻き方で芯部102の外周に巻き付けられる。すなわち、図8の導体103の内部に付した数字の順に導体103を螺旋状に且つ複数層をなすように巻き付けていく巻き方である。商用周波数電圧においては、導体103の各ターンの分担電圧は均一であり、隣接するターン間で殆ど電位差は生じない。しかしながら、図8に示すような通常の巻き方では、導体103は径方向に層を有する構造となるため、折返し部分の層間(レアー間)では2層分のターン数だけ電位差を持つことになる。よって、この電位差を絶縁するために、各層の間に層間絶縁材104を介在させている。   The resin molded coil manufactured by such a method is usually wound around the outer periphery of the core part 102 by the winding method shown in FIG. That is, this is a winding method in which the conductor 103 is spirally wound in a plurality of layers in the order of the numbers given to the inside of the conductor 103 in FIG. In the commercial frequency voltage, the shared voltage of each turn of the conductor 103 is uniform, and there is almost no potential difference between adjacent turns. However, in the normal winding method as shown in FIG. 8, the conductor 103 has a structure having layers in the radial direction, so that there is a potential difference corresponding to the number of turns of two layers between the folded portions (between layers). . Therefore, in order to insulate this potential difference, an interlayer insulating material 104 is interposed between the layers.

また、導体103は、導通面積を確保するために、一般的に円形断面のものが使用される。このため、隣接する導体103と芯部102との間、及び、隣接する導体103と層間絶縁材104との間には、螺旋状に連続し連続方向直角断面が略三角形状である空隙部が生じる。液状(未硬化)の熱硬化性樹脂を注入した際に、これらの空隙部の隅部にまで熱硬化性樹脂を含浸させることは容易ではないため、熱硬化性樹脂の硬化後に空隙欠陥が残存することとなる。その結果、空隙欠陥で部分放電が発生して、層間の絶縁材を侵食していき、絶縁劣化を進行させるため、樹脂モールドコイル及びこれを用いたモールド変圧器等の電気機器の長期信頼性が低下するという問題が生じるおそれがあった。   The conductor 103 generally has a circular cross section in order to secure a conduction area. Therefore, between the adjacent conductor 103 and the core portion 102, and between the adjacent conductor 103 and the interlayer insulating material 104, there are gaps that are spirally continuous and have a substantially triangular cross section in the continuous direction. Arise. When injecting a liquid (uncured) thermosetting resin, it is not easy to impregnate the thermosetting resin into the corners of these voids, so void defects remain after the thermosetting resin is cured. Will be. As a result, partial discharge occurs due to void defects, erodes the insulating material between layers, and advances the deterioration of insulation, so the long-term reliability of electrical equipment such as resin molded coils and molded transformers using the same is increased. There is a possibility that the problem of lowering may occur.

部分放電の発生を抑制する方法としては、図9〜12に示す方法がある。図9の導体103の内部に付した数字の順に導体103を芯部102の外周に巻き付ければ、層が形成されず、隣り合う導体103の間のターン数差が小さいため、導体103の間に発生する電位差をパッシェン電圧以下に抑えることができる。よって、導体103の層間を絶縁する層間絶縁材が不要となるとともに、上記部分放電が発生することを抑制することが可能である。   As a method for suppressing the occurrence of partial discharge, there are methods shown in FIGS. If the conductor 103 is wound around the outer periphery of the core portion 102 in the order of the numbers given to the inside of the conductor 103 in FIG. 9, the layer is not formed and the difference in the number of turns between the adjacent conductors 103 is small. Can be suppressed to a Paschen voltage or less. Therefore, an interlayer insulating material that insulates the layers of the conductor 103 is not necessary, and occurrence of the partial discharge can be suppressed.

また、図10に示すように、コイルの軸方向に複数のセクションを設けて、各セクション毎に複数層(図10の例では3層)を形成するように導体103を巻き付ければ、各セクションにおける一層のターン数が少なくなるため、層間に発生する電位差をパッシェン電圧以下に抑えることができる。よって、導体103の層間を絶縁する層間絶縁材が不要となるとともに、上記部分放電が発生することを抑制することが可能である。   Also, as shown in FIG. 10, if a plurality of sections are provided in the axial direction of the coil and the conductor 103 is wound so as to form a plurality of layers (three layers in the example of FIG. 10) for each section, each section Therefore, the potential difference generated between the layers can be suppressed to a Paschen voltage or less. Therefore, an interlayer insulating material that insulates the layers of the conductor 103 is not necessary, and occurrence of the partial discharge can be suppressed.

さらに、図11に示すように、箔状の導体103をコイルの径方向に積み重ねて巻きつけることにより、近接する導体103の間にはターン間電圧しかかからない。ターン間にはシート状の絶縁材が必要になるが、層間には電位差が生じないので層間絶縁材は不要になる。
しかしながら、これら図9〜11に示す方法によれば、コイルの層間を絶縁する層間絶縁材が不要となり、上記部分放電の発生を抑制することが可能であるものの、専用の巻線機や巻線治具が必要となるため、図8に示した通常の巻き方に比べて巻線工程に時間がかかるという問題があった。
Furthermore, as shown in FIG. 11, the foil-like conductor 103 is stacked in the radial direction of the coil and wound, so that only an inter-turn voltage is applied between the adjacent conductors 103. A sheet-like insulating material is required between the turns, but no interlayer insulating material is required because there is no potential difference between the layers.
However, according to the methods shown in FIGS. 9 to 11, an interlayer insulating material that insulates between the layers of the coil is not necessary, and generation of the partial discharge can be suppressed. Since a jig is required, there is a problem that the winding process takes longer than the normal winding method shown in FIG.

一方、図12に示すような断面角形の導体103を、図12の導体103の内部に付した数字の順に芯部102の外周に巻き付けて、樹脂モールドコイルを製造する方法がある。この方法によれば、芯部102と導体103に囲まれて形成される空隙部及び導体103と層間絶縁材104に囲まれて形成される空隙部を極めて小さくすることができる。よって、空隙欠陥の残存が抑えられ、前記部分放電の発生を抑制することが可能である。
しかしながら、図12に示す方法は、空隙部を小さくすることはできるものの、空隙欠陥の残存を完全になくすことは困難である。また、専用の巻線機が必要であることに加えて、断面角形の導体は断面円形の導体に比べて導通面積が小さいという問題もあった。
On the other hand, there is a method of manufacturing a resin-molded coil by winding a conductor 103 having a square cross section as shown in FIG. 12 around the outer periphery of the core portion 102 in the order of numbers given to the inside of the conductor 103 of FIG. According to this method, the gap formed by being surrounded by the core 102 and the conductor 103 and the gap formed by being surrounded by the conductor 103 and the interlayer insulating material 104 can be made extremely small. Therefore, the remaining void defects can be suppressed, and the occurrence of the partial discharge can be suppressed.
However, although the method shown in FIG. 12 can reduce the void portion, it is difficult to completely eliminate void defects. Further, in addition to the necessity of a dedicated winding machine, there is a problem that a conductor having a square cross section has a smaller conduction area than a conductor having a circular cross section.

他方、導体と層間絶縁材に囲まれて形成される空隙部への液状の熱硬化性樹脂の含浸性を向上させる技術が、特許文献1に提案されている。すなわち、導体の周囲に樹脂を注入するための間隙を層間絶縁材と導体との間に形成する複数の突条が、層間絶縁材に設けられていることにより、導体と層間絶縁材の間の前記空隙部が大きく形成されるため、熱硬化性樹脂がコイルの軸方向端部から内部に向かって軸方向に含浸しやすくなっている。
このような構成により、断面円形の導体を用い、且つ、図8に示すような一般的な巻き方を採用しても(図9〜11に示すような特殊な巻き方を採用しなくても)、空隙欠陥の残存を抑えつつ樹脂モールドを行うことができる。
On the other hand, Patent Document 1 proposes a technique for improving the impregnation property of a liquid thermosetting resin into a gap formed by being surrounded by a conductor and an interlayer insulating material. In other words, a plurality of protrusions that form gaps between the interlayer insulating material and the conductor for injecting resin around the conductor are provided on the interlayer insulating material. Since the gap is formed large, the thermosetting resin is easily impregnated in the axial direction from the axial end of the coil toward the inside.
With such a configuration, a conductor having a circular cross section is used, and a general winding method as shown in FIG. 8 is adopted (even if a special winding method as shown in FIGS. 9 to 11 is not adopted). ), Resin molding can be performed while suppressing the remaining void defects.

特開平10−233329号公報JP-A-10-233329 特開平9−74027号公報JP-A-9-74027

しかしながら、導体のターン数は100前後である場合もあるため、粘性の高い熱硬化性樹脂を軸方向に含浸させることにより軸方向中央部の前記空隙部に空隙欠陥が生じないように含浸させることは、容易ではなかった。また、導線を巻き付ける際の締め付け力等によって突条が変形して、熱硬化性樹脂の含浸性が低下するおそれがあった。   However, since the number of turns of the conductor may be around 100, it is impregnated so that a void defect does not occur in the void at the central portion in the axial direction by impregnating a highly viscous thermosetting resin in the axial direction. Was not easy. In addition, the protrusion may be deformed by a tightening force or the like when winding the conductive wire, and the impregnation property of the thermosetting resin may be reduced.

また、特許文献2には、樹脂モールドコイルの内外周の少なくとも一方にガラスネットを配置することにより、液状の熱硬化性樹脂の流動経路を確保して含浸性を向上させる技術が開示されている。しかしながら、この技術は、コイルの表面に気泡が残るなどの外観、美観の問題を解決するための技術であって、コイル内部の空隙部への樹脂の含浸性を向上させる技術ではない。
そこで、本発明は、上記のような従来技術が有する問題点を解決し、モールド材中の空隙欠陥の残存が少なく、長期信頼性に優れた樹脂モールドコイル及びモールド変圧器を提供することを課題とする。
Patent Document 2 discloses a technique for improving the impregnation property by securing a flow path of the liquid thermosetting resin by arranging a glass net on at least one of the inner and outer circumferences of the resin molded coil. . However, this technique is a technique for solving the problem of appearance and aesthetics such as bubbles remaining on the surface of the coil, and is not a technique for improving the impregnation property of the resin into the gap inside the coil.
Accordingly, the present invention solves the problems of the conventional techniques as described above, and provides a resin mold coil and a mold transformer that have less void defects in the molding material and have excellent long-term reliability. And

前記課題を解決するため、本発明の態様は、次のような構成からなる。すなわち、本発明の一態様に係る樹脂モールドコイルは、筒状の芯部と、絶縁物で被覆された導体を前記芯部の外周に複数層をなすように巻き付けてなるコイルと、前記コイルの各層間にそれぞれ介装された筒状の層間絶縁材と、前記導体の周囲を覆うモールド材と、を備え、前記モールド材は、前記導体の周囲に配された液状の熱硬化性樹脂を熱硬化した硬化樹脂からなり、前記層間絶縁材は、前記層間絶縁材と前記導体とに囲まれて形成される空隙部に前記液状の熱硬化性樹脂を注入するための貫通孔を複数有することを特徴とする。   In order to solve the above-described problems, an aspect of the present invention has the following configuration. That is, a resin molded coil according to an aspect of the present invention includes a cylindrical core portion, a coil formed by winding a conductor covered with an insulator so as to form a plurality of layers around the outer periphery of the core portion, A cylindrical interlayer insulating material interposed between the respective layers, and a molding material covering the periphery of the conductor, and the molding material heats a liquid thermosetting resin disposed around the conductor. It is made of a cured cured resin, and the interlayer insulating material has a plurality of through holes for injecting the liquid thermosetting resin into a gap formed by being surrounded by the interlayer insulating material and the conductor. Features.

このような樹脂モールドコイルにおいては、前記層間絶縁材は、表裏両面を貫通する貫通孔を複数有する樹脂シートで構成してもよいし、繊維状材料を編むことにより形成され且つ表裏両面を貫通する貫通孔を複数有する網状物で構成してもよい。また、前記層間絶縁材における前記貫通孔の開口率を50%以上としてもよい。
さらに、本発明の他の態様に係るモールド変圧器は、上記樹脂モールドコイルと、前記芯部に挿通された鉄心と、を備えることを特徴とする。
In such a resin molded coil, the interlayer insulating material may be formed of a resin sheet having a plurality of through holes penetrating both front and back surfaces, or formed by knitting a fibrous material and penetrating both front and back surfaces. You may comprise by the net-like object which has two or more through-holes. Further, the opening ratio of the through hole in the interlayer insulating material may be 50% or more.
Furthermore, the molded transformer which concerns on the other aspect of this invention is equipped with the said resin mold coil and the iron core penetrated by the said core part, It is characterized by the above-mentioned.

本発明に係る樹脂モールドコイル及びモールド変圧器は、層間絶縁材が、層間絶縁材と導体とに囲まれて形成される空隙部に液状の熱硬化性樹脂を注入するための貫通孔を複数有しているので、モールド材中の空隙欠陥の残存が少なく、絶縁特性に優れている。   In the resin mold coil and the mold transformer according to the present invention, the interlayer insulating material has a plurality of through holes for injecting a liquid thermosetting resin into a gap formed by being surrounded by the interlayer insulating material and the conductor. Therefore, there are few void defects remaining in the mold material, and the insulating properties are excellent.

本発明に係る樹脂モールドコイルの一実施形態を示す断面図である。It is sectional drawing which shows one Embodiment of the resin mold coil which concerns on this invention. 樹脂モールドコイルの製造方法を説明する断面図である。It is sectional drawing explaining the manufacturing method of a resin mold coil. 樹脂モールドコイルの製造方法を説明する断面図である。It is sectional drawing explaining the manufacturing method of a resin mold coil. 図3の要部を拡大して示した拡大断面図である。It is the expanded sectional view which expanded and showed the principal part of FIG. 層間絶縁材の一例を示す図である。It is a figure which shows an example of an interlayer insulation material. 層間絶縁材の他の例を示す図である。It is a figure which shows the other example of an interlayer insulation material. 本発明の一実施形態に係るモールド変圧器の構成例を示す一部破砕正面図である。It is a partial fracture front view showing the example of composition of the mold transformer concerning one embodiment of the present invention. 従来の一般的な導体の巻き方を説明する模式図である。It is a schematic diagram explaining the conventional method of winding a conductor. 従来の特殊な導体の巻き方の第一例を説明する模式図である。It is a schematic diagram explaining the 1st example of how to wind the conventional special conductor. 従来の特殊な導体の巻き方の第二例を説明する模式図である。It is a schematic diagram explaining the 2nd example of the winding method of the conventional special conductor. 従来の特殊な導体の巻き方の第三例を説明する模式図である。It is a schematic diagram explaining the 3rd example of the conventional winding method of a special conductor. 断面角形の導体を使用した従来例を説明する模式図である。It is a schematic diagram explaining the prior art example which uses the conductor of square cross section.

本発明に係る樹脂モールドコイル及びモールド変圧器の実施の形態を、図面を参照しながら詳細に説明する。図1は、本発明に係る樹脂モールドコイルの一実施形態を示す断面図である。また、図2〜4は、図1の樹脂モールドコイルの製造方法を説明する断面図である。いずれの図も、樹脂モールドコイルの軸方向に沿う平面で切断した場合の断面図である。   Embodiments of a resin mold coil and a mold transformer according to the present invention will be described in detail with reference to the drawings. FIG. 1 is a cross-sectional view showing an embodiment of a resin molded coil according to the present invention. 2 to 4 are cross-sectional views illustrating a method for manufacturing the resin mold coil of FIG. Both figures are cross-sectional views when cut along a plane along the axial direction of the resin mold coil.

図1の樹脂モールドコイル1は、絶縁性を有する保護フィルムを円筒状に形成した芯部2と、導体3を芯部2の外周に複数層(図1の例では3層)をなすように巻き付けてなるコイルと、コイルの各層間にそれぞれ介装された筒状の層間絶縁材4と、導体3の周囲を覆うモールド材5と、を備えている。
この導体3は、断面円形であり、エナメル等の絶縁物の被膜3aで表面が被覆されている。また、導体3の巻き方は、図8に示す従来の一般的な巻き方と同様である。さらに、モールド材5は、エポキシ樹脂等の液状の熱硬化性樹脂を熱硬化した硬化樹脂である。
The resin molded coil 1 in FIG. 1 has a core portion 2 in which a protective film having an insulating property is formed in a cylindrical shape, and a conductor 3 in a plurality of layers (three layers in the example of FIG. 1) on the outer periphery of the core portion 2. A coil formed by winding, a cylindrical interlayer insulating material 4 interposed between the respective layers of the coil, and a molding material 5 covering the periphery of the conductor 3 are provided.
The conductor 3 has a circular cross section and is covered with an insulating coating 3a such as enamel. Moreover, the winding method of the conductor 3 is the same as the conventional general winding method shown in FIG. Further, the molding material 5 is a cured resin obtained by thermosetting a liquid thermosetting resin such as an epoxy resin.

さらに、層間絶縁材4は、円筒状に形成した絶縁シートで構成されていて、コイルの各層間を絶縁している。そして、軸方向に隣接する導体3と層間絶縁材4との間には、導体3に沿って螺旋状に連続し連続方向直角断面が略三角形状である空隙部10が、導体3と層間絶縁材4とに囲まれて形成されるが、層間絶縁材4は、該空隙部10に液状の熱硬化性樹脂を注入するための貫通孔20を複数有している。空隙部10や貫通孔20については、後に詳述する。   Furthermore, the interlayer insulating material 4 is composed of an insulating sheet formed in a cylindrical shape, and insulates each layer of the coil. Between the conductor 3 and the interlayer insulating material 4 adjacent to each other in the axial direction, there is a gap 10 that is spirally continuous along the conductor 3 and has a substantially triangular cross section in the continuous direction. The interlayer insulating material 4 has a plurality of through holes 20 for injecting a liquid thermosetting resin into the gap 10. The gap 10 and the through hole 20 will be described in detail later.

次に、図1に示す樹脂モールドコイル1の製造方法を、図2〜4を参照しながら説明する。まず、円柱状に形成された内金型6の外周面に保護フィルムを円筒状に巻き付けて芯部2を形成した後、導体3を芯部2の外周に複数層(図2,3の例では3層)をなすように巻き付けてコイルとする。このとき、コイルの各層間には、円筒状に形成した絶縁シートを層間絶縁材4としてそれぞれ介在させる。また、導体3の巻き方は、図8に示す従来の一般的な巻き方と同様である。   Next, the manufacturing method of the resin mold coil 1 shown in FIG. 1 is demonstrated, referring FIGS. First, after forming a core part 2 by winding a protective film in a cylindrical shape on the outer peripheral surface of the inner mold 6 formed in a columnar shape, a plurality of conductors 3 are formed on the outer periphery of the core part 2 (examples of FIGS. Then, it is wound so as to form three layers) to form a coil. At this time, a cylindrical insulating sheet is interposed as an interlayer insulating material 4 between the layers of the coil. Moreover, the winding method of the conductor 3 is the same as the conventional general winding method shown in FIG.

各層間に層間絶縁材4を介装しつつ導体3を芯部2の外周に複数層をなすように巻き付けてコイルを形成すると、軸方向に隣接する導体3と層間絶縁材4との間に空隙部10が形成されるとともに、軸方向に隣接する導体3と芯部2との間に空隙部9が形成される。いずれの空隙部9,10も、導体3に沿って螺旋状に連続し、連続方向直角断面は略三角形状である。   When a coil is formed by winding the conductor 3 so as to form a plurality of layers around the outer periphery of the core 2 while interposing the interlayer insulating material 4 between the respective layers, between the conductor 3 and the interlayer insulating material 4 adjacent to each other in the axial direction. A gap 10 is formed, and a gap 9 is formed between the conductor 3 and the core 2 adjacent in the axial direction. Both of the gaps 9 and 10 continue spirally along the conductor 3, and the cross section perpendicular to the continuous direction is substantially triangular.

次に、図3に示すように、内金型6を外金型7の内側に装着し、外金型7に形成された樹脂注入口8から外金型7内に液状(未硬化)の熱硬化性樹脂11を注入する。このとき、内金型6は、コイルの軸方向を水平にして外金型7内に装着されており、また、熱硬化性樹脂11は、コイルの上方(コイルの径方向外方)からコイルの外周面に向かって注入される。   Next, as shown in FIG. 3, the inner mold 6 is mounted on the inner side of the outer mold 7, and is liquid (uncured) into the outer mold 7 from the resin inlet 8 formed in the outer mold 7. A thermosetting resin 11 is injected. At this time, the inner mold 6 is mounted in the outer mold 7 with the axial direction of the coil being horizontal, and the thermosetting resin 11 is coiled from above the coil (outward in the radial direction of the coil). It injects toward the outer peripheral surface of.

よって、コイルの上側の外周面に落下した熱硬化性樹脂11は、図3,4において破線矢印で示すように、最外側の層間絶縁材4の貫通孔20を通ってコイルの内部に浸入し、さらに、内部各層の層間絶縁材4の貫通孔20を順次通ってコイルの径方向内側へ径方向に含浸していき、各層の空隙部10に流入する。そして、径方向最内側に至った熱硬化性樹脂11は、空隙部9に流入することとなる。   Therefore, the thermosetting resin 11 that has fallen on the outer peripheral surface on the upper side of the coil enters the inside of the coil through the through-hole 20 of the outermost interlayer insulating material 4 as shown by broken line arrows in FIGS. Furthermore, the through-hole 20 of the interlayer insulating material 4 in each internal layer is sequentially passed through the coil radially inward in the radial direction and flows into the gap 10 of each layer. Then, the thermosetting resin 11 that has reached the radially innermost side flows into the gap portion 9.

また、コイルの外周面を伝って外金型7の下部に落下した熱硬化性樹脂11は、コイルの下側の外周面に接するので、図3,4において破線矢印で示すように、最外側の層間絶縁材4の貫通孔20を通ってコイルの内部に浸入し、さらに、内部各層の層間絶縁材4の貫通孔20を順次通ってコイルの径方向内側へ径方向に含浸していき、各層の空隙部10に流入する。そして、径方向最内側に至った熱硬化性樹脂11は、空隙部9に流入することとなる。すなわち、熱硬化性樹脂11は、コイルの下側に形成されている貫通孔20を通って上方に上がっていき、コイルの径方向内側へと含浸していく。
さらに、熱硬化性樹脂11は、図3において実線矢印で示すように、コイルの軸方向端部の開口部からコイルの内部に浸入し、コイルの軸方向中央側へ軸方向に含浸していき、各層の空隙部9,10に流入する。
Further, since the thermosetting resin 11 that has fallen to the lower part of the outer mold 7 along the outer peripheral surface of the coil is in contact with the outer peripheral surface on the lower side of the coil, as shown by the broken line arrows in FIGS. Through the through-hole 20 of the interlayer insulating material 4 and into the inside of the coil, and further through the through-hole 20 of the interlayer insulating material 4 of each internal layer in order to impregnate radially inward of the coil in the radial direction, It flows into the cavity 10 of each layer. Then, the thermosetting resin 11 that has reached the radially innermost side flows into the gap portion 9. That is, the thermosetting resin 11 goes upward through the through-hole 20 formed on the lower side of the coil, and is impregnated inward in the radial direction of the coil.
Further, as indicated by solid line arrows in FIG. 3, the thermosetting resin 11 enters the inside of the coil through the opening at the axial end portion of the coil, and is impregnated in the axial direction toward the axial center side of the coil. , Flows into the gaps 9 and 10 of each layer.

ただし、導体3は層間絶縁材4に対して締め付けて巻き回されており、その結果、空隙部9,10は殆ど密閉された状態となっているため、熱硬化性樹脂11は径方向に比べて軸方向には含浸しにくい。また、コイルにおける導体3の層数は3〜5程度であるのに対して、一層のターン数は100前後である場合もあるため、軸方向の含浸により熱硬化性樹脂11が軸方向中央部の空隙部9,10に至るのは容易ではない。このような理由から、多くの空隙部9,10は、貫通孔20を介した径方向の含浸によって熱硬化性樹脂11が充填される。   However, since the conductor 3 is tightly wound around the interlayer insulating material 4 and as a result, the gaps 9 and 10 are almost sealed, the thermosetting resin 11 is compared with the radial direction. It is difficult to impregnate in the axial direction. In addition, the number of layers of the conductor 3 in the coil is about 3 to 5, whereas the number of turns per layer may be around 100. Therefore, the thermosetting resin 11 is axially impregnated by axial impregnation. It is not easy to reach the gaps 9 and 10. For this reason, many of the voids 9 and 10 are filled with the thermosetting resin 11 by impregnation in the radial direction through the through holes 20.

このように、断面円形の導体3を用い、且つ、図8に示すような一般的な巻き方を採用したとしても(図9〜11に示すような特殊な巻き方を採用しなくても)、貫通孔20を介した径方向の含浸により、導体3の周囲に液状の熱硬化性樹脂11が配され、多くの空隙部9,10において熱硬化性樹脂11が殆ど隙間なく充填された状態となる。   Thus, even when the conductor 3 having a circular cross section is used and a general winding method as shown in FIG. 8 is adopted (even if a special winding method as shown in FIGS. 9 to 11 is not adopted). The state in which the liquid thermosetting resin 11 is arranged around the conductor 3 by the impregnation in the radial direction through the through hole 20 and the thermosetting resin 11 is filled in the gaps 9 and 10 with almost no gap. It becomes.

次に、加熱処理を行うことにより熱硬化性樹脂11を熱硬化させて、導体3の周囲をモールドする。すなわち、硬化樹脂からなるモールド材5で導体3の周囲が覆われた状態となる。このとき、上記含浸によって、多くの空隙部9,10は熱硬化性樹脂11が殆ど隙間なく充填された状態となっているので、モールド材5中に存在する空隙欠陥の量は極少量に抑えられ、ほぼ完全に封止されている。よって、部分放電の発生量が少ないので、本実施形態の樹脂モールドコイル1は長期信頼性に優れている。   Next, the thermosetting resin 11 is thermoset by performing heat treatment, and the periphery of the conductor 3 is molded. That is, the conductor 3 is covered with the molding material 5 made of a cured resin. At this time, due to the impregnation, many of the voids 9 and 10 are filled with the thermosetting resin 11 with almost no gap, so that the amount of void defects present in the molding material 5 is suppressed to an extremely small amount. And is almost completely sealed. Therefore, since the amount of partial discharge is small, the resin mold coil 1 of this embodiment is excellent in long-term reliability.

この樹脂モールドコイル1は、モールド変圧器、計器用変圧器、計器用変流器等の電気機器に好適に用いることができる。特に、一次コイル側の電圧が3.3kV以上の高電圧機器に好適である。例えば、一次コイル及び二次コイルを本実施形態の樹脂モールドコイル1で構成し、それぞれのコイルの芯部2に鉄心を挿通すれば、長期信頼性に優れたモールド変圧器を得ることができる。   This resin mold coil 1 can be suitably used for electrical devices such as a mold transformer, an instrument transformer, and an instrument current transformer. In particular, it is suitable for a high voltage device having a primary coil side voltage of 3.3 kV or higher. For example, if a primary coil and a secondary coil are constituted by the resin mold coil 1 of the present embodiment and an iron core is inserted through the core portion 2 of each coil, a molded transformer having excellent long-term reliability can be obtained.

図7は、本発明の一実施形態に係るモールド変圧器の構成例を示す一部破砕正面図である。図7の右側の破砕部は断面図である。図7に示されるように、本発明の一実施形態に係るモールド変圧器31においては、鋼板が積層されてなる鉄心32に、樹脂モールドされた高圧導体33A及び低圧導体33Bが互いに同軸状に巻回されている。高圧導体33A及び低圧導体33Bは、絶縁性のコイル受け34を介して上フレーム35と下フレーム36とによって挟持されている。高圧導体33Aと低圧導体33Bとで構成される導体33は、3相分並べて配されている。なお、高圧導体33Aと低圧導体33Bとの間に絶縁性のスペーサ37が介装されているとともに、低圧導体33Bと鉄心32の主脚との間に絶縁性の間隙材38が介装されている。   FIG. 7 is a partially fragmented front view showing a configuration example of a molded transformer according to an embodiment of the present invention. The crushing part on the right side of FIG. 7 is a cross-sectional view. As shown in FIG. 7, in a molded transformer 31 according to an embodiment of the present invention, a resin-molded high-voltage conductor 33A and a low-voltage conductor 33B are coaxially wound around an iron core 32 formed by stacking steel plates. It has been turned. The high-voltage conductor 33A and the low-voltage conductor 33B are sandwiched between the upper frame 35 and the lower frame 36 via an insulating coil receiver 34. The conductors 33 composed of the high-voltage conductor 33A and the low-voltage conductor 33B are arranged side by side for three phases. An insulating spacer 37 is interposed between the high voltage conductor 33A and the low voltage conductor 33B, and an insulating gap member 38 is interposed between the low voltage conductor 33B and the main leg of the iron core 32. Yes.

このようなモールド変圧器31における高圧導体33A及び低圧導体33Bのうち、特に高圧導体33Aとして本実施形態の樹脂モールドコイル1を用いることにより、コイル導体の周囲で部分放電が発生することが十分に抑制されたモールド変圧器を実現することができる。
なお、層間絶縁材4を構成する絶縁シートは、以下のようにして製造してもよい。すなわち、液状の熱硬化性樹脂11を透過しない樹脂シートに、金型を用いる方法等により、表裏両面を貫通する貫通孔20を複数形成する加工を施す(図5を参照)。このような方法であれば、特殊な絶縁材を用いることなく、安価に層間絶縁材4を製造することができる。
Of the high-voltage conductor 33A and the low-voltage conductor 33B in such a molded transformer 31, in particular, by using the resin mold coil 1 of the present embodiment as the high-voltage conductor 33A, it is sufficient that partial discharge occurs around the coil conductor. A suppressed mold transformer can be realized.
The insulating sheet constituting the interlayer insulating material 4 may be manufactured as follows. That is, the resin sheet that does not transmit the liquid thermosetting resin 11 is subjected to a process of forming a plurality of through holes 20 that penetrate both the front and back surfaces by a method using a mold or the like (see FIG. 5). With such a method, the interlayer insulating material 4 can be manufactured at low cost without using a special insulating material.

この樹脂シートは、絶縁性を有するものであれば特に限定されるものではないが、例えば、ポリエチレンテレフタレート製のシートや、デュポン株式会社製のデュポンノーメックス紙(登録商標)を用いることができる。
また、絶縁性を有する繊維状材料22を編むことにより形成された網状物を、絶縁シートとして用いてもよい(図6を参照)。例えば、ナイロンやポリプロピレン等で構成された繊維状材料を格子状に編んだ網状物を用いてもよい。網状物の網目が「表裏両面を貫通する貫通孔」に相当するので、層間絶縁材4を構成する絶縁シートとして好適に使用することができる。網状物を用いれば、開口率は高いものの樹脂モールドコイル1の機械強度が低下することはない。
The resin sheet is not particularly limited as long as it has insulating properties. For example, a sheet made of polyethylene terephthalate or DuPont Nomex paper (registered trademark) made by DuPont can be used.
Further, a net formed by knitting the fibrous material 22 having insulating properties may be used as an insulating sheet (see FIG. 6). For example, a net-like material obtained by knitting a fibrous material made of nylon, polypropylene, or the like in a lattice shape may be used. Since the mesh of the net-like material corresponds to “a through-hole penetrating both front and back surfaces”, it can be suitably used as an insulating sheet constituting the interlayer insulating material 4. If the net-like material is used, the mechanical strength of the resin mold coil 1 does not decrease although the aperture ratio is high.

層間絶縁材4における貫通孔20の開口率は、50%以上とすることが好ましい。絶縁シートを円筒状に形成して層間絶縁材4とする際には、絶縁シートを丸め端部同士を重ねて接合する必要があるが、重なった部分において貫通孔20が閉塞して熱硬化性樹脂11の含浸性が低下しないようにするためには、開口率を50%以上とすることが好ましいからである。
さらに、液状の熱硬化性樹脂11には、充填材を添加してもよい。例えば、球状又は粉末状のシリカ等の補強材を添加すれば、モールド材5の強度を向上させることができる。充填材を添加した場合には、貫通孔20の直径は、充填材が通過可能なサイズとする必要がある。
The opening ratio of the through holes 20 in the interlayer insulating material 4 is preferably 50% or more. When the insulating sheet is formed in a cylindrical shape to form the interlayer insulating material 4, the insulating sheet needs to be rounded and bonded to each other. This is because the opening ratio is preferably 50% or more so that the impregnation property of the resin 11 does not deteriorate.
Further, a filler may be added to the liquid thermosetting resin 11. For example, if a reinforcing material such as spherical or powdered silica is added, the strength of the molding material 5 can be improved. When the filler is added, the diameter of the through hole 20 needs to be a size through which the filler can pass.

〔実施例〕
絶縁物で被覆された導体として直径1.0mmのエナメル線を使用するとともに、絶縁シート(層間絶縁材)として厚さ188μmのポリエチレンテレフタレート製のシートを使用して、樹脂モールドコイルを作製した。2枚の絶縁シートを使用し、2層をなすように導体を巻き付けた構造のコイルとした。また、絶縁シートには、穴空け加工を施していないものと、穴空け加工を施して、開口率が50%となるように複数の貫通孔を設けたものをそれぞれ使用した。
〔Example〕
A resin-molded coil was manufactured by using an enameled wire having a diameter of 1.0 mm as a conductor covered with an insulator and a polyethylene terephthalate sheet having a thickness of 188 μm as an insulating sheet (interlayer insulating material). A coil having a structure in which two insulating sheets were used and a conductor was wound so as to form two layers was obtained. In addition, as the insulating sheet, a sheet that was not perforated and a sheet that was perforated and provided with a plurality of through holes so that the aperture ratio was 50% were used.

これらの樹脂モールドコイルの放電消滅電圧を測定したところ、絶縁シートに穴空け加工を施していない方は0.6kVrmsであったのに対し、絶縁シートに穴空け加工を施してある方は1.7kVrmsであった。この結果から、後者の方が部分放電の発生量が少ないことが分かった。
また、樹脂モールドコイルを切断して、軸方向に隣接するエナメル線と絶縁シートとの間に形成される空隙部を観察したところ、空隙部の隅部まで熱硬化性樹脂が含浸していることが確認された。
When the discharge extinction voltage of these resin mold coils was measured, it was 0.6 kVrms when the insulating sheet was not perforated, whereas when the insulating sheet was perforated, 1. It was 7 kVrms. From this result, it was found that the latter produced less partial discharge.
In addition, when the resin mold coil was cut and the gap formed between the enamel wire adjacent in the axial direction and the insulating sheet was observed, it was impregnated with the thermosetting resin up to the corner of the gap. Was confirmed.

1 樹脂モールドコイル
2 芯部
3 導体
3a 被膜
4 層間絶縁材
5 モールド材
9 空隙部
10 空隙部
11 熱硬化性樹脂
20 貫通孔
22 繊維状材料
31 モールド変圧器
DESCRIPTION OF SYMBOLS 1 Resin mold coil 2 Core part 3 Conductor 3a Coating 4 Interlayer insulation material 5 Mold material 9 Cavity part 10 Cavity part 11 Thermosetting resin 20 Through-hole 22 Fibrous material 31 Mold transformer

Claims (5)

筒状の芯部と、絶縁物で被覆された導体を前記芯部の外周に複数層をなすように巻き付けてなるコイルと、前記コイルの各層間にそれぞれ介装された筒状の層間絶縁材と、前記導体の周囲を覆うモールド材と、を備え、
前記モールド材は、前記導体の周囲に配された液状の熱硬化性樹脂を熱硬化した硬化樹脂からなり、
前記層間絶縁材は、前記層間絶縁材と前記導体とに囲まれて形成される空隙部に前記液状の熱硬化性樹脂を注入するための貫通孔を複数有することを特徴とする樹脂モールドコイル。
A cylindrical core part, a coil in which a conductor coated with an insulator is wound around the outer periphery of the core part so as to form a plurality of layers, and a cylindrical interlayer insulating material interposed between the respective layers of the coil And a molding material covering the periphery of the conductor,
The mold material is made of a cured resin obtained by thermosetting a liquid thermosetting resin disposed around the conductor,
The resin-molded coil, wherein the interlayer insulating material has a plurality of through holes for injecting the liquid thermosetting resin into a gap formed by being surrounded by the interlayer insulating material and the conductor.
前記層間絶縁材は、表裏両面を貫通する貫通孔を複数有する樹脂シートで構成されていることを特徴とする請求項1に記載の樹脂モールドコイル。   2. The resin molded coil according to claim 1, wherein the interlayer insulating material is formed of a resin sheet having a plurality of through holes penetrating both front and back surfaces. 前記層間絶縁材は、繊維状材料を編むことにより形成され且つ表裏両面を貫通する貫通孔を複数有する網状物で構成されていることを特徴とする請求項1に記載の樹脂モールドコイル。   2. The resin molded coil according to claim 1, wherein the interlayer insulating material is formed of a net-like material that is formed by knitting a fibrous material and has a plurality of through holes that penetrate both front and back surfaces. 前記層間絶縁材における前記貫通孔の開口率が50%以上であることを特徴とする請求項1〜3のいずれか一項に記載の樹脂モールドコイル。   The resin molded coil according to claim 1, wherein an opening ratio of the through holes in the interlayer insulating material is 50% or more. 請求項1〜4のいずれか一項に記載の樹脂モールドコイルと、前記芯部に挿通された鉄心と、を備えることを特徴とするモールド変圧器。   A molded transformer comprising: the resin molded coil according to claim 1; and an iron core inserted through the core portion.
JP2013077835A 2013-04-03 2013-04-03 Resin mold coil and mold transformer Pending JP2014203923A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013077835A JP2014203923A (en) 2013-04-03 2013-04-03 Resin mold coil and mold transformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013077835A JP2014203923A (en) 2013-04-03 2013-04-03 Resin mold coil and mold transformer

Publications (1)

Publication Number Publication Date
JP2014203923A true JP2014203923A (en) 2014-10-27

Family

ID=52354109

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013077835A Pending JP2014203923A (en) 2013-04-03 2013-04-03 Resin mold coil and mold transformer

Country Status (1)

Country Link
JP (1) JP2014203923A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016207741A (en) * 2015-04-17 2016-12-08 株式会社東芝 Manufacturing method of mold coil, and manufacturing system of mold coil
CN106783089A (en) * 2016-12-29 2017-05-31 上海吴淞电气实业有限公司 The glue-pouring method and its transformer of a kind of single-phase current transformer
CN106816288A (en) * 2016-12-29 2017-06-09 上海吴淞电气实业有限公司 The glue-pouring method and its transformer of a kind of threephase current transformer
JP2020009881A (en) * 2018-07-06 2020-01-16 東芝インフラシステムズ株式会社 Molded electric device and manufacturing method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49112120A (en) * 1973-03-01 1974-10-25
JPH0265316U (en) * 1988-11-07 1990-05-16
JPH0974027A (en) * 1995-09-06 1997-03-18 Hitachi Ltd Resin molded coil
JP2005317635A (en) * 2004-04-27 2005-11-10 Ushio Inc High frequency and high voltage transformer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49112120A (en) * 1973-03-01 1974-10-25
JPH0265316U (en) * 1988-11-07 1990-05-16
JPH0974027A (en) * 1995-09-06 1997-03-18 Hitachi Ltd Resin molded coil
JP2005317635A (en) * 2004-04-27 2005-11-10 Ushio Inc High frequency and high voltage transformer

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016207741A (en) * 2015-04-17 2016-12-08 株式会社東芝 Manufacturing method of mold coil, and manufacturing system of mold coil
CN106783089A (en) * 2016-12-29 2017-05-31 上海吴淞电气实业有限公司 The glue-pouring method and its transformer of a kind of single-phase current transformer
CN106816288A (en) * 2016-12-29 2017-06-09 上海吴淞电气实业有限公司 The glue-pouring method and its transformer of a kind of threephase current transformer
JP2020009881A (en) * 2018-07-06 2020-01-16 東芝インフラシステムズ株式会社 Molded electric device and manufacturing method thereof
JP7224798B2 (en) 2018-07-06 2023-02-20 東芝インフラシステムズ株式会社 Method for manufacturing mold-type electrical equipment

Similar Documents

Publication Publication Date Title
US7719397B2 (en) Disc wound transformer with improved cooling and impulse voltage distribution
AU2013361806B2 (en) Transformer insulation
JP2014203923A (en) Resin mold coil and mold transformer
CN107039159A (en) Electric winding, the dry-type transformer with electric winding and the method for manufacturing electric winding
CN201238225Y (en) Insulation structure of 10kV high-voltage variable-frequency motor
JP6349922B2 (en) Resin molded coil, manufacturing method thereof, and molded transformer
US9024713B1 (en) Extreme duty encapsulated transformer coil with corrugated cooling ducts and method of making the same
US20230282411A1 (en) Primary Coil and a Method for Manufacturing a Primary Coil
KR101699683B1 (en) High voltage stator coil with reduced power tip-up
CN105761911B (en) A kind of epoxy cast transformer and its manufacturing method of compound main airway insulation system
JP6255697B2 (en) Resin molded coil, manufacturing method thereof, and molded transformer
JP6234479B2 (en) Insulator for high voltage equipment
CN112564364B (en) Insulation structure of high-voltage motor
KR102018873B1 (en) Mold transformer
KR102519248B1 (en) Medium frequency transformer with dry core
JPWO2018002971A1 (en) Insulation structure manufacturing method, insulation structure and rotary electric machine
KR101658349B1 (en) Structure for reinforcing strength and insulation of molded transformer
CN203871137U (en) Oil-immersed transformer with intensified insulation
KR101426342B1 (en) Mold type shunt reactor
CN202025610U (en) Epoxy resin-insulated dry type transformer
JP2013055279A (en) Stationary induction apparatus
JP5663322B2 (en) Resin molded coil and molded transformer using the same
JP2959789B2 (en) Insulator for oil-filled electric equipment
JP2020171073A (en) Rotary machine stator insulation structure
JP2020009881A (en) Molded electric device and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160315

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170228

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170905