JP2014198310A - Compact electrolytic water generator - Google Patents

Compact electrolytic water generator Download PDF

Info

Publication number
JP2014198310A
JP2014198310A JP2013075137A JP2013075137A JP2014198310A JP 2014198310 A JP2014198310 A JP 2014198310A JP 2013075137 A JP2013075137 A JP 2013075137A JP 2013075137 A JP2013075137 A JP 2013075137A JP 2014198310 A JP2014198310 A JP 2014198310A
Authority
JP
Japan
Prior art keywords
water
ozone
anode
cathode
electrolyzed water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013075137A
Other languages
Japanese (ja)
Other versions
JP5876431B2 (en
Inventor
豊彦 西海
Toyohiko Saikai
豊彦 西海
幸一 青木
Koichi Aoki
幸一 青木
競鳶 陳
Kiyouen Chin
競鳶 陳
真人 跡部
Masato Atobe
真人 跡部
錦 善則
Yoshinori Nishiki
善則 錦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Fukui NUC
Yokohama National University NUC
De Nora Permelec Ltd
Original Assignee
Permelec Electrode Ltd
University of Fukui NUC
Yokohama National University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Permelec Electrode Ltd, University of Fukui NUC, Yokohama National University NUC filed Critical Permelec Electrode Ltd
Priority to JP2013075137A priority Critical patent/JP5876431B2/en
Publication of JP2014198310A publication Critical patent/JP2014198310A/en
Application granted granted Critical
Publication of JP5876431B2 publication Critical patent/JP5876431B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a versatile compact electrolytic water generator qualifying as a compact and simple apparatus capable of electrolytically synthesizing, safely by using tap water or pure water as a raw ingredient without adding thereto a special electrolyte, an ozone gas, ozone-containing gas, and/or ozonated water and also of synthesizing hydrogen peroxide and unaccompanied not only by membrane congestion due to a scale but also by a washing burden because of the absence of an ion exchange membrane.SOLUTION: The provided compact electrolytic water generator is a compact electrolytic water generator for generating, by configuring a cathode for generating ozone and an anode in opposition to one another via a miniscule gap and by feeding raw water into the gap of the cathode for generating ozone and the anode so as to electrolyze the raw water, an ozone-containing electrolysis product from the cathode for generating ozone. The gap between the cathode and the anode is set at 10 μm to 100 μm.

Description

本発明は、脱臭、殺菌や洗浄等に用いられる主としてオゾンガス、オゾン水、過酸化水素水の製造に用いる小型電解水生成装置に関する。   The present invention relates to a small electrolyzed water generating apparatus mainly used for producing ozone gas, ozone water, and hydrogen peroxide water, which is used for deodorization, sterilization, cleaning, and the like.

[殺菌消毒液]
従来、広範な環境における殺菌消毒剤として、次亜塩素酸ナトリウム、次亜塩素酸カルシウム、ジクロロイソシアヌル酸ナトリウム等の塩素系殺菌剤が広く用いられている。中でも次亜塩素酸ナトリウム等次亜塩素酸塩は、価格面と効果の点で汎用されているが、医療、食品工業等、種々の分野で要求される微生物の殺菌、滅菌に対して、更にその効力を向上させるための多くの提案が特許文献1〜3に報告されている。
通常、このような組成物は各成分を水中に添加するか、各成分を含有する水溶液を混合することで調製される。
[Disinfectant]
Conventionally, chlorine-based disinfectants such as sodium hypochlorite, calcium hypochlorite, and sodium dichloroisocyanurate have been widely used as disinfectants in a wide range of environments. Among them, hypochlorite such as sodium hypochlorite is widely used in terms of price and effect, but for further sterilization and sterilization of microorganisms required in various fields such as medical and food industries. Many proposals for improving the efficacy are reported in Patent Documents 1 to 3.
Usually, such a composition is prepared by adding each component to water or mixing an aqueous solution containing each component.

[電解水の代替利用]
しかしながら、塩素系殺菌剤を多量に使用すると弊害が発生する。例えば大量に食材を取り扱う工場、小売店では100mg/Lを越える次亜塩素酸ナトリウムによる洗浄を行っており、これが食材の味を損なうのみならず危険性(トリハロメタンの増加)を生じさせるため問題視されている。
これを解決することを主目的として、電気分解により生成される電解水が、農業、食品、医療等の分野において有用であることが鋭意検討され、日本を中心に電解水、或いは、オゾン水への代替利用が進んでいる。クリーンな電気エネルギーを利用して、電極表面で化学反応を制御することにより、水素、酸素、オゾン、過酸化水素などを合成できるが、特に陽極での酸化反応では、水処理に有効な酸化剤(有効塩素、オゾンなど過酸化物)が生成し、一部OHラジカルなどの活性種も発生することが知られている(強酸性電解水の基礎知識、オーム社)。
[Alternative use of electrolyzed water]
However, when a large amount of chlorine-based disinfectant is used, harmful effects occur. For example, factories and retailers that handle large amounts of food are washed with sodium hypochlorite exceeding 100 mg / L, which not only impairs the taste of the food but also creates danger (increased trihalomethane). Has been.
With the main purpose of solving this, electrolyzed water generated by electrolysis has been eagerly studied to be useful in fields such as agriculture, food, and medicine, and it has been converted to electrolyzed water or ozone water mainly in Japan. Alternative use of is progressing. Hydrogen, oxygen, ozone, hydrogen peroxide, etc. can be synthesized by controlling the chemical reaction on the electrode surface using clean electrical energy, but it is an oxidant effective for water treatment, especially in the oxidation reaction at the anode. (Peroxides such as effective chlorine and ozone) are produced, and it is known that some active species such as OH radicals are also generated (basic knowledge of strongly acidic electrolyzed water, Ohm).

電解水の優れた殺菌・消毒作用に着目し、医療現場や家庭での利用、例えば患部、切開部、留置カテーテルの経皮開口部等の殺菌、消毒、あるいはキッチン用品、ベビー用品、家具等の家庭用品、トイレ、浴槽等の住居まわりの殺菌、消毒に使用することが検討されている。このような電解水は、溶解によりイオンが生じる溶質、例えば塩化ナトリウム等を添加し、また必要に応じpH調整のための酸を添加した水(被電解水)を、電気分解することによって得られる。   Paying attention to the excellent sterilization and disinfection action of electrolyzed water, use in medical field and home, such as sterilization, disinfection of affected area, incision, percutaneous opening of indwelling catheter, etc. or kitchen supplies, baby products, furniture, etc. It is considered to be used for sterilization and disinfection of household items, toilets, bathtubs and other residential areas. Such electrolyzed water is obtained by electrolyzing water (electrolyzed water) to which a solute that generates ions upon dissolution, such as sodium chloride, is added, and where necessary an acid for adjusting the pH is added. .

[電解水の種類]
電解水は食品添加物以外にも利用可能である。電解セルでの陽極反応は、水のみの場合、

Figure 2014198310
の酸素発生が進行するが、触媒、電解条件によって、
Figure 2014198310
の通りオゾンが生成し、これを溶解したオゾン水が合成できる。 [Type of electrolyzed water]
Electrolyzed water can be used in addition to food additives. The anodic reaction in the electrolysis cell is only water,
Figure 2014198310
Oxygen evolution proceeds, but depending on the catalyst and electrolysis conditions,
Figure 2014198310
As shown, ozone is generated, and ozone water in which ozone is dissolved can be synthesized.

塩酸、塩化物イオンを添加した場合には、式(3)及び(4)に従って次亜塩素酸が生成するが、

Figure 2014198310
硫酸を添加した場合には式(5)の通り反応して過硫酸が生成する。
Figure 2014198310
炭酸イオンが存在する場合、式(6)の通り反応して過炭酸が生成する。
Figure 2014198310
When hydrochloric acid and chloride ions are added, hypochlorous acid is produced according to the formulas (3) and (4).
Figure 2014198310
When sulfuric acid is added, it reacts as shown in formula (5) to produce persulfuric acid.
Figure 2014198310
When carbonate ion is present, it reacts as in formula (6) to produce percarbonate.
Figure 2014198310

陰極反応では、水素を過剰に溶解している水素水、アルカリイオン水などの合成可能である。

Figure 2014198310
また、過酸化水素などの合成も可能である。
このように、食品添加物として認可される酸性水のほかに、電解質の選択による複数の過酸化物を含有する電解水が製造できる。 In the cathode reaction, hydrogen water in which hydrogen is excessively dissolved, alkali ion water, or the like can be synthesized.
Figure 2014198310
In addition, synthesis of hydrogen peroxide or the like is possible.
Thus, in addition to acidic water approved as a food additive, electrolyzed water containing a plurality of peroxides can be produced by selecting an electrolyte.

[電解水の特徴]
食品添加物として認可されている電解水の種類には、
a)電解次亜水(20〜200mg/L、pH>7.5、水道水または0.2〜2%の食塩水原料、無隔膜セル)
b)微酸性電解水(10〜80mg/L、5<pH<6.5、2〜6%の塩酸原料、無隔膜セル)
c)弱酸性電解水(10〜60mg/L、2.7<pH<5、濃厚食塩水原料、有隔膜3室セル)
d)強酸性電解水(20〜60mg/L、2.2<pH<2.7、0.2%以下の食塩水原料、有隔膜2室セル)
がある(食安発0426第1号)。
[Characteristics of electrolyzed water]
The types of electrolyzed water that are approved as food additives include:
a) Electrolytic hyponitrous acid (20 to 200 mg / L, pH> 7.5, tap water or 0.2 to 2% saline raw material, non-diaphragm cell)
b) Slightly acidic electrolyzed water (10 to 80 mg / L, 5 <pH <6.5, 2 to 6% hydrochloric acid raw material, non-diaphragm cell)
c) Weakly acidic electrolyzed water (10 to 60 mg / L, 2.7 <pH <5, concentrated saline raw material, diaphragm 3-cell cell)
d) Strongly acidic electrolyzed water (20-60 mg / L, 2.2 <pH <2.7, 0.2% or less saline raw material, two-chamber cell)
(Food Safety 0426 No. 1).

これらの中で酸性水のメリットは、
(1)THMは酸性では生成しにくいため安全性が優れている。
(2)耐性菌が発生しにくい、オンサイトで管理がしやすい。
(3)アルカリ性電解水との併用処理ができる。
(4)水道水のような感覚で利用でき、手指に匂いが残らない。
(5)直前での使用で十分(殺菌時間が短い)。
などである。
従来の次亜塩素ナトリウム薬液処理では200mg/Lまで食品添加物として認可されているものの、味覚も悪くなり、残留性があるのに比較して、これらの電解水は装置としての初期投資はかかるが、低濃度で殺菌効果が高く、有益である。
Among these, the merit of acidic water is
(1) THM is excellent in safety because it is difficult to produce when acidic.
(2) Resistant bacteria are unlikely to be generated and easy to manage on site.
(3) Combined treatment with alkaline electrolyzed water is possible.
(4) It can be used like tap water, and there is no smell left on the fingers.
(5) Use immediately before is sufficient (disinfection time is short).
Etc.
Although the conventional sodium hypochlorite chemical treatment is approved as a food additive up to 200 mg / L, the electrolysis water takes an initial investment as a device compared to the poor taste and persistence. However, the low concentration has a high bactericidal effect and is beneficial.

[オゾン水の特徴]
前記の電解水のような機能水の中にオゾン水がある。オゾンは強力な酸化剤であり、殺菌性に優れ、また、使用後は安全な酸素にもどる、塩分を含まないため腐食を生じにくいなどの特長を有する。オゾン水は既に食品添加物リストに登載され、米国FDA(食品医薬品局)で食品貯蔵、製造工程での殺菌剤として認可(2001年)が得られている。既に食品工場内の殺菌、食品そのものの殺菌に多くの実績がある。最近では、皮膚科、眼科、歯科などの医療現場、獣医科分野においても、これまでの殺菌水と同等以上の効果を発揮しつつ、生体への負荷を軽減できることが注目されている。
オゾン水のメリットとして、
(1)オゾン(OHラジカル)殺菌効果は細胞壁の酸化破壊であり無差別性のため耐性菌が存在しないといえる。
(2)残留性がない。
などがあり、必要に応じて他の残留性を有する酸化剤(過酸化水素、次亜塩素酸塩、過硫酸塩、過炭酸塩など)と併用すれば、より有効な殺菌処理が可能となる。
[Features of ozone water]
Among functional waters such as the electrolyzed water is ozone water. Ozone is a strong oxidizer, has excellent bactericidal properties, returns to safe oxygen after use, and does not contain salt, so it does not easily corrode. Ozone water has already been listed on the food additive list and has been approved by the US FDA (Food and Drug Administration) as a disinfectant in food storage and manufacturing processes (2001). There are already many achievements in sterilization in food factories and foods themselves. Recently, in medical fields such as dermatology, ophthalmology, dentistry, and veterinary medicine, attention has been paid to the ability to reduce the burden on the living body while exhibiting the same or better effect than conventional sterilized water.
As an advantage of ozone water,
(1) The ozone (OH radical) bactericidal effect is oxidative destruction of the cell wall, and it can be said that there are no resistant bacteria due to indiscriminateness.
(2) There is no persistence.
If used in combination with other oxidizing agents (hydrogen peroxide, hypochlorite, persulfate, percarbonate, etc.) as needed, more effective sterilization can be achieved. .

[オゾン水の従来製法]
オゾン水は従来から放電型のオゾンガス発生器を用いて製造することが一般的であり、数mg/Lのオゾン水を容易に製造でき、浄水処理、食品洗浄分野で利用されている。しかしながら、瞬時応答性に優れたハンディかつ高濃度なオゾン水装置の発生器としては以下の理由により不適当であった。
(1)オゾンをいったんガスとして発生させ、その後、水に溶解させる2つの工程を必要とすること。
(2)後述する電解法に比較して生成オゾン濃度が低いため高圧下で水中に注入し、溶解させ、製造する必要がある。
(3)発生電源が高電圧・高周波のため、小型化しにくい。
(4)放電によるオゾン水生成装置では、オゾンガス発生能力が安定するまで時間(数分間の待機時間)を要し、瞬時に一定濃度のオゾン水を調製することが困難である。
[Conventional manufacturing method of ozone water]
Conventionally, ozone water is generally produced using a discharge-type ozone gas generator, and several mg / L of ozone water can be easily produced and used in the field of water purification and food washing. However, it is unsuitable as a generator of a handy and high-concentration ozone water apparatus with excellent instantaneous response for the following reasons.
(1) Two steps of generating ozone once as a gas and then dissolving it in water are required.
(2) Since the generated ozone concentration is lower than that of the electrolysis method described later, it is necessary to inject it into water under high pressure, dissolve it, and manufacture it.
(3) Since the generated power supply is high voltage and high frequency, it is difficult to reduce the size.
(4) In the ozone water generating device by discharge, it takes time (a waiting time of several minutes) until the ozone gas generating ability is stabilized, and it is difficult to instantaneously prepare ozone water having a constant concentration.

[電解オゾン製造法]
電解法は、放電法に比較して電力原単位は劣るが、高濃度のオゾンガス及び水が容易に得られる特徴により、電子部品洗浄などの特殊分野で汎用されている。原理的に直流低圧電源を用いるため、瞬時応答性、安全性に優れており、小型のオゾンガス、オゾン水発生器としての利用が期待されている。また、用途に応じて電池駆動、発電機駆動、交流直流変換駆動が選択できる。
[Electrolytic ozone production method]
The electrolysis method is inferior in terms of electric power unit as compared with the discharge method, but is widely used in special fields such as electronic component cleaning due to the feature of easily obtaining high-concentration ozone gas and water. Since a DC low-voltage power supply is used in principle, it has excellent instantaneous response and safety, and is expected to be used as a small ozone gas and ozone water generator. Also, battery drive, generator drive, and AC / DC conversion drive can be selected according to the application.

オゾンガスを効率よく発生させるには、適切な触媒と電解質を選択することが不可欠である。電極材料として、白金などの貴金属、α−二酸化鉛、β−二酸化鉛、フルオロカーボンを含浸させたグラッシーカーボン、ダイヤモンドが知られている。電解質としては、硫酸、リン酸、フッ素基含有などの水溶液が利用されてきたが、これらの電解質は取り扱いが不便であり広く使用されてはいない。固体高分子電解質を隔膜として用い、純水を原料とする水電解セルは、その点で管理がしやすく、汎用されている。従来からの触媒である二酸化鉛では、12重量%以上の高濃度なオゾンガスが得られる(非特許文献1参照)。   In order to efficiently generate ozone gas, it is essential to select an appropriate catalyst and electrolyte. Known electrode materials include noble metals such as platinum, α-lead dioxide, β-lead dioxide, glassy carbon impregnated with fluorocarbon, and diamond. As electrolytes, aqueous solutions containing sulfuric acid, phosphoric acid, fluorine groups and the like have been used, but these electrolytes are inconvenient to handle and are not widely used. A water electrolysis cell using a solid polymer electrolyte as a diaphragm and using pure water as a raw material is easy to manage in that respect and is widely used. With lead dioxide, which is a conventional catalyst, ozone gas having a high concentration of 12% by weight or more can be obtained (see Non-Patent Document 1).

直接合成方式と呼ばれるシステムでは、特許文献7に記載されているように、電極近傍の溶液に十分な流速を与えることで、ガス化する前にオゾン水として取り出すようにしている。また、純水以外の原料水を電解系に供給する場合は、貴金属電極触媒自体の活性が水質の影響を受けるため、寿命や効率などの電解性能が変動することは注意を要する。特許文献8では、導電性ダイヤモンドが機能水(オゾン含む)用電極として有用であることが開示されている。   In a system called a direct synthesis method, as described in Patent Document 7, a sufficient flow rate is given to a solution in the vicinity of an electrode so as to be taken out as ozone water before gasification. In addition, when raw material water other than pure water is supplied to the electrolytic system, the activity of the noble metal electrode catalyst itself is affected by the water quality, so care must be taken that the electrolytic performance such as life and efficiency fluctuates. Patent Document 8 discloses that conductive diamond is useful as an electrode for functional water (including ozone).

[小型装置の開発]
医療現場や家庭でより簡易に殺菌、消毒等を行うために、携帯可能な小型の電解水噴出器が提案されている(特許文献4〜6)。小型であれば、室内、水回り、食器、衣類等の家庭用あるいは業務用の消臭、殺菌、漂白、又は人体、例えば手指等の殺菌、消毒等に広く使用することができる。
[Development of small equipment]
In order to perform sterilization, disinfection, and the like more easily at medical sites and homes, portable small electrolyzed water ejectors have been proposed (Patent Documents 4 to 6). If it is small, it can be widely used for deodorizing, sterilizing, bleaching, or sterilizing, disinfecting human bodies such as hands, indoors, water, tableware, clothes, etc.

このため、前記課題の多くを解決でき、安価かつ高性能を得ることができ、携帯可能な、あるいは小さいスペースに設置可能な小型の電解セルの開発が望まれている。
小型のオゾンガス発生器など、空気清浄化を目的として、幾つかの発明がなされている。
1)特許文献9には、内部にオゾンガス生成装置を有する受話器を開示している。
2)特許文献10には、電話機のケーシング内に、オゾン発生装置と吸着剤を配し、循環ファンによってオゾンをハンドセットに送り、臭気を吸着剤に導く構造とする。
3)特許文献11には、電解型オゾン発生装置及びそれを用いた携帯型電子機器が開示されている。
4)特許文献12には、マイナスイオン発生部付き通信端末装置が開示されている。外部装置との通信機能と利用者が通話するための送受話器等を備えた通信端末装置で、通信端末装置の表面にマイナスイオン発生部を設けた通信端末装置の一実施例であるPHS端末において、公衆通信網との通信機能としてのインタフェースであるアンテナと、利用者が通話するための送受話器部の送話部と受話部とを備えたPHS端末の操作部背面側と、送受話器部との表面にマイナスイオン発生部とを設けたものである。
5)特許文献13には、携帯電話機にマイナスイオンを発生するイオン発生部1を備えたものが提案されている。
6)特許文献14には、水にオゾンを発生させる装置で、印刷回路基板上にオゾン発生用電極回路が形成されていて、陰極表面を粗くすることで水素ガスの気泡を大きく成長させ、結果として、オゾン水濃度が増加できることが開示されている。
For this reason, it is desired to develop a small electrolysis cell that can solve many of the above problems, can be obtained at low cost and with high performance, and can be carried or installed in a small space.
Several inventions have been made for the purpose of air purification, such as a small ozone gas generator.
1) Patent Document 9 discloses a receiver having an ozone gas generator inside.
2) Patent Document 10 has a structure in which an ozone generator and an adsorbent are arranged in a casing of a telephone, ozone is sent to a handset by a circulation fan, and odor is guided to the adsorbent.
3) Patent Document 11 discloses an electrolytic ozone generator and a portable electronic device using the same.
4) Patent Document 12 discloses a communication terminal device with a negative ion generator. In a communication terminal device having a communication function with an external device and a handset for a user to talk, a PHS terminal which is an embodiment of a communication terminal device provided with a negative ion generator on the surface of the communication terminal device A back side of an operation unit of a PHS terminal including an antenna as an interface as a communication function with a public communication network, a transmitter and receiver of a transmitter / receiver unit for a user to talk, a transmitter / receiver unit, The negative ion generating part is provided on the surface of the substrate.
5) Patent Document 13 proposes a mobile phone provided with an ion generator 1 that generates negative ions.
6) Patent Document 14 discloses an apparatus for generating ozone in water, in which an electrode circuit for generating ozone is formed on a printed circuit board, and by making the cathode surface rough, bubbles of hydrogen gas grow greatly. It is disclosed that the ozone water concentration can be increased.

特開2001−253803号公報JP 2001-253803 A 特開2001−342496号公報JP 2001-342496 A 特開2002−145710号公報JP 2002-145710 A 特開2000−79393号公報JP 2000-79393 A 特開2000−197889号公報JP 2000-197889 A 特開2001−276826号公報JP 2001-276826 A 特開平8−134677号公報JP-A-8-134777 特開平9−268395号公報JP-A-9-268395 登録実用新案第3107144号公報Registered Utility Model No. 3107144 特開平4−364644号公報JP-A-4-364644 特開2002−121690号公報JP 2002-121690 A 特開2005−218073号公報Japanese Patent Laying-Open No. 2005-218073 特開2009−147650号公報JP 2009-147650 A 公表特許2009−537289号公報Published Patent Publication No. 2009-537289

J. Electrochem. Soc., 132, 367(1985)J. et al. Electrochem. Soc. , 132, 367 (1985)

これまでの小型のオゾン電解セルでは、以下の課題があった。
(1)純水や井戸水、水道水を原料とする場合、溶液抵抗が大きいため、電解効率が悪い。
(2)伝導性を付与するために通常電解質を加えるが、用途によっては電解質を添加できない場合があった。
(3)イオン交換膜などを用いるとイオン伝導性が向上し、反応効率の増加が期待できるが、電極との接合が困難であった。
(4)該膜は通常非多孔性であり、通常は電解液の供給と生成物の除去のために、多孔性の電極が利用し、その形状が複雑であった。
(5)イオン交換能を有する粒子を電極間に充填してもよいが、組み立て上及び構造上、多くの制約があった。
然るに、前述のとおり、これまで小型の電解セルは提案されてきたが、具体的なセル仕様については開示がなかった。通常は、伝導性の乏しい電解液を電解することは困難であり、導電性を付与するイオン交換膜樹脂成分や支持電解質を添加するしかなかった。イオン交換膜成分がある場合、水道水原料で電解すると、陰極および膜内に硬度成分が付着し、電解が継続できなかった。酸による洗浄は手間であった。
Conventional small ozone electrolysis cells have the following problems.
(1) When pure water, well water, or tap water is used as a raw material, the electrolytic resistance is poor because the solution resistance is large.
(2) Although an electrolyte is usually added to impart conductivity, the electrolyte may not be added depending on the application.
(3) When an ion exchange membrane or the like is used, ion conductivity is improved and an increase in reaction efficiency can be expected, but it is difficult to join the electrode.
(4) The membrane is usually non-porous, and a porous electrode is usually used for supplying an electrolytic solution and removing a product, and its shape is complicated.
(5) Particles having ion exchange capacity may be filled between the electrodes, but there are many restrictions on assembly and structure.
However, as described above, a small electrolysis cell has been proposed so far, but no specific cell specification has been disclosed. Usually, it is difficult to electrolyze an electrolyte solution having poor conductivity, and an ion exchange membrane resin component and a supporting electrolyte that impart conductivity are only added. When there was an ion exchange membrane component, electrolysis with a tap water raw material caused a hardness component to adhere to the cathode and the membrane, and electrolysis could not be continued. Cleaning with acid was laborious.

本発明は、これらの問題を解決し、水道水や純水のような高抵抗率かつ不純物の多い原料水においても、安定的に、低電力でオゾン水、オゾンガスを発生できる小型電解水生成装置を提供することにある。   The present invention solves these problems, and a small electrolyzed water generating apparatus that can stably generate ozone water and ozone gas with low power even in raw water with high resistivity and many impurities such as tap water and pure water. Is to provide.

本発明における第1の解決課題は、上記目的を達成するため、オゾン発生用陽極と陰極とを微小間隔を設けて対設し、前記オゾン発生用陽極と前記陰極間に原料水を供給して原料水を電解し、前記オゾン発生用陽極よりオゾンを含有する電解生成物を生成する小型電解水生成装置において、前記陽極と前記陰極との間隔を10μm〜100μmとしたことを特徴とする小型電解水生成装置を提供することにある。   In order to achieve the above object, the first problem to be solved in the present invention is that an ozone generating anode and a cathode are provided with a small gap therebetween, and raw water is supplied between the ozone generating anode and the cathode. In a small electrolyzed water generating apparatus that electrolyzes raw water and generates an electrolyzed product containing ozone from the ozone generating anode, the space between the anode and the cathode is 10 μm to 100 μm. It is to provide a water generator.

本発明における第2の解決課題は、上記目的を達成するため、前記陽極と前記陰極との間隔を10μm〜50μmとしたことを特徴とする小型電解水生成装置を提供することにある。   The second problem to be solved in the present invention is to provide a small electrolyzed water generating apparatus characterized in that the distance between the anode and the cathode is 10 μm to 50 μm in order to achieve the above object.

本発明における第3の解決課題は、上記目的を達成するため、前記微小間隔に中性隔膜を設けたことを特徴とする小型電解水生成装置を提供することにある。   A third problem to be solved in the present invention is to provide a small electrolyzed water generating apparatus characterized in that a neutral diaphragm is provided at the minute interval in order to achieve the above object.

本発明における第4の解決課題は、上記目的を達成するため、前記電解生成物が、オゾンと過酸化水素を含有する電解生成物であることを特徴とする小型電解水生成装置を提供することにある。   A fourth problem to be solved in the present invention is to provide a small electrolyzed water generating apparatus characterized in that the electrolysis product is an electrolysis product containing ozone and hydrogen peroxide in order to achieve the above object. It is in.

本発明における第5の解決課題は、上記目的を達成するため、前記オゾン発生用陽極の少なくとも表面が導電性ダイヤモンド又は白金のいずれか一つの陽極触媒を有することを特徴とする小型電解水生成装置を提供することにある。   A fifth problem to be solved in the present invention is to achieve the above object, wherein at least the surface of the ozone generating anode has an anode catalyst of any one of conductive diamond and platinum, and a small electrolyzed water generating device Is to provide.

本発明における第6の解決課題は、上記目的を達成するため、前記オゾン発生用陽極及び陰極の電極投影面当たりの電流密度が0.05A/cm2〜から1A/cm2であることを特徴とする小型電解水生成装置を提供することにある。 A sixth problem to be solved in the present invention is that, in order to achieve the above object, the current density per electrode projection surface of the ozone generating anode and cathode is from 0.05 A / cm 2 to 1 A / cm 2. The present invention is to provide a small electrolyzed water generating apparatus.

本発明における第7の解決課題は、上記目的を達成するため、前記電解におけるセル電圧が30V以下であることを特徴とする小型電解水生成装置を提供することにある。   A seventh problem to be solved in the present invention is to provide a small electrolyzed water generating device characterized in that a cell voltage in the electrolysis is 30 V or less in order to achieve the above object.

本発明における第8の解決課題は、上記目的を達成するため、前記原料水が1KΩcm〜18MΩcmの抵抗率を有することを特徴とする小型電解水生成装置を提供することにある。   An eighth problem to be solved by the present invention is to provide a small electrolyzed water generating apparatus characterized in that the raw water has a resistivity of 1 KΩcm to 18 MΩcm in order to achieve the above object.

本発明は、イオン交換膜を使用することなく、スペーサーにより又は中性隔膜により、陽極と陰極の間隔が10μm〜100μmの微小間隔、好ましくは、10μm〜50μmの微小間隔を形成し、少なくともオゾンを電解合成するための小型電解水生成装置であり、オゾン以外の電解生成物として、過酸化水素を電解合成することができ、好ましくは、陽極触媒が導電性ダイヤモンド、白金のいずれかを用い、電極の投影面当たりの電流密度が0.05A/cm2〜から1A/cm2とし、原料水が1KΩcm〜18MΩcmの抵抗率の抵抗率を有していて、セル電圧が30V以下とすることにより、水道水のような高抵抗率かつ不純物の多い原料水においても、安定的に、低電力でオゾン水、オゾンガスを発生できる小型電解水生成装置を得ることができる。
即ち、本発明によれば、水道水や純水を原料とし、特に電解質を添加せず、安全にオゾン、オゾンガス、オゾン水を電解合成でき、また過酸化水素も合成できる小型簡便な装置となり、しかも、イオン交換膜がないため、スケールによる膜の閉塞、洗浄の手間がなく、汎用性が高い装置を得ることができる。
According to the present invention, a space between the anode and the cathode is formed by a spacer or by a neutral diaphragm without using an ion exchange membrane, and a minute interval of 10 μm to 100 μm, preferably a minute interval of 10 μm to 50 μm, and at least ozone is formed. It is a small electrolyzed water generating device for electrosynthesis, and can electrolyze hydrogen peroxide as an electrolysis product other than ozone. Preferably, the anode catalyst uses either conductive diamond or platinum, and an electrode When the current density per projection plane is from 0.05 A / cm 2 to 1 A / cm 2 , the raw material water has a resistivity of 1 KΩcm to 18 MΩcm, and the cell voltage is 30 V or less, A small electrolyzed water generator capable of generating ozone water and ozone gas stably and at low power even in raw water with high resistivity and high impurities such as tap water It is possible.
That is, according to the present invention, tap water or pure water is used as a raw material, and in particular, an electrolyte is not added, and ozone, ozone gas, ozone water can be safely electrolytically synthesized, and hydrogen peroxide can also be synthesized. In addition, since there is no ion exchange membrane, there is no trouble of clogging the membrane with a scale and the trouble of washing, and a highly versatile device can be obtained.

本発明者は、小型電解水生成装置1例として、30μmの電極間距離のダイヤモンド電極からなるセルを用い、電極間に純水を供給して電解試験を実施したところ、オゾンガスの発生を確認したことにある。
純水の抵抗率を1MΩcmとすると、10V程度の低い電圧において、陽陰電極反応における活性化過電圧の合計を5Vとして、0.05A/cm2以上のオゾンが発生可能となる比較的大きな電流が流れるのは1μm以下の距離であり、並行平板系のような電解セルにおいてこのような狭い極間に電極を向かい合わせる構造は、原料水あるいは生成したガスの物質移動が困難であり実用性に乏しい。従って、低電圧で電解質成分を含まない系での電解、特にオゾン発生は非常に困難と思われており、30V程度の低電圧で、30μmの電極間距離では、上記の電流が流れることを予想できなかった。
As an example of a small electrolyzed water generating apparatus, the present inventor used a cell made of a diamond electrode with a distance of 30 μm between electrodes, and conducted an electrolysis test by supplying pure water between the electrodes, and confirmed generation of ozone gas. There is.
When the resistivity of pure water is 1 MΩcm, a relatively large current that can generate ozone of 0.05 A / cm 2 or more is obtained at a low voltage of about 10 V, where the total activation overvoltage in the positive and negative electrode reaction is 5 V. The flowing distance is 1 μm or less, and the structure in which the electrodes face each other between such narrow electrodes in an electrolysis cell such as a parallel plate system is difficult to transfer the raw material water or the generated gas, and is not practical. . Therefore, electrolysis in a system that does not contain an electrolyte component at a low voltage, especially the generation of ozone, is considered to be very difficult, and it is expected that the above current will flow at a low voltage of about 30 V and a distance between electrodes of 30 μm. could not.

従来は、このような電解条件と電解セル構造を達成することは通常困難であると考えられてきた。また、10μm以下の距離に設置すると、発生気泡の滞留による液の流れが阻害され、細かな金属粒子などが原料水に存在するとショートし、流量を得るために吐出力の大きなポンプが必要となる。
通常は、数100μm以上の極間を保つ必要が生じる。しかし、このときのセル電圧は、純水であれば、0.1A/cm2を流すために1,000Vもの電圧を与える必要が生じる。これは人体に危険であるし、オゾンの発生に要する電力原単位の大幅な増加を招き、また、電解セルに使用する各種金属材料の腐食を加速する。使用材料の耐電圧特性、発熱によるオゾン電流効率の低下を起こさない条件が満たされない。
Conventionally, it has been considered that it is usually difficult to achieve such electrolytic conditions and electrolytic cell structures. If installed at a distance of 10 μm or less, the flow of the liquid due to the retention of the generated bubbles is hindered, and if fine metal particles or the like are present in the raw water, a short circuit occurs and a pump with a large discharge force is required to obtain a flow rate. .
Usually, it is necessary to maintain a gap of several hundred μm or more. However, if the cell voltage at this time is pure water, it is necessary to apply a voltage of 1,000 V in order to pass 0.1 A / cm 2 . This is dangerous for the human body, causes a significant increase in the power consumption required for generating ozone, and accelerates the corrosion of various metal materials used in the electrolysis cell. The withstand voltage characteristics of the materials used and conditions that do not cause a decrease in ozone current efficiency due to heat generation are not satisfied.

本発明者は、上記の知見に基づき、純水のような導電性の低い溶液を供給して、オゾンを電解して合成するための小型電解水生成装置について検討した結果、ある適切な電極間間隔を有するセル構造と電解条件下を与えれば30V以下の安全な電圧において、高濃度のオゾン水、あるいはオゾンガスを発生できる電解セル構造体を見出すことに成功した。   Based on the above findings, the present inventor has studied a small electrolyzed water generator for synthesizing and synthesizing ozone by supplying a low-conductivity solution such as pure water. The inventors have succeeded in finding an electrolytic cell structure capable of generating high-concentration ozone water or ozone gas at a safe voltage of 30 V or less by giving a cell structure having an interval and electrolytic conditions.

本発明の1実施例を示す電極間距離が1cmの平板型小型電解水性生成装置の模式図。The schematic diagram of the flat type | mold small electrolyzed water generating apparatus whose distance between electrodes which shows one Example of this invention is 1 cm. 本発明の他の1実施例を示す電極間距離が1μmの平板型小型電解水性生成装置の模式図。The schematic diagram of the flat plate-type small electrolyzed water generating apparatus whose distance between electrodes which shows other one Example of this invention is 1 micrometer. 均一な電解質水溶液に浸した電極に、1Vの電圧をかけた瞬間の、横軸を空間座標、縦軸を電位としたモデル図。The model figure which made the horizontal axis | shaft the space coordinate and the vertical axis | shaft the electric potential at the moment of applying the voltage of 1V to the electrode immersed in the uniform electrolyte solution. 均一な電解質水溶液に浸した電極に、1Vの電圧をかけた直後の、横軸を空間座標、縦軸を電位としたモデル図。FIG. 3 is a model diagram in which the horizontal axis represents spatial coordinates and the vertical axis represents potential immediately after a voltage of 1 V is applied to an electrode immersed in a uniform electrolyte aqueous solution. 極間距離は、厚さ10μm、20μm、55μmのテフロンシートを用い、超純水に浸けながら、直流電源を用いて電流電圧測定を行ったときの本発明による他の実施例を示す平板型の小型電解水生成装置の斜視図。The distance between the electrodes is 10 μm, 20 μm, 55 μm thick Teflon sheet, and a flat plate type according to another embodiment of the present invention when current voltage measurement is performed using a DC power supply while being immersed in ultrapure water. The perspective view of a small electrolyzed water generating apparatus. 各電極間距離で電流電圧測定の結果を示すグラフ。The graph which shows the result of a current-voltage measurement in the distance between each electrode. 本発明による他の実施例を示す薄層フローセルを用いた子が電解水生成装置のモデル図。The child using the thin layer flow cell which shows other examples by the present invention is a model figure of an electrolyzed water generating device. 異なる流速における電流電圧曲線を示すグラフ。The graph which shows the current-voltage curve in a different flow velocity. 定常状態におけるイオン分布と再結合のモデルを示す図。The figure which shows the model of ion distribution and recombination in a steady state. (A)、(B)は、それぞれ、0.1mM−KCl水溶液及び純水電解における電流−電圧曲線を示すグラフ。(A) and (B) are the graphs which respectively show the current-voltage curve in 0.1 mM KCl aqueous solution and pure water electrolysis. 0〜8Vの純水電解における電流−電圧曲線を示すグラフ。The graph which shows the electric current-voltage curve in 0-8V pure water electrolysis. 本発明の他の実施例を示す円筒型の小型電解水生成装置を示す斜視図。The perspective view which shows the cylindrical small electrolyzed water generating apparatus which shows the other Example of this invention. 本発明の他の実施例を示す更に他の円筒型の小型電解水生成装置を示す斜視図。The perspective view which shows the further another cylindrical small electrolyzed water generating apparatus which shows the other Example of this invention. 本発明の他の実施例を示す円盤型の小型電解水生成装置を示す斜視図。The perspective view which shows the disk type small electrolyzed water generating apparatus which shows the other Example of this invention. 本発明の他の実施例を示す更に他の円盤型の小型電解水生成装置を示す斜視図。The perspective view which shows the further another disk type small electrolyzed water generating apparatus which shows the other Example of this invention.

以下、図面とともに本発明を詳細に説明する。
超純水における電解原理:
超純水は、水のイオン積が、pKw=14(25℃)であり、[H+]と[OH-]がそれぞれ10-7M存在するが、電気抵抗率は18.2MΩcmである。尚、水道水には、様々なイオンが溶けているため、電気抵抗率はおよそ10kΩcmで、電流が流れやすい。それに比べ超純水の電気抵抗率は、水道水の1000倍以上で、電気分解し、電流を流すことは容易ではないと考えられる。
超純水に単位面積当たりの電極で1mAの電流を流す場合を考える。図1のように水が1cm四方の立方体の場合、

Figure 2014198310
という高電圧が必要となる。ここで、Eは直流電圧、Rは抵抗、Iは直流電流、ρは電気抵抗率、Lは抵抗の長さ、Sは抵抗の断面積である。一方、電極間の距離を1cmから1μmに縮めれば(図2)、1mAの電流を流すのに必要な電圧は(1)式を用いると
Figure 2014198310
となり、小さな電圧でも充分流れることになる。しかしながら、このようなセルを製造することは困難であり、液供給には圧力を要する。 Hereinafter, the present invention will be described in detail with reference to the drawings.
Electrolysis principle in ultrapure water:
Ultrapure water has an ionic product of pKw = 14 (25 ° C.) and 10 −7 M of [H + ] and [OH ], but has an electrical resistivity of 18.2 MΩcm. In addition, since various ions are dissolved in tap water, the electrical resistivity is about 10 kΩcm, and current easily flows. On the other hand, the electrical resistivity of ultrapure water is 1000 times or more of tap water, and it is considered that it is not easy to electrolyze and to pass current.
Consider a case in which a current of 1 mA is passed to ultrapure water with electrodes per unit area. When water is a 1 cm square cube as shown in Fig. 1,
Figure 2014198310
High voltage is required. Here, E is a DC voltage, R is a resistance, I is a DC current, ρ is an electrical resistivity, L is a length of the resistance, and S is a cross-sectional area of the resistance. On the other hand, if the distance between the electrodes is reduced from 1 cm to 1 μm (FIG. 2), the voltage required to pass a current of 1 mA is obtained by using equation (1):
Figure 2014198310
Thus, even a small voltage will flow sufficiently. However, it is difficult to manufacture such a cell, and pressure is required to supply the liquid.

均一な電解質水溶液に浸した電極に、1Vの電圧をかけたとする。横軸が空間座標、縦軸が電位のモデル図(以後同様)で考えると、図3に示すように、電圧をかけた瞬間、一方の極から他方の極まで1Vの電位差が直線的にかかる。   It is assumed that a voltage of 1 V is applied to an electrode immersed in a uniform electrolyte aqueous solution. Considering a model with a horizontal coordinate on the horizontal axis and a potential on the vertical axis (hereinafter the same), as shown in FIG. 3, a voltage difference of 1 V is linearly applied from one pole to the other as soon as a voltage is applied. .

電極に電場を与えると、電位の符号と反対符号のイオンが溶液から電極に引き寄せられ、同じ符号のイオンは電極から引き離される。すると両電極付近の電解液には、電極とは異なる符号のイオンが過剰に分布することになり、

Figure 2014198310
の非平衡状態にある。この現象によって形成される、正電荷の薄い板と負電荷の薄い板が向かい合った電極界面の構造を、電気二重層という。この時のイオン分布と電位分布は、図4のようになる。各界面における電位差の和が水電解の理論分解電圧を越えない限り、溶液中のイオン量は増加しない。 When an electric field is applied to the electrode, ions having the opposite sign of the potential are attracted from the solution to the electrode, and ions having the same sign are separated from the electrode. Then, in the electrolyte solution near both electrodes, ions with a sign different from that of the electrode are excessively distributed,
Figure 2014198310
Is in a non-equilibrium state. The structure of the electrode interface formed by this phenomenon in which a thin plate with a positive charge and a thin plate with a negative charge face each other is called an electric double layer. The ion distribution and potential distribution at this time are as shown in FIG. As long as the sum of potential differences at each interface does not exceed the theoretical decomposition voltage of water electrolysis, the amount of ions in the solution does not increase.

次に、本発明に至る実験的検証の結果を示す。
実験的検証1:
図5に示すように、1cm×1cmの白金板2枚と、厚さの分かっているスペーサーを用いて、実験を行った。本実験で用いた極間距離は、厚さ10μm、20μm、55μmのテフロンシートであり、超純水に浸けながら、直流電源を用いて電流電圧測定を行った。
Next, the results of experimental verification leading to the present invention will be shown.
Experimental verification 1:
As shown in FIG. 5, an experiment was performed using two 1 cm × 1 cm platinum plates and a spacer with a known thickness. The distance between the electrodes used in this experiment was a Teflon sheet having a thickness of 10 μm, 20 μm, and 55 μm, and the current and voltage were measured using a DC power supply while being immersed in ultrapure water.

各電極間距離で電流電圧測定を行った結果として図6に示すグラフを得た。線a、b、cは、それぞれ、極間距離は、厚さ10μm、20μm、55μmの場合を示したものであり、参考として、電気抵抗率18MΩcmで厚さ10μm、断面積1cm2の仮想の抵抗器(電気抵抗18kΩ)を示すグラフを線dとして示した。 The graph shown in FIG. 6 was obtained as a result of measuring the current voltage at the distance between the electrodes. Lines a, b, and c show the case where the distance between the poles is 10 μm, 20 μm, and 55 μm, respectively. As a reference, the virtual resistivity is 18 MΩcm, the thickness is 10 μm, and the cross-sectional area is 1 cm 2 . A graph showing a resistor (electrical resistance 18 kΩ) is shown as a line d.

前述のように、電圧が低い時はほとんど電流が流れない。ところが、電圧が2V付近に達すると超純水に急激に電流が流れ出した。この現象はL=10μm、20μmのときには顕著に見られたが、L=55μmのときにはあまり見られなかった。これは2Vの電圧は溶液抵抗による電圧損失と界面の過電圧(水乖離反応電圧を含むと2V)、理論分解電圧の和であるが、電極間距離が大きいと抵抗損失が0.8Vを越え、電解が進行できる1.23Vより大きな値にならないためである。抵抗損失が0.8V以下になるような距離で、初めて電解電流が継続して流れ出すためである。

Figure 2014198310
プロトンは陰極に、水酸イオンは陽極に移動する。二つのイオン濃度の高い層衝突したところでは
Figure 2014198310
の反応により水が生成される。この水会合反応において溶液内のイオンによる電流量に相当して進行する。 As described above, almost no current flows when the voltage is low. However, when the voltage reached around 2 V, current suddenly flowed into the ultrapure water. This phenomenon was remarkably seen when L = 10 μm and 20 μm, but was rarely seen when L = 55 μm. This is the sum of the voltage loss due to the solution resistance, the overvoltage at the interface (2V including the water dissociation reaction voltage), and the theoretical decomposition voltage, but if the distance between the electrodes is large, the resistance loss exceeds 0.8V. This is because the value does not become larger than 1.23 V at which electrolysis can proceed. This is because the electrolysis current continues to flow for the first time at a distance such that the resistance loss is 0.8 V or less.
Figure 2014198310
Protons move to the cathode and hydroxide ions move to the anode. In the place where two layers with high ion concentration collide
Figure 2014198310
Water is produced by this reaction. This water association reaction proceeds corresponding to the amount of current due to ions in the solution.

実験的検証2:
図7に示す通り、1cm×4cmの白金板2枚と、厚さ25μmのテフロンシート、水を送り出すための4溶媒低圧グラディエントポンプを用いた。一枚の白金板には、水を出し入れするための穴を開け、その穴に合わせてテフロンシートに水の通り道となる切れ込みを入れた。60mL/h以下の流速で実験を行った。
図8にその結果を示した。約1.2V、1.7V付近で電流値の急激な上昇が見られた。また、流速が大きいときは電流値が小さく、流速が小さいときは電流値が大きくなるという結果になった。
約1.2V、1.7V付近で電流値が急激に上昇したことについて、これらの電圧付近で電極付近に大量のイオンが発生し、超純水のイオン濃度が高まったことは明らかである。
Experimental verification 2:
As shown in FIG. 7, two 1 cm × 4 cm platinum plates, a 25 μm thick Teflon sheet, and a four-solvent low pressure gradient pump for feeding water were used. A hole for taking in and out water was made in one platinum plate, and a notch to be a water passage was made in the Teflon sheet in accordance with the hole. The experiment was conducted at a flow rate of 60 mL / h or less.
The results are shown in FIG. A sudden increase in current value was observed around 1.2V and 1.7V. In addition, the current value was small when the flow rate was large, and the current value was large when the flow rate was small.
It is clear that a large amount of ions are generated in the vicinity of the electrodes near these voltages and the ion concentration of ultrapure water is increased with respect to the sudden increase in the current value in the vicinity of about 1.2 V and 1.7 V.

本発明において、オゾンが発生するような大きい電流密度が安定して流れた理由は、次のようなプロセスが想定される。
電位差の和が水の分解電圧の値である1.23Vを越えると、陽極では水の酸化が進行し、酸素とプロトンが生成、陰極では水の還元が進行して、水素ガスと水酸イオンが生成する。1.51Vを越えれば、理論的にはオゾン、1.7V以上では過酸化水素も生成する。

Figure 2014198310
対極ではこの逆反応以外に
Figure 2014198310
が進行する。 In the present invention, the reason why a large current density that generates ozone stably flows is as follows.
When the sum of the potential differences exceeds the water decomposition voltage value of 1.23 V, the oxidation of water proceeds at the anode, oxygen and protons are generated, and the reduction of water proceeds at the cathode, resulting in hydrogen gas and hydroxide ions. Produces. If it exceeds 1.51V, theoretically, ozone is also generated at ozone above 1.7V.
Figure 2014198310
In addition to this reverse reaction at the opposite electrode
Figure 2014198310
Progresses.

電流が流れ続けることで、各式の反応により生成するイオンの濃度が増加しつつ、溶液内を拡散、電気泳動し始める。陽極近傍にはプロトンが増加、陰極近傍には水酸イオンが増加し、やがて輸率の違いを反映した溶液中央部分で、プロトンと水酸イオンが会合する。実際には、プロトンが陰極に向かい、水酸イオンが陽極に向かい、それぞれの移動度に従い移動するため、プロトン移動度が大きい分、溶液の陰極寄りにて会合、水を合成していることが推定される。図9にはその様子を図で説明している。
各濃度は設定された電流に相当するイオンの移動と会合速度が等しくなるまで増加した後、定常の濃度状態となる。
As the current continues to flow, the concentration of ions generated by the reaction of each formula increases, and diffusion and electrophoresis begin in the solution. Protons increase in the vicinity of the anode, and hydroxide ions increase in the vicinity of the cathode. Eventually, protons and hydroxide ions associate at the center of the solution reflecting the difference in transport number. Actually, protons move toward the cathode and hydroxide ions move toward the anode, and move according to their respective mobility. Presumed. FIG. 9 illustrates this state.
Each concentration increases until the ion migration and the association rate corresponding to the set current become equal, and then reaches a steady concentration state.

イオンの生成機構としては、中性攪乱現象による水分解という反応があり、上記電解反応に並列的に進行する可能性がある。   As an ion generation mechanism, there is a reaction of water splitting due to a neutral disturbance phenomenon, which may proceed in parallel with the electrolytic reaction.

また、電解セルを通過した水の伝導度は、ほぼ原料の値と等しくなる。これはプロトンと水酸イオンが会合した後に、伝導度が低下することを示唆している。   Further, the conductivity of water that has passed through the electrolytic cell is substantially equal to the value of the raw material. This suggests that the conductivity decreases after protons and hydroxide ions associate.

次に、流速に応じて電流値が変化したことについて説明する。電流が一定に流れていることは、イオンが電流に応じて生成していることを意味する。流速が小さいときは電極間のイオン濃度が高くなり電流が流れやすかった一方、流速が大きいときは、電極間のイオン濃度が低くなり、電流が流れにくかった。この傾向は原料の抵抗率が1kΩcmから100kΩcmのときに顕著となった。これは原料水の抵抗率(導電率)に比較して、電解で生じるイオンによる導電率の増加分が同程度であることを示唆している。   Next, the fact that the current value has changed according to the flow rate will be described. A constant current means that ions are generated according to the current. When the flow rate was small, the ion concentration between the electrodes was high and current flowed easily, whereas when the flow rate was high, the ion concentration between the electrodes was low and current flow was difficult. This tendency became remarkable when the resistivity of the raw material was 1 kΩcm to 100 kΩcm. This suggests that the increase in conductivity due to ions generated by electrolysis is comparable to the resistivity (conductivity) of the raw material water.

実験的検証3:
円柱状の白金棒の円盤面を並行に配置し、5μmの精度で2電極間距離を制御し、電流−電圧曲線を測定した。直径3mm、長さ40mmの円柱状の白金棒を2本用い、対向させる円盤面を#8000のラッピングフィルムシートで研き鏡面化した。電解には空気飽和した蒸留水を用いた。0.1mM−KCl水溶液(A)と、純水(B)を500μm以下の電極間距離で電解したときの電流−電圧曲線は、図10(A)、(B)に示す通り、0.1mMのイオンが存在するとき(A)としないとき(B)で、流れる電流は若干異なるものの1V以上で、数10μA(0.1mA/cm2)の電流が観察され、これらの電気抵抗率はそれほど異ならないことを示唆する。図10(B)の1.2〜1.5Vの電流値の立ち上がりから電流−電圧曲線の傾きを求め、電気抵抗率を計算した。電極間距離500〜50μmでは、水の電気抵抗率はほとんど一定で、110μmのとき227kΩ・cmの最小値を示した。
Experimental verification 3:
The disk surfaces of cylindrical platinum rods were arranged in parallel, the distance between the two electrodes was controlled with an accuracy of 5 μm, and the current-voltage curve was measured. Two cylindrical platinum rods having a diameter of 3 mm and a length of 40 mm were used, and the opposing disk surfaces were sharpened with a # 8000 wrapping film sheet to make a mirror surface. Distilled water saturated with air was used for electrolysis. As shown in FIGS. 10 (A) and 10 (B), the current-voltage curve when 0.1 mM-KCl aqueous solution (A) and pure water (B) are electrolyzed at a distance of 500 μm or less is 0.1 mM. (A) and when (B) are present, the flowing current is slightly different, but a current of several tens of μA (0.1 mA / cm 2 ) is observed at 1 V or more, and their electrical resistivity is not much. Suggest not to be different. The slope of the current-voltage curve was obtained from the rise of the current value of 1.2 to 1.5 V in FIG. 10B, and the electrical resistivity was calculated. When the distance between the electrodes was 500 to 50 μm, the electrical resistivity of water was almost constant, and when it was 110 μm, the minimum value of 227 kΩ · cm was shown.

図10(A)、(B)において、電極間距離:(a)100,(b)200,(c)300,(d)400,(e)500μm、掃引速度0.01V/sを示したものである。
図11は、0〜8Vの純水電解における電流−電圧曲線を示したものであり、電極間距離は、(a)13,(b)25,(c)50,(d)100,(e)200,(f)300μmである。図11より、10V以下の電圧、10μm以上の電極距離で得られる最大電流密度は、約70mA/cm2であった。電極間隔が狭いことで、気泡生成がイオンの移動を妨げることも原因と推定され、好適な距離があることを示唆している。
10A and 10B, the distance between the electrodes: (a) 100, (b) 200, (c) 300, (d) 400, (e) 500 μm, and sweep rate of 0.01 V / s are shown. Is.
FIG. 11 shows a current-voltage curve in pure water electrolysis of 0 to 8 V, and the interelectrode distances are (a) 13, (b) 25, (c) 50, (d) 100, (e ) 200, (f) 300 μm. From FIG. 11, the maximum current density obtained at a voltage of 10 V or less and an electrode distance of 10 μm or more was about 70 mA / cm 2 . It is presumed that the gap between the electrodes is so small that bubble generation hinders the movement of ions, suggesting that there is a suitable distance.

次に、本発明に使用するセル構造、電解条件、原料水、陽極材料、陰極材料、隔膜について詳述する   Next, the cell structure, electrolysis conditions, raw water, anode material, cathode material, and diaphragm used in the present invention will be described in detail.

[セル構造]
図7は、本発明の小型電解水生成装置の1例を示したものであり、平行平板構造を有しており、セル内における液流れは層流となる。また、図12、13に示すような円筒型構造又は図14及び15に示すような円板型構造としてもよい。また、少なくとも片方の電極が開口部を有する構造であってもよい。液供給および排出口はセル構造に従って任意に設計される。図12の小型電解水生成装置では、水流は円筒の間隙を流れる。図13のセルでは、上部からの水流の一部がセル内部にて電極面に垂直方向に変わる。
図14の小型電解水生成装置では、陽極に構成された供給口から上部に向かって水流が生じる。図15の小型電解水生成装置では、上部からの水流の一部を小型電解水生成装置内部にて電極面に垂直方向に変わる。
図13〜15の小型電解水生成装置では、電極が板状でないため、電極間の距離が離れている場所では電解は進行しない。
本発明の小型電解水生成装置の最大の特徴点は、オゾン発生用陽極と陰極とを微小間隔を設けて対設し、前記オゾン発生用陽極と前記陰極間に原料水を供給して原料水を電解し、前記オゾン発生用陽極よりオゾンを含有する電解生成物を生成する小型電解水生成装置において、前記陽極と前記陰極との間隔を10μm〜100μmとしたことにある。この電極間距離は、抵抗損失を低下させるためになるべく小さくすべきであるが、水を供給する際の圧力損失を小さくするため、10μm〜100μmにするのが好ましい。更に、10μm〜50μmにすることが更に好ましい。
[Cell structure]
FIG. 7 shows an example of the small electrolyzed water generating apparatus of the present invention, which has a parallel plate structure, and the liquid flow in the cell is a laminar flow. Further, a cylindrical structure as shown in FIGS. 12 and 13 or a disk-type structure as shown in FIGS. Further, at least one of the electrodes may have a structure having an opening. The liquid supply and discharge ports are arbitrarily designed according to the cell structure. In the small electrolyzed water generating apparatus of FIG. 12, the water flow flows through the gap between the cylinders. In the cell of FIG. 13, a part of the water flow from the upper part changes in the direction perpendicular to the electrode surface inside the cell.
In the small electrolyzed water generating device of FIG. 14, a water flow is generated from the supply port configured in the anode toward the top. In the small electrolyzed water generating device of FIG. 15, a part of the water flow from above is changed in the direction perpendicular to the electrode surface inside the small electrolyzed water generating device.
In the small electrolyzed water generating apparatus of FIGS. 13-15, since an electrode is not plate-shaped, electrolysis does not advance in the place where the distance between electrodes is separated.
The greatest feature of the small electrolyzed water generating device of the present invention is that the ozone generating anode and the cathode are provided with a small gap therebetween, and the raw water is supplied between the ozone generating anode and the cathode. In the small electrolyzed water generating apparatus that generates an electrolyzed product containing ozone from the ozone generating anode, the distance between the anode and the cathode is set to 10 μm to 100 μm. The distance between the electrodes should be as small as possible in order to reduce the resistance loss, but is preferably 10 μm to 100 μm in order to reduce the pressure loss when water is supplied. Furthermore, it is more preferable to set it as 10 micrometers-50 micrometers.

[電解条件]
電解条件としては、合成するオゾン安定性から温度は40℃以下が好ましく、必要であれば外部から冷却し、水温度を下げておくことが好ましい。電流密度としては大きいほどオゾン電流効率が高くなるが、水温の上昇は避ける必要があるため、0.05〜1A/cm2が好ましい。
この電流密度の範囲は、オゾンが電解により発生するのに適する電流密度域を示したものであり、0.05〜1A/cm2にすることが更に好ましい。
圧力損失は電解により気泡が発生すると増加するため、これを考慮して高い吐出圧力(1MPa〜10MPa)をもつポンプなどの外部供給手段装置を付加する必要がある。一方で流量が大きい場合、ガスの蓄積、平均気泡率は低減するが、小型装置としての実用性、経済性を踏まえると、高圧かつ流量が大きいポンプは使用に適さない。本発明における気泡発生量は供給水量と同等レベルとなる。
前記電解におけるセル電圧は、電極などの金属部材が腐食劣化しますので、30〜50V以下にすることが好ましい。更に、30V以下にすることが好ましい。また、人体に近く接触するような使用方法を想定した場合、このような低電圧に維持することは安全上重要です。
[Electrolysis conditions]
As electrolysis conditions, the temperature is preferably 40 ° C. or less in view of the stability of ozone to be synthesized. If necessary, it is preferable to cool from the outside and lower the water temperature. The larger the current density, the higher the ozone current efficiency. However, since it is necessary to avoid an increase in water temperature, 0.05 to 1 A / cm 2 is preferable.
This current density range represents a current density range suitable for ozone to be generated by electrolysis, and is more preferably 0.05 to 1 A / cm 2 .
Since pressure loss increases when bubbles are generated by electrolysis, it is necessary to add an external supply means device such as a pump having a high discharge pressure (1 MPa to 10 MPa) in consideration of this. On the other hand, when the flow rate is large, the gas accumulation and the average bubble rate are reduced. However, considering the practicality and economy as a small device, a high pressure and high flow rate pump is not suitable for use. The amount of bubbles generated in the present invention is the same level as the amount of supplied water.
The cell voltage in the electrolysis is preferably set to 30 to 50 V or less because metal members such as electrodes corrode and deteriorate. Furthermore, it is preferable to set it to 30 V or less. In addition, it is important for safety to maintain such a low voltage when it is assumed to be used in close contact with the human body.

[原料水]
原料水としては純水が好ましい。原料水の低効率は、1kΩcm以上が好ましく、特に1MΩcm以上がより好ましい。本発明における原料水の低効率の最大値は、18MΩcmであり、この値は、超純水で得られる究極の水抵抗率で、水の固有の解離定数に相当する値です。
純水以外に過酸、必要に応じて過酸化物を生成するために電解質溶液を用いることができる。このような塩としては、例えば、塩化ナトリウム、塩化カリウム、塩化マグネシウム、塩化カルシウム、塩化アンモニウム、硫酸ナトリウム、炭酸ナトリウム、塩酸、硫酸、水酸化ナトリウム、アンモニア等から選ばれる一種又は二種以上をあげることができる。しかしながら本発明では主にオゾンを得ることが目的であるため、それらの濃度は1mM以下に限定的されるべきである。
[Raw material water]
The raw water is preferably pure water. The low efficiency of the raw material water is preferably 1 kΩcm or more, more preferably 1 MΩcm or more. The maximum value of the low efficiency of the raw material water in the present invention is 18 MΩcm, and this value is the ultimate water resistivity obtained with ultrapure water and corresponds to the intrinsic dissociation constant of water.
In addition to pure water, an electrolyte solution can be used to generate a peracid and, if necessary, a peroxide. Examples of such salts include one or more selected from sodium chloride, potassium chloride, magnesium chloride, calcium chloride, ammonium chloride, sodium sulfate, sodium carbonate, hydrochloric acid, sulfuric acid, sodium hydroxide, ammonia and the like. be able to. However, since the purpose of the present invention is mainly to obtain ozone, their concentration should be limited to 1 mM or less.

溶液のpHはアルカリや酸の添加により制御でき、殺菌効果を向上できるが、本発明のセルにおいては限定的な添加量において有効である。有機酸を使用することが溶液のpH制御の容易性の点から好ましい。ここで、水溶性の有機酸としては、コハク酸、乳酸、酢酸、クエン酸、酒石酸等をあげることができる。アルカリ性に調製するためには、炭酸ナトリウム、炭酸水素ナトリウム、炭酸アンモニウム塩などが好ましい。これらの弱酸や弱塩基は抵抗率が一般に小さい。   The pH of the solution can be controlled by adding an alkali or an acid, and the bactericidal effect can be improved. However, in the cell of the present invention, it is effective at a limited addition amount. It is preferable to use an organic acid from the viewpoint of easy pH control of the solution. Here, examples of the water-soluble organic acid include succinic acid, lactic acid, acetic acid, citric acid, and tartaric acid. In order to prepare it alkaline, sodium carbonate, sodium bicarbonate, ammonium carbonate and the like are preferable. These weak acids and weak bases generally have a low resistivity.

原料水には、さらに殺菌力を向上させるため、界面活性剤を添加してもよい。溶液に界面活性剤を添加すると、電極表面の濡れ性が向上し、気泡の離脱が促進される。また、目的であるカビや菌の細胞膜との親和性も向上するので、殺菌効果が向上する。
界面活性剤としては、アルキルベンゼンスルホン酸塩、ポリオキシエチレンアルキルエーテル硫酸塩等の陰イオン界面活性剤、塩化ベンザルコニウム等の陽イオン界面活性剤、アミンオキサイド(例えばアルキルジメチルアミンオキサイド)等の両性界面活性剤、ポリグリセリン脂肪酸エステル、アルキルグリコシド等の非イオン界面活性剤等を使用することができる。界面活性剤の溶液における濃度は、0.01〜10重量%とすることが好ましい。
A surfactant may be added to the raw material water in order to further improve the sterilizing power. When a surfactant is added to the solution, the wettability of the electrode surface is improved and the release of bubbles is promoted. Moreover, since the affinity with the cell membrane of the target mold or fungus is improved, the bactericidal effect is improved.
Surfactants include anionic surfactants such as alkylbenzene sulfonates and polyoxyethylene alkyl ether sulfates, cationic surfactants such as benzalkonium chloride, and amphoteric compounds such as amine oxides (eg alkyldimethylamine oxide). Nonionic surfactants such as surfactants, polyglycerin fatty acid esters, and alkyl glycosides can be used. The concentration of the surfactant in the solution is preferably 0.01 to 10% by weight.

溶液、この他、殺菌力や清涼感を向上させる等のためにアルコールを添加してもよく、また、必要に応じて香料、色素、界面活性剤以外の殺菌剤、増粘剤、酵素、漂白剤、キレート剤、塩素化合物以外の電解質、防錆剤、ビルダーおよびエタノールやパラペンなどの防腐剤等を添加してもよい。特に、保存安定性の面からは被電解水が防腐剤を含有することが好ましい。
また、炭酸、酢酸、エタノールなどを溶解させておくと、オゾンの利用効率、安定性が向上することが知られている。これはそれらのオゾン溶解度が水の溶解度より大きくオゾンガスを有効にオゾン水として利用できること、または、オゾン分解を加速するOHラジカルをトラップする作用があり、オゾン水を安定化するためである。従って、これらの物質を原料水に適量溶解させておくことは好ましい。
Alcohol may be added to improve the bactericidal power and refreshing sensation of the solution, etc. In addition, if necessary, bactericides other than fragrances, pigments, surfactants, thickeners, enzymes, bleaching Agents, chelating agents, electrolytes other than chlorine compounds, rust inhibitors, builders and preservatives such as ethanol and parapenes may be added. In particular, from the viewpoint of storage stability, the electrolyzed water preferably contains a preservative.
Further, it is known that the use efficiency and stability of ozone are improved by dissolving carbonic acid, acetic acid, ethanol and the like. This is because their ozone solubility is greater than that of water and ozone gas can be used effectively as ozone water, or has the effect of trapping OH radicals that accelerate ozone decomposition, and stabilizes ozone water. Therefore, it is preferable to dissolve these substances in appropriate amounts in the raw water.

水道水、井戸水、海水などの金属イオンを多く含む処理対象では、陰極表面に水酸化物或いは、炭酸化物が沈殿し反応が阻害される恐れがある。また陽極表面にはシリカなどの酸化物が析出する。これを防ぐために、逆電流を適当な時間(1分から1時間)ごとに与えることにより、陰極では酸性化し、陽極ではアルカリ化するため、発生ガス及び供給水の流動により加速され、析出物の脱離反応が容易に進行する。   In a processing target containing a large amount of metal ions such as tap water, well water, seawater, etc., there is a possibility that hydroxide or carbonate precipitates on the cathode surface and the reaction is hindered. In addition, an oxide such as silica is deposited on the surface of the anode. In order to prevent this, a reverse current is applied every appropriate time (1 minute to 1 hour), so that it is acidified at the cathode and alkalized at the anode. The separation reaction proceeds easily.

[陽極]
オゾンを電解合成する電極としては、白金やダイヤモンド電極が知られている。ダイヤモンドは熱伝導性、光学的透過性、高温かつ酸化に対しての耐久性に優れており、特にドーピングにより電気伝導性の制御も可能であることから、半導体デバイス、エネルギー変換素子として有望とされている。ダイヤモンド電極は水の電解酸化では酸素以外にオゾン、過酸化水素の生成が報告されている。ダイヤモンド触媒は陽極の一部に存在すればよく、前記基材の一部が露出していても支障ない。
基材としてはSi(単結晶,多結晶)のみならず,Nb、Ta、Zr、Tiや、Mo、W、黒鉛、各種カーバイド上にも合成可能である。
代表的なダイヤモンドの製法である熱フィラメントCVD法について以下に説明する。炭素源となるメタンCH4など炭化水素ガス、或いはアルコールなどの有機物を用い、CVDチャンバー内に水素ガスと共に送り込み、還元雰囲気に保ちながら、フィラメントを熱し、炭素ラジカルが生成する温度1800−2400℃にする。このときダイヤモンドが析出する温度(750〜950℃)領域に電極基材を設置する。水素に対する炭化水素ガス濃度は0.1〜10vol%、圧力は20hPa〜1013hPa(1気圧)である。
ダイヤモンドが良好な導電性を得るために、原子価の異なる元素を微量添加することは不可欠である。ホウ素BやリンPの好ましい含有率は10〜10000ppmであり、更に好ましくは100〜3000ppmである。原料化合物にはトリメチルボロン(CH33Bを用いるが、毒性の少ない酸化ホウ素B23、5酸化2燐P25などの利用も好ましい。
[anode]
Platinum and diamond electrodes are known as electrodes for electrolytically synthesizing ozone. Diamond is promising as a semiconductor device and an energy conversion element because it has excellent thermal conductivity, optical transparency, high temperature and durability against oxidation, and electrical conductivity can be controlled by doping in particular. ing. Diamond electrodes have been reported to generate ozone and hydrogen peroxide in addition to oxygen in the electrolytic oxidation of water. The diamond catalyst may be present in a part of the anode, and there is no problem even if a part of the base material is exposed.
The base material can be synthesized not only on Si (single crystal, polycrystal) but also on Nb, Ta, Zr, Ti, Mo, W, graphite, and various carbides.
A hot filament CVD method, which is a typical diamond manufacturing method, will be described below. Using a hydrocarbon gas such as methane CH 4 as a carbon source, or an organic substance such as alcohol, it is sent together with hydrogen gas into the CVD chamber, and while maintaining a reducing atmosphere, the filament is heated to a temperature 1800-2400 ° C. at which carbon radicals are generated. To do. At this time, an electrode base material is installed in a temperature (750 to 950 ° C.) region where diamond is deposited. The hydrocarbon gas concentration with respect to hydrogen is 0.1 to 10 vol%, and the pressure is 20 hPa to 1013 hPa (1 atm).
In order for diamond to obtain good conductivity, it is indispensable to add a trace amount of elements having different valences. The preferable content rate of boron B or phosphorus P is 10-10000 ppm, More preferably, it is 100-3000 ppm. Trimethylboron (CH 3 ) 3 B is used as the raw material compound, but it is also preferable to use boron oxide B 2 O 3 , pentoxide 5 phosphorus P 2 O 5, etc., which are less toxic.

[陰極]
陰極反応は主に水素発生であり、水素に対して脆化しない電極触媒が好ましく、白金族金属、ニッケル、ステンレス、チタン、ジルコニウム、金、銀、カーボンなどが好ましい。陰極基材としてはステンレス、ジルコニウム、カーボン、ニッケル、チタン、ダイヤモンドなどの金属に限定される。本発明の装置では、オゾンや過酸化物の溶解した水と接触する配置となるため、酸化耐性に優れたものが好ましい。
[cathode]
The cathode reaction is mainly hydrogen generation, and an electrode catalyst that does not embrittle with hydrogen is preferable, and platinum group metals, nickel, stainless steel, titanium, zirconium, gold, silver, carbon, and the like are preferable. The cathode substrate is limited to metals such as stainless steel, zirconium, carbon, nickel, titanium and diamond. In the apparatus of the present invention, since it is arranged to come into contact with water in which ozone or peroxide is dissolved, an apparatus excellent in oxidation resistance is preferable.

[隔膜]
電極反応で生成した活性な物質を安定に保つために中性隔膜を利用することは好ましい。膜はフッ素樹脂系、炭化水素樹脂系のいずれでも良いが、オゾンや過酸化物耐食性の面で前者が好ましい。該隔膜は、陽極、陰極で生成した物質が反対の電極で消費されるのを防止する。多孔性材料を電極間に充填してもよく、ウェブ状に繊維化した該材料も利用可能である。材料の空隙率としては液の均一な分散と抵抗率の考慮から20〜90%が好ましい。孔或いは材料粒子のサイズとしては5μm〜10μmが好ましい。
尚、スペーサーを用いて、電極間の間隔を維持できれば、隔膜は、必ずしも設ける必要は、ない。一方、隔膜の代わりに、イオン交換膜を設けると、pHの分布が生じるため、スケールの析出は中性膜に比較して増加し、スケールによる膜の閉塞が生じるおそれがあり、好ましくない。一方、隔膜を使用した場合、生成物質の分離、対極での消耗を抑制する役割が期待される。
[diaphragm]
In order to keep the active substance produced by the electrode reaction stable, it is preferable to use a neutral diaphragm. The film may be either a fluororesin or a hydrocarbon resin, but the former is preferable in terms of ozone and peroxide corrosion resistance. The diaphragm prevents the material produced at the anode and cathode from being consumed at the opposite electrode. A porous material may be filled between the electrodes, and the material fiberized into a web shape can also be used. The porosity of the material is preferably 20 to 90% in consideration of uniform dispersion of the liquid and resistivity. The size of the pores or material particles is preferably 5 μm to 10 μm.
In addition, if the space | interval between electrodes can be maintained using a spacer, it is not necessary to necessarily provide a diaphragm. On the other hand, when an ion exchange membrane is provided instead of the diaphragm, the pH distribution is generated, so that the deposition of scale increases as compared with the neutral membrane, and the membrane may be blocked by the scale, which is not preferable. On the other hand, when a diaphragm is used, it is expected to play a role of suppressing the separation of product substances and the consumption at the counter electrode.

次に本発明の実施例、参考例及び比較例を示す。   Next, Examples, Reference Examples and Comparative Examples of the present invention will be shown.

<実施例1〜9>
電極として導電性ダイヤモンド触媒(ホウ素ドープ濃度1500ppm)を形成したSi基板製の平板(電極有効幅1cm、有効長さ3cm、板厚さ0.2cm)を陽極として用い、陰極として、同等の面積を有する白金板(板厚さ0.5mm)を、図7のように極間が10μmになるように配置した。純水の流量を電磁定量ポンプにより30〜120mL/Hとし、電流密度を0.06A/cm2から0.2A/cm2まで流した。オゾン水濃度は250nmのオゾン吸収光量から紫外分光光度計を用いて定量するか、あるいは1%KIの中性溶液(リン酸緩衝液)にオゾンを含むガスの一定量を注入して振り混ぜ、2KI+O3+H2O→I2+2KOH+O2により遊離したヨウ素の呈色を波長352nm付近での吸光度を測定し、算定した(吸収光度法オゾン定量、実験化学講座9分析化学[I]のp.29参照)。また、過酸化水素濃度は、試料に硫酸チタンを添加し、チタン錯体を形成させ、その410nmの吸収ピークから算出、定量した。
上記電解条件の組み合わせにおいて、得られたセル電圧、オゾン水濃度の結果を表1に示した。いずれの実施例においてもオゾンの生成が確認され、セル電圧は30V以下であった。また、実施例1、4、5、7では2mg/L以上の過酸化水素が生成した。
<Examples 1-9>
A flat plate made of a Si substrate (electrode effective width 1 cm, effective length 3 cm, plate thickness 0.2 cm) formed with a conductive diamond catalyst (boron doping concentration 1500 ppm) as an electrode is used as an anode, and an equivalent area as a cathode. The platinum plate (plate thickness 0.5 mm) which it has was arrange | positioned so that a space | interval might be 10 micrometers as FIG. The flow rate of pure water as a 30~120mL / H by the electromagnetic metering pump and flushed with current density from 0.06 A / cm 2 to 0.2 A / cm 2. The ozone water concentration is quantified from the amount of ozone absorbed at 250 nm using an ultraviolet spectrophotometer, or a fixed amount of ozone-containing gas is injected into a neutral solution (phosphate buffer) of 1% KI and shaken. The coloration of iodine liberated by 2KI + O 3 + H 2 O → I 2 + 2KOH + O 2 was measured by measuring the absorbance at a wavelength of about 352 nm (absorbance photometric ozone determination, Experimental Chemistry Lecture 9, p. 29 of Analytical Chemistry [I], p. 29). reference). The hydrogen peroxide concentration was calculated and quantified from the absorption peak at 410 nm by adding titanium sulfate to the sample to form a titanium complex.
Table 1 shows the results of cell voltage and ozone water concentration obtained in the combination of the above electrolysis conditions. In any of the examples, generation of ozone was confirmed, and the cell voltage was 30 V or less. In Examples 1, 4, 5, and 7, 2 mg / L or more of hydrogen peroxide was generated.

<実施例10〜24、26、参考例25、27>
実施例1〜9と同様の電解セルを用いて、極間は10μm、30μm、50μmに設定し、水道水の流量を30〜240mL/hとし、電流密度を0.1A/cm2から0.3A/cm2まで流した。同様の測定方法を用いてオゾン水濃度を計測したところ、多くの組み合わせにおいて1mg/L以上であることがわかった。表1中、1mg/L以下と記載されている欄においても、オゾンの存在は確認できた。過酸化水素は、いずれの場合においても1〜数mg/Lの濃度を確認した。参考例25、27においても電解に支障はないが、セル電圧が30Vを越えており、参考例とした。
<Examples 10 to 24 and 26, Reference Examples 25 and 27>
Using the same electrolytic cell as in Examples 1 to 9, the gap between the electrodes was set to 10 μm, 30 μm, and 50 μm, the flow rate of tap water was set to 30 to 240 mL / h, and the current density was changed from 0.1 A / cm 2 to 0.2 μm. The flow rate was 3 A / cm 2 . When the ozone water concentration was measured using the same measurement method, it was found that the concentration was 1 mg / L or more in many combinations. In Table 1, the presence of ozone was also confirmed in the column described as 1 mg / L or less. In each case, hydrogen peroxide was confirmed to have a concentration of 1 to several mg / L. In Reference Examples 25 and 27, there was no problem in electrolysis, but the cell voltage exceeded 30 V, and it was taken as a reference example.

<実施例28>
同様の試験を白金陽極で実施したところ、電圧は16Vとなり、オゾン水濃度は1mg/Lであった。
<Example 28>
When the same test was conducted with a platinum anode, the voltage was 16 V and the ozone water concentration was 1 mg / L.

<比較例29>
電極間距離を5μmとし実施例1と同様に実施したところ、所定の水量を流せず、結果として電圧上昇となった。
<Comparative Example 29>
When the distance between the electrodes was set to 5 μm and the same operation as in Example 1 was performed, a predetermined amount of water could not be flowed, resulting in a voltage increase.

<実施例30>
電極間距離を100μmとし実施例4と同様に実施したところ、電圧が30V以上となり、電流密度は0.01A/cm2で、オゾンの発生はわずかであった。
<Example 30>
When the distance between the electrodes was set to 100 μm and the same operation as in Example 4 was performed, the voltage was 30 V or more, the current density was 0.01 A / cm 2 , and the generation of ozone was slight.

Figure 2014198310
Figure 2014198310

本発明は、水道水や純水を原料とし、特に電解質を添加せず、安全にオゾン、オゾンガス、オゾン水を電解合成でき、また過酸化水素も合成できるとともに、セル形状は平板を平行に向い合せた構造であり、あるいは円筒を2重構造とした、小型簡便な装置となり、しかも、イオン交換膜がないため、スケールによる膜の閉塞、洗浄の手間がなく、汎用性が高い装置を得ることができ、小型装置を必要とする広い用途に使用することができる。   In the present invention, tap water or pure water is used as a raw material, and it is possible to safely synthesize ozone, ozone gas, and ozone water without adding any electrolyte, and also to synthesize hydrogen peroxide, and the cell shape faces the flat plate in parallel. A compact and simple device with a combined structure or a double cylinder structure, and since there is no ion exchange membrane, there is no need for clogging and cleaning of the membrane due to the scale, and a highly versatile device is obtained. And can be used in a wide range of applications that require a small device.

Claims (8)

オゾン発生用陽極と陰極とを微小間隔を設けて対設し、前記オゾン発生用陽極と前記陰極間に原料水を供給して原料水を電解し、前記オゾン発生用陽極よりオゾンを含有する電解生成物を生成する小型電解水生成装置において、前記陽極と前記陰極との間隔を10μm〜100μmとしたことを特徴とする小型電解水生成装置。   An ozone generating anode and a cathode are provided with a small gap therebetween, and raw water is supplied between the ozone generating anode and the cathode to electrolyze the raw water, and electrolysis containing ozone from the ozone generating anode. The small electrolyzed water generating apparatus which produces | generates a product WHEREIN: The space | interval of the said anode and the said cathode was 10 micrometers-100 micrometers, The small electrolyzed water generating apparatus characterized by the above-mentioned. 前記陽極と前記陰極との間隔を10μm〜50μmとしたことを特徴とする請求項1に記載の小型電解水生成装置。   The small electrolyzed water generating apparatus according to claim 1, wherein a distance between the anode and the cathode is 10 μm to 50 μm. 前記微小間隔に中性隔膜を設けたことを特徴とする請求項1または2に記載の小型電解水生成装置。   The small electrolyzed water generating apparatus according to claim 1, wherein a neutral diaphragm is provided at the minute interval. 前記電解生成物が、オゾンと過酸化水素を含有する電解生成物であることを特徴とする請求項1〜3のいずれか1項に記載の小型電解水生成装置。   The small electrolyzed water generating apparatus according to any one of claims 1 to 3, wherein the electrolytic product is an electrolytic product containing ozone and hydrogen peroxide. 前記オゾン発生用陽極の少なくとも表面が導電性ダイヤモンド又は白金のいずれか一つの陽極触媒を有することを特徴とする請求項1〜4のいずれか1項に記載の小型電解水生成装置。   5. The small electrolyzed water generating apparatus according to claim 1, wherein at least a surface of the ozone generating anode has an anode catalyst of any one of conductive diamond and platinum. 前記オゾン発生用陽極及び陰極の電極投影面の電流密度が0.05A/cm2〜1A/cm2であることを特徴とする請求項1〜5のいずれか1項に記載の小型電解水生成装置。 The small electrolyzed water generation according to any one of claims 1 to 5, wherein a current density of electrode projection surfaces of the ozone generating anode and cathode is 0.05 A / cm 2 to 1 A / cm 2. apparatus. 前記電解におけるセル電圧が30V以下であることを特徴とする請求項1〜6のいずれか1項に記載の小型電解水生成装置。   The small electrolyzed water generating apparatus according to claim 1, wherein a cell voltage in the electrolysis is 30 V or less. 前記原料水が1KΩcm〜18MΩcmの抵抗率を有することを特徴とする請求項1〜7のいずれか1項に記載の小型電解水生成装置。   8. The small electrolyzed water generating apparatus according to claim 1, wherein the raw water has a resistivity of 1 KΩcm to 18 MΩcm.
JP2013075137A 2013-03-29 2013-03-29 Small electrolyzed water generator Active JP5876431B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013075137A JP5876431B2 (en) 2013-03-29 2013-03-29 Small electrolyzed water generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013075137A JP5876431B2 (en) 2013-03-29 2013-03-29 Small electrolyzed water generator

Publications (2)

Publication Number Publication Date
JP2014198310A true JP2014198310A (en) 2014-10-23
JP5876431B2 JP5876431B2 (en) 2016-03-02

Family

ID=52355588

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013075137A Active JP5876431B2 (en) 2013-03-29 2013-03-29 Small electrolyzed water generator

Country Status (1)

Country Link
JP (1) JP5876431B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112281184A (en) * 2020-09-17 2021-01-29 浙江清越科技有限公司 Device and method for electrochemically generating hydrogen peroxide
CN114703488A (en) * 2022-05-13 2022-07-05 天津市大陆制氢设备有限公司 Water electrolysis method adopting hydrogen evolution and oxygen evolution promoter
US11939687B2 (en) 2019-02-22 2024-03-26 Kogakuin University Water electrolysis apparatus, and sterilization/cleaning method and method for decomposing/removing harmful substance, each using water electrolysis apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5972196A (en) * 1995-06-07 1999-10-26 Lynntech, Inc. Electrochemical production of ozone and hydrogen peroxide
JPH11302888A (en) * 1998-04-17 1999-11-02 Optec Dd Melco Laboratory:Kk Water electrolysis type ozonizer
JP2006346203A (en) * 2005-06-16 2006-12-28 Permelec Electrode Ltd Method of sterilization and electrolyzed water spraying device
JP2008127583A (en) * 2006-11-16 2008-06-05 Permelec Electrode Ltd Membrane-electrode assembly, electrolytic unit using the same, electrolytic water jetting device and sterilization method
JP2011157580A (en) * 2010-01-29 2011-08-18 Univ Of Shiga Prefecture Electrolytic synthesis method of ozone fine bubble

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5972196A (en) * 1995-06-07 1999-10-26 Lynntech, Inc. Electrochemical production of ozone and hydrogen peroxide
JPH11302888A (en) * 1998-04-17 1999-11-02 Optec Dd Melco Laboratory:Kk Water electrolysis type ozonizer
JP2006346203A (en) * 2005-06-16 2006-12-28 Permelec Electrode Ltd Method of sterilization and electrolyzed water spraying device
JP2008127583A (en) * 2006-11-16 2008-06-05 Permelec Electrode Ltd Membrane-electrode assembly, electrolytic unit using the same, electrolytic water jetting device and sterilization method
JP2011157580A (en) * 2010-01-29 2011-08-18 Univ Of Shiga Prefecture Electrolytic synthesis method of ozone fine bubble

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11939687B2 (en) 2019-02-22 2024-03-26 Kogakuin University Water electrolysis apparatus, and sterilization/cleaning method and method for decomposing/removing harmful substance, each using water electrolysis apparatus
CN112281184A (en) * 2020-09-17 2021-01-29 浙江清越科技有限公司 Device and method for electrochemically generating hydrogen peroxide
CN114703488A (en) * 2022-05-13 2022-07-05 天津市大陆制氢设备有限公司 Water electrolysis method adopting hydrogen evolution and oxygen evolution promoter

Also Published As

Publication number Publication date
JP5876431B2 (en) 2016-03-02

Similar Documents

Publication Publication Date Title
JP5544181B2 (en) Electrochemical synthesis of ozone fine bubbles
KR100951071B1 (en) Method of sterilization and electrolytic water ejecting apparatus
JP4980016B2 (en) Electrolyzed water ejection device and sterilization method
JP4723627B2 (en) Membrane-electrode assembly, electrolytic cell using the same, electrolytic water spray device, and sterilization method
US20100192987A1 (en) Method and technical embodiment for the cleaning of surfaces by means of a high-pressure cleaning device using electrolyzed water by using oxidative free radicals
JP5098050B2 (en) Membrane-electrode assembly, electrolysis unit using the same, electrolyzed water ejection device, and sterilization method
JP5764474B2 (en) Electrolytic synthesis apparatus, electrolytic treatment apparatus, electrolytic synthesis method, and electrolytic treatment method
US20090127128A1 (en) Membrane-electrode assembly, electrolytic cell employing the same, electrolytic-water sprayer, and method of sterilization
JP2009125628A (en) Membrane-electrode assembly, electrolytic cell using the same, ozone water generator, and sterilization method
CN111334815A (en) Preparation method of hypochlorous acid disinfectant and device for realizing method
CN109498825B (en) Household disinfection device
WO2013154914A1 (en) Reusable spray bottle with integrated dispenser
JP5876431B2 (en) Small electrolyzed water generator
KR20130049031A (en) Germicidal sterilizer composition for hypochlrous acid solution and method for manufacturing sterilized water using the same
US20160097132A1 (en) Reusable spray bottle with integrated dispenser
KR101362966B1 (en) Electrodes structure for high concentration hypochlrous acid solution from soidum chloride solution and method for manufacturing sterilized water using the same
US20140190820A1 (en) Reusable apparatus with sparingly soluble solid for cleaning and/or disinfecting
KR20180023346A (en) Electric Device
Umimoto et al. Development of device producing electrolyzed water for home care
JP6178528B1 (en) Ozone water production method and sterilization method using ozone water
GB2556947B (en) Electrochemical cell and method for operation of the same
KR20160008683A (en) Small device for producing electro-analysised water
Reimanis et al. Water disinfection using TinO2n-1 electrodes
WO2016054587A1 (en) Reusable spray bottle with integrated dispenser
WO2013103827A1 (en) Reusable apparatus with sparingly soluble solid for cleaning and/or disinfecting

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151027

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160121

R150 Certificate of patent or registration of utility model

Ref document number: 5876431

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250