JP2014196215A - Modified metal oxide particulate powder and method for producing the same - Google Patents

Modified metal oxide particulate powder and method for producing the same Download PDF

Info

Publication number
JP2014196215A
JP2014196215A JP2013072919A JP2013072919A JP2014196215A JP 2014196215 A JP2014196215 A JP 2014196215A JP 2013072919 A JP2013072919 A JP 2013072919A JP 2013072919 A JP2013072919 A JP 2013072919A JP 2014196215 A JP2014196215 A JP 2014196215A
Authority
JP
Japan
Prior art keywords
dispersion
metal oxide
oxide fine
modified
fine particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013072919A
Other languages
Japanese (ja)
Inventor
山口 純
Jun Yamaguchi
純 山口
政幸 松田
Masayuki Matsuda
政幸 松田
良 村口
Makoto Muraguchi
良 村口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Catalysts and Chemicals Ltd
Original Assignee
JGC Catalysts and Chemicals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JGC Catalysts and Chemicals Ltd filed Critical JGC Catalysts and Chemicals Ltd
Priority to JP2013072919A priority Critical patent/JP2014196215A/en
Publication of JP2014196215A publication Critical patent/JP2014196215A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing modified metal oxide particulate powder excellent in dispersibility, flowability and economical efficiency.SOLUTION: There is provided the method for producing modified metal oxide particulate powder which has an average particle diameter (D) in the range of 1 to 200 μm, which is composed of aggregates of primary particle and secondary particle, which has an average secondary particle diameter (D) of the secondary particles measured by laser method in the range of 5 to 500 nm, an average primary particle diameter (D) of the primary particles measured by observing with TEM method in the range of 5 to 500 nm, a ratio (D)/(D) of the average secondary particle diameter (D) to the average primary particle diameter (D) in the range of 1 to 10, and an angle of repose of 40° or less. The method for producing modified metal oxide particulate powder comprises: (a) preparing a fluid dispersion of metal oxide particulate in water and/or organic solvent followed by (b) adding an organic metal compound represented by R-MXto the fluid dispersion; then (d) atomizing and drying the fluid dispersion.

Description

本発明は、分散性、流動性および経済性にも優れた改質金属酸化物微粒子粉末の製造方法に関する。   The present invention relates to a method for producing modified metal oxide fine particles having excellent dispersibility, fluidity and economy.

従来、シリカ、アルミナ、チタニア、ジルコニア、酸化亜鉛、五酸化アンチモン、酸化セリウム、酸化スズ、シリカ・アルミナ、シリカ・ジルコニアなどの金属酸化物微粒子あるいはコロイド粒子が知られており、粒子の特性を生かして光学材料、導電性材料、その他機能性材料として被膜に配合して用いられている。   Conventionally, metal oxide fine particles or colloidal particles such as silica, alumina, titania, zirconia, zinc oxide, antimony pentoxide, cerium oxide, tin oxide, silica-alumina, silica-zirconia, etc. are known, and the characteristics of the particles are utilized. It is used as an optical material, a conductive material, and other functional materials in a film.

被膜の形成が塗布液法である場合、金属酸化物微粒子をそのまま用いると塗布液中の被膜形成成分(マトリックス形成成分ということがある)、分散媒あるいは金属酸化物微粒子の粒子径等によっては金属酸化物微粒子が塗布液中に均一に、安定的に分散せず、塗布液の安定性がなく、得られる被膜の基材との密着性、被膜の強度、耐擦傷性、透明性が無く、このため、カップリング剤(特許文献1:特開2005−77893号公報)、界面活性剤、あるいはステアリン酸等の有機化合物、有機樹脂(特許文献2:特開2009−275135号公報)等で金属酸化物微粒子を表面処理して用いられている。   When the coating is formed by the coating solution method, if the metal oxide fine particles are used as they are, depending on the particle size of the coating forming component (sometimes referred to as matrix forming component), the dispersion medium or the metal oxide fine particles in the coating solution, the metal Oxide fine particles are not uniformly and stably dispersed in the coating solution, the coating solution is not stable, the adhesion of the resulting coating to the base material, the strength of the coating, the scratch resistance, and the transparency, For this reason, a coupling agent (Patent Document 1: JP 2005-77893 A), a surfactant, an organic compound such as stearic acid, an organic resin (Patent Document 2: JP 2009-275135 A), etc. Oxide fine particles are used after surface treatment.

例えばシランカップリング剤で表面処理する場合、金属酸化物微粒子の有機溶媒分散液にシランカップリング剤あるいはシランカップリング剤の部分加水分解物と水、必要に応じて酸あるいは塩基等の加水分解用触媒を添加し、加水分解することによって表面処理されている。   For example, when surface treatment is performed with a silane coupling agent, the organic oxide dispersion of metal oxide fine particles is used for hydrolysis of silane coupling agent or a partial hydrolyzate of silane coupling agent and water, and if necessary, acid or base. Surface treatment is performed by adding a catalyst and hydrolyzing.

しかしながら、金属酸化物微粒子の水分散液あるいは金属酸化物コロイド粒子水散ゾルを有機溶媒に溶媒置換したり、加水分解処理後溶媒置換の必要があった。
また、加水分解触媒として酸を使用した場合、粒子表面に鎖状の加水分解物を生じる傾向があり、得られる粒子が凝集したり、分散性が不良となる場合があった。
However, it is necessary to replace the aqueous dispersion of metal oxide fine particles or metal oxide colloidal particles water sol with an organic solvent, or to perform solvent replacement after hydrolysis treatment.
Moreover, when an acid is used as a hydrolysis catalyst, there is a tendency to form a chain hydrolyzate on the particle surface, and the resulting particles may aggregate or have poor dispersibility.

さらに、表面処理した金属酸化物微粒子を粉体として保存したり、使用する場合、乾燥して粉末化する必要があるが、このとき、強く粒子が凝集し、加えて粉体の流動性が低いために使用に際して有機溶媒あるいは有機樹脂に均一に分散させることができない場合があり、このため、シランカップリング剤で処理した後、乾燥することなく有機溶媒に溶媒置換したのち有機樹脂に混合した分散体とする必要があった。その場合でも分散体中での分散性が均一とはいえず、安定性が不充分となる場合があった。また、加水分解触媒を使用しない場合、3官能以下の有機珪素化合物では未反応の有機珪素化合物が残存し、所望の表面処理ができず、溶媒置換をすると、未反応の有機珪素化合物が逃散するとともに、得られる改質ジルコニア微粒子粉末は凝集しやすく、分散性、安定性が不充分となる場合があった。   Furthermore, when the surface-treated metal oxide fine particles are stored or used as a powder, it is necessary to dry and pulverize, but at this time, the particles strongly aggregate and in addition, the fluidity of the powder is low. Therefore, it may not be possible to uniformly disperse in an organic solvent or an organic resin during use. For this reason, after being treated with a silane coupling agent, the solvent is replaced with an organic solvent without drying, and then dispersed in an organic resin. It was necessary to have a body. Even in that case, the dispersibility in the dispersion may not be uniform, and the stability may be insufficient. In addition, when a hydrolysis catalyst is not used, an unreacted organosilicon compound remains in a trifunctional or less organosilicon compound, and a desired surface treatment cannot be performed. When the solvent is replaced, the unreacted organosilicon compound escapes. At the same time, the resulting modified zirconia fine particle powder tends to aggregate, and the dispersibility and stability may be insufficient.

特開2005−77893号公報JP 2005-77893 A 特開2009−275135号公報JP 2009-275135 A

本発明者等は、上記問題に鑑み、分散性に優れた金属酸化物微粒子粉末を得るべく鋭意検討した結果、シリカ微粒子の水/アルコール混合溶媒分散液に所定量のシランカップリング剤を添加し、ついで、減圧下、流動状態下、乾燥(溶媒除去)すると、得られるシリカ微粒子粉末は流動性に優れ、これを有機溶媒に分散させた際に容易に再分散し、高濃度でも安定性に優れた分散液が得られることを見出している。   In view of the above problems, the present inventors have intensively studied to obtain a metal oxide fine particle powder excellent in dispersibility. As a result, a predetermined amount of a silane coupling agent was added to a water / alcohol mixed solvent dispersion of silica fine particles. Next, when dried (solvent removal) under reduced pressure and fluidized condition, the resulting silica fine particle powder is excellent in fluidity, easily redispersed when dispersed in an organic solvent, and stable even at high concentrations. It has been found that an excellent dispersion can be obtained.

しかしながら、この方法は、少量生産では特に問題はないものの、設備面、生産性の面で大量生産には不向きであった。
そこで、シリカ微粒子の水/アルコール混合溶媒分散液に所定量のシランカップリング剤を添加した後、直ちに噴霧乾燥した場合、分散性向上効果は不十分であるが、常温もしくは加温下で一定時間以上撹拌した後噴霧乾燥すると、得られた微粒子粉末は流動性が極めて高く、この粉末を有機溶媒に分散させた際に容易に再分散し、高濃度でも安定性に優れた分散液が得られること、さらに、この方法がシリカ以外の金属酸化物に適用できることを見出して本発明を完成するに至った。
However, this method has no particular problem in small-scale production, but is unsuitable for mass production in terms of equipment and productivity.
Therefore, when a predetermined amount of a silane coupling agent is added to a water / alcohol mixed solvent dispersion of silica fine particles and then immediately spray-dried, the effect of improving dispersibility is insufficient, but at room temperature or under heating for a certain period of time. When the mixture is stirred and spray-dried, the resulting fine particle powder has extremely high fluidity, and when this powder is dispersed in an organic solvent, it can be easily redispersed and a dispersion having excellent stability even at high concentrations can be obtained. Furthermore, the present invention has been completed by finding that this method can be applied to metal oxides other than silica.

本発明は、流動性、分散媒への分散性、分散安定性に優れた改質金属酸化物微粒子粉末、およびその製造方法を提供することを目的としている。   An object of the present invention is to provide a modified metal oxide fine particle powder excellent in fluidity, dispersibility in a dispersion medium, and dispersion stability, and a production method thereof.

本発明に係る改質金属酸化物微粒子粉末の製造方法は、
[1](a)金属酸化物微粒子の水および/または有機溶媒分散液を調製したのち、
(b)該分散液に、下記式(1)で表される有機金属化合物を添加し、次いで、
(d)分散液を噴霧乾燥する
p-MXq-p ・・・・・・・(1)
(但し、式中、Mは金属元素、Rは炭素数1〜20の非置換または置換炭化水素基であって、互いに同一であっても異なっていてもよい。Xは炭素数1〜4のアルコキシ基、水酸基、ハロゲン、水素を示し、qは金属元素Mの価数であって3または4、p:0〜2の整数であってq−pが2または3)
ことを特徴とする、
粉末の平均粒子径(DMP)が1〜200μmの範囲にあり、一次粒子および二次粒子の集合体から構成されてなり、
二次粒子のレーザー法で測定した平均二次粒子径(DM2)が5〜500nmの範囲にあり、一次粒子のTEM法で観察して測定した平均一次粒子径(DM1)が5〜500nmの範囲にあり、
平均二次粒子径(DM2)と平均一次粒子径(DM1)との比(DM2)/(DM1)が1〜10の範囲にあり、
安息角が40°以下である、改質金属酸化物微粒子粉末の製造方法。
The method for producing the modified metal oxide fine particle powder according to the present invention comprises:
[1] (a) After preparing a water and / or organic solvent dispersion of metal oxide fine particles,
(B) An organometallic compound represented by the following formula (1) is added to the dispersion, and then
(D) Spray drying the dispersion R p -MX qp (1)
(Wherein, M is a metal element, R is an unsubstituted or substituted hydrocarbon group having 1 to 20 carbon atoms, and may be the same or different from each other. X is a group having 1 to 4 carbon atoms. An alkoxy group, a hydroxyl group, halogen or hydrogen, q is the valence of the metal element M, 3 or 4, p: an integer of 0 to 2, and qp is 2 or 3)
It is characterized by
The average particle diameter (D MP ) of the powder is in the range of 1 to 200 μm, and is composed of an aggregate of primary particles and secondary particles,
The average secondary particle size (D M2 ) measured by the laser method of secondary particles is in the range of 5 to 500 nm, and the average primary particle size (D M1 ) measured by TEM observation of the primary particles is 5 to 500 nm. In the range of
The ratio (D M2 ) / (D M1 ) between the average secondary particle size (D M2 ) and the average primary particle size (D M1 ) is in the range of 1 to 10,
A method for producing modified metal oxide fine particle powder having an angle of repose of 40 ° or less.

[2]前記金属元素MがSi、Ti、Zr、Alから選ばれる少なくとも1種である[1]の改質金属酸化物微粒子粉末の製造方法。
[3]有機金属化合物の添加後、(c)5〜80℃で熟成する[1]または[2]の改質金属酸化物微粒子粉末の製造方法。
[4]前記噴霧乾燥の入口温度が70〜400℃の範囲にある[1]の改質金属酸化物微粒子粉末の製造方法。
[2] The method for producing modified metal oxide fine particle powder according to [1], wherein the metal element M is at least one selected from Si, Ti, Zr, and Al.
[3] A method for producing the modified metal oxide fine particle powder according to [1] or [2], wherein after the addition of the organometallic compound, (c) aging at 5 to 80 ° C.
[4] The method for producing a modified metal oxide fine particle powder according to [1], wherein the spray drying inlet temperature is in the range of 70 to 400 ° C.

[5]前記金属酸化物微粒子分散液の固形分濃度が、酸化物に換算して、1〜30重量%の範囲にある[1]の改質金属酸化物微粒子粉末の製造方法。
[6]有機金属化合物の添加量が、金属酸化物微粒子の固形分100重量部に対し、Rp-MO(q-p)/2)(但し、mは金属元素Mの価数であって3または4、p:0〜2の整数であってq−pが2または3)として1〜300重量部の範囲にある[1]の改質金属酸化物微粒子粉末の製造方法。
[7]前記金属酸化物微粒子の平均粒子径(DM)が5〜500nmの範囲にある[1]の改質金属酸化物微粒子粉末の製造方法。
[5] The method for producing modified metal oxide fine particle powder according to [1], wherein the solid content concentration of the metal oxide fine particle dispersion is in the range of 1 to 30% by weight in terms of oxide.
[6] The addition amount of the organometallic compound is R p -MO (qp) / 2) with respect to 100 parts by weight of the solid content of the metal oxide fine particles (where m is the valence of the metal element M and 3 or 4, p: an integer of 0 to 2, and q-p is 2 or 3), wherein 1 to 300 parts by weight of the modified metal oxide fine particle powder production method according to [1].
[7] The method for producing a modified metal oxide fine particle powder according to [1], wherein the metal oxide fine particles have an average particle diameter (D M ) in the range of 5 to 500 nm.

[8]前記金属酸化物微粒子がSiO2、Al23、TiO2、ZrO2およびこれらの複合酸化物、Sb25、ZnO2、SnO2、In23、アンチモンドープ酸化錫(ATO)、錫ドープ酸化インジウム(ITO)、Fドープ酸化錫(FTO)、リンドープ酸化錫(PTO)、アルミニウムドープ酸化亜鉛(AZO)からなる金属酸化物微粒子または混合物である[1]の改質金属酸化物微粒子粉末の製造方法。
[9]溶媒置換することなく、かつ加水分解触媒を使用しない[1]の改質金属酸化物微粒子粉末の製造方法。
[8] The metal oxide fine particles are SiO 2 , Al 2 O 3 , TiO 2 , ZrO 2 and composite oxides thereof, Sb 2 O 5 , ZnO 2 , SnO 2 , In 2 O 3 , antimony-doped tin oxide ( [1] modified metal which is a metal oxide fine particle or a mixture comprising ATO), tin-doped indium oxide (ITO), F-doped tin oxide (FTO), phosphorus-doped tin oxide (PTO), aluminum-doped zinc oxide (AZO) Manufacturing method of oxide fine particle powder.
[9] The method for producing modified metal oxide fine particle powder according to [1], wherein the solvent substitution is not performed and a hydrolysis catalyst is not used.

[10]下記式(1)で表される有機金属化合物で表面処理された改質金属酸化物微粒子の粉末であって、
粉末の平均粒子径(DMP)が1〜200μmの範囲にあり、一次粒子および二次粒子の集合体から構成されてなり、
二次粒子のレーザー法で測定した平均二次粒子径(DM2)が5〜500nmの範囲にあり、一次粒子のTEM写真を観察して測定した平均一次粒子径(DM1)が5〜500nmの範囲にあり、
平均二次粒子径(DM2)と平均一次粒子径(DM1)との比(DM2)/(DM1)が1〜10の範囲にあり、
安息角が40°以下である、改質金属酸化物微粒子粉末。
p-MXq-p ・・・・・・・(1)
(但し、式中、Mは金属元素、Rは炭素数1〜20の非置換または置換炭化水素基であって、互いに同一であっても異なっていてもよい。Xは炭素数1〜4のアルコキシ基、水酸基、ハロゲン、水素を示し、qは金属元素Mの価数であって3または4、p:0〜2の整数であってq−pが2または3)
[10] A powder of modified metal oxide fine particles surface-treated with an organometallic compound represented by the following formula (1),
The average particle diameter (D MP ) of the powder is in the range of 1 to 200 μm, and is composed of an aggregate of primary particles and secondary particles,
The average secondary particle diameter (D M2 ) measured by the laser method of the secondary particles is in the range of 5 to 500 nm, and the average primary particle diameter (D M1 ) measured by observing a TEM photograph of the primary particles is 5 to 500 nm. In the range of
The ratio (D M2 ) / (D M1 ) between the average secondary particle size (D M2 ) and the average primary particle size (D M1 ) is in the range of 1 to 10,
Modified metal oxide fine particle powder having an angle of repose of 40 ° or less.
R p -MX qp (1)
(Wherein, M is a metal element, R is an unsubstituted or substituted hydrocarbon group having 1 to 20 carbon atoms, and may be the same or different from each other. X is a group having 1 to 4 carbon atoms. An alkoxy group, a hydroxyl group, halogen or hydrogen, q is the valence of the metal element M, 3 or 4, p: an integer of 0 to 2, and qp is 2 or 3)

[11]前記金属元素MがSi、Ti、Zr、Alから選ばれる少なくとも1種である[10]の改質金属酸化物微粒子粉末。
[12]前記有機金属化合物の金属MがSiの場合、29Si MAS NMRスペクトルの主ピークの半値幅が3〜15ppmの範囲にある[10]または[11]の改質金属酸化物微粒子粉末。
[13]前記金属酸化物微粒子の平均粒子径(DM)が5〜500nmの範囲にあり、前記平均二次粒子径(DM2)との比(DM2)/(DM)が0.2〜5の範囲にあることを特徴とする[10]〜[12]の改質金属酸化物微粒子粉末。
[11] The modified metal oxide fine particle powder according to [10], wherein the metal element M is at least one selected from Si, Ti, Zr, and Al.
[12] The modified metal oxide fine particle powder according to [10] or [11], wherein when the metal M of the organometallic compound is Si, the full width at half maximum of the 29 Si MAS NMR spectrum is in the range of 3 to 15 ppm.
[13] The average particle diameter (D M ) of the metal oxide fine particles is in the range of 5 to 500 nm, and the ratio (D M2 ) / (D M ) to the average secondary particle diameter (D M2 ) is 0. The modified metal oxide fine particle powder according to [10] to [12], which is in the range of 2 to 5.

本発明によれば、分散性、流動性に優れた改質金属酸化物微粒子粉末およびその製造方法を提供することができる。
さらに詳しくは、従来のシランカップリング剤処理のように加水分解触媒を必要とせず、また加水分解後の溶媒置換等を必要とせず、流動性に優れ、直接粉体のままで有機溶媒、有機樹脂等に容易に均一に単分散する改質金属酸化物微粒子粉末およびその製造方法を提供することができる。
ADVANTAGE OF THE INVENTION According to this invention, the modified metal oxide fine particle powder excellent in the dispersibility and fluidity | liquidity, and its manufacturing method can be provided.
More specifically, it does not require a hydrolysis catalyst as in the case of conventional silane coupling agent treatment, and does not require solvent replacement after hydrolysis, etc. It is possible to provide a modified metal oxide fine particle powder that is easily and uniformly monodispersed in a resin or the like and a method for producing the same.

さらに、改質金属酸化物微粒子粉末は、従来は、分散しにくいために、あらかじめ有機溶媒および/または有機樹脂分散体として使用されるが、本発明の製造方法によれば、溶媒への再分散性が高いので、改質金属酸化物微粒子粉末として保管できるので安全であり、また、保管量も溶媒がない分、省スペース化できる。また分散体として輸送等する必要が無く、輸送が安全であり、輸送費も軽減できるなど経済性にも優れている。   Further, the modified metal oxide fine particle powder is conventionally used as an organic solvent and / or an organic resin dispersion in advance because it is difficult to disperse. However, according to the production method of the present invention, re-dispersion in a solvent is performed. Therefore, it is safe because it can be stored as a modified metal oxide fine particle powder, and the storage amount can be saved because there is no solvent. In addition, it is not necessary to transport as a dispersion, so that transportation is safe and transportation costs can be reduced.

[改質金属酸化物微粒子粉末の製造方法]
工程(a)
まず、(a)金属酸化物微粒子の水および/または有機溶媒分散液を調製する。
(金属酸化物微粒子)
本発明に用いる金属酸化物微粒子としては、従来公知の金属酸化物微粒子を用いることができる。
[Production Method of Modified Metal Oxide Fine Particle Powder]
Step (a)
First, (a) a metal oxide fine particle water and / or organic solvent dispersion is prepared.
(Metal oxide fine particles)
As the metal oxide fine particles used in the present invention, conventionally known metal oxide fine particles can be used.

本発明では、有用性の観点から、金属酸化物微粒子としてSiO2、Al23、TiO2、ZrO2およびこれらの複合酸化物、Sb25、ZnO2、SnO2、In23、アンチモンドープ酸化錫(ATO)、錫ドープ酸化インジウム(ITO)、Fドープ酸化錫(FTO)、リンドープ酸化錫(PTO)、アルミニウムドープ酸化亜鉛(AZO)からなる金属酸化物微粒子およびこれらの混合物であることが好ましい。 In the present invention, from the viewpoint of usability, SiO 2 , Al 2 O 3 , TiO 2 , ZrO 2 and composite oxides thereof, Sb 2 O 5 , ZnO 2 , SnO 2 , In 2 O 3 are used as metal oxide fine particles. Metal oxide fine particles composed of antimony-doped tin oxide (ATO), tin-doped indium oxide (ITO), F-doped tin oxide (FTO), phosphorus-doped tin oxide (PTO), aluminum-doped zinc oxide (AZO), and mixtures thereof Preferably there is.

改質前の金属酸化物微粒子の平均粒子径(DM)は5〜500nm、さらには7〜400nmの範囲にあることが好ましい。
この範囲の平均粒子径(DM)であれば、改質金属酸化物微粒子の平均二次粒子径(DM2)として所望の範囲のものが得られる。
The average particle diameter (D M ) of the metal oxide fine particles before modification is preferably in the range of 5 to 500 nm, more preferably 7 to 400 nm.
If the average particle size (D M ) is within this range, the desired secondary particle size (D M2 ) of the modified metal oxide fine particles can be obtained.

金属酸化物微粒子の平均粒子径(DM)は、改質前の金属酸化物微粒子を水に分散させ、超音波を照射した固形分濃度10重量%の分散液を調製し、レーザー法(動的光散乱法)の粒径測定装置(大塚電子(株)製:ELS−Z)で測定する。 The average particle diameter (D M ) of the metal oxide fine particles is determined by dispersing the metal oxide fine particles before modification in water, preparing a dispersion having a solid content concentration of 10% by weight irradiated with ultrasonic waves, and applying a laser method (dynamic The measurement is performed with a particle size measuring apparatus (manufactured by Otsuka Electronics Co., Ltd .: ELS-Z).

つぎに、前記金属酸化物微粒子の平均粒子径(DM)と後述する改質金属酸化物微粒子の平均二次粒子径(DM2)との比(DM2)/(DM)が0.2〜5、さらには0.5〜3の範囲にあることが好ましい。 Next, the ratio (D M2 ) / (D M ) between the average particle size (D M ) of the metal oxide fine particles and the average secondary particle size (D M2 ) of the modified metal oxide fine particles described later is 0. It is preferably in the range of 2 to 5, more preferably 0.5 to 3.

前記比(DM2)/(DM)が大きすぎると改質金属酸化物微粒子の凝集度合いが高いことを示し、有機溶媒および/または有機樹脂への分散性が不充分となる場合があり、分散体は透明性が低く、分散安定性が不充分となる場合がある。改質前の粒子は凝集していることもあり、改質によって、凝集がほぐされることもあるので、(DM2)/(DZ)が1未満となることがある。なお、(DM2)/(DM)が低すぎると、これは原料粒子が過度に凝集していることを意味し、改質が不均一になるためか、有機溶媒、有機樹脂等への分散性が不充分となる場合がある。 If the ratio (D M2 ) / (D M ) is too large, it indicates that the degree of aggregation of the modified metal oxide fine particles is high, and dispersibility in an organic solvent and / or an organic resin may be insufficient. The dispersion has low transparency, and dispersion stability may be insufficient. Particles before modification may be aggregated, and aggregation may be loosened by modification, so (D M2 ) / (D Z ) may be less than 1. If (D M2 ) / (D M ) is too low, this means that the raw material particles are excessively aggregated, and the modification is not uniform. Dispersibility may be insufficient.

(水)
分散媒として全量水を使用することもできるが、有機溶媒と混合して用いる場合、水の使用量は使用する有機金属化合物の加水分解性基を加水分解できる量以上あればよい。
(water)
Although the total amount of water can be used as the dispersion medium, when used in a mixture with an organic solvent, the amount of water used may be more than the amount capable of hydrolyzing the hydrolyzable group of the organometallic compound used.

(有機溶媒)
有機溶媒としては、水との相溶性を有し、有機金属化合物が溶解すれば特に制限はないが、メタノール、エタノール、プロパノール、2-プロパノール(IPA)、ブタノール、ジアセトンアルコール、フルフリルアルコール、テトラヒドロフルフリルアルコール、エチレングリコール、ヘキシレングリコール、イソプロピルグリコールなどのアルコール類;酢酸メチルエステル、酢酸エチルエステル、酢酸ブチルなどのエステル類;ジエチルエーテル、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテルなどのエーテル類;アセトン、メチルエチルケトン、メチルイソブチルケトン、アセチルアセトン、アセト酢酸エステルなどのケトン類、メチルセロソルブ、エチルセロソルブ、ブチルセロソルブ、トルエン、シクロヘキサノン、イソホロン、N−メチルピロリドン等が挙げられる。
(Organic solvent)
The organic solvent is compatible with water and is not particularly limited as long as the organometallic compound dissolves. However, methanol, ethanol, propanol, 2-propanol (IPA), butanol, diacetone alcohol, furfuryl alcohol, Alcohols such as tetrahydrofurfuryl alcohol, ethylene glycol, hexylene glycol, and isopropyl glycol; esters such as methyl acetate, ethyl acetate, and butyl acetate; diethyl ether, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol Ethers such as monobutyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, propylene glycol monomethyl ether; acetone, Methyl ethyl ketone, methyl isobutyl ketone, acetylacetone, ketones such as acetoacetate, methyl cellosolve, ethyl cellosolve, butyl cellosolve, toluene, cyclohexanone, isophorone, N- methylpyrrolidone and the like.

なかでも、沸点の低いアルコール類は低温で乾燥、除去できるので好適に用いることができる。
金属酸化物微粒子の水および/または有機溶媒分散液の濃度は特に制限はないが固形分として概ね1〜30重量%の範囲にあることが好ましい。
また、分散液は分散処理することが好ましい。分散処理方法としては、充分な撹拌、超音波を照射するなどの方法を採用することができる。
Among them, alcohols having a low boiling point can be suitably used because they can be dried and removed at a low temperature.
The concentration of the metal oxide fine particles in water and / or the organic solvent dispersion is not particularly limited, but is preferably in the range of about 1 to 30% by weight as the solid content.
The dispersion is preferably subjected to a dispersion treatment. As a dispersion treatment method, a method such as sufficient stirring and irradiation with ultrasonic waves can be employed.

工程(b)
前記調製した分散液に、下記式(1)で表される有機金属化合物を添加する。
p-MXq-p ・・・・・・・(1)
但し、式中、Mは金属元素、具体的にはSi、Ti、Zr、Alから選ばれる少なくとも1種である。
Step (b)
An organometallic compound represented by the following formula (1) is added to the prepared dispersion.
R p -MX qp (1)
In the formula, M is a metal element, specifically, at least one selected from Si, Ti, Zr, and Al.

Rは炭素数1〜20の非置換または置換炭化水素基であって、互いに同一であっても異なっていてもよい。Xは、炭素数1〜4のアルコキシ基、水酸基、ハロゲン、水素を示し、qは元素Mの価数であって3または4であり、pは0〜2の整数であってq−pが2または3である。   R is an unsubstituted or substituted hydrocarbon group having 1 to 20 carbon atoms and may be the same as or different from each other. X represents an alkoxy group having 1 to 4 carbon atoms, a hydroxyl group, halogen, or hydrogen, q is a valence of the element M and is 3 or 4, p is an integer of 0 to 2, and q−p is 2 or 3.

前記金属元素MがSiの場合、下記式(2)で表される加水分解性の有機珪素化合物であることが好ましい。
n-SiX4-n (2)
但し、式(2)中、Rは炭素数1〜20の非置換または置換炭化水素基であって、互いに同一であっても異なっていてもよい。非置換の炭化水素基としては、アルキル基、シクロアルキル基のほかに、二重結合を有するアルケニル基などが挙げられる。また、置換炭化水素基としては、エポキシ、グリシドキシ、(メタ)アクリロキシ、ウレタン、アミノ、アミド、イミド、ウレイドなどの置換基や炭化水素基の水素がフッ素などのハロゲン置換されたものなどが挙げられる。Xは炭素数1〜4のアルコキシ基、水酸基、ハロゲン、水素原子のいずれかを示し、nは1〜3の整数である。nが2以上の場合、Rは互いに同じでも、異なるものであってもよく、また複数のXは互いに同一であっても異なるものであってもよい。
When the metal element M is Si, it is preferably a hydrolyzable organosilicon compound represented by the following formula (2).
R n -SiX 4-n (2)
However, in Formula (2), R is a C1-C20 unsubstituted or substituted hydrocarbon group, Comprising: You may mutually be same or different. Examples of the unsubstituted hydrocarbon group include an alkenyl group having a double bond in addition to an alkyl group and a cycloalkyl group. Examples of the substituted hydrocarbon group include a substituent such as epoxy, glycidoxy, (meth) acryloxy, urethane, amino, amide, imide, ureido, and the like, or a group in which the hydrogen of the hydrocarbon group is substituted with a halogen such as fluorine. . X represents an alkoxy group having 1 to 4 carbon atoms, a hydroxyl group, a halogen, or a hydrogen atom, and n is an integer of 1 to 3. When n is 2 or more, Rs may be the same or different, and a plurality of Xs may be the same or different.

このように1〜3官能の有機珪素化合物を使うことで、流動性、分散性に優れた改質金属酸化物微粒子粉末を得ることができる。なお、4官能の有機珪素化合物では疎水性官能基が残存せず、改質金属酸化物微粒子粉末は強く凝集し、流動性、分散性が得られない場合がある。   Thus, the modified metal oxide fine particle powder excellent in fluidity | liquidity and a dispersibility can be obtained by using a 1-3 functional organosilicon compound. In the case of a tetrafunctional organosilicon compound, hydrophobic functional groups do not remain, and the modified metal oxide fine particle powder strongly aggregates, and fluidity and dispersibility may not be obtained in some cases.

有機ケイ素化合物としては、メチルトリメトキシシラン、メチルトリエトキシシラン、フェニルトリエトキシシラン、フェニルトリメトキシシラン、ジメチルジメトキシシラン、ジフェニルジメトキシシラン、ジメチルジエトキシシラン、ジフェニルジエトキシシラン、イソブチルトリメトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリス(βメトキシエトキシ)シラン、3,3,3−トリフルオロプロピルトリメトキシシラン、メチル-3,3,3−トリフルオロプロピルジメトキシシラン、β−(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、γ-グリシドキシメチルトリメトキシシラン、γ-グリシドキシメチルトリエキシシラン、γ-グリシドキシエチルトリメトキシシラン、γ-グリシドキシエチルトリエトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、γ−(β−グリシドキシエトキシ)プロピルトリメトキシシラン、γ-(メタ)アクリロオキシメチルトリメトキシシラン、γ-(メタ)アクリロオキシメチルトリエキシシラン、γ-(メタ)アクリロオキシエチルトリメトキシシラン、γ-(メタ)アクリロオキシエチルトリエトキシシラン、γ-(メタ)アクリロオキシプロピルトリメトキシシラン、γ-(メタ)アクリロオキシプロピルトリエトキシシラン、ブチルトリメトキシシラン、イソブチルトリエトキシシラン、ヘキシルトリエトキシシラオクチルトリエトキシシラン、デシルトリエトキシシラン、ブチルトリエトキシシラン、イソブチルトリエトキシシラン、ヘキシルトリエトキシシラン、オクチルトリエトキシシラン、デシルトリエトキシシラン、3-ウレイドイソプロピルプロピルトリエトキシシラン、パーフルオロオクチルエチルトリメトキシシラン、パーフルオロオクチルエチルトリエトキシシラン、パーフルオロオクチルエチルトリイソプロポキシシラン、トリフルオロプロピルトリメトキシシラン、γ-メルカプトプロピルトリメトキシシラン、トリメチルシラノール、メチルトリクロロシラン等、およびこれらの混合物が挙げられる。   Examples of organosilicon compounds include methyltrimethoxysilane, methyltriethoxysilane, phenyltriethoxysilane, phenyltrimethoxysilane, dimethyldimethoxysilane, diphenyldimethoxysilane, dimethyldiethoxysilane, diphenyldiethoxysilane, isobutyltrimethoxysilane, vinyl Trimethoxysilane, vinyltriethoxysilane, vinyltris (βmethoxyethoxy) silane, 3,3,3-trifluoropropyltrimethoxysilane, methyl-3,3,3-trifluoropropyldimethoxysilane, β- (3,4 -Epoxycyclohexyl) ethyltrimethoxysilane, γ-glycidoxymethyltrimethoxysilane, γ-glycidoxymethyltriethoxysilane, γ-glycidoxyethyltrimethoxysilane, γ-glycidoxyethyltriethoxy Silane, γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropyltriethoxysilane, γ- (β-glycidoxyethoxy) propyltrimethoxysilane, γ- (meth) acrylooxymethyltrimethoxysilane, γ- (meth) acrylooxymethyltriethoxysilane, γ- (meth) acrylooxyethyltrimethoxysilane, γ- (meth) acryloxyethyltriethoxysilane, γ- (meth) acrylooxypropyltrimethoxy Silane, γ- (meth) acrylooxypropyltriethoxysilane, butyltrimethoxysilane, isobutyltriethoxysilane, hexyltriethoxysilaoctyltriethoxysilane, decyltriethoxysilane, butyltriethoxysilane, isobutyltriethoxysilane, hexyl Triethoxy Lan, octyltriethoxysilane, decyltriethoxysilane, 3-ureidoisopropylpropyltriethoxysilane, perfluorooctylethyltrimethoxysilane, perfluorooctylethyltriethoxysilane, perfluorooctylethyltriisopropoxysilane, trifluoropropyltri Examples include methoxysilane, γ-mercaptopropyltrimethoxysilane, trimethylsilanol, methyltrichlorosilane, and the like, and mixtures thereof.

なかでも、γ-(メタ)アクリロオキシメチルトリメトキシシラン、γ-(メタ)アクリロオキシメチルトリエキシシラン、γ-(メタ)アクリロオキシエチルトリメトキシシラン、γ-(メタ)アクリロオキシエチルトリエトキシシラン、γ-(メタ)アクリロオキシプロピルトリメトキシシラン、γ-(メタ)アクリロオキシプロピルトリエトキシシラン、等のアクリル系もしくはメタアクリル系のシランカップリング剤は、流動性、分散性等に優れた改質ジルコニア微粒子粉末が得られるので好適に用いることができる。   Among them, γ- (meth) acrylooxymethyltrimethoxysilane, γ- (meth) acrylooxymethyltrioxysilane, γ- (meth) acrylooxyethyltrimethoxysilane, γ- (meth) acrylooxy Acrylic or methacrylic silane coupling agents such as ethyltriethoxysilane, γ- (meth) acryloxypropyltrimethoxysilane, and γ- (meth) acryloxypropyltriethoxysilane are fluid and dispersed. Since a modified zirconia fine particle powder excellent in properties and the like can be obtained, it can be suitably used.

また、前記金属元素MがTiの場合、下記式(3)で表される加水分解性の有機チタンニウム化合物であることが好ましい。
n-TiX4-n ・・・・・・・(3)
式(3)中、Rは炭素数1〜20の非置換または置換炭化水素基であって、互いに同一であっても異なっていてもよい。Xは、炭素数1〜4のアルコキシ基、水酸基、ハロゲン、水素であり、nは1〜3の整数を示す。
When the metal element M is Ti, it is preferably a hydrolyzable organotitanium compound represented by the following formula (3).
R n -TiX 4-n (3)
In formula (3), R is an unsubstituted or substituted hydrocarbon group having 1 to 20 carbon atoms, and may be the same or different from each other. X is an alkoxy group having 1 to 4 carbon atoms, a hydroxyl group, halogen, and hydrogen, and n is an integer of 1 to 3.

有機チタニウム化合物としては、チタンジイソプロポキシビスアセチルアセトネート、チタンテトラアセチルアセトネート、チタンジオクチロキシビスオクチレングリコレート、チタンジイソプロポキシビスエチルアセトアセテート、ポリヒドロキシチタンステアレート、チタンイソプロポキシオクチレングリコレート、テトラキス2‐エチルヘキシルオキシチタン、ジイソプロポキシビスアセチルアセトナトチタン、メチルチタニウムトリイソプロポキシド、トリメトキシ(1,2,3,4,5-ペンタメチル-2,4-シクロペンタジエニル)チタニウム、フェニルチタニウムトリイソプロポキシド、チタンアリルアセトアセテートトリイソプロポキサイド、チタンジ−n−ブトキサイド(ビス−2,4−ペンタンジオネート)、チタンジイソプロポキサイドビス(テトラメチルヘプタンジオネート)、チタンジイソプロポキサイドビス(エチルアセトアセテート)、チタンメタクリレートトリイソプロポキサイド、チタンメタクリルオキシエチルアセトアセテートトリイソプロポキサイド、(2−メタクリルオキシエトキシ)トリイソプロポキシチタネート、トリメトキシ(1,2,3,4,5-ペンタメチル-2,4-シクロペンタジエニル)チタニウム等が挙げられる。   Examples of organic titanium compounds include titanium diisopropoxybisacetylacetonate, titanium tetraacetylacetonate, titanium dioctyloxybisoctylene glycolate, titanium diisopropoxybisethylacetoacetate, polyhydroxytitanium stearate, titanium isopropoxyocti Len glycolate, tetrakis 2-ethylhexyloxytitanium, diisopropoxybisacetylacetonatotitanium, methyltitanium triisopropoxide, trimethoxy (1,2,3,4,5-pentamethyl-2,4-cyclopentadienyl) Titanium, phenyl titanium triisopropoxide, titanium allyl acetoacetate triisopropoxide, titanium di-n-butoxide (bis-2,4-pentandionate), titanium diisopropoxide bi (Tetramethylheptanedionate), titanium diisopropoxide bis (ethyl acetoacetate), titanium methacrylate triisopropoxide, titanium methacryloxyethyl acetoacetate triisopropoxide, (2-methacryloxyethoxy) triisopropoxy titanate, And trimethoxy (1,2,3,4,5-pentamethyl-2,4-cyclopentadienyl) titanium.

前記金属元素MがZrの場合、下記式(4)で表される加水分解性の有機ジルコニウム化合物であることが好ましい。
n-ZrX4-n ・・・・・・・(4)
(但し、式中、Rは炭素数1〜20の非置換または置換炭化水素基であって、互いに同一であっても異なっていてもよい。X:炭素数1〜4のアルコキシ基、水酸基、ハロゲン、水素、n:1〜3の整数)
When the metal element M is Zr, it is preferably a hydrolyzable organic zirconium compound represented by the following formula (4).
R n -ZrX 4-n (4)
(In the formula, R is an unsubstituted or substituted hydrocarbon group having 1 to 20 carbon atoms and may be the same or different from each other. X: an alkoxy group having 1 to 4 carbon atoms, a hydroxyl group, Halogen, hydrogen, n: an integer of 1 to 3)

有機ジルコニウム化合物としては、ジルコニウムジメタクリレートジブトキサイド等が挙げられる。
前記金属元素MがAlの場合、下記式(5)で表される加水分解性の有機アルミニウム化合物であることが好ましい。
n-AlX3-n ・・・・・・・(5)
(但し、式中、Rは炭素数1〜20の非置換または置換炭化水素基であって、互いに同一であっても異なっていてもよい。X:炭素数1〜4のアルコキシ基、水酸基、ハロゲン、水素、n:1または2の整数)
Examples of the organic zirconium compound include zirconium dimethacrylate dibutoxide.
When the metal element M is Al, it is preferably a hydrolyzable organoaluminum compound represented by the following formula (5).
R n -AlX 3-n (5)
(In the formula, R is an unsubstituted or substituted hydrocarbon group having 1 to 20 carbon atoms and may be the same or different from each other. X: an alkoxy group having 1 to 4 carbon atoms, a hydroxyl group, Halogen, hydrogen, n: an integer of 1 or 2)

有機アルミニウム化合物としては、アルミニウム(III)ジイソプロポキサイドエチルアセトアセテート、アルミニウム(III)ジ−s−ブトキサイドエチルアセトアセテート、ジメチルイソプロポキシアルミニウム等が挙げられる。   Examples of the organoaluminum compound include aluminum (III) diisopropoxide ethyl acetoacetate, aluminum (III) di-s-butoxide ethyl acetoacetate, dimethyl isopropoxy aluminum and the like.

前記式(1)の金属元素MがSi、Ti、Zr、Alから選ばれる少なくとも1種であることが好ましい。
具体的には、前記した式(2)で表される1〜3官能の有機珪素化合物、式(3)で表される1〜3官能の有機チタニウム化合物、式(4)で表される1〜3官能の有機ジルコニウム化合物および式(5)で表される1〜2官能の有機アルミニウム化合物であることが好ましい。
It is preferable that the metal element M of the formula (1) is at least one selected from Si, Ti, Zr, and Al.
Specifically, a 1-3 functional organosilicon compound represented by the above formula (2), a 1-3 functional organotitanium compound represented by the formula (3), and 1 represented by the formula (4) A trifunctional organozirconium compound and a bifunctional organoaluminum compound represented by the formula (5) are preferable.

上記において、金属元素MとしてSi、Ti、Zr、Alから選択する場合、特に制限は無く、改質金属酸化物粒子の使用目的、化学的特性、物理化学的特性、電気的特性、経済性等によって適宜選択することができる。   In the above, when the metal element M is selected from Si, Ti, Zr, Al, there is no particular limitation, the purpose of use of the modified metal oxide particles, chemical characteristics, physicochemical characteristics, electrical characteristics, economics, etc. Can be appropriately selected.

このような有機金属化合物を使用することで、流動性、分散性に優れた改質金属酸化物微粒子粉末を得ることができる。なお、4官能の有機珪素化合物、有機チタニウム化合物、有機ジルコニウム化合物、3官能の有機アルミニウム化合物では、疎水性官能基が残存しにくく、改質金属酸化物微粒子粉末は強く凝集し、流動性、分散性が得られない場合がある。   By using such an organometallic compound, a modified metal oxide fine particle powder excellent in fluidity and dispersibility can be obtained. In addition, in the tetrafunctional organosilicon compound, the organotitanium compound, the organozirconium compound, and the trifunctional organoaluminum compound, the hydrophobic functional group hardly remains, the modified metal oxide fine particle powder strongly aggregates, and the fluidity and dispersion. Sexuality may not be obtained.

なお、前記工程(a)で分散媒に水のみを用いた場合、あるいは有機溶媒が少ない場合は、本工程(b)で有機金属化合物の有機溶媒溶液として添加してもよい。
工程(b)における有機金属化合物の添加量は金属酸化物微粒子を固形分として100重量部に対し、酸化物換算のRn-MO(m-n)/2)(但し、mは金属元素Mの価数であって3または4、n:0〜2の整数であってm−nが2または3)として1〜300重量部、さらには2〜100重量部の範囲にあることが好ましい。
In addition, when only water is used for the dispersion medium in the step (a), or when the organic solvent is small, it may be added as an organic solvent solution of the organometallic compound in the present step (b).
The amount of the organometallic compound added in the step (b) is 100 parts by weight of the metal oxide fine particles as a solid content, and R n -MO (mn) / 2) in terms of oxide (where m is the value of the metal element M ) The number is an integer of 3 or 4, n: 0 to 2, and mn is 2 or 3), preferably 1 to 300 parts by weight, more preferably 2 to 100 parts by weight.

有機金属化合物の使用量が少ないと、有機金属化合物の種類、金属酸化物微粒子の平均粒子径によっても異なるが、強く凝集した改質金属酸化物微粒子粉末が得られる場合があり、流動性が低く、有機溶媒、有機樹脂等への分散性が低く、分散した場合でも、均一に単分散した分散体が得られない場合がある。有機金属化合物の使用量が多すぎても改質金属酸化物微粒子粉末の流動性、有機溶媒および/または有機樹脂への分散性がさらに向上する効果が得られない場合がある。   If the amount of the organometallic compound used is small, it may vary depending on the type of organometallic compound and the average particle size of the metal oxide fine particles, but a strongly agglomerated modified metal oxide fine particle powder may be obtained, resulting in low fluidity. In addition, the dispersibility in organic solvents, organic resins, etc. is low, and even when dispersed, a uniformly monodispersed dispersion may not be obtained. Even if the amount of the organometallic compound used is too large, the effect of further improving the fluidity of the modified metal oxide fine particle powder and the dispersibility in the organic solvent and / or the organic resin may not be obtained.

このようにして調製した分散液の濃度は固形分として1〜30重量%、さらには2〜25重量%の範囲にあることが好ましい。
分散液の濃度が少ないと、得られる改質金属酸化物微粒子粉末の粒子が微細となり、後述する本願方法による平均粒子径(DMP)の範囲のものが得られない場合があり、流動性が不充分となる場合があり、加えて生産性、経済性が低下することがある。
分散液の濃度が多すぎると、分散液の粘度が高くなり、後述する工程(d)での噴霧乾燥が困難となる場合がある。この場合適宜濃縮したり、希釈すればよい。
The concentration of the dispersion thus prepared is preferably 1 to 30% by weight, more preferably 2 to 25% by weight as the solid content.
If the concentration of the dispersion liquid is small, the resulting modified metal oxide fine particle powder becomes fine, and there is a case where the average particle size (D MP ) in the range of the method of the present invention described later cannot be obtained. In some cases, it may be insufficient, and productivity and economy may decrease.
If the concentration of the dispersion is too high, the viscosity of the dispersion increases, and spray drying in the step (d) described later may be difficult. In this case, it may be concentrated or diluted as appropriate.

工程(c)
本発明では、有機金属化合物を添加後、5〜80℃、さらには5〜60℃で熟成することが好ましい。
Step (c)
In this invention, after adding an organometallic compound, it is preferable to age | cure | ripen at 5-80 degreeC, Furthermore, 5-60 degreeC.

熟成とは、金属酸化物微粒子の表面に有機金属化合物を均一に吸着させ、有機金属化合物の加水分解を生じさせ、粒子の表面に加水分解物を緻密に配列させることを意図するものであり、単に分散液を添加して放置したものとは、吸着量、加水分解、配列の緻密さにおいて相違すると考えている。   The aging is intended to uniformly adsorb the organometallic compound on the surface of the metal oxide fine particles, cause hydrolysis of the organometallic compound, and arrange the hydrolyzate densely on the surface of the particle, It is considered that the amount of adsorption, hydrolysis, and the denseness of the arrangement differ from those obtained by simply adding the dispersion and leaving it to stand.

上記熟成を行わない場合、即ち、有機金属化合物を添加した際の温度が低温で、添加後、短時間の内に噴霧乾燥した場合、有機金属化合物の種類によっても異なるが、有機金属化合物の金属酸化物微粒子への吸着、有機金属化合物の加水分解が不充分となるためか、流動性、有機溶媒および/または有機樹脂への分散性が向上する効果が得られない場合がある。   When the above aging is not performed, that is, when the organometallic compound is added at a low temperature and spray-dried within a short time after the addition, the metal of the organometallic compound varies depending on the type of the organometallic compound. In some cases, adsorption to the oxide fine particles and hydrolysis of the organometallic compound are insufficient, or the effect of improving fluidity, dispersibility in organic solvents and / or organic resins may not be obtained.

熟成温度が低すぎると、有機金属化合物の種類によっても異なるが、有機金属化合物の加水分解が不充分となるためか、有効に金属酸化物微粒子の表面に結合した有機金属化合物が増加せず、流動性、有機溶媒および/または有機樹脂への分散性が向上する効果が得られない場合がある。   If the aging temperature is too low, it varies depending on the type of organometallic compound, but the organometallic compound is not sufficiently hydrolyzed, or the organometallic compound effectively bonded to the surface of the metal oxide fine particles does not increase, In some cases, the effect of improving fluidity, dispersibility in an organic solvent and / or organic resin cannot be obtained.

熟成温度が高すぎると、有機金属化合物同士の加水分解縮重合が先行して起きるためか、有効に金属酸化物微粒子の表面に結合した有機金属化合物が増加せず、一方で金属酸化物微粒子の凝集体が増加し、流動性、有機溶媒および/または有機樹脂への分散性が向上する効果が得られない場合がある。   If the aging temperature is too high, hydrolytic condensation polymerization between the organometallic compounds may occur in advance, or the organometallic compound bound to the surface of the metal oxide fine particles does not increase effectively. Aggregates increase, and the effect of improving fluidity, dispersibility in organic solvents and / or organic resins may not be obtained.

熟成時間は、有機金属化合物の種類、熟成温度等によっても異なるが、概ね0.1〜72時間、好ましくは0.5〜48時間である。
また、熟成時に加水分解用触媒を添加することもできる。加水分解用触媒としては、アンモニア、有機アミン、アルカリ金属水酸化物等が挙げられる。なかでも、アンモニアは得られる改質金属酸化物微粒子粉末に残存しにくく、流動性、有機溶媒および/または有機樹脂への分散性を阻害することがないので好ましい。
The aging time varies depending on the kind of the organometallic compound, the aging temperature, etc., but is generally 0.1 to 72 hours, preferably 0.5 to 48 hours.
Further, a hydrolysis catalyst can be added at the time of aging. Examples of the hydrolysis catalyst include ammonia, organic amines, alkali metal hydroxides, and the like. Among these, ammonia is preferable because it does not easily remain in the resulting modified metal oxide fine particle powder and does not hinder fluidity, dispersibility in organic solvents and / or organic resins.

このような、加水分解用触媒の使用は、難加水分解性有機金属化合物を用いる場合に有効である。
加水分解用触媒の使用量は、加水分解促進効果が得られれば特に制限はなく、有機金属化合物の種類、前記熟成温度によっても異なるが、有機金属化合物1モルあたり、0.001〜0.3モルである。
Use of such a catalyst for hydrolysis is effective when a hardly hydrolyzable organometallic compound is used.
The amount of the catalyst for hydrolysis is not particularly limited as long as a hydrolysis promoting effect is obtained, and varies depending on the kind of the organometallic compound and the aging temperature, but 0.001 to 0.3 per 1 mol of the organometallic compound. Is a mole.

工程(d)
熟成後の分散液を噴霧乾燥して改質金属酸化物微粒子粉末とする。
噴霧乾燥方法としては、特に制限は無く、例えば、回転ディスク法、加圧ノズル法、2流体ノズル法等従来公知の方法を採用することができる。
噴霧乾燥の入り口温度は70〜400℃、さらには80〜300℃の範囲にあることが好ましい。
Step (d)
The dispersion after aging is spray-dried to obtain modified metal oxide fine particle powder.
There is no restriction | limiting in particular as a spray-drying method, For example, conventionally well-known methods, such as a rotating disk method, a pressurized nozzle method, and a 2 fluid nozzle method, are employable.
The inlet temperature for spray drying is preferably in the range of 70 to 400 ° C, more preferably 80 to 300 ° C.

入り口温度が70℃未満の場合は、乾燥が不充分となり、略球状の流動性に優れた改質金属酸化物微粒子粉末が得られない場合があり、また、残存水分の影響のためか、有機溶媒、有機樹脂への分散性が不充分となる場合がある。   If the inlet temperature is less than 70 ° C., drying may be insufficient, and a modified metal oxide fine particle powder excellent in substantially spherical fluidity may not be obtained. Dispersibility in solvents and organic resins may be insufficient.

入り口温度が400℃を超えると、金属酸化物微粒子同士の凝集が強くなるためか有機溶媒、有機樹脂への分散性が不充分となる場合がある。
このとき、噴霧乾燥の出口温度は50〜300℃、さらには70〜250℃の範囲にあることが好ましい。
When the inlet temperature exceeds 400 ° C., the dispersibility in the organic solvent or the organic resin may be insufficient because the aggregation of the metal oxide fine particles becomes strong.
At this time, the outlet temperature of spray drying is preferably in the range of 50 to 300 ° C, more preferably 70 to 250 ° C.

このようにして得られる改質金属酸化物微粒子粉末は、有機金属化合物で表面処理された改質金属酸化物の一次粒子、二次粒子が比較的弱く凝集した二次粒子が略球状に集合した粒子である。   In the modified metal oxide fine particle powder thus obtained, the primary particles of the modified metal oxide surface-treated with the organometallic compound and the secondary particles in which the secondary particles are relatively weakly aggregated are aggregated in a substantially spherical shape. Particles.

改質金属酸化物微粒子粉末の集合粒子の平均粒子径(DMP)は1〜200μm、好ましくは2〜150μmの範囲にある。
平均粒子径(DMP)は噴霧乾燥方法、分散液濃度、乾燥条件等によって概ね決まり、前記範囲にあれば、後述する流動性(低安息角)に優れ、有機溶媒および/または有機樹脂への分散性に優れている。
The average particle diameter (D MP ) of the aggregated particles of the modified metal oxide fine particle powder is in the range of 1 to 200 μm, preferably 2 to 150 μm.
The average particle size (D MP ) is generally determined by the spray drying method, the dispersion concentration, the drying conditions, and the like. If the average particle size is within the above range, the fluidity (low angle of repose) described later is excellent, and the organic solvent and / or organic resin Excellent dispersibility.

改質金属酸化物微粒子粉末(集合体粒子)の平均粒子径(DMP)は、光学顕微鏡にて写真観察を行い、集合体である改質金属酸化物微粒子粉末50個について粒子径を測定し、その平均値とした。 The average particle diameter (D MP ) of the modified metal oxide fine particle powder (aggregate particles) is observed with a photograph using an optical microscope, and the particle diameter of 50 modified metal oxide fine particle powders that are aggregates is measured. The average value was used.

改質金属酸化物微粒子粉末の集合粒子を構成する一次粒子の平均一次粒子径(DM1)(TEM法)は、5〜500nm、さらには7〜400nmの範囲にあることが好ましい。
また、改質金属酸化物微粒子粉末の集合粒子を構成する二次粒子の平均二次粒子径(DM2)(レーザー法)も5〜500nm、さらには7〜400の範囲にあることが好ましい。
The average primary particle diameter (D M1 ) (TEM method) of the primary particles constituting the aggregated particles of the modified metal oxide fine particle powder is preferably in the range of 5 to 500 nm, more preferably 7 to 400 nm.
The average secondary particle diameter (D M2 ) (laser method) of the secondary particles constituting the aggregated particles of the modified metal oxide fine particle powder is also preferably in the range of 5 to 500 nm, more preferably 7 to 400.

平均一次粒子径(DM1)および平均二次粒子径(DM2)がこの範囲であれば、得られる改質金属酸化物微粒子粉末は流動性に優れ、有機溶媒あるいは有機樹脂へ均一に単分散し、安定性に優れた分散体とすることができ、このような分散体を用いて透明被膜を形成すると透明性、ヘーズ、膜の強度、耐擦傷性等に優れた透明被膜を形成することができる。 If the average primary particle size (D M1 ) and average secondary particle size (D M2 ) are within this range, the resulting modified metal oxide fine particle powder has excellent fluidity and is monodispersed uniformly in an organic solvent or an organic resin. In addition, a dispersion having excellent stability can be obtained. When a transparent film is formed using such a dispersion, a transparent film having excellent transparency, haze, film strength, scratch resistance, and the like can be formed. Can do.

また、平均二次粒子径(DM2)と平均一次粒子径(DM1)との比(DM2)/(DM1)が1〜10、さらには1〜7の範囲にあることが好ましい。
本発明におけるレーザー法による平均二次粒子径(DM2)は、分散媒としてメタノールを使用し、固形分濃度30重量%に調整し、超音波分散したものを、動的光散乱法で評価する。またTEM法による平均一次粒子径(DM1)は、レーザー法での測定用に調製した固形分濃度30重量%のメタノール分散液を塗布し、乾燥して撮ったTEM写真中の100個の粒子について粒子径を測定し、その平均値を求める。 メタノール分散液で評価すると、本発明の改質金属酸化物微粒子粉末の分散性がいいため分散し、平均粒子径、分散性を再現性よく評価できる。なお、他の有機溶媒を用いた場合でも大きな差がない。ただし、表面処理後に水分散液で評価すると、分散性が低く、凝集するために、平均粒子径を測定することができず、TEM観察で測定する一次粒子径と大きく乖離した結果となることがある。
Further, the ratio (D M2 ) / (D M1 ) of the average secondary particle size (D M2 ) to the average primary particle size (D M1 ) is preferably in the range of 1 to 10, more preferably 1 to 7.
The average secondary particle diameter (D M2 ) obtained by the laser method in the present invention is adjusted with a solid content concentration of 30% by weight using methanol as a dispersion medium and evaluated by a dynamic light scattering method after ultrasonic dispersion. . The average primary particle size (D M1 ) measured by the TEM method is 100 particles in a TEM photograph taken by applying a methanol dispersion with a solid content of 30% by weight prepared for measurement by the laser method and drying. The particle diameter is measured and the average value is obtained. When evaluated with a methanol dispersion, since the dispersibility of the modified metal oxide fine particle powder of the present invention is good, it can be dispersed and the average particle diameter and dispersibility can be evaluated with good reproducibility. Note that there is no significant difference even when other organic solvents are used. However, when evaluated with an aqueous dispersion after the surface treatment, the dispersibility is low and aggregation occurs, so that the average particle size cannot be measured, resulting in a result that is significantly different from the primary particle size measured by TEM observation. is there.

このような比(DM2)/(DM1)の範囲にあると、一次粒子の二次粒子への凝集度合いが低く、改質金属酸化物微粒子粉末が、容易に分散して、一次粒子単独ないし、それに近い状態の二次粒子で分散できる。また、有機溶媒および/または有機樹脂への分散性が高く、易分散性であることを示す。 When the ratio is within the range (D M2 ) / (D M1 ), the degree of agglomeration of the primary particles into the secondary particles is low, and the modified metal oxide fine particle powder is easily dispersed and the primary particles alone Alternatively, it can be dispersed with secondary particles in a state close to that. Moreover, the dispersibility to an organic solvent and / or organic resin is high, and it shows easy dispersibility.

前記比(DM2)/(DM1)が大きすぎると、二次粒子が集合した改質金属酸化物微粒子の凝集度合いが高いことを示し、有機溶媒および/または有機樹脂への分散性が不充分となる場合があり、分散体は透明性が低く、分散安定性が不充分となる場合がある。(DM2)/(DM1)が1未満となることは通常ない。前記比(DM2)/(DM1)が1の場合、一次粒子と二次粒子が同じであり、二次粒子に凝集していないことを示す。 When the ratio (D M2 ) / (D M1 ) is too large, it indicates that the degree of aggregation of the modified metal oxide fine particles in which the secondary particles are aggregated is high, and the dispersibility in the organic solvent and / or the organic resin is not good. In some cases, the dispersion is low in transparency, and dispersion stability may be insufficient. (D M2 ) / (D M1 ) is usually not less than 1. When the ratio (D M2 ) / (D M1 ) is 1, it indicates that the primary particles and the secondary particles are the same and are not aggregated into the secondary particles.

改質金属酸化物微粒子の表面処理に用いた有機金属化合物の金属MがSiの場合、得られる改質金属酸化物微粒子の29Si MAS NMRスペクトルの主ピークがブロードになるが、このときの主ピークの半値幅が3〜15ppmにあり、さらには3.5〜12ppmの範囲にあることが好ましい。 When the metal M of the organometallic compound used for the surface treatment of the modified metal oxide fine particles is Si, the main peak of the 29 Si MAS NMR spectrum of the resulting modified metal oxide fine particles becomes broad. The half width of the peak is in the range of 3 to 15 ppm, and more preferably in the range of 3.5 to 12 ppm.

有機珪素化合物で表面処理した改質金属酸化物微粒子粉末の29Si MAS NMRスペクトルには、通常、有機珪素化合物のSiに由来するケミカルシフト値の異なる2本以上のピークが測定されるが、主ピークとは、ピーク高さが最も高いピークを意味している。なお、条件によっては1本のピークが測定される場合がある。 The 29 Si MAS NMR spectrum of the modified metal oxide fine particle powder surface-treated with an organosilicon compound usually has two or more peaks with different chemical shift values derived from Si of the organosilicon compound. The peak means a peak having the highest peak height. Depending on the conditions, one peak may be measured.

主ピークにおける半値幅が前記下限未満の場合は、有機金属化合物同士の重合が進行していない状態にあり、金属酸化物微粒子表面との相互作用が十分得られないためか、得られる粉末が強く凝集し、有機溶媒および/または有機樹脂への分散性が不充分となる場合がある。   When the half-width at the main peak is less than the lower limit, the polymerization between the organometallic compounds is not progressing and the interaction with the metal oxide fine particle surface is not sufficiently obtained, or the obtained powder is strong. Aggregation may result in insufficient dispersibility in organic solvents and / or organic resins.

本発明の改質金属酸化物微粒子では有機珪素化合物の珪素原子が互いに粒子表面で、29Si MAS NMRスペクトル 幅を広くする、すなわち珪素原子の核スピンに影響する程度に近接ないし結合して密に存在するのに対し、従来の表面処理方法で得られる表面処理金属酸化物微粒子では有機珪素化合物の粒子表面で相互作用が比較的小さいものと推察される。 In the modified metal oxide fine particles of the present invention, the silicon atoms of the organosilicon compound are close to each other on the surface of the particle, and the 29 Si MAS NMR spectrum is widened, that is, close to or bonded to the extent that affects the nuclear spin of the silicon atoms. In contrast, the surface-treated metal oxide fine particles obtained by the conventional surface treatment method are presumed to have a relatively small interaction on the surface of the organosilicon compound particles.

本発明で得られる改質金属酸化物微粒子粉末は、安息角が40°以下、好ましくは30°以下である。
なお従来より提案されていた表面処理金属酸化物微粒子では、処理後に粉体化すると凝集し、分散性が悪く、このため、安息角(流動性)などの評価ができなかった。
The modified metal oxide fine particle powder obtained in the present invention has an angle of repose of 40 ° or less, preferably 30 ° or less.
In addition, conventionally proposed surface-treated metal oxide fine particles aggregate when powdered after treatment and have poor dispersibility, and therefore, the angle of repose (fluidity) and the like could not be evaluated.

本発明で得られる改質金属酸化物微粒子粉末の安息角は改質金属酸化物微粒子粉末の平均粒子径によっても異なるものの、改質金属酸化物微粒子粉末の平均粒子径(DMP)が小さいほど安息角は高くなり、平均粒子径が大きいほど安息角は低くなる傾向があるが、40°以下、30°以下、さらには20°以下であることが好ましい。このような安息角を有する本発明の改質金属酸化物微粒子粉末は、流動性が高く、粘性分散体との混合性、分散性も高いので、均一な分散体が得られる。改質金属酸化物微粒子粉末の安息角が高いものは流動性が低く、樹脂等粘性分散体との混合性、分散性が低く、均一な分散体が得られない場合がある。また、改質金属酸化物微粒子が強く凝集しているものは、安息角が高く有機溶媒および/または有機樹脂へ分散させた場合に、凝集した改質金属酸化物微粒子が残存し、均一に単分散しない場合がある。 Although the angle of repose of the modified metal oxide fine particle powder obtained in the present invention varies depending on the average particle size of the modified metal oxide fine particle powder, the smaller the average particle size (D MP ) of the modified metal oxide fine particle powder is, The angle of repose increases and the angle of repose tends to decrease as the average particle size increases, but it is preferably 40 ° or less, 30 ° or less, and more preferably 20 ° or less. The modified metal oxide fine particle powder of the present invention having such an angle of repose has high fluidity and high mixing and dispersibility with a viscous dispersion, and thus a uniform dispersion can be obtained. A modified metal oxide fine particle powder having a high angle of repose has low fluidity, low miscibility and dispersibility with a viscous dispersion such as a resin, and a uniform dispersion may not be obtained. In addition, those in which the modified metal oxide fine particles are strongly aggregated have a high angle of repose, and when dispersed in an organic solvent and / or organic resin, the aggregated modified metal oxide fine particles remain and are uniformly single. May not be dispersed.

本発明では、安息角は、ガラス製透明サンプル瓶(円筒状、内容積30cc)に改質金属微粒子粉末約10ccを充填し、水平板面上を低速で約10回転させた後、粉末の上面の角度を分度器で測定して求めることができる。   In the present invention, the angle of repose is determined by filling a glass transparent sample bottle (cylindrical, internal volume 30 cc) with about 10 cc of the modified metal fine particle powder, rotating the horizontal plate surface at a low speed for about 10 revolutions, and then the upper surface of the powder. The angle can be determined by measuring with a protractor.

[改質金属酸化物微粒子粉末]
本発明に係る改質金属酸化物微粒子粉末は、前記製造方法で得られ、前記式(1)で表される有機金属化合物で表面処理された金属酸化物微粒子の集合体からなる粉末である。
[Modified metal oxide fine particle powder]
The modified metal oxide fine particle powder according to the present invention is a powder comprising an aggregate of metal oxide fine particles obtained by the production method and surface-treated with the organometallic compound represented by the formula (1).

改質金属酸化物微粒子粉末は、前記噴霧乾燥によって得られた有機金属化合物で表面処理された改質金属酸化物微粒子(一次粒子)が比較的弱く凝集した二次粒子を形成し、さらに一次粒子および/または二次粒子が互いに付着して略球状に集合した粒子からなる。   The modified metal oxide fine particle powder forms secondary particles in which the modified metal oxide fine particles (primary particles) surface-treated with the organometallic compound obtained by spray drying are relatively weakly aggregated, and further primary particles. And / or secondary particles that are attached to each other and aggregate in a substantially spherical shape.

改質金属酸化物微粒子粉末の平均粒子径(DMP)は1〜200μm、好ましくは2〜150μmの範囲にある。
(DMP)の測定は、光学顕微鏡にて写真観察を行い、改質金属酸化物微粒子粉末50個について粒子径を測定し、その平均値とした。
The average particle diameter (D MP ) of the modified metal oxide fine particle powder is in the range of 1 to 200 μm, preferably 2 to 150 μm.
(D MP ) was measured by observing a photograph with an optical microscope, measuring the particle diameter of 50 modified metal oxide fine particle powders, and setting the average value.

平均粒子径(DMP)が小さいものは噴霧乾燥によって得ることが難しく、得られたとしても流動性(低安息角)が不充分となる場合があり、大きすぎると、得ることが難しく、得られたとしても球状となりにくく、また、粒子が割れて流動性が得られない場合がある。 Those having a small average particle size (D MP ) are difficult to obtain by spray drying, and even if obtained, fluidity (low angle of repose) may be insufficient. Even if it is applied, it is difficult to form a spherical shape, and there are cases where particles are broken and fluidity cannot be obtained.

なおこの範囲で(DMP)の調整は、噴霧乾燥用分散液の濃度を所定濃度(1〜30重量%)に調整することで行われる。
改質金属酸化物微粒子粉末の集合粒子を構成する一次粒子の平均一次粒子径(DM1)(TEM法)は、5〜500nm、さらには7〜400nmの範囲にあることが好ましい。
In this range, (D MP ) is adjusted by adjusting the concentration of the dispersion for spray drying to a predetermined concentration (1 to 30% by weight).
The average primary particle diameter (D M1 ) (TEM method) of the primary particles constituting the aggregated particles of the modified metal oxide fine particle powder is preferably in the range of 5 to 500 nm, more preferably 7 to 400 nm.

また、改質金属酸化物微粒子粉末の集合粒子を構成する二次粒子の平均二次粒子径(DM2)(レーザー法)も5〜500nm、さらには7〜400の範囲にあることが好ましい。 The average secondary particle diameter (D M2 ) (laser method) of the secondary particles constituting the aggregated particles of the modified metal oxide fine particle powder is also preferably in the range of 5 to 500 nm, more preferably 7 to 400.

平均一次粒子径(DM1)および平均二次粒子径(DM2)がこの範囲であれば、得られる改質金属酸化物微粒子粉末は流動性に優れ、有機溶媒あるいは有機樹脂へ均一に単分散し、安定性に優れた分散体とすることができ、このような分散体を用いて透明被膜を形成すると透明性、ヘーズ、膜の強度、耐擦傷性等に優れた透明被膜を形成することができる。 If the average primary particle size (D M1 ) and average secondary particle size (D M2 ) are within this range, the resulting modified metal oxide fine particle powder has excellent fluidity and is monodispersed uniformly in an organic solvent or an organic resin. In addition, a dispersion having excellent stability can be obtained. When a transparent film is formed using such a dispersion, a transparent film having excellent transparency, haze, film strength, scratch resistance, and the like can be formed. Can do.

また、平均二次粒子径(DM2)と平均一次粒子径(DM1)との比(DM2)/(DM1)が1〜10、さらには1〜7の範囲にあることが好ましい。
このような比(DM2)/(DM1)の範囲にあると改質金属酸化物微粒子粉末の凝集度合いが低く、有機溶媒および/または有機樹脂への分散性が高く、易分散性である。
Further, the ratio (D M2 ) / (D M1 ) of the average secondary particle size (D M2 ) to the average primary particle size (D M1 ) is preferably in the range of 1 to 10, more preferably 1 to 7.
When the ratio is within the range (D M2 ) / (D M1 ), the degree of aggregation of the modified metal oxide fine particle powder is low, the dispersibility in the organic solvent and / or the organic resin is high, and the dispersibility is easy. .

前記比(DM2)/(DM1)が大きすぎると、改質金属酸化物微粒子粉末の凝集度合いが高いことを示し、有機溶媒および/または有機樹脂への分散性が不充分となる場合があり、分散体は透明性が低く、分散安定性が不充分となる場合がある。 If the ratio (D M2 ) / (D M1 ) is too large, it indicates that the degree of aggregation of the modified metal oxide fine particle powder is high, and the dispersibility in an organic solvent and / or organic resin may be insufficient. In addition, the dispersion has low transparency, and dispersion stability may be insufficient.

つぎに、本発明では、表面処理に使用した有機金属化合物の金属MがSiの場合、得られる改質金属酸化物微粒子の29Si MAS NMRスペクトルの主ピークがブロードになるが、このときの主ピークの半値幅が3〜15ppmにあり、さらには3.5〜12ppmの範囲にあることが好ましい。 Next, in the present invention, when the metal M of the organometallic compound used for the surface treatment is Si, the main peak of the 29 Si MAS NMR spectrum of the resulting modified metal oxide fine particles becomes broad. The half width of the peak is in the range of 3 to 15 ppm, and more preferably in the range of 3.5 to 12 ppm.

有機珪素化合物で表面処理した改質金属酸化物微粒子粉末の29Si MAS NMRスペクトルには、通常、有機珪素化合物のSiに由来するケミカルシフト値の異なる2本以上のピークが測定されるが、主ピークとは、ピーク高さが最も高いピークを意味している。なお、条件によっては1本のピークが測定される場合がある。 The 29 Si MAS NMR spectrum of the modified metal oxide fine particle powder surface-treated with an organosilicon compound usually has two or more peaks with different chemical shift values derived from Si of the organosilicon compound. The peak means a peak having the highest peak height. Depending on the conditions, one peak may be measured.

主ピークにおける半値幅が前記下限未満の場合は、ピークがシャープとなる。このような改質金属酸化物微粒子は、通常、触媒存在下に、有機珪素化合物(シランカップリング剤)を加水分解して改質した金属酸化物微粒子に近い表面状態であり、得られる粉末が凝集していたり、粉末の安息角が高く流動性が不充分であり、また、有機溶媒および/または有機樹脂への分散性が不充分となる場合がある。   When the half width at the main peak is less than the lower limit, the peak becomes sharp. Such modified metal oxide fine particles are usually in a surface state close to metal oxide fine particles modified by hydrolyzing an organosilicon compound (silane coupling agent) in the presence of a catalyst, and the resulting powder is In some cases, the powder is agglomerated, the angle of repose of the powder is high, the fluidity is insufficient, and the dispersibility in an organic solvent and / or organic resin is insufficient.

本発明の改質金属酸化物微粒子では有機珪素化合物の珪素原子が互いに粒子表面で、29Si MAS NMRスペクトル 幅を広くする、すなわち珪素原子の核スピンに影響する程度に近接ないし結合して密に存在するのに対し、従来の表面処理方法で得られる表面処理金属酸化物微粒子粉末では有機珪素化合物の粒子表面で相互作用が比較的小さいものと推察される。 In the modified metal oxide fine particles of the present invention, the silicon atoms of the organosilicon compound are close to each other on the surface of the particle, and the 29 Si MAS NMR spectrum is widened, that is, close to or bonded to the extent that affects the nuclear spin of the silicon atoms. In contrast, the surface-treated metal oxide fine particle powder obtained by the conventional surface treatment method is presumed to have a relatively small interaction on the particle surface of the organosilicon compound.

本発明に係る改質金属酸化物微粒子粉末は、安息角が40°以下、好ましくは30°以下である。
なお、従来提案されていた表面処理金属酸化物微粒子では、処理後に粉体化すると凝集し、分散性が悪く、このため、安息角(流動性)などの評価ができなかった。
The modified metal oxide fine particle powder according to the present invention has an angle of repose of 40 ° or less, preferably 30 ° or less.
In addition, the conventionally proposed surface-treated metal oxide fine particles aggregate when powdered after the treatment and have poor dispersibility. Therefore, the angle of repose (fluidity) could not be evaluated.

本発明で得られる改質金属酸化物微粒子粉末の安息角は当該粉末の平均粒子径によっても異なるものの、粉末の平均粒子径が小さいほど安息角は高くなり、平均粒子径が大きいほど安息角は低くなる傾向があるが、30°以下、さらには20°以下であることが好ましい。このような安息角を有する本発明の改質金属酸化物微粒子粉末は、流動性が高く、粘性分散体との混合性、分散性も高いので、均一な分散体が得られる。改質金属酸化物微粒子粉末の安息角が高いものは流動性が低く、樹脂等粘性分散体との混合性、分散性が低く、均一な分散体が得られない場合がある。また、改質金属酸化物微粒子が強く凝集しているものは、安息角が高く有機溶媒および/または有機樹脂へ分散させた場合に、凝集した改質金属酸化物微粒子が残存し、均一に単分散しない場合がある。   Although the angle of repose of the modified metal oxide fine particle powder obtained in the present invention varies depending on the average particle size of the powder, the angle of repose increases as the average particle size of the powder decreases, and the angle of repose increases as the average particle size increases. Although it tends to be low, it is preferably 30 ° or less, more preferably 20 ° or less. The modified metal oxide fine particle powder of the present invention having such an angle of repose has high fluidity and high mixing and dispersibility with a viscous dispersion, and thus a uniform dispersion can be obtained. A modified metal oxide fine particle powder having a high angle of repose has low fluidity, low miscibility and dispersibility with a viscous dispersion such as a resin, and a uniform dispersion may not be obtained. In addition, those in which the modified metal oxide fine particles are strongly aggregated have a high angle of repose, and when dispersed in an organic solvent and / or organic resin, the aggregated modified metal oxide fine particles remain and are uniformly single. May not be dispersed.

前記金属酸化物微粒子の平均粒子径(DM)と改質金属酸化物微粒子の平均二次粒子径(DM2)との比(DM2)/(DM)は0.2〜5、さらにはさらには0.5〜3の範囲にあることが好ましい。 The ratio (D M2 ) / (D M ) between the average particle size (D M ) of the metal oxide fine particles and the average secondary particle size (D M2 ) of the modified metal oxide fine particles is 0.2-5, Is more preferably in the range of 0.5-3.

前記比(DM2)/(DM)が大きすぎると改質金属酸化物微粒子の凝集度合いが高いことを示し、有機溶媒および/または有機樹脂への分散性が不充分となる場合があり、分散体は透明性が低く、分散安定性が不充分となる場合がある。改質前の粒子は凝集していることもあり、改質によって、凝集がほぐされることもあるので、(DM2)/(DM)が1未満となることがある。なお、(DM2)/(DM)が低すぎると、これは原料粒子が過度に凝集していることを意味し、改質が不均一になるためか、有機溶媒、有機樹脂等への分散性が不充分となる場合がある。 If the ratio (D M2 ) / (D M ) is too large, it indicates that the degree of aggregation of the modified metal oxide fine particles is high, and dispersibility in an organic solvent and / or an organic resin may be insufficient. The dispersion has low transparency, and dispersion stability may be insufficient. Since the particles before modification may be aggregated, and aggregation may be loosened by modification, (D M2 ) / (D M ) may be less than 1. If (D M2 ) / (D M ) is too low, this means that the raw material particles are excessively aggregated, and the modification is not uniform. Dispersibility may be insufficient.

[改質金属酸化物微粒子分散体]
本発明に係る改質金属酸化物微粒子粉末は、易分散性を有する。このため、有機溶媒および/または有機樹脂に容易に分散し、しかも、分散液は安定である。
[Modified metal oxide fine particle dispersion]
The modified metal oxide fine particle powder according to the present invention has easy dispersibility. For this reason, it is easily dispersed in an organic solvent and / or an organic resin, and the dispersion is stable.

有機溶媒
有機溶媒としては、従来公知の有機溶媒を用いることができる。具体的には、メタノール、エタノール、プロパノール、2-プロパノール(IPA)、ブタノール、ジアセトンアルコール、フルフリルアルコール、テトラヒドロフルフリルアルコール、エチレングリコール、ヘキシレングリコール、イソプロピルグリコールなどのアルコール類;酢酸メチルエステル、酢酸エチルエステル、酢酸ブチルなどのエステル類;ジエチルエーテル、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテルなどのエーテル類;アセトン、メチルエチルケトン、メチルイソブチルケトン、アセチルアセトン、アセト酢酸エステルなどのケトン類、メチルセロソルブ、エチルセロソルブ、ブチルセロソルブ、トルエン、シクロヘキサノン、イソホロン等およびこれらの混合溶媒が挙げられる。
As the organic solvent , a conventionally known organic solvent can be used. Specifically, alcohols such as methanol, ethanol, propanol, 2-propanol (IPA), butanol, diacetone alcohol, furfuryl alcohol, tetrahydrofurfuryl alcohol, ethylene glycol, hexylene glycol, isopropyl glycol; methyl acetate , Esters such as ethyl acetate, butyl acetate; ethers such as diethyl ether, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, propylene glycol monomethyl ether; acetone , Methyl ethyl ketone, methyl isobutyl ketone, acetyl acetone, aceto vinegar Ketones such as esters, methyl cellosolve, ethyl cellosolve, butyl cellosolve, toluene, cyclohexanone, isophorone and the like and mixed solvents thereof.

有機樹脂
有機樹脂としては、従来公知の有機樹脂を用いることができる。具体的には、塗料用樹脂等として公知の熱硬化性樹脂、熱可塑性樹脂、UV硬化性樹脂、電子線硬化樹脂等が挙げられる。このような樹脂として、たとえば、従来から用いられているポリエステル樹脂、ポリカーボネート樹脂、ポリアミド樹脂、ポリフェニレンオキサイド樹脂、熱可塑性アクリル樹脂、塩化ビニル樹脂、フッ素樹脂、酢酸ビニル樹脂、シリコーンゴムなどの熱可塑性樹脂、ウレタン樹脂、メラミン樹脂、ケイ素樹脂、ブチラール樹脂、反応性シリコーン樹脂、フェノール樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、熱硬化性アクリレート樹脂などの熱硬化性樹脂、(メタ)アクリレート系樹脂などの紫外線硬化型樹脂などが挙げられる。
As the organic resin , a conventionally known organic resin can be used. Specific examples include known thermosetting resins, thermoplastic resins, UV curable resins, electron beam curable resins, and the like as coating resins. Examples of such resins include conventionally used thermoplastic resins such as polyester resins, polycarbonate resins, polyamide resins, polyphenylene oxide resins, thermoplastic acrylic resins, vinyl chloride resins, fluororesins, vinyl acetate resins, and silicone rubbers. , Urethane resin, melamine resin, silicon resin, butyral resin, reactive silicone resin, phenolic resin, epoxy resin, unsaturated polyester resin, thermosetting resin such as thermosetting acrylate resin, UV light such as (meth) acrylate resin Examples thereof include curable resins.

このとき、(メタ)アクリレート系樹脂としてはペンタエリスリトールヘキサアクリレート、ペンタエリスリトールテトラアクリレート、ペンタエリスリトールトリアクリレート、トリメチロールプロパントリアクリレート、テトラメチロールメタントリアクリレート、テトラメチロールメタンテトラアクリレート、トリメチロールプロパントリメタクリレート、メトキシトリエチレングリコールジメタクリレート、ブトキシジエチレングリコールメタクリレート、ジトリメチロールプロパンテトラアクリレート、テトラメチロールメタントリアクリレート、テトラメチロールメタンテトラアクリレート、トリメチロールプロパントリメタクリレート、メトキシトリエチレングリコールジメタクリレート、1,6−ヘキサンジオールジメタクリレート、エチレングルコールジグリシジルエーテルアクリレート、ポリエチレングルコールジグリシジルエーテルアクリレート、ジプロピレングリコールジグリシジルエーテルアクリレート、ポリプロピレングリコールジグリシジルエーテルアクリレート、1,6−ヘキサンジオールジグリシジルエーテルアクリレート、2-エチルヘキシルグリシジルエーテルアクリレート、ペンタエリスリトールポリグリシジルエーテルアクリレート、ネオペンチルグリコールジグリシジルエーテルアクリレート、エトキシ化ビスフェノールAジアクリレート、エトキシ化ビスフェノールAメタクリレート、エトキシ化シクロヘキサンジメタノールジ(メタ)アクリレート、プロポキシ化ビスフェノールAジアクリレート、プロポキシ化エトキシ化ビスフェノールAジアクリレート、プロポキシ化ビスフェノールAジグリシジルエーテルアクリレート、O-フタル酸ジグリシジルエーテルアクリレート、シクロヘキサンジメタノールジグリシジルエーテルアクリレート、p−t−ブチルフェニルグリシジルエーテルアクリレート、9.9-ビス4−2−アクリロイルオキシエトキシフェニルフレオレン、ビスフェノールAジグリシジルエーテル(メタ)アクリル酸付加物、O-フェニルフェノールグリシジルエーテルアクリレート、2−ヒドロキシ−3−フェノキシプロピルアクリレート、ビスフェノールA型エポキシアクリレート、フェノールノボラック型エポキシアクリレート、クレゾールノボラック型エポキシアクリレート、カルボン酸無水物変成エポキシアクリレート等およびこれらの混合物が挙げられる。さらにはこれら樹脂の2種以上の共重合体や変性体であってもよい。   At this time, as the (meth) acrylate resin, pentaerythritol hexaacrylate, pentaerythritol tetraacrylate, pentaerythritol triacrylate, trimethylolpropane triacrylate, tetramethylolmethane triacrylate, tetramethylolmethane tetraacrylate, trimethylolpropane trimethacrylate, Methoxytriethylene glycol dimethacrylate, butoxydiethylene glycol methacrylate, ditrimethylolpropane tetraacrylate, tetramethylolmethane triacrylate, tetramethylolmethane tetraacrylate, trimethylolpropane trimethacrylate, methoxytriethylene glycol dimethacrylate, 1,6-hexanediol dimethacrylate Rate, ethylene glycol diglycidyl ether acrylate, polyethylene glycol diglycidyl ether acrylate, dipropylene glycol diglycidyl ether acrylate, polypropylene glycol diglycidyl ether acrylate, 1,6-hexanediol diglycidyl ether acrylate, 2-ethylhexyl glycidyl ether acrylate , Pentaerythritol polyglycidyl ether acrylate, neopentyl glycol diglycidyl ether acrylate, ethoxylated bisphenol A diacrylate, ethoxylated bisphenol A methacrylate, ethoxylated cyclohexanedimethanol di (meth) acrylate, propoxylated bisphenol A diacrylate, propoxylated ethoxy Bisuf Nord A diacrylate, propoxylated bisphenol A diglycidyl ether acrylate, O-phthalic acid diglycidyl ether acrylate, cyclohexanedimethanol diglycidyl ether acrylate, pt-butylphenyl glycidyl ether acrylate, 9.9-bis4-2 Acryloyloxyethoxyphenyl fluorene, bisphenol A diglycidyl ether (meth) acrylic acid adduct, O-phenylphenol glycidyl ether acrylate, 2-hydroxy-3-phenoxypropyl acrylate, bisphenol A type epoxy acrylate, phenol novolac type epoxy acrylate, Cresol novolac type epoxy acrylate, carboxylic anhydride modified epoxy acrylate, etc., and mixtures thereof And the like. Further, it may be a copolymer or modified body of two or more of these resins.

また、紫外線硬化型樹脂の場合、光重合開始剤が含まれていてもよく、熱硬化性樹脂の場合、硬化触媒が含まれていてもよい。
本発明に係る改質金属酸化物微粒子分散体(ゾル)は、前記した改質金属酸化物微粒子粉末を有機溶媒および/または有機樹脂に分散させることで調製される。
In the case of an ultraviolet curable resin, a photopolymerization initiator may be included, and in the case of a thermosetting resin, a curing catalyst may be included.
The modified metal oxide fine particle dispersion (sol) according to the present invention is prepared by dispersing the modified metal oxide fine particle powder in an organic solvent and / or an organic resin.

分散させる方法としては、特に制限はなく、有機溶媒および/または有機樹脂に混合して撹拌するか、撹拌しながら混合すればよい。また、分散媒の種類あるいは得られる分散体の濃度によっても異なるが、必要に応じて超音波を照射する等分散を促進する手段を講じることもできる。   There is no restriction | limiting in particular as a method to disperse | distribute, What is necessary is just to mix with an organic solvent and / or organic resin, and to stir, or to mix with stirring. Further, although it depends on the kind of the dispersion medium or the concentration of the obtained dispersion, means for promoting dispersion such as irradiation with ultrasonic waves can be taken as necessary.

本発明の改質金属酸化物微粒子粉末を前記有機溶媒に分散させる場合、改質金属酸化物微粒子の濃度が高くとも、容易に、均一に分散し、透明性、安定性に優れた改質金属酸化物微粒子の有機溶媒分散ゾルが得られる。また本発明の改質金属酸化物微粒子粉末を有機樹脂に分散させる場合も、機械的なエネルギーを強く加えることなく、改質金属酸化物微粒子の濃度が高くなる場合であっても容易に、均一に分散した有機溶媒のない改質金属酸化物微粒子の樹脂分散体が得られる。   When the modified metal oxide fine particle powder of the present invention is dispersed in the organic solvent, even if the concentration of the modified metal oxide fine particles is high, the modified metal oxide is easily and uniformly dispersed and has excellent transparency and stability. An organic solvent-dispersed sol of oxide fine particles is obtained. In addition, even when the modified metal oxide fine particle powder of the present invention is dispersed in an organic resin, even if the concentration of the modified metal oxide fine particles is increased without adding mechanical energy strongly, it can be easily and uniformly applied. A resin dispersion of modified metal oxide fine particles without an organic solvent dispersed in is obtained.

有機溶媒を含まず、改質金属酸化物微粒子の樹脂分散体を用いて透明被膜を形成する場合、乾燥により溶媒除去することなく、加熱あるいは紫外線照射することによって硬化させた透明被膜を形成することができる。   When a transparent coating is formed using a resin dispersion of modified metal oxide fine particles that does not contain an organic solvent, a transparent coating cured by heating or UV irradiation is formed without removing the solvent by drying. Can do.

本発明の改質金属酸化物微粒子粉末は改質金属酸化物微粒子間の強い凝集あるいは結合がなく、流動性、分散性に優れるためにメカノケミカルな手段を用いることなく、改質金属酸化物微粒子が均一に単分散した分散体を得ることができる。   The modified metal oxide fine particle powder of the present invention has no strong aggregation or bonding between the modified metal oxide fine particles, and is excellent in fluidity and dispersibility, so that the modified metal oxide fine particles are used without using mechanochemical means. Can be obtained as a uniformly monodispersed dispersion.

このようにして得られる改質金属酸化物微粒子の有機溶媒および/または有機樹脂分散体中の改質金属酸化物微粒子の濃度は、特に限定されず、用途に応じて適宜選択される。
通常、固形分として1〜70重量%、さらには2〜60重量%の範囲にあることが好ましい。
改質金属酸化物微粒子の有機溶媒ないし有機樹脂分散体は、長期間静置しても改質金属酸化物微粒子が凝集するも沈降することもなく、透明性を有する安定なゾルである。
The concentration of the modified metal oxide fine particles in the organic solvent and / or organic resin dispersion of the modified metal oxide fine particles thus obtained is not particularly limited, and is appropriately selected according to the application.
Usually, the solid content is preferably 1 to 70% by weight, more preferably 2 to 60% by weight.
The organic solvent or organic resin dispersion of the modified metal oxide fine particles is a stable sol having transparency without allowing the modified metal oxide fine particles to aggregate or settle even when left for a long period of time.

[実施例]
以下、実施例により説明するが、本発明はこれらの実施例により限定されるものではない。
[実施例1]
改質シリカ微粒子(1)粉末の調製
金属酸化物微粒子としてシリカゾル(日揮触媒化成(株)製:SI−40、平均粒子径(DM)=26nm、SiO2濃度40.5重量%)をUF膜モジュール(旭化成ケミカルズ(株)製:SIP−2013)を用いて10倍量の水で置換した後に希釈して固形分濃度10重量%のシリカ微粒子(1)分散液10kgを調製した。このときの電気伝導度は0.15mS/cmであった。工程(a)
[Example]
Hereinafter, although an example explains, the present invention is not limited by these examples.
[Example 1]
Preparation of Modified Silica Fine Particles (1) Powder Silica sol (manufactured by JGC Catalysts & Chemicals Co., Ltd .: SI-40, average particle size (D M ) = 26 nm, SiO 2 concentration 40.5% by weight) as UF as metal oxide fine particles A membrane module (Asahi Kasei Chemicals Co., Ltd .: SIP-2013) was used to substitute 10 times the amount of water and diluted to prepare 10 kg of silica fine particle (1) dispersion having a solid content concentration of 10% by weight. The electrical conductivity at this time was 0.15 mS / cm. Step (a)

ついで、シリカ微粒子(1)分散液に有機珪素化合物としてγ-メタアクリロオキシプロピルトリメトキシシラン(信越化学(株)製:KBM−503)をシリカ微粒子の固形分100重量部に対してR1-SiO3/2として25.3重量部となるように350gを添加した。工程(b) Next, γ-methacrylooxypropyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd .: KBM-503) as an organosilicon compound was added to the silica fine particle (1) dispersion as R 1 with respect to 100 parts by weight of the solid content of the silica fine particles. -350g was added so that it might become 25.3 weight part as SiO3 / 2 . Step (b)

ついで、分散液を22℃で18時間熟成して噴霧乾燥用シリカ微粒子(1)分散液を調製した。工程(c) Next, the dispersion was aged at 22 ° C. for 18 hours to prepare a dispersion of silica fine particles (1) for spray drying. Step (c)

ついで、噴霧乾燥用シリカ微粒子(1)分散液を入口温度150℃の熱風中に噴霧して改質シリカ微粒子(1)粉末を得た。この時、出口温度は103℃であった。工程(d) Subsequently, the silica fine particle (1) dispersion for spray drying was sprayed into hot air having an inlet temperature of 150 ° C. to obtain modified silica fine particle (1) powder. At this time, the outlet temperature was 103 ° C. Step (d)

得られた改質シリカ微粒子(1)粉末について、平均粒子径(DMP)、平均一次粒子径(DM1)、平均二次粒子径(DM2)および安息角、29Si MAS NMRスペクトルを測定し、結果を表1に示した。
なお、安息角は以下の方法によって測定した。
The resulting modified silica fine particle (1) powder was measured for average particle size (D MP ), average primary particle size (D M1 ), average secondary particle size (D M2 ), angle of repose, and 29 Si MAS NMR spectrum. The results are shown in Table 1.
The angle of repose was measured by the following method.

安息角
ガラス製透明サンプル瓶(円筒状、内容積100cc)に改質シリカ微粒子(1)粉末約30ccを充填し、水平板面上を低速で約10回転させた後、粉末の上面の角度を分度器で測定し、結果を表1に示す。
Fill a transparent sample bottle made of angle of repose glass (cylindrical, internal volume 100 cc) with about 30 cc of modified silica fine particles (1) and rotate it about 10 times at a low speed on the horizontal plate surface. Measurement was performed with a protractor, and the results are shown in Table 1.

29 Si MAS NMRスペクトル
また、改質シリカ微粒子(1)粉末について29Si MAS NMRスペクトルを核磁気共鳴装置(Agilent technologies社製:VNMRS-600)を用いて測定した。標準物質にはポリジメチルシラン(-34.44ppm)を使用し、シングルパルス法で、遅延時間15秒、MAS速度6kHzの条件で測定した。装置付属のカーブフィッティングプログラムにより解析した主ピークのケミカルシフト値および半値幅を表に示す。
29 Si MAS NMR spectra also modified silica particles (1) Nuclear magnetic resonance apparatus 29 Si MAS NMR spectrum for the powder (Agilent technologies Inc.: VNMRS-600) was used for the measurement. Polydimethylsilane (−34.44 ppm) was used as a standard substance, and measurement was performed by a single pulse method under conditions of a delay time of 15 seconds and a MAS speed of 6 kHz. The chemical shift value and half-value width of the main peak analyzed by the curve fitting program attached to the apparatus are shown in the table.

改質シリカ微粒子(1)有機溶媒分散体の調製
改質シリカ微粒子(1)粉末5gをメタノールおよびメチルイソブチルケトンに混合し、充分撹拌して固形分濃度30重量%の改質シリカ微粒子(1)メタノール分散体および改質シリカ微粒子(1)メチルイソブチルケトン分散体を調製した。
Modified silica fine particles (1) Preparation of organic solvent dispersion Modified silica fine particles (1) 5 g of powder was mixed with methanol and methyl isobutyl ketone, stirred well, and modified silica fine particles (1) with a solid content concentration of 30% by weight. Methanol dispersion and modified silica fine particles (1) methyl isobutyl ketone dispersion were prepared.

得られた改質シリカ微粒子(1)メタノール分散体について平均二次粒子径(DM2)を測定し、結果を表1に示す。
また、固形分濃度30重量%の改質シリカ微粒子(1)メタノール分散体および改質シリカ微粒子(1)メチルイソブチルケトン分散体について、以下の方法で分散性および安定性を評価し、結果を表1に示す。
The average secondary particle diameter (D M2 ) of the obtained modified silica fine particles (1) methanol dispersion was measured, and the results are shown in Table 1.
In addition, the modified silica fine particles (1) methanol dispersion and the modified silica fine particles (1) methyl isobutyl ketone dispersion having a solid content concentration of 30% by weight were evaluated for dispersibility and stability by the following methods. It is shown in 1.

分散性
ガラス製透明サンプル瓶に分散体を充填し、透明性を観察し、以下の基準で評価した。
透明な分散体である。 : ◎
透明性の高い分散体である。 : ○
半透明性の分散体である。 : △
白濁した分散体である。 : ×
Dispersed glass transparent sample bottles were filled with the dispersion, observed for transparency, and evaluated according to the following criteria.
It is a transparent dispersion. : ◎
It is a highly transparent dispersion. : ○
A translucent dispersion. : △
It is a cloudy dispersion. : ×

安定性
ガラス製透明サンプル瓶に分散体を充填し、30℃で10日間静置した後、透明性を観察し、以下の基準で評価した。
透明な分散体である。 : ◎
透明性の高い分散体である。 : ○
半透明性の分散体である。 : △
白濁あるいは沈降粒子が認められる分散体である。 : ×
The dispersion was filled in a transparent glass transparent sample bottle and allowed to stand at 30 ° C. for 10 days, and then the transparency was observed and evaluated according to the following criteria.
It is a transparent dispersion. : ◎
It is a highly transparent dispersion. : ○
A translucent dispersion. : △
It is a dispersion in which white turbidity or precipitated particles are observed. : ×

改質シリカ微粒子(1)有機樹脂分散体の調製
改質シリカ微粒子(1)粉末3gを、ライトアクリレートDPE-6A(以後単にDPE−6A)(共栄社化学(株)製ジペンタエリスリトールヘキサアクリレート、UV硬化型アクリル樹脂(多価アクリルモノマー)に混合し、充分撹拌して固形分濃度30重量%の改質シリカ微粒子(1)有機樹脂分散体を調製した。
得られた改質シリカ微粒子(1)有機樹脂分散体について、以下の方法で分散性を評価し、結果を表1に示す。
Preparation of Modified Silica Fine Particles (1) Organic Resin Dispersion 3 g of the modified silica fine particles (1) powder was added to light acrylate DPE-6A (hereinafter simply DPE-6A) (Kyoeisha Chemical Co., Ltd. dipentaerythritol hexaacrylate, UV The mixture was mixed with a curable acrylic resin (polyvalent acrylic monomer) and sufficiently stirred to prepare a modified silica fine particle (1) organic resin dispersion having a solid concentration of 30% by weight.
With respect to the obtained modified silica fine particle (1) organic resin dispersion, dispersibility was evaluated by the following method, and the results are shown in Table 1.

分散性
ガラス製透明サンプル瓶に分散体に充填し、透明性を観察し、以下の基準で評価した。
透明な分散体である。 : ◎
透明性の高い分散体である。 : ○
半透明性の分散体である。 : △
白濁した分散体である。 : ×
Dispersion glass transparent sample bottles were filled into the dispersion, observed for transparency, and evaluated according to the following criteria.
It is a transparent dispersion. : ◎
It is a highly transparent dispersion. : ○
A translucent dispersion. : △
It is a cloudy dispersion. : ×

[実施例2]
改質シリカ微粒子(2)粉末の調製
実施例1の工程(d)において、噴霧乾燥用シリカ微粒子(1)分散液を入口温度120℃の熱風中に噴霧した以外は同様にして改質シリカ微粒子(2)粉末を得た。
この時、出口温度は97℃であった。工程(d)
[Example 2]
Preparation of modified silica fine particles (2) powder Modified silica fine particles were prepared in the same manner as in step (d) of Example 1, except that the spray-dried silica fine particles (1) were sprayed into hot air having an inlet temperature of 120 ° C. (2) A powder was obtained.
At this time, the outlet temperature was 97 ° C. Step (d)

得られた改質シリカ微粒子(2)粉末について、平均粒子径(DMP)、平均一次粒子径(DM1)、平均二次粒子径(DM2)および安息角、29Si MAS NMRスペクトルを測定し、結果を表1に示した。 The resulting modified silica fine particle (2) powder was measured for average particle size (D MP ), average primary particle size (D M1 ), average secondary particle size (D M2 ), angle of repose, and 29 Si MAS NMR spectrum. The results are shown in Table 1.

改質シリカ微粒子(2)有機溶媒分散体の調製
実施例1において、改質シリカ微粒子(2)粉末を用いた以外は同様にして固形分濃度30重量%の改質シリカ微粒子(2)メタノール分散体および改質シリカ微粒子(2)MIBK分散体を調製した。
Preparation of Modified Silica Fine Particles (2) Organic Solvent Dispersion In Example 1, modified silica fine particles having a solid content concentration of 30% by weight (2) Methanol dispersion were the same except that modified silica fine particles (2) were used. And modified silica fine particles (2) MIBK dispersion was prepared.

得られた改質シリカ微粒子(2)メタノール分散体について平均粒子径を測定し、結果を表1に示す。
また、固形分濃度30重量%の改質シリカ微粒子(2)メタノール分散体および改質シリカ微粒子(2)メチルイソブチルケトン分散体について分散性および安定性を評価し、結果を表1に示す。
The average particle diameter of the resulting modified silica fine particles (2) methanol dispersion was measured, and the results are shown in Table 1.
Further, the dispersibility and stability of the modified silica fine particles (2) methanol dispersion and the modified silica fine particles (2) methyl isobutyl ketone dispersion having a solid content concentration of 30% by weight were evaluated, and the results are shown in Table 1.

改質シリカ微粒子(2)有機樹脂分散体の調製
実施例1において、改質シリカ微粒子(2)粉末を用いた以外は同様にして固形分濃度30重量%の改質シリカ微粒子(2)有機樹脂分散体を調製した。
得られた改質シリカ微粒子(2)有機樹脂分散体について分散性を評価し、結果を表1に示す。
Preparation of Modified Silica Fine Particles (2) Organic Resin Dispersion Modified silica fine particles (2) organic resin having a solid content concentration of 30% by weight in the same manner as in Example 1 except that the modified silica fine particles (2) powder was used. A dispersion was prepared.
The resulting modified silica fine particles (2) organic resin dispersion was evaluated for dispersibility, and the results are shown in Table 1.

[実施例3]
改質シリカ微粒子(3)粉末の調製
実施例1の工程(d)において、噴霧乾燥用シリカ微粒子(1)分散液を入口温度200℃の熱風中に噴霧した以外は同様にして改質シリカ微粒子(3)粉末を得た。
この時、出口温度は115℃であった。工程(d)
[Example 3]
Preparation of modified silica fine particles (3) powder Modified silica fine particles in the same manner as in step (d) of Example 1, except that the spray-dried silica fine particles (1) dispersion was sprayed into hot air having an inlet temperature of 200 ° C. (3) A powder was obtained.
At this time, the outlet temperature was 115 ° C. Step (d)

得られた改質シリカ微粒子(3)粉末について、平均粒子径(DMP)、平均一次粒子径(DM1)、平均二次粒子径(DM2)および安息角、29Si MAS NMRスペクトルを測定し、結果を表1に示した。 The resulting modified silica fine particle (3) powder was measured for average particle size (D MP ), average primary particle size (D M1 ), average secondary particle size (D M2 ) and angle of repose, 29 Si MAS NMR spectrum. The results are shown in Table 1.

改質シリカ微粒子(3)有機溶媒分散体の調製
実施例1において、改質シリカ微粒子(3)粉末を用いた以外は同様にして固形分濃度30重量%の改質シリカ微粒子(3)メタノール分散体および改質シリカ微粒子(3)MIBK分散体を調製した。
Preparation of Modified Silica Fine Particles (3) Organic Solvent Dispersion In Example 1, modified silica fine particles (3) methanol dispersion having a solid content concentration of 30% by weight were the same except that modified silica fine particles (3) powder was used. And modified silica fine particles (3) MIBK dispersion was prepared.

得られた改質シリカ微粒子(3)メタノール分散体について平均粒子径を測定し、結果を表1に示す。
また、固形分濃度30重量%の改質シリカ微粒子(3)メタノール分散体および改質シリカ微粒子(3)メチルイソブチルケトン分散体について分散性および安定性を評価し、結果を表1に示す。
The average particle diameter of the resulting modified silica fine particle (3) methanol dispersion was measured, and the results are shown in Table 1.
Further, the dispersibility and stability of the modified silica fine particles (3) methanol dispersion and the modified silica fine particles (3) methyl isobutyl ketone dispersion having a solid content concentration of 30% by weight were evaluated, and the results are shown in Table 1.

改質シリカ微粒子(3)有機樹脂分散体の調製
実施例1において、改質シリカ微粒子(3)粉末を用いた以外は同様にして固形分濃度30重量%の改質シリカ微粒子(3)有機樹脂分散体を調製した。
得られた改質シリカ微粒子(3)有機樹脂分散体について分散性を評価し、結果を表1に示す。
Preparation of Modified Silica Fine Particle (3) Organic Resin Dispersion Modified silica fine particle (3) organic resin having a solid content concentration of 30% by weight in the same manner as in Example 1, except that the modified silica fine particle (3) powder was used. A dispersion was prepared.
Dispersibility of the resulting modified silica fine particle (3) organic resin dispersion was evaluated, and the results are shown in Table 1.

[実施例4]
改質シリカ微粒子(4)粉末の調製
実施例1の工程(c)において、噴霧乾燥用シリカ微粒子(1)分散液を40℃に昇温し、6時間熟成した以外は同様にして改質シリカ微粒子(4)粉末を得た。
[Example 4]
Preparation of modified silica fine particles (4) powder Modified silica in the same manner as in step (c) of Example 1, except that the spray-dried silica fine particles (1) dispersion was heated to 40 ° C and aged for 6 hours. Fine particle (4) powder was obtained.

得られた改質シリカ微粒子(4)粉末について、平均粒子径(DMP)、平均一次粒子径(DM1)、平均二次粒子径(DM2)および安息角、29Si MAS NMRスペクトルを測定し、結果を表1に示した。 The resulting modified silica fine particle (4) powder was measured for average particle size (D MP ), average primary particle size (D M1 ), average secondary particle size (D M2 ) and angle of repose, 29 Si MAS NMR spectrum. The results are shown in Table 1.

改質シリカ微粒子(4)有機溶媒分散体の調製
実施例1において、改質シリカ微粒子(4)粉末を用いた以外は同様にして固形分濃度30重量%の改質シリカ微粒子(4)メタノール分散体および改質シリカ微粒子(4)MIBK分散体を調製した。
Preparation of Modified Silica Fine Particles (4) Organic Solvent Dispersion In Example 1, modified silica fine particles having a solid content concentration of 30% by weight (4) methanol dispersion were used except that modified silica fine particles (4) powder was used. And modified silica fine particles (4) MIBK dispersion was prepared.

得られた改質シリカ微粒子(4)メタノール分散体について平均粒子径を測定し、結果を表1に示す。
また、固形分濃度30重量%の改質シリカ微粒子(4)メタノール分散体および改質シリカ微粒子(4)メチルイソブチルケトン分散体について分散性および安定性を評価し、結果を表1に示す。
The average particle diameter of the resulting modified silica fine particles (4) methanol dispersion was measured, and the results are shown in Table 1.
Further, the dispersibility and stability of the modified silica fine particles (4) methanol dispersion and the modified silica fine particles (4) methyl isobutyl ketone dispersion having a solid content concentration of 30% by weight were evaluated, and the results are shown in Table 1.

改質シリカ微粒子(4)有機樹脂分散体の調製
実施例1において、改質シリカ微粒子(4)粉末を用いた以外は同様にして固形分濃度30重量%の改質シリカ微粒子(4)有機樹脂分散体を調製した。
得られた改質シリカ微粒子(4)有機樹脂分散体について分散性を評価し、結果を表1に示す。
Preparation of Modified Silica Fine Particles (4) Organic Resin Dispersion Modified silica fine particles (4) organic resin having a solid content concentration of 30% by weight in the same manner as in Example 1, except that the modified silica fine particles (4) powder was used. A dispersion was prepared.
Dispersibility of the resulting modified silica fine particle (4) organic resin dispersion was evaluated, and the results are shown in Table 1.

[実施例5]
改質シリカ微粒子(5)粉末の調製
実施例1の工程(c)において、噴霧乾燥用シリカ微粒子(1)分散液を60℃に昇温し、3時間熟成した以外は同様にして改質シリカ微粒子(5)粉末を得た。
[Example 5]
Preparation of modified silica fine particle (5) powder Modified silica in the same manner as in step (c) of Example 1, except that the temperature of the spray-dried silica fine particle (1) dispersion was increased to 60 ° C and aged for 3 hours. Fine particle (5) powder was obtained.

得られた改質シリカ微粒子(5)粉末について、平均粒子径(DMP)、平均粒子径(DM1)、平均粒子径(DM2)および安息角、29Si MAS NMRスペクトルを測定し、結果を表1に示した。 The resulting modified silica fine particle (5) powder was measured for average particle size (D MP ), average particle size (D M1 ), average particle size (D M2 ) and angle of repose, 29 Si MAS NMR spectrum, and the results Are shown in Table 1.

改質シリカ微粒子(5)有機溶媒分散体の調製
実施例1において、改質シリカ微粒子(5)粉末を用いた以外は同様にして固形分濃度30重量%の改質シリカ微粒子(5)メタノール分散体および改質シリカ微粒子(5)MIBK分散体を調製した。
Preparation of Modified Silica Fine Particles (5) Organic Solvent Dispersion In Example 1, modified silica fine particles having a solid content concentration of 30% by weight (5) Methanol dispersion were used except that modified silica fine particles (5) powder was used. And modified silica fine particles (5) MIBK dispersion was prepared.

得られた改質シリカ微ff粒子(5)メタノール分散体について平均粒子径を測定し、結果を表1に示す。
また、固形分濃度30重量%の改質シリカ微粒子(5)メタノール分散体および改質シリカ微粒子(5)メチルイソブチルケトン分散体について分散性および安定性を評価し、結果を表1に示す。
The average particle diameter of the obtained modified silica fine ff particles (5) methanol dispersion was measured, and the results are shown in Table 1.
Further, the dispersibility and stability of the modified silica fine particles (5) methanol dispersion and the modified silica fine particles (5) methyl isobutyl ketone dispersion having a solid content concentration of 30% by weight were evaluated, and the results are shown in Table 1.

改質シリカ微粒子(5)有機樹脂分散体の調製
実施例1において、改質シリカ微粒子(5)粉末を用いた以外は同様にして固形分濃度30重量%の改質シリカ微粒子(5)有機樹脂分散体を調製した。
得られた改質シリカ微粒子(5)有機樹脂分散体について分散性を評価し、結果を表1に示す。
Preparation of Modified Silica Fine Particle (5) Organic Resin Dispersion Modified silica fine particle (5) organic resin having a solid content concentration of 30% by weight in the same manner as in Example 1 except that modified silica fine particle (5) powder was used. A dispersion was prepared.
Dispersibility of the resulting modified silica fine particle (5) organic resin dispersion was evaluated, and the results are shown in Table 1.

[実施例6]
改質シリカ微粒子(6)粉末の調製
実施例1において、金属酸化物微粒子としてシリカゾル(日揮触媒化成(株)製:SI−350、平均粒子径(DM)=11nm、SiO2濃度20.5重量%)を用いて、実施例1と同様の工程a)を行い、固形分濃度10%、電気伝導度0.37mS/cmのシリカ微粒子分散液(2)を調製し、工程b)において有機珪素化合物としてγ-メタアクリロオキシプロピルトリメトキシシラン(信越化学(株)製:KBM−503)を、シリカ微粒子の固形分100重量部に対してR1-SiO3/2として72.2重量部となるように1000gを添加した以外は同様にして改質シリカ微粒子(6)粉末を得た。
[Example 6]
Preparation of Modified Silica Fine Particle (6) Powder In Example 1, silica sol (manufactured by JGC Catalysts & Chemicals Co., Ltd .: SI-350, average particle diameter (D M ) = 11 nm, SiO 2 concentration 20.5 as metal oxide fine particles The same step a) as in Example 1 was carried out using a weight%) to prepare a silica fine particle dispersion (2) having a solid content of 10% and an electric conductivity of 0.37 mS / cm. Γ-Methacryloxypropyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd .: KBM-503) as a silicon compound is 72.2 wt. As R 1 —SiO 3/2 with respect to 100 parts by weight of the solid content of silica fine particles. Modified silica fine particle (6) powder was obtained in the same manner except that 1000 g was added so as to be part.

得られた改質シリカ微粒子(6)粉末について、平均粒子径(DMP)、平均一次粒子径(DM1)、平均二次粒子径(DM2)および安息角、29Si MAS NMRスペクトルを測定し、結果を表1に示した。 The resulting modified silica fine particle (6) powder was measured for average particle size (D MP ), average primary particle size (D M1 ), average secondary particle size (D M2 ) and angle of repose, 29 Si MAS NMR spectrum. The results are shown in Table 1.

改質シリカ微粒子(6)有機溶媒分散体の調製
実施例1において、改質シリカ微粒子(6)粉末を用いた以外は同様にして固形分濃度30重量%の改質シリカ微粒子(6)メタノール分散体および改質シリカ微粒子(6)MIBK分散体を調製した。
Preparation of Modified Silica Fine Particles (6) Organic Solvent Dispersion In Example 1, modified silica fine particles having a solid content concentration of 30% by weight (6) Methanol dispersion were used except that the modified silica fine particles (6) powder was used. And modified silica fine particles (6) MIBK dispersion was prepared.

得られた改質シリカ微粒子(6)メタノール分散体について平均粒子径を測定し、結果を表1に示す。
また、固形分濃度30重量%の改質シリカ微粒子(6)メタノール分散体および改質シリカ微粒子(6)メチルイソブチルケトン分散体について分散性および安定性を評価し、結果を表1に示す。
The average particle diameter of the resulting modified silica fine particle (6) methanol dispersion was measured, and the results are shown in Table 1.
Further, the dispersibility and stability of the modified silica fine particles (6) methanol dispersion and the modified silica fine particles (6) methyl isobutyl ketone dispersion having a solid content concentration of 30% by weight were evaluated, and the results are shown in Table 1.

改質シリカ微粒子(6)有機樹脂分散体の調製
実施例1において、改質シリカ微粒子(6)粉末を用いた以外は同様にして固形分濃度30重量%の改質シリカ微粒子(6)有機樹脂分散体を調製した。
得られた改質シリカ微粒子(6)有機樹脂分散体について分散性を評価し、結果を表1に示す。
Preparation of Modified Silica Fine Particle (6) Organic Resin Dispersion Modified silica fine particle (6) organic resin having a solid content concentration of 30% by weight in the same manner as in Example 1, except that the modified silica fine particle (6) powder was used. A dispersion was prepared.
Dispersibility of the resulting modified silica fine particle (6) organic resin dispersion was evaluated, and the results are shown in Table 1.

[実施例7]
改質シリカ微粒子(7)粉末の調製
実施例1において、金属酸化物微粒子としてシリカゾル(日揮触媒化成(株)製:SI−80P、平均粒子径(DM)=96nm、SiO2濃度 20.4%重量%)を用いて、実施例1と同様の工程a)行い、固形分濃度10%、電気伝導度0.09mS/cmのシリカ微粒子分散液(3)を調製し、工程b)において有機珪素化合物としてγ-メタアクリロオキシプロピルトリメトキシシラン(信越化学(株)製:KBM−503)を、シリカ微粒子の固形分100重量に対してR1-SiO3/2として6.7重量部となるように100gを添加した以外は同様にして改質シリカ微粒子(7)粉末を得た。
[Example 7]
Preparation of Modified Silica Fine Particle (7) Powder In Example 1, silica sol (manufactured by JGC Catalysts & Chemicals Co., Ltd .: SI-80P, average particle diameter (D M ) = 96 nm, SiO 2 concentration 20.4 as metal oxide fine particles Step a) is carried out in the same manner as in Example 1 to prepare a silica fine particle dispersion (3) having a solid content of 10% and an electric conductivity of 0.09 mS / cm. Γ-methacrylooxypropyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd .: KBM-503) as a silicon compound is 6.7 parts by weight as R 1 —SiO 3/2 with respect to 100 parts by weight of the solid content of silica fine particles. A modified silica fine particle (7) powder was obtained in the same manner except that 100 g was added.

得られた改質シリカ微粒子(7)粉末について、平均粒子径(DMP)、平均一次粒子径(DM1)、平均二次粒子径(DM2)および安息角、29Si MAS NMRスペクトルを測定し、結果を表1に示した。 About the obtained modified silica fine particle (7) powder, average particle diameter (D MP ), average primary particle diameter (D M1 ), average secondary particle diameter (D M2 ), angle of repose, and 29 Si MAS NMR spectrum were measured. The results are shown in Table 1.

改質シリカ微粒子(7)有機溶媒分散体の調製
実施例1において、改質シリカ微粒子(7)粉末を用いた以外は同様にして固形分濃度30重量%の改質シリカ微粒子(7)メタノール分散体および改質シリカ微粒子(7)MIBK分散体を調製した。
Preparation of Modified Silica Fine Particles (7) Organic Solvent Dispersion In Example 1, modified silica fine particles having a solid content concentration of 30% by weight (7) methanol dispersion were used except that the modified silica fine particles (7) powder was used. And modified silica fine particles (7) MIBK dispersion was prepared.

得られた改質シリカ微粒子(7)メタノール分散体について平均粒子径を測定し、結果を表1に示す。
また、固形分濃度30重量%の改質シリカ微粒子(7)メタノール分散体および改質シリカ微粒子(7)メチルイソブチルケトン分散体について分散性および安定性を評価し、結果を表1に示す。
The average particle diameter of the resulting modified silica fine particles (7) methanol dispersion was measured, and the results are shown in Table 1.
Further, the dispersibility and stability of the modified silica fine particles (7) methanol dispersion and the modified silica fine particles (7) methyl isobutyl ketone dispersion having a solid content concentration of 30% by weight were evaluated, and the results are shown in Table 1.

改質シリカ微粒子(7)有機樹脂分散体の調製
実施例1において、改質シリカ微粒子(7)粉末を用いた以外は同様にして固形分濃度30重量%の改質シリカ微粒子(7)有機樹脂分散体を調製した。
得られた改質シリカ微粒子(7)有機樹脂分散体について分散性を評価し、結果を表1に示す。
Preparation of Modified Silica Fine Particle (7) Organic Resin Dispersion Modified silica fine particle (7) organic resin having a solid content concentration of 30% by weight in the same manner as in Example 1 except that the modified silica fine particle (7) powder was used. A dispersion was prepared.
The resulting modified silica fine particles (7) organic resin dispersion was evaluated for dispersibility, and the results are shown in Table 1.

[実施例8]
改質シリカ微粒子(8)粉末の調製
実施例7の工程(b)において、有機珪素化合物としてγ-メタアクリロオキシプロピルトリメトキシシラン(信越化学(株)製:KBM−503)を、シリカ微粒子の固形分100重量に対してR1-SiO3/2として5.5重量部となるように80gを添加した以外は同様にして改質シリカ微粒子(8)粉末を得た。
[Example 8]
Preparation of Modified Silica Fine Particle (8) Powder In step (b) of Example 7, γ-methacryloxypropyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd .: KBM-503) was used as the organosilicon compound. Modified silica fine particle (8) powder was obtained in the same manner except that 80 g of R 1 —SiO 3/2 was added in an amount of 5.5 parts by weight with respect to 100 parts by weight of the solid content.

得られた改質シリカ微粒子(8)粉末について、平均粒子径(DMP)、平均一次粒子径(DM1)、平均二次粒子径(DM2)および安息角、29Si MAS NMRスペクトルを測定し、結果を表1に示した。 The resulting modified silica fine particle (8) powder was measured for average particle size (D MP ), average primary particle size (D M1 ), average secondary particle size (D M2 ), angle of repose, and 29 Si MAS NMR spectrum. The results are shown in Table 1.

改質シリカ微粒子(8)有機溶媒分散体の調製
実施例1において、改質シリカ微粒子(8)粉末を用いた以外は同様にして固形分濃度30重量%の改質シリカ微粒子(8)メタノール分散体および改質シリカ微粒子(8)MIBK分散体を調製した。
Preparation of Modified Silica Fine Particle (8) Organic Solvent Dispersion In Example 1, modified silica fine particle (8) methanol dispersion having a solid content concentration of 30% by weight was used except that the modified silica fine particle (8) powder was used. And modified silica fine particles (8) MIBK dispersion was prepared.

得られた改質シリカ微粒子(8)メタノール分散体について平均粒子径を測定し、結果を表1に示す。
また、固形分濃度30重量%の改質シリカ微粒子(8)メタノール分散体および改質シリカ微粒子(8)メチルイソブチルケトン分散体について分散性および安定性を評価し、結果を表1に示す。
The average particle size of the resulting modified silica fine particle (8) methanol dispersion was measured, and the results are shown in Table 1.
Further, the dispersibility and stability of the modified silica fine particles (8) methanol dispersion and the modified silica fine particles (8) methyl isobutyl ketone dispersion having a solid content concentration of 30% by weight were evaluated, and the results are shown in Table 1.

改質シリカ微粒子(8)有機樹脂分散体の調製
実施例1において、改質シリカ微粒子(8)粉末を用いた以外は同様にして固形分濃度30重量%の改質シリカ微粒子(8)有機樹脂分散体を調製した。
得られた改質シリカ微粒子(8)有機樹脂分散体について分散性を評価し、結果を表1に示す。
Preparation of Modified Silica Fine Particle (8) Organic Resin Dispersion Modified silica fine particle (8) organic resin having a solid content concentration of 30% by weight in the same manner as in Example 1, except that modified silica fine particle (8) powder was used. A dispersion was prepared.
The resulting modified silica fine particle (8) organic resin dispersion was evaluated for dispersibility, and the results are shown in Table 1.

[実施例9]
改質シリカ微粒子(9)粉末の調製
実施例6の工程(b)において、有機珪素化合物としてγ-メタアクリロオキシプロピルトリメトキシシラン(信越化学(株)製:KBM−503)を、シリカ微粒子の固形分100重量部に対してR1-SiO3/2として108.3重量部となるように1500gを添加した以外は同様にして改質シリカ微粒子(9)粉末を得た。
[Example 9]
Preparation of Modified Silica Fine Particle (9) Powder In step (b) of Example 6, γ-methacryloxypropyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd .: KBM-503) was used as the organosilicon compound. Modified silica fine particle (9) powder was obtained in the same manner except that 1500 g was added so as to be 108.3 parts by weight as R 1 —SiO 3/2 per 100 parts by weight of the solid content.

得られた改質シリカ微粒子(9)粉末について、平均粒子径(DMP)、平均一次粒子径(DM1)、平均二次粒子径(DM2)および安息角、29Si MAS NMRスペクトルを測定し、結果を表1に示した。 The resulting modified silica fine particle (9) powder was measured for average particle size (D MP ), average primary particle size (D M1 ), average secondary particle size (D M2 ), angle of repose, and 29 Si MAS NMR spectrum. The results are shown in Table 1.

改質シリカ微粒子(9)有機溶媒分散体の調製
実施例1において、改質シリカ微粒子(9)粉末を用いた以外は同様にして固形分濃度30重量%の改質シリカ微粒子(9)メタノール分散体および改質シリカ微粒子(9)MIBK分散体を調製した。
Preparation of Modified Silica Fine Particle (9) Organic Solvent Dispersion In Example 1, modified silica fine particle (9) methanol dispersion having a solid content concentration of 30% by weight was used except that the modified silica fine particle (9) powder was used. And modified silica fine particles (9) MIBK dispersion was prepared.

得られた改質シリカ微粒子(9)メタノール分散体について平均粒子径を測定し、結果を表1に示す。
また、固形分濃度30重量%の改質シリカ微粒子(9)メタノール分散体および改質シリカ微粒子(9)メチルイソブチルケトン分散体について分散性および安定性を評価し、結果を表1に示す。
The average particle size of the resulting modified silica fine particle (9) methanol dispersion was measured, and the results are shown in Table 1.
Further, the dispersibility and stability of the modified silica fine particles (9) methanol dispersion and the modified silica fine particles (9) methyl isobutyl ketone dispersion having a solid content concentration of 30% by weight were evaluated, and the results are shown in Table 1.

改質シリカ微粒子(9)有機樹脂分散体の調製
実施例1において、改質シリカ微粒子(9)粉末を用いた以外は同様にして固形分濃度30重量%の改質シリカ微粒子(9)有機樹脂分散体を調製した。
得られた改質シリカ微粒子(9)有機樹脂分散体について分散性を評価し、結果を表1に示す。
Preparation of Modified Silica Fine Particle (9) Organic Resin Dispersion Modified Example of Fine Silica Fine Particle (9) Organic Resin with Solid Content Concentration of 30% by Weight, except that Modified Silica Fine Particle (9) Powder was used in Example 1. A dispersion was prepared.
The resulting modified silica fine particle (9) organic resin dispersion was evaluated for dispersibility, and the results are shown in Table 1.

[実施例10]
改質シリカ微粒子(10)粉末の調製
実施例1の工程(b)において、有機珪素化合物としてγ-メタアクリロオキシプロピルトリメトキシシラン(信越化学(株)製:KBM−503)の代わりγ-アクリロオキシプロピルトリメトキシシラン(信越化学(株)製:KBM−5103)を、シリカ微粒子の固形分100重量に対してR1-SiO3/2として25.3重量部となるように358gを添加した以外は同様にして改質シリカ微粒子(10)粉末を得た。
[Example 10]
Preparation of modified silica fine particle (10) powder In step (b) of Example 1, instead of γ-methacryloxypropyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd .: KBM-503) as the organosilicon compound, γ- 358 g of acryloxypropyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd .: KBM-5103) was added to 25.3 parts by weight as R 1 —SiO 3/2 with respect to 100 parts by weight of the solid content of silica fine particles. Modified silica fine particle (10) powder was obtained in the same manner except that it was added.

得られた改質シリカ微粒子(10)粉末について、平均粒子径(DMP)、平均一次粒子径(DM1)、平均二次粒子径(DM2)および安息角、29Si MAS NMRスペクトルを測定し、結果を表1に示した。 Measurement of average particle size (D MP ), average primary particle size (D M1 ), average secondary particle size (D M2 ) and angle of repose, 29 Si MAS NMR spectrum of the resulting modified silica fine particle (10) powder The results are shown in Table 1.

改質シリカ微粒子(10)有機溶媒分散体の調製
実施例1において、改質シリカ微粒子(10)粉末を用いた以外は同様にして固形分濃度30重量%の改質シリカ微粒子(10)メタノール分散体および改質シリカ微粒子(10)MIBK分散体を調製した。
Preparation of Modified Silica Fine Particle (10) Organic Solvent Dispersion In Example 1, modified silica fine particle (10) methanol dispersion having a solid content concentration of 30% by weight was used except that modified silica fine particle (10) powder was used. And modified silica fine particles (10) MIBK dispersion was prepared.

得られた改質シリカ微粒子(10)メタノール分散体について平均粒子径を測定し、結果を表1に示す。
また、固形分濃度30重量%の改質シリカ微粒子(10)メタノール分散体および改質シリカ微粒子(10)メチルイソブチルケトン分散体について分散性および安定性を評価し、結果を表1に示す。
The average particle diameter of the obtained modified silica fine particle (10) methanol dispersion was measured, and the results are shown in Table 1.
Further, the dispersibility and stability of the modified silica fine particle (10) methanol dispersion and the modified silica fine particle (10) methyl isobutyl ketone dispersion having a solid content concentration of 30% by weight were evaluated, and the results are shown in Table 1.

改質シリカ微粒子(10)有機樹脂分散体の調製
実施例1において、改質シリカ微粒子(10)粉末を用いた以外は同様にして固形分濃度30重量%の改質シリカ微粒子(10)有機樹脂分散体を調製した。
得られた改質シリカ微粒子(10)有機樹脂分散体について分散性を評価し、結果を表1に示す。
Preparation of Modified Silica Fine Particle (10) Organic Resin Dispersion Modified silica fine particle (10) organic resin having a solid content concentration of 30% by weight in the same manner as in Example 1, except that modified silica fine particle (10) powder was used. A dispersion was prepared.
The resulting modified silica fine particle (10) organic resin dispersion was evaluated for dispersibility, and the results are shown in Table 1.

[実施例11]
改質シリカ微粒子(11)粉末の調製
実施例1の工程(b)において、有機チタニウム化合物としフェニルチタニウムトリイソプロポキシド(アヅマックス(株)製)を、シリカ微粒子の固形分100重量部に対してR1-TiO3/2として25.3重量部となるように513gを添加した以外は同様にして改質シリカ微粒子(11)粉末を得た。
得られた改質シリカ微粒子(11)粉末について、平均粒子径(DMP)、平均一次粒子径(DM1)、平均二次粒子径(DM2)および安息角を測定し、結果を表1に示した。
[Example 11]
Preparation of Modified Silica Fine Particle (11) Powder In step (b) of Example 1, phenyltitanium triisopropoxide (manufactured by Amax Co.) as an organic titanium compound was added to 100 parts by weight of solid content of silica fine particles. Modified silica fine particle (11) powder was obtained in the same manner except that 513 g was added so as to be 25.3 parts by weight as R 1 —TiO 3/2 .
The resulting modified silica fine particle (11) powder was measured for average particle size (D MP ), average primary particle size (D M1 ), average secondary particle size (D M2 ), and angle of repose. It was shown to.

改質シリカ微粒子(11)有機溶媒分散体の調製
実施例1において、改質シリカ微粒子(11)粉末を用いた以外は同様にして固形分濃度30重量%の改質シリカ微粒子(11)メタノール分散体および改質シリカ微粒子(11)MIBK分散体を調製した。
Preparation of Modified Silica Fine Particle (11) Organic Solvent Dispersion In Example 1, modified silica fine particle (11) methanol dispersion having a solid content concentration of 30% by weight was used except that the modified silica fine particle (11) powder was used. And modified silica fine particles (11) MIBK dispersion was prepared.

得られた改質シリカ微粒子(11)メタノール分散体について平均粒子径を測定し、結果を表1に示す。
また、固形分濃度30重量%の改質シリカ微粒子(11)メタノール分散体および改質シリカ微粒子(11)メチルイソブチルケトン分散体について分散性および安定性を評価し、結果を表1に示す。
The average particle diameter of the obtained modified silica fine particle (11) methanol dispersion was measured, and the results are shown in Table 1.
Further, the dispersibility and stability of the modified silica fine particles (11) methanol dispersion and the modified silica fine particles (11) methyl isobutyl ketone dispersion having a solid content concentration of 30% by weight were evaluated, and the results are shown in Table 1.

改質シリカ微粒子(11)有機樹脂分散体の調製
実施例1において、改質シリカ微粒子(11)粉末を用いた以外は同様にして固形分濃度30重量%の改質シリカ微粒子(11)有機樹脂分散体を調製した。
得られた改質シリカ微粒子(11)有機樹脂分散体について分散性を評価し、結果を表1に示す。
Preparation of Modified Silica Fine Particle (11) Organic Resin Dispersion Modified Example of Modified Silica Fine Particle (11) Organic Resin with a Solid Concentration of 30% by Weight Except that the Modified Silica Fine Particle (11) Powder was used in Example 1. A dispersion was prepared.
The resulting modified silica fine particle (11) organic resin dispersion was evaluated for dispersibility, and the results are shown in Table 1.

[実施例12]
改質シリカ微粒子(12)粉末の調製
実施例1の工程(b)において、有機ジルコニウム化合物としてジルコニウムジメタクリレートジブトキサイド、25%トルエン/n−ブタノール溶液(アヅマックス(株)製)を、シリカ微粒子中の固形分100重量部に対してR1-ZrO3/2として25.3重量部となるように1.484kgを添加した以外は同様にして改質シリカ微粒子(12)粉末を得た。
[Example 12]
Preparation of modified silica fine particles (12) powder In step (b) of Example 1, zirconium dimethacrylate dibutoxide, 25% toluene / n-butanol solution (manufactured by Amax Co., Ltd.) was used as the organic zirconium compound. Modified silica fine particle (12) powder was obtained in the same manner except that 1.484 kg was added so that the amount of R 1 —ZrO 3/2 was 25.3 parts by weight with respect to 100 parts by weight of the solid content.

得られた改質シリカ微粒子(12)粉末について、平均粒子径(DMP)、平均一次粒子径(DM1)、平均二次粒子径(DM2)および安息角を測定し、結果を表1に示した。 The resulting modified silica fine particle (12) powder was measured for average particle size (D MP ), average primary particle size (D M1 ), average secondary particle size (D M2 ) and angle of repose. It was shown to.

改質シリカ微粒子(12)有機溶媒分散体の調製
実施例1において、改質シリカ微粒子(12)粉末を用いた以外は同様にして固形分濃度30重量%の改質シリカ微粒子(12)メタノール分散体および改質シリカ微粒子(12)MIBK分散体を調製した。
Preparation of Modified Silica Fine Particle (12) Organic Solvent Dispersion In Example 1, modified silica fine particle (12) methanol dispersion having a solid content concentration of 30% by weight was used except that the modified silica fine particle (12) powder was used. And modified silica fine particles (12) MIBK dispersion was prepared.

得られた改質シリカ微粒子(12)メタノール分散体について平均粒子径を測定し、結果を表1に示す。
また、固形分濃度30重量%の改質シリカ微粒子(12)メタノール分散体および改質シリカ微粒子(12)メチルイソブチルケトン分散体について分散性および安定性を評価し、結果を表1に示す。
The average particle diameter of the obtained modified silica fine particle (12) methanol dispersion was measured, and the results are shown in Table 1.
Further, the dispersibility and stability of the modified silica fine particles (12) methanol dispersion and the modified silica fine particles (12) methyl isobutyl ketone dispersion having a solid content concentration of 30% by weight were evaluated, and the results are shown in Table 1.

改質シリカ微粒子(12)有機樹脂分散体の調製
実施例1において、改質シリカ微粒子(12)粉末を用いた以外は同様にして固形分濃度30重量%の改質シリカ微粒子(12)有機樹脂分散体を調製した。
得られた改質シリカ微粒子(12)有機樹脂分散体について分散性を評価し、結果を表1に示す。
Preparation of Modified Silica Fine Particle (12) Organic Resin Dispersion Modified silica fine particle (12) organic resin having a solid content concentration of 30% by weight in the same manner as in Example 1 except that the modified silica fine particle (12) powder was used. A dispersion was prepared.
The resulting modified silica fine particle (12) organic resin dispersion was evaluated for dispersibility, and the results are shown in Table 1.

[実施例13]
改質シリカ微粒子(13)粉末の調製
実施例1の工程(b)において、有機アルミニウム化合物としてジメチルイソプロポキシアルミニウム(アヅマックス(株)製)を、シリカ微粒子中の固形分100重量部に対してR1-AlOとして25.3重量部となるように311gを添加した以外は同様にして改質シリカ微粒子(13)粉末を得た。
[Example 13]
Preparation of Modified Silica Fine Particles (13) Powder In step (b) of Example 1, dimethylisopropoxyaluminum (manufactured by Amax Co.) as an organoaluminum compound was added to 100 parts by weight of solid content in silica fine particles. Modified silica fine particle (13) powder was obtained in the same manner except that 311 g of 1- AlO was added so as to be 25.3 parts by weight.

得られた改質シリカ微粒子(13)粉末について、平均粒子径(DMP)、平均一次粒子径(DM1)、平均二次粒子径(DM2)および安息角を測定し、結果を表1に示した。 The resulting modified silica fine particle (13) powder was measured for average particle size (D MP ), average primary particle size (D M1 ), average secondary particle size (D M2 ), and angle of repose. It was shown to.

改質シリカ微粒子(13)有機溶媒分散体の調製
実施例1において、改質シリカ微粒子(13)粉末を用いた以外は同様にして固形分濃度30重量%の改質シリカ微粒子(13)メタノール分散体および改質シリカ微粒子(13)MIBK分散体を調製した。
Preparation of Modified Silica Fine Particle (13) Organic Solvent Dispersion In Example 1, modified silica fine particle (13) methanol dispersion having a solid content concentration of 30% by weight was used except that the modified silica fine particle (13) powder was used. And modified silica fine particles (13) MIBK dispersion was prepared.

得られた改質シリカ微粒子(13)メタノール分散体について平均粒子径を測定し、結果を表1に示す。
また、固形分濃度30重量%の改質シリカ微粒子(13)メタノール分散体および改質シリカ微粒子(13)メチルイソブチルケトン分散体について分散性および安定性を評価し、結果を表1に示す。
The average particle diameter of the resulting modified silica fine particles (13) methanol dispersion was measured, and the results are shown in Table 1.
Further, the dispersibility and stability of the modified silica fine particles (13) methanol dispersion and the modified silica fine particles (13) methyl isobutyl ketone dispersion having a solid content concentration of 30% by weight were evaluated, and the results are shown in Table 1.

改質シリカ微粒子(13)有機樹脂分散体の調製
実施例1において、改質シリカ微粒子(13)粉末を用いた以外は同様にして固形分濃度30重量%の改質シリカ微粒子(13)有機樹脂分散体を調製した。
得られた改質シリカ微粒子(13)有機樹脂分散体について分散性を評価し、結果を表1に示す。
Preparation of Modified Silica Fine Particle (13) Organic Resin Dispersion Modified Example of Modified Silica Fine Particle (13) Organic Resin with a Solid Concentration of 30% by Weight, except that Modified Silica Fine Particle (13) Powder was used in Example 1. A dispersion was prepared.
The resulting modified silica fine particle (13) organic resin dispersion was evaluated for dispersibility, and the results are shown in Table 1.

[実施例14]
改質酸化チタン系微粒子(14)粉末の調製
四塩化チタン(大阪チタニウムテクノロジーズ(株)製)をTiO2換算基準で7.75重量%含む四塩化チタン水溶液7.63kgと、アンモニアを15重量%含むアンモニア水(宇部興産(株)製)2.96kgとを混合し、pH9.5の白色スラリー液を調製した。次いで、このスラリーを濾過した後、イオン交換水で洗浄して、固形分含有量が10重量%の含水チタン酸ケーキ6.22kgを得た。
[Example 14]
Preparation of modified titanium oxide fine particles (14) powder 7.63 kg of titanium tetrachloride aqueous solution containing 7.75% by weight of titanium tetrachloride (manufactured by Osaka Titanium Technologies Co., Ltd.) in terms of TiO 2 and ammonia Was mixed with 2.96 kg of ammonia water (manufactured by Ube Industries, Ltd.) containing 15% by weight to prepare a white slurry liquid having a pH of 9.5. Next, the slurry was filtered and then washed with ion exchange water to obtain 6.22 kg of a hydrous titanate cake having a solid content of 10% by weight.

次に、このケーキに、過酸化水素を35重量%含む過酸化水素水(三菱瓦斯化学(株)製)7.11kgとイオン交換水20.00kgとを加えた後、80℃の温度で1時間、撹拌下で加熱し、さらにイオン交換水28.89kgを加えて、過酸化チタン酸をTiO2換算基準で1重量%含む過酸化チタン酸水溶液を62.22kg得た。この過酸化チタン酸水溶液は、透明な黄褐色でpHは8.5であった。 Next, after adding 7.11 kg of hydrogen peroxide containing 35% by weight of hydrogen peroxide (Mitsubishi Gas Chemical Co., Ltd.) and 20.00 kg of ion-exchanged water to this cake, The mixture was heated with stirring for an hour, and 28.89 kg of ion-exchanged water was further added to obtain 62.22 kg of an aqueous solution of titanic acid peroxide containing 1% by weight of titanic acid peroxide on a TiO 2 basis. This aqueous solution of titanic acid peroxide was transparent yellowish brown and had a pH of 8.5.

次いで、前記過酸化チタン酸水溶液62.22kgに陽イオン交換樹脂(三菱化学(株)製)3.00kgを混合して、これに、スズ酸カリウム(昭和化工(株)製)をSnO2換算基準で1重量%含むスズ酸カリウム水溶液7.78kgを撹拌下で徐々に添加した。次に、カリウムイオンなどを取り込んだ陽イオン交換樹脂を分離した後、オートクレーブ(耐圧硝子工業(株)製、120L)中で165℃の温度で18時間、加熱した。 Next, 62.22 kg of the above-mentioned aqueous solution of titanic acid titanate was mixed with 3.00 kg of a cation exchange resin (manufactured by Mitsubishi Chemical Corporation), and potassium stannate (manufactured by Showa Chemical Co., Ltd.) was converted into SnO 2. 7.78 kg of an aqueous potassium stannate solution containing 1% by weight on a standard basis was gradually added with stirring. Next, after separating the cation exchange resin which took in potassium ion etc., it heated at the temperature of 165 degreeC for 18 hours in the autoclave (The pressure | voltage resistant glass industry Co., Ltd. product, 120L).

次に、得られた混合水溶液を室温まで冷却した後、限外濾過膜装置(旭化成(株)製:ACV−3010)で濃縮したのち、水で10倍置換を行い、固形分濃度が10.0重量%の酸化チタン系微粒子(14)分散液(平均粒子径(DM)=23nm)7kgを得た。 Next, after cooling the obtained mixed aqueous solution to room temperature, after concentrating with an ultrafiltration membrane device (Asahi Kasei Co., Ltd .: ACV-3010), 10-fold substitution with water was performed, and the solid content concentration was 10. 7 kg of a 0 wt% titanium oxide fine particle (14) dispersion (average particle diameter (D M ) = 23 nm) was obtained.

このようにして得られた金属酸化物微粒子を含む水分散ゾルは透明な乳白色であった。さらに、この金属酸化物微粒子中に含まれる金属成分の含有量を測定したところ、各金属成分の酸化物換算基準で、TiO2 87.5重量%、SnO2 10.6重量%およびK2O 1.8重量%であった。さらに、平均粒子径が18nmで、比表面積が161m2/gで、電荷密度が1.447μeq/m2であった。さらに、この金属酸化物微粒子のX線回折ではルチル型結晶であり、結晶子径は9.1nmであった。 The water-dispersed sol containing the metal oxide fine particles thus obtained was transparent milky white. Furthermore, when the content of the metal component contained in the metal oxide fine particles was measured, TiO 2 87.5 wt%, SnO 2 10.6 wt%, and K 2 O 1. It was 8% by weight. Furthermore, the average particle diameter was 18 nm, the specific surface area was 161 m 2 / g, and the charge density was 1.447 μeq / m 2 . Further, the X-ray diffraction of the metal oxide fine particles was a rutile type crystal, and the crystallite diameter was 9.1 nm.

ついで、実施例1の工程(b)において、固形分濃度10重量%のシリカ微粒子(1)分散液の代わりに固形分濃度が10重量%の酸化チタン系微粒子(14)分散液を用いた以外は同様にして改質酸化チタン系微粒子(14)粉末を得た。   Next, in the step (b) of Example 1, a titanium oxide fine particle (14) dispersion having a solid concentration of 10% by weight was used instead of the silica fine particle (1) dispersion having a solid concentration of 10% by weight. Similarly, modified titanium oxide fine particles (14) powder was obtained.

得られた改質酸化チタン系微粒子(14)粉末について、平均粒子径(DMP)、平均一次粒子径(DM1)、平均二次粒子径(DM2)および安息角、29Si MAS NMRスペクトルを測定し、結果を表1に示した。 About the obtained modified titanium oxide fine particles (14) powder, the average particle size (D MP ), the average primary particle size (D M1 ), the average secondary particle size (D M2 ) and the angle of repose, 29 Si MAS NMR spectrum The results are shown in Table 1.

改質酸化チタン系微粒子(14)有機溶媒分散体の調製
実施例1において、改質酸化チタン系微粒子(14)粉末を用いた以外は同様にして固形分濃度30重量%の改質酸化チタン系微粒子(14)メタノール分散体および改質酸化チタン系微粒子(14)MIBK分散体を調製した。
Preparation of Modified Titanium Oxide Fine Particle (14) Organic Solvent Dispersion Modified titanium oxide system having a solid content concentration of 30% by weight in the same manner as in Example 1 except that the modified titanium oxide fine particle (14) powder was used. Fine particle (14) methanol dispersion and modified titanium oxide fine particle (14) MIBK dispersion were prepared.

得られた改質酸化チタン系微粒子(14)メタノール分散体について平均粒子径を測定し、結果を表1に示す。
また、固形分濃度30重量%の改質酸化チタン系微粒子(14)メタノール分散体および改質酸化チタン系微粒子(14)メチルイソブチルケトン分散体について分散性および安定性を評価し、結果を表1に示す。
The average particle diameter of the obtained modified titanium oxide fine particles (14) methanol dispersion was measured, and the results are shown in Table 1.
The dispersibility and stability of the modified titanium oxide fine particles (14) methanol dispersion and the modified titanium oxide fine particles (14) methyl isobutyl ketone dispersion having a solid content concentration of 30% by weight were evaluated. Shown in

改質酸化チタン系微粒子(14)有機樹脂分散体の調製
実施例1において、改質酸化チタン系微粒子(14)粉末を用いた以外は同様にして固形分濃度30重量%の改質酸化チタン系微粒子(14)有機樹脂分散体を調製した。
得られた改質酸化チタン系微粒子(14)有機樹脂分散体について分散性を評価し、結果を表1に示す。
Preparation of Modified Titanium Oxide Fine Particles (14) Organic Resin Dispersion In Example 1, a modified titanium oxide system having a solid content concentration of 30% by weight was used except that the modified titanium oxide fine particles (14) powder was used. A fine particle (14) organic resin dispersion was prepared.
The resulting modified titanium oxide fine particles (14) organic resin dispersion was evaluated for dispersibility, and Table 1 shows the results.

[実施例15]
改質酸化チタン系微粒子(15)粉末の調製
実施例14と同様にして固形分濃度10重量%の酸化チタン系微粒子(14)分散液7.0kgを調製し、実施例14の工程(b)で有機チタニウム化合物としてトリメトキシ(1,2,3,4,5-ペンタメチル-2,4-シクロペンタジエニル)チタニウム(和光純薬工業(株)製)を、酸化チタン微粒子を固形分100重量部に対し、R1-TiO3/2として25.3重量部となるように337gを添加した以外は同様にして改質酸化チタン系微粒子(15)粉末を得た。
得られた改質酸化チタン系微粒子(15)粉末について、平均粒子径(DMP)、平均一次粒子径(DM1)、平均二次粒子径(DM2)および安息角を測定し、結果を表1に示した。
[Example 15]
Preparation of Modified Titanium Oxide Fine Particles (15) Powder In the same manner as in Example 14, 7.0 kg of a dispersion of titanium oxide fine particles (14) having a solid content concentration of 10% by weight was prepared. Step (b) of Example 14 Trimethoxy (1,2,3,4,5-pentamethyl-2,4-cyclopentadienyl) titanium (manufactured by Wako Pure Chemical Industries, Ltd.) as the organic titanium compound and titanium oxide fine particles in a solid content of 100 parts by weight On the other hand, modified titanium oxide fine particles (15) were obtained in the same manner except that 337 g was added so as to be 25.3 parts by weight as R 1 —TiO 3/2 .
For the modified titanium oxide fine particles (15) obtained, the average particle size (D MP ), average primary particle size (D M1 ), average secondary particle size (D M2 ) and angle of repose were measured, and the results were It is shown in Table 1.

改質酸化チタン微粒子(15)有機溶媒分散体の調製
実施例1において、改質酸化チタン微粒子(15)粉末を用いた以外は同様にして固形分濃度30重量%の改質酸化チタン微粒子(15)メタノール分散体および改質酸化チタン微粒子(15)MIBK分散体を調製した。
Preparation of Modified Titanium Oxide Fine Particles (15) Organic Solvent Dispersion Modified Example Titanium Oxide Fine Particles (15) having a solid content concentration of 30% by weight in Example 1 except that the modified titanium oxide fine particles (15) powder was used. ) Methanol dispersion and modified titanium oxide fine particles (15) MIBK dispersion were prepared.

得られた改質酸化チタン微粒子(15)メタノール分散体について平均粒子径を測定し、結果を表1に示す。
また、固形分濃度30重量%の改質酸化チタン微粒子(15)メタノール分散体および改質酸化チタン微粒子(15)メチルイソブチルケトン分散体について分散性および安定性を評価し、結果を表1に示す。
The average particle diameter of the obtained modified titanium oxide fine particles (15) methanol dispersion was measured, and the results are shown in Table 1.
Further, the dispersibility and stability of the modified titanium oxide fine particles (15) methanol dispersion and the modified titanium oxide fine particles (15) methyl isobutyl ketone dispersion having a solid content concentration of 30% by weight were evaluated, and the results are shown in Table 1. .

改質酸化チタン微粒子(15)有機樹脂分散体の調製
実施例1において、改質酸化チタン微粒子(15)粉末を用いた以外は同様にして固形分濃度30重量%の改質酸化チタン微粒子(15)有機樹脂分散体を調製した。
得られた改質酸化チタン微粒子(15)有機樹脂分散体について分散性を評価し、結果を表1に示す。
Preparation of Modified Titanium Oxide Fine Particles (15) Organic Resin Dispersion In Example 1, modified titanium oxide fine particles having a solid content concentration of 30% by weight (15) except that modified titanium oxide fine particles (15) powder was used. ) An organic resin dispersion was prepared.
The resulting modified titanium oxide fine particles (15) organic resin dispersion was evaluated for dispersibility, and the results are shown in Table 1.

[実施例16]
改質五酸化アンチモン微粒子(16)粉末の調製
純水8kgに苛性カリ(旭硝子(株)製:純度85%)250gを溶解した溶液中に三酸化アンチモン(日本精鉱(株)製;PATOX-K 純度98.5%)500gを懸濁した。この懸濁液を95℃に加熱し、次いで、過酸化水素水(林純薬(株)製:特級、濃度35重量%)150gを純水500gで希釈した水溶液を9時間で添加し、三酸化アンチモンを溶解し、その後、11時間熟成した。ついで、冷却後、得られた溶液から8kgをとり、この溶液を純水48kgで希釈した後、陽イオン交換樹脂(三菱化学(株)製:pk−216)でPHが3.5になるまで処理して脱イオンを行った。脱イオンして得られた溶液を温度70℃で10時間熟成した後、限外膜で濃縮して固形分濃度14.6重量%の五酸化アンチモンからなる五酸化アンチモン微粒子(16)分散液を調製した。
[Example 16]
Preparation of modified antimony pentoxide fine particles (16) powder Antimony trioxide (manufactured by Nippon Seiko Co., Ltd .; PATOX-K) in a solution of 250 g of caustic potash (Asahi Glass Co., Ltd .: purity 85%) dissolved in 8 kg of pure water 500 g (purity 98.5%) was suspended. This suspension was heated to 95 ° C., and then an aqueous solution obtained by diluting 150 g of hydrogen peroxide solution (produced by Hayashi Junyaku Co., Ltd .: special grade, concentration 35% by weight) with 500 g of pure water was added in 9 hours. Antimony oxide was dissolved and then aged for 11 hours. Then, after cooling, 8 kg is taken from the obtained solution, and after diluting this solution with 48 kg of pure water, PH is 3.5 with a cation exchange resin (Mitsubishi Chemical Corporation: pk-216). Treated and deionized. The solution obtained by deionization was aged for 10 hours at a temperature of 70 ° C., and then concentrated on an ultra-thin film to obtain antimony pentoxide fine particle (16) dispersion composed of antimony pentoxide having a solid concentration of 14.6% by weight. Prepared.

ついで、UF膜モジュール(旭化成ケミカルズ(株)製:SIP−2013)を用いて10倍量の水で置換した後に希釈して固形分濃度10重量%にした。
実施例1の工程(b)で、有機珪素化合物としてγ-メタアクリロオキシプロピルトリメトキシシラン(信越化学(株)製:KBM−503)を、五酸化アンチモン微粒子の固形分100重量部に対してR1-SiO3/2として8.7重量部となるように120g添加した以外は同様にして改質五酸化アンチモン微粒子(16)粉末を得た。
Subsequently, after substituting with 10 times the amount of water using a UF membrane module (Asahi Kasei Chemicals Corporation: SIP-2013), it was diluted to a solid content concentration of 10% by weight.
In step (b) of Example 1, γ-methacryloxypropyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd .: KBM-503) was used as the organosilicon compound with respect to 100 parts by weight of the solid content of the antimony pentoxide fine particles. Thus, modified antimony pentoxide fine particles (16) powder was obtained in the same manner except that 120 g of R 1 —SiO 3/2 was added to 8.7 parts by weight.

得られた改質五酸化アンチモン微粒子(16)粉末について、平均粒子径(DMP)、平均一次粒子径(DM1)、平均粒子径(DM2)および安息角、29Si MAS NMRスペクトルを測定し、結果を表1に示した。 About the obtained modified antimony pentoxide fine particles (16) powder, the average particle diameter (D MP ), average primary particle diameter (D M1 ), average particle diameter (D M2 ), repose angle, and 29 Si MAS NMR spectrum were measured. The results are shown in Table 1.

改質五酸化アンチモン微粒子(16)有機溶媒分散体の調製
実施例1において、改質五酸化アンチモン微粒子(16)粉末を用いた以外は同様にして固形分濃度30重量%の改質五酸化アンチモン微粒子(16)メタノール分散体および改質五酸化アンチモン微粒子(16)MIBK分散体を調製した。
Preparation of modified antimony pentoxide fine particles (16) organic solvent dispersion Modified antimony pentoxide having a solid concentration of 30% by weight in the same manner as in Example 1, except that the modified antimony pentoxide fine particles (16) powder was used. Fine particle (16) methanol dispersion and modified antimony pentoxide fine particle (16) MIBK dispersion were prepared.

得られた改質五酸化アンチモン微粒子(16)メタノール分散体について平均粒子径を測定し、結果を表1に示す。
また、固形分濃度30重量%の改質五酸化アンチモン微粒子(16)メタノール分散体および改質五酸化アンチモン微粒子(16)メチルイソブチルケトン分散体について分散性および安定性を評価し、結果を表1に示す。
The average particle diameter of the obtained modified antimony pentoxide fine particles (16) methanol dispersion was measured, and the results are shown in Table 1.
Further, the dispersibility and stability of the modified antimony pentoxide fine particles (16) methanol dispersion and the modified antimony pentoxide fine particles (16) methyl isobutyl ketone dispersion having a solid content concentration of 30% by weight were evaluated. Shown in

改質五酸化アンチモン微粒子(16)有機樹脂分散体の調製
実施例1において、改質五酸化アンチモン微粒子(16)粉末を用いた以外は同様にして固形分濃度30重量%の改質五酸化アンチモン微粒子(16)有機樹脂分散体を調製した。
得られた改質五酸化アンチモン微粒子(16)有機樹脂分散体について分散性を評価し、結果を表1に示す。
Preparation of modified antimony pentoxide fine particles (16) organic resin dispersion In Example 1, modified antimony pentoxide having a solid concentration of 30% by weight, except that the modified antimony pentoxide fine particles (16) powder was used. A fine particle (16) organic resin dispersion was prepared.
The resulting modified antimony pentoxide fine particles (16) organic resin dispersion was evaluated for dispersibility, and the results are shown in Table 1.

[実施例17]
改質酸化ジルコニウム微粒子(17)粉末の調製
酸化ジルコニウム微粒子(17)の調製
固形分濃度9.5重量%の酸化ジルコニウム水酸化物ゲル317.9kgを535.3kgの水に懸濁し、固形分濃度3.5重量%の酸化ジルコニウム水酸化物ゲル分散液を調製した。
[Example 17]
Preparation of modified zirconium oxide fine particle (17) powder
Preparation of Zirconium Oxide Fine Particles (17) Zirconium oxide hydroxide gel having a solid content concentration of 9.5 wt% was suspended in 535.3 kg of water, and zirconium oxide hydroxide having a solid content concentration of 3.5 wt% was suspended. A gel dispersion was prepared.

ついで、上記固形分濃度3.5重量%の酸化ジルコニウム水酸化物ゲル分散液に濃度17重量%のKOH水溶液354.9kg、濃度35重量%の過酸化水素水溶液302.0kg、濃度10重量%の酒石酸水溶液88.5kgを加え、撹拌下、30℃で2時間撹拌して酸化ジルコニウム水酸化物ゲルを解膠した。   Next, the zirconium oxide hydroxide gel dispersion having a solid content concentration of 3.5% by weight was added with 354.9 kg of a KOH aqueous solution having a concentration of 17% by weight, 302.0 kg of a hydrogen peroxide aqueous solution having a concentration of 35% by weight, and 10% by weight. A tartaric acid aqueous solution (88.5 kg) was added, and the mixture was stirred at 30 ° C. for 2 hours to peptize the zirconium oxide hydroxide gel.

この時、(MOH)/(MZr)は20、(MPO)/(MZr)は10であった。
ついで、酸化ジルコニウム水酸化物ゲルを解膠した溶液に濃度10重量%の酒石酸水溶液88.5kgを加え、オートクレーブにて、150℃で11時間水熱処理した。
At this time, (M OH ) / (M Zr ) was 20, and (M PO ) / (M Zr ) was 10.
Next, 88.5 kg of a 10% by weight aqueous tartaric acid solution was added to the peptized zirconium oxide hydroxide gel and hydrothermally treated at 150 ° C. for 11 hours in an autoclave.

ついで、酸化ジルコニウム微粒子分散液を限外濾過膜法で充分に洗浄した後に超音波ホモジナイザー((株)日本精機製作所製:US-600TCVP)にて分散処理し、固形分濃度11.2重量%の酸化ジルコニウム微粒子(17)分散液を調製した。
酸化ジルコニウム微粒子(17)の平均粒子径は粒径測定装置(大塚電子(株)製:ELS−Z)にて測定し、結果を表1に示す。
Next, the zirconium oxide fine particle dispersion was thoroughly washed by the ultrafiltration membrane method and then subjected to dispersion treatment with an ultrasonic homogenizer (manufactured by Nippon Seiki Seisakusho: US-600TCVP) to obtain a solid content concentration of 11.2% by weight. A dispersion of zirconium oxide fine particles (17) was prepared.
The average particle size of the zirconium oxide fine particles (17) was measured with a particle size measuring device (manufactured by Otsuka Electronics Co., Ltd .: ELS-Z) and the results are shown in Table 1.

以下、実施例1の工程(a)で、金属酸化物微粒子として固形分濃度11.2重量%の酸化ジルコニウム微粒子(17)分散液を希釈して固形分濃度10重量%の酸化ジルコニウム微粒子(17)分散液10kgを調製して用い、工程(b)で、有機珪素化合物としてγ-メタアクリロオキシプロピルトリメトキシシラン(信越化学(株)製:KBM−503)を、酸化ジルコニウム微粒子の固形分100重量部に対してR1-SiO3/2として18.1重量部となるように250g添加した以外は同様にして改質酸化ジルコニウム微粒子(17)粉末を得た。 Hereinafter, in step (a) of Example 1, a zirconium oxide fine particle (17) dispersion having a solid content concentration of 11.2 wt% as metal oxide fine particles was diluted to obtain a zirconium oxide fine particle (17 ) 10 kg of a dispersion was prepared and used, and in step (b), γ-methacrylooxypropyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd .: KBM-503) was used as the organosilicon compound, and the solid content of zirconium oxide fine particles Modified zirconium oxide fine particles (17) powder was obtained in the same manner except that 250 g was added to 100 parts by weight as R 1 —SiO 3/2 so as to be 18.1 parts by weight.

得られた改質酸化ジルコニウム微粒子(17)粉末について、平均粒子径(DMP)、平均一次粒子径(DM1)、平均二次粒子径(DM2)および安息角、29Si MAS NMRスペクトルを測定し、結果を表1に示した。 About the obtained modified zirconium oxide fine particle (17) powder, average particle diameter (D MP ), average primary particle diameter (D M1 ), average secondary particle diameter (D M2 ), angle of repose, 29 Si MAS NMR spectrum The results are shown in Table 1.

改質酸化ジルコニウム微粒子(17)有機溶媒分散体の調製
実施例1において、改質酸化ジルコニウム微粒子(17)粉末を用いた以外は同様にして固形分濃度30重量%の改質酸化ジルコニウム微粒子(17)メタノール分散体および改質酸化ジルコニウム微粒子(17)MIBK分散体を調製した。
Preparation of Modified Zirconium Oxide Fine Particles (17) Organic Solvent Dispersion Modified Example Zirconium Oxide Fine Particles (17) having a solid content concentration of 30% by weight in Example 1 except that the modified zirconium oxide fine particles (17) powder was used. ) Methanol dispersion and modified zirconium oxide fine particles (17) MIBK dispersion were prepared.

得られた改質酸化ジルコニウム微粒子(17)メタノール分散体について平均粒子径を測定し、結果を表1に示す。
また、固形分濃度30重量%の改質酸化ジルコニウム微粒子(17)メタノール分散体および改質酸化ジルコニウム微粒子(17)メチルイソブチルケトン分散体について分散性および安定性を評価し、結果を表1に示す。
The average particle diameter of the resulting modified zirconium oxide fine particles (17) methanol dispersion was measured, and the results are shown in Table 1.
Further, the dispersibility and stability of the modified zirconium oxide fine particles (17) methanol dispersion and the modified zirconium oxide fine particles (17) methyl isobutyl ketone dispersion having a solid content concentration of 30% by weight were evaluated, and the results are shown in Table 1. .

改質酸化ジルコニウム微粒子(17)有機樹脂分散体の調製
実施例1において、改質酸化ジルコニウム微粒子(17)粉末を用いた以外は同様にして固形分濃度30重量%の改質酸化ジルコニウム微粒子(17)有機樹脂分散体を調製した。
得られた改質酸化ジルコニウム微粒子(17)有機樹脂分散体について分散性を評価し、結果を表1に示す。
Preparation of Modified Zirconium Oxide Fine Particles (17) Organic Resin Dispersion Modified Example Zirconium Oxide Fine Particles (17) having a solid content concentration of 30% by weight, except that the modified zirconium oxide fine particles (17) powder was used in Example 1. ) An organic resin dispersion was prepared.
The resulting modified zirconium oxide fine particle (17) organic resin dispersion was evaluated for dispersibility, and the results are shown in Table 1.

[比較例1]
改質シリカ微粒子(R1)粉末の調製
金属酸化物微粒子としてシリカゾル(日揮触媒化成(株)製:SI−40、平均粒子径(DM)=26nm、SiO2濃度40.5重量%)を希釈して固形分濃度20重量%のシリカ微粒子(R1)分散液400gを調製した。
[Comparative Example 1]
Preparation of modified silica fine particle (R1) powder Silica sol (manufactured by JGC Catalysts & Chemicals, Inc .: SI-40, average particle size (D M ) = 26 nm, SiO 2 concentration 40.5 wt%) is diluted as metal oxide fine particles Thus, 400 g of a silica fine particle (R1) dispersion having a solid content concentration of 20% by weight was prepared.

つぎに、シリカ微粒子(R1)分散液400gをビーカーに採取した。ついで、メタノール400gを加え、固形分濃度10重量%のシリカ微粒子(R1)水/メタノール分散液を調製した。   Next, 400 g of silica fine particle (R1) dispersion was collected in a beaker. Next, 400 g of methanol was added to prepare a silica fine particle (R1) water / methanol dispersion with a solid content concentration of 10% by weight.

この時、水/メタノール混合分散媒中のメタノールの割合は53重量%である。
ついで、シリカ微粒子(R1)水/メタノール分散液に有機珪素化合物としてγ-メタアクリロオキシプロピルトリメトキシシラン(信越化学(株)製:KBM−503)を、シリカ微粒子の固形分100重量部に対してR1-SiO3/2として25.3重量部となるように14.0gを添加し、5分間撹拌した。
ついで、撹拌しながら分散液の温度を60℃に昇温した後、濃度5重量%のアンモニア水1.6gを1分間で添加して有機珪素化合物の加水分解を行った。
At this time, the ratio of methanol in the water / methanol mixed dispersion medium is 53% by weight.
Next, γ-methacryloxypropyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd .: KBM-503) as an organosilicon compound was added to the silica fine particle (R1) water / methanol dispersion to 100 parts by weight of the solid content of the silica fine particles. On the other hand, 14.0 g of R 1 —SiO 3/2 was added to 25.3 parts by weight and stirred for 5 minutes.
Next, the temperature of the dispersion was raised to 60 ° C. while stirring, and 1.6 g of ammonia water having a concentration of 5% by weight was added in 1 minute to hydrolyze the organosilicon compound.

ついで、限外濾過膜にてメタノールに溶媒置換し、ついで、箱形乾燥機にて、60℃で24時間乾燥して改質シリカ微粒子(R1)粉末を調製した。
得られた改質シリカ微粒子(R1)粉末について、平均粒子径(DMP)、平均一次粒子径(DM1)、平均二次粒子径(DM2)および安息角、29Si MAS NMRスペクトルをを測定し、結果を表1に示した。
Subsequently, the solvent was replaced with methanol by an ultrafiltration membrane, and then the resultant was dried at 60 ° C. for 24 hours by a box dryer to prepare modified silica fine particle (R1) powder.
About the obtained modified silica fine particle (R1) powder, average particle diameter (D MP ), average primary particle diameter (D M1 ), average secondary particle diameter (D M2 ), angle of repose, 29 Si MAS NMR spectrum The results are shown in Table 1.

改質シリカ微粒子(R1)有機溶媒分散体の調製
改質シリカ微粒子(R1)粉末5gをメタノールおよびメチルイソブチルケトンに混合し、充分撹拌して固形分濃度30重量%の改質シリカ微粒子(R1)メタノール分散体および改質シリカ微粒子(R1)メチルイソブチルケトン分散体を調製した。
得られた改質シリカ微粒子(R1)メタノール分散体および改質シリカ微粒子(R1)メチルイソブチルケトン分散体について分散性および安定性を評価し、結果を表1に示す。
Preparation of modified silica fine particle (R1) organic solvent dispersion Modified silica fine particle (R1) powder 5 g was mixed with methanol and methyl isobutyl ketone, and stirred well to give a modified silica fine particle (R1) with a solid content of 30% by weight. Methanol dispersion and modified silica fine particles (R1) methyl isobutyl ketone dispersion were prepared.
The resulting modified silica fine particle (R1) methanol dispersion and modified silica fine particle (R1) methyl isobutyl ketone dispersion were evaluated for dispersibility and stability, and the results are shown in Table 1.

改質シリカ微粒子(R1)有機樹脂分散体の調製
改質シリカ微粒子(R1)粉末3gを、ライトアクリレートDPE-6A(以後単にDPE−6A)(共栄社化学(株)製ジペンタエリスリトールヘキサアクリレート、UV硬化型アクリル樹脂(多価アクリルモノマー)に混合し、充分撹拌して固形分濃度30重量%の改質シリカ微粒子(R1)有機樹脂分散体を調製した。
得られた改質シリカ微粒子(R1)有機樹脂分散体について分散性を評価し、結果を表1に示す。
Preparation of modified silica fine particle (R1) organic resin dispersion 3 g of modified silica fine particle (R1) powder was added to light acrylate DPE-6A (hereinafter simply DPE-6A) (Kyoeisha Chemical Co., Ltd. dipentaerythritol hexaacrylate, UV The mixture was mixed with a curable acrylic resin (polyvalent acrylic monomer) and sufficiently stirred to prepare a modified silica fine particle (R1) organic resin dispersion having a solid concentration of 30% by weight.
The resulting modified silica fine particle (R1) organic resin dispersion was evaluated for dispersibility, and the results are shown in Table 1.

[比較例2]
改質シリカ微粒子(R2)粉末の調製
実施例1の工程(d)において、工程(c)で調製した噴霧乾燥用シリカ微粒子(1)分散液を固形分濃度0.1重量%に希釈し、入口温度150℃の熱風中に噴霧した以外は同様にして改質シリカ微粒子(R2)粉末を得た。この時、出口温度は101℃であった。
[Comparative Example 2]
Preparation of modified silica fine particle (R2) powder In step (d) of Example 1, the silica fine particle for spray drying (1) prepared in step (c) was diluted to a solid content concentration of 0.1% by weight, Modified silica fine particle (R2) powder was obtained in the same manner except for spraying in hot air having an inlet temperature of 150 ° C. At this time, the outlet temperature was 101 ° C.

得られた改質シリカ微粒子(R2)粉末について、平均粒子径(DMP)、平均一次粒子径(DM1)、平均二次粒子径(DM2)および安息角、29Si MAS NMRスペクトルを測定し、結果を表1に示した。 Measurement of average particle size (D MP ), average primary particle size (D M1 ), average secondary particle size (D M2 ) and angle of repose, 29 Si MAS NMR spectrum of the resulting modified silica fine particle (R2) powder The results are shown in Table 1.

改質シリカ微粒子(R2)有機溶媒分散体の調製
改質シリカ微粒子(R2)粉末5gをメタノールおよびメチルイソブチルケトンに混合し、充分撹拌して固形分濃度30重量%の改質シリカ微粒子(R2)メタノール分散体および改質シリカ微粒子(R2)メチルイソブチルケトン分散体を調製した。
Preparation of modified silica fine particle (R2) organic solvent dispersion 5 g of modified silica fine particle (R2) powder was mixed with methanol and methyl isobutyl ketone, and stirred well to give a modified silica fine particle (R2) with a solid content concentration of 30% by weight. Methanol dispersion and modified silica fine particle (R2) methyl isobutyl ketone dispersion were prepared.

得られた改質シリカ微粒子(R2)メタノール分散体および改質シリカ微粒子(R2)メチルイソブチルケトン分散体について分散性および安定性を評価し、結果を表1に示す。   The resulting modified silica fine particle (R2) methanol dispersion and modified silica fine particle (R2) methyl isobutyl ketone dispersion were evaluated for dispersibility and stability, and the results are shown in Table 1.

改質シリカ微粒子(R2)有機樹脂分散体の調製
改質シリカ微粒子(R2)粉末3gを、ライトアクリレートDPE-6A(以後単にDPE−6A)(共栄社化学(株)製ジペンタエリスリトールヘキサアクリレート、UV硬化型アクリル樹脂(多価アクリルモノマー)に混合し、充分撹拌して固形分濃度30重量%の改質シリカ微粒子(R2)有機樹脂分散体を調製した。
得られた改質シリカ微粒子(R2)有機樹脂分散体について分散性を評価し、結果を表1に示す。
Preparation of modified silica fine particle (R2) organic resin dispersion 3 g of modified silica fine particle (R2) powder was added to light acrylate DPE-6A (hereinafter simply DPE-6A) (Kyoeisha Chemical Co., Ltd. dipentaerythritol hexaacrylate, UV The mixture was mixed with a curable acrylic resin (polyvalent acrylic monomer) and sufficiently stirred to prepare a modified silica fine particle (R2) organic resin dispersion having a solid concentration of 30% by weight.
The resulting modified silica fine particle (R2) organic resin dispersion was evaluated for dispersibility, and the results are shown in Table 1.

[比較例3]
改質シリカ微粒子(R3)粉末の調製
比較例1において、固形分濃度10重量%のシリカ微粒子(1)分散液の代わりに実施例14と同様にして調製した固形分濃度が10重量%の酸化チタン系微粒子(14)分散液を用いた以外は同様にして改質酸化チタン微粒子(R3)粉末を調製した。
[Comparative Example 3]
Preparation of Modified Silica Fine Particles (R3) Powder In Comparative Example 1, instead of the silica fine particle (1) dispersion having a solid content concentration of 10% by weight, an oxidation having a solid content concentration of 10% by weight prepared in the same manner as in Example 14. Modified titanium oxide fine particle (R3) powder was prepared in the same manner except that the titanium-based fine particle (14) dispersion was used.

得られた改質酸化チタン微粒子(R3)粉末について、平均粒子径(DMP)、平均一次粒子径(DM1)、平均二次粒子径(DM2)および安息角、29Si MAS NMRスペクトルを測定し、結果を表1に示した。 About the obtained modified titanium oxide fine particle (R3) powder, average particle diameter (D MP ), average primary particle diameter (D M1 ), average secondary particle diameter (D M2 ), angle of repose, 29 Si MAS NMR spectrum The results are shown in Table 1.

改質酸化チタン微粒子(R3)有機溶媒分散体の調製
改質酸化チタン微粒子(R3)粉末5gをメタノールおよびメチルイソブチルケトンに混合し、充分撹拌して固形分濃度30重量%の改質酸化チタン微粒子(R3)メタノール分散体および改質酸化チタン微粒子(R3)メチルイソブチルケトン分散体を調製した。
Preparation of modified titanium oxide fine particle (R3) organic solvent dispersion Modified titanium oxide fine particle (R3) powder 5g was mixed with methanol and methyl isobutyl ketone, and stirred well. (R3) methanol dispersion and modified titanium oxide fine particles (R3) methyl isobutyl ketone dispersion were prepared.

得られた改質酸化チタン微粒子(R3)メタノール分散体および改質酸化チタン微粒子(R3)メチルイソブチルケトン分散体について分散性および安定性を評価し、結果を表1に示す。   The obtained modified titanium oxide fine particle (R3) methanol dispersion and modified titanium oxide fine particle (R3) methyl isobutyl ketone dispersion were evaluated for dispersibility and stability, and the results are shown in Table 1.

改質酸化チタン微粒子(R3)有機樹脂分散体の調製
改質酸化チタン微粒子(R3)粉末3gを、ライトアクリレートDPE-6A(以後単にDPE−6A)(共栄社化学(株)製ジペンタエリスリトールヘキサアクリレート、UV硬化型アクリル樹脂(多価アクリルモノマー)に混合し、充分撹拌して固形分濃度30重量%の改質酸化チタン微粒子(R3)有機樹脂分散体を調製した。
得られた改質酸化チタン微粒子(R3)有機樹脂分散体について分散性を評価し、結果を表1に示す。
Preparation of modified titanium oxide fine particle (R3) organic resin dispersion 3 g of modified titanium oxide fine particle (R3) powder was added to light acrylate DPE-6A (hereinafter simply DPE-6A) (Kyoeisha Chemical Co., Ltd. dipentaerythritol hexaacrylate). Then, it was mixed with a UV curable acrylic resin (polyvalent acrylic monomer) and sufficiently stirred to prepare a modified titanium oxide fine particle (R3) organic resin dispersion having a solid content concentration of 30% by weight.
Dispersibility of the obtained modified titanium oxide fine particle (R3) organic resin dispersion was evaluated, and the results are shown in Table 1.

[比較例4]
改質酸化ジルコニウム微粒子(R4)粉末の調製
比較例1において、固形分濃度10重量%のシリカ微粒子(R1)分散液の代わりに、実施例17と同様にして調製した固形分濃度11.2重量%の酸化ジルコニウム微粒子(17)分散液を用い、有機珪素化合物としてのγ-メタアクリロオキシプロピルトリメトキシシラン(信越化学(株)製:KBM−503)を、ジルコニア微粒子の固形分100重量に対してR1-SiO3/2として18.1重量部となるように10.0g添加した以外は同様にして改質酸化ジルコニウム微粒子(R4)粉末を調製した。
[Comparative Example 4]
Preparation of Modified Zirconium Oxide Fine Particles (R4) Powder In Comparative Example 1, a solid content concentration of 11.2 wt% prepared in the same manner as in Example 17 instead of the silica fine particle (R1) dispersion having a solid content concentration of 10 wt%. % Zirconia fine particle (17) dispersion, and γ-methacryloxypropyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd .: KBM-503) as an organosilicon compound was added to a solid content of zirconia fine particles of 100 weight. On the other hand, modified zirconium oxide fine particles (R4) powder was prepared in the same manner except that 10.0 g of R 1 —SiO 3/2 was added to give 18.1 parts by weight.

得られた改質酸化ジルコニウム微粒子(R4)粉末について、平均粒子径(DMP)、平均一次粒子径(DM1)、平均二次粒子径(DM2)および安息角、29Si MAS NMRスペクトルを測定し、結果を表1に示した。 About the obtained modified zirconium oxide fine particles (R4) powder, average particle diameter (D MP ), average primary particle diameter (D M1 ), average secondary particle diameter (D M2 ), angle of repose, 29 Si MAS NMR spectrum The results are shown in Table 1.

改質酸化ジルコニウム微粒子(R4)有機溶媒分散体の調製
改質酸化ジルコニウム微粒子(R4)粉末5gをメタノールおよびメチルイソブチルケトンに混合し、充分撹拌して固形分濃度30重量%の改質酸化ジルコニウム微粒子(R4)メタノール分散体および改質酸化ジルコニウム微粒子(R4)メチルイソブチルケトン分散体を調製した。
Preparation of modified zirconium oxide fine particle (R4) organic solvent dispersion Modified zirconium oxide fine particle (R4) powder 5g was mixed with methanol and methyl isobutyl ketone, and stirred well. (R4) methanol dispersion and modified zirconium oxide fine particles (R4) methyl isobutyl ketone dispersion were prepared.

得られた改質酸化ジルコニウム微粒子(R4)メタノール分散体および改質酸化ジルコニウム微粒子(R4)メチルイソブチルケトン分散体について分散性および安定性を評価し、結果を表1に示す。   The resulting modified zirconium oxide fine particle (R4) methanol dispersion and modified zirconium oxide fine particle (R4) methyl isobutyl ketone dispersion were evaluated for dispersibility and stability, and the results are shown in Table 1.

改質酸化ジルコニウム微粒子(R4)有機樹脂分散体の調製
改質酸化ジルコニウム微粒子(R4)粉末3gを、ライトアクリレートDPE-6A(以後単にDPE−6A)(共栄社化学(株)製ジペンタエリスリトールヘキサアクリレート、UV硬化型アクリル樹脂(多価アクリルモノマー)に混合し、充分撹拌して固形分濃度30重量%の改質酸化ジルコニウム微粒子(R4)有機樹脂分散体を調製した。
得られた改質酸化ジルコニウム微粒子(R4)有機樹脂分散体について分散性を評価し、結果を表1に示す。
Preparation of Modified Zirconium Oxide Fine Particles (R4) Organic Resin Dispersion 3 g of modified zirconium oxide fine particles (R4) powder was added to light acrylate DPE-6A (hereinafter simply DPE-6A) (Kyoeisha Chemical Co., Ltd. dipentaerythritol hexaacrylate). Then, it was mixed with a UV curable acrylic resin (polyvalent acrylic monomer) and sufficiently stirred to prepare a modified zirconium oxide fine particle (R4) organic resin dispersion having a solid content concentration of 30% by weight.
Dispersibility of the resulting modified zirconium oxide fine particle (R4) organic resin dispersion was evaluated, and the results are shown in Table 1.

[比較例5]
改質五酸化アンチモン微粒子(R5)粉末の調製
比較例1において、固形分濃度10重量%のシリカ微粒子(R1)分散液の代わりに、実施例16と同様にして調製した固形分濃度11.2重量%の五酸化アンチモン微粒子(16)分散液を用い、有機珪素化合物としてのγ-メタアクリロオキシプロピルトリメトキシシラン(信越化学(株)製:KBM−503)を、五酸化アンチモン微粒子の固形分100重量部に対してR1-SiO3/2として8.7重量部となるように4.8g添加した以外は同様にして改質五酸化アンチモン微粒子(R5)粉末を得た。
[Comparative Example 5]
Preparation of modified antimony pentoxide fine particles (R5) powder In Comparative Example 1, instead of the silica fine particle (R1) dispersion having a solid content concentration of 10% by weight, the solid content concentration prepared in the same manner as in Example 16 was 11.2. Using γ-methacrylooxypropyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd .: KBM-503) as an organosilicon compound, using a dispersion of antimony pentoxide fine particles (16) in weight%, solid antimony pentoxide fine particles. Modified antimony pentoxide fine particles (R5) were obtained in the same manner except that 4.8 g of R 1 —SiO 3/2 was added to 8.7 parts by weight per 100 parts by weight of the minute.

得られた改質五酸化アンチモン微粒子(R5)粉末について、平均粒子径(DMP)、平均一次粒子径(DM1)、平均二次粒子径(DM2)および安息角、29Si MAS NMRスペクトルを測定し、結果を表1に示した。 About the obtained modified antimony pentoxide fine particles (R5) powder, average particle diameter (D MP ), average primary particle diameter (D M1 ), average secondary particle diameter (D M2 ) and angle of repose, 29 Si MAS NMR spectrum The results are shown in Table 1.

改質五酸化アンチモン微粒子(R5)有機溶媒分散体の調製
実施例1において、改質五酸化アンチモン微粒子(R5)粉末を用いた以外は同様にして固形分濃度30重量%の改質五酸化アンチモン微粒子(R5)メタノール分散体および改質五酸化アンチモン微粒子(R5)MIBK分散体を調製した。
Preparation of modified antimony pentoxide fine particles (R5) organic solvent dispersion Modified antimony pentoxide having a solid content concentration of 30% by weight in the same manner as in Example 1 except that modified antimony pentoxide fine particles (R5) powder was used. Fine particle (R5) methanol dispersion and modified antimony pentoxide fine particle (R5) MIBK dispersion were prepared.

得られた改質五酸化アンチモン微粒子(R5)メタノール分散体について平均粒子径を測定し、結果を表1に示す。
また、固形分濃度30重量%の改質五酸化アンチモン微粒子(R5)メタノール分散体および改質五酸化アンチモン微粒子(R5)メチルイソブチルケトン分散体について分散性および安定性を評価し、結果を表1に示す。
The average particle diameter of the resulting modified antimony pentoxide fine particles (R5) methanol dispersion was measured, and the results are shown in Table 1.
In addition, the dispersibility and stability of the modified antimony pentoxide fine particle (R5) methanol dispersion and the modified antimony pentoxide fine particle (R5) methyl isobutyl ketone dispersion having a solid content concentration of 30% by weight were evaluated. Shown in

改質五酸化アンチモン微粒子(R5)有機樹脂分散体の調製
実施例1において、改質五酸化アンチモン微粒子(R5)粉末を用いた以外は同様にして固形分濃度30重量%の改質五酸化アンチモン微粒子(R5)有機樹脂分散体を調製した。
Preparation of modified antimony pentoxide fine particles (R5) organic resin dispersion In Example 1, modified antimony pentoxide having a solid concentration of 30% by weight, except that modified antimony pentoxide fine particles (R5) powder was used. A fine particle (R5) organic resin dispersion was prepared.

得られた改質五酸化アンチモン微粒子(R5)有機樹脂分散体について分散性を評価し、結果を表1に示す。   The resulting modified antimony pentoxide fine particles (R5) organic resin dispersion was evaluated for dispersibility, and the results are shown in Table 1.

Figure 2014196215
Figure 2014196215

Figure 2014196215
Figure 2014196215

Figure 2014196215
Figure 2014196215

Claims (13)

(a)金属酸化物微粒子の水および/または有機溶媒分散液を調製したのち、
(b)該分散液に、下記式(1)で表される有機金属化合物を添加し、次いで、
(d)分散液を噴霧乾燥する
p-MXq-p ・・・・・・・(1)
(但し、式中、Mは金属元素、Rは炭素数1〜20の非置換または置換炭化水素基であって、互いに同一であっても異なっていてもよい。Xは炭素数1〜4のアルコキシ基、水酸基、ハロゲン、水素を示し、qは金属元素Mの価数であって3または4、p:0〜2の整数であってq−pが2または3)
ことを特徴とする、
粉末の平均粒子径(DMP)が1〜200μmの範囲にあり、一次粒子および二次粒子の集合体から構成されてなり、
二次粒子のレーザー法で測定した平均二次粒子径(DM2)が5〜500nmの範囲にあり、一次粒子のTEM法で観察して測定した平均一次粒子径(DM1)が5〜500nmの範囲にあり、
平均二次粒子径(DM2)と平均一次粒子径(DM1)との比(DM2)/(DM1)が1〜10の範囲にあり、
安息角が40°以下である、改質金属酸化物微粒子粉末の製造方法。
(A) After preparing a water and / or organic solvent dispersion of metal oxide fine particles,
(B) An organometallic compound represented by the following formula (1) is added to the dispersion, and then
(D) Spray drying the dispersion R p -MX qp (1)
(Wherein, M is a metal element, R is an unsubstituted or substituted hydrocarbon group having 1 to 20 carbon atoms, and may be the same or different from each other. X is a group having 1 to 4 carbon atoms. An alkoxy group, a hydroxyl group, halogen or hydrogen, q is the valence of the metal element M, 3 or 4, p: an integer of 0 to 2, and qp is 2 or 3)
It is characterized by
The average particle diameter (D MP ) of the powder is in the range of 1 to 200 μm, and is composed of an aggregate of primary particles and secondary particles,
The average secondary particle size (D M2 ) measured by the laser method of secondary particles is in the range of 5 to 500 nm, and the average primary particle size (D M1 ) measured by TEM observation of the primary particles is 5 to 500 nm. In the range of
The ratio (D M2 ) / (D M1 ) between the average secondary particle size (D M2 ) and the average primary particle size (D M1 ) is in the range of 1 to 10,
A method for producing modified metal oxide fine particle powder having an angle of repose of 40 ° or less.
前記金属元素MがSi、Ti、Zr、Alから選ばれる少なくとも1種であることを特徴とする請求項1に記載の改質金属酸化物微粒子粉末の製造方法。   2. The method for producing modified metal oxide fine particle powder according to claim 1, wherein the metal element M is at least one selected from Si, Ti, Zr, and Al. 有機金属化合物の添加後、(c)5〜80℃で熟成することを特徴とする請求項1または2に記載の改質金属酸化物微粒子粉末の製造方法。   3. The method for producing modified metal oxide fine particle powder according to claim 1, wherein after the addition of the organometallic compound, (c) aging is performed at 5 to 80 ° C. 3. 前記噴霧乾燥の入口温度が70〜400℃の範囲にあることを特徴とする請求項1に記載の改質金属酸化物微粒子粉末の製造方法。   The method for producing a modified metal oxide fine particle powder according to claim 1, wherein an inlet temperature of the spray drying is in a range of 70 to 400 ° C. 前記金属酸化物微粒子分散液の固形分濃度が、酸化物に換算して、1〜30重量%の範囲にあることを特徴とする請求項1に記載の改質金属酸化物微粒子粉末の製造方法。   The method for producing a modified metal oxide fine particle powder according to claim 1, wherein the solid content concentration of the metal oxide fine particle dispersion is in the range of 1 to 30% by weight in terms of oxide. . 有機金属化合物の添加量が、金属酸化物微粒子の固形分100重量部に対し、Rp-MO(q-p/2)(但し、qは金属元素Mの価数であって3または4、p:0〜2の整数であってq-pが2または3)として1〜300重量部の範囲にあることを特徴とする請求項1に記載の改質金属酸化物微粒子粉末の製造方法。 The amount of the organometallic compound added is R p -MO (qp / 2) (where q is the valence of the metal element M and 3 or 4, p: The method for producing modified metal oxide fine particle powder according to claim 1, wherein q is an integer of 0 to 2 and q-p is in the range of 1 to 300 parts by weight as 2 or 3). 前記金属酸化物微粒子の平均粒子径(DM)が5〜500nmの範囲にあることを特徴とする請求項1に記載の改質金属酸化物微粒子粉末の製造方法。 2. The method for producing modified metal oxide fine particle powder according to claim 1, wherein the metal oxide fine particles have an average particle diameter (D M ) in the range of 5 to 500 nm. 前記金属酸化物微粒子がSiO2、Al23、TiO2、ZrO2およびこれらの複合酸化物、Sb25、ZnO2、SnO2、In23、アンチモンドープ酸化錫(ATO)、錫ドープ酸化インジウム(ITO)、Fドープ酸化錫(FTO)、リンドープ酸化錫(PTO)、アルミニウムドープ酸化亜鉛(AZO)からなる金属酸化物微粒子または混合物であることを特徴とする請求項1に記載の改質金属酸化物微粒子粉末の製造方法。 The metal oxide fine particles are SiO 2 , Al 2 O 3 , TiO 2 , ZrO 2 and composite oxides thereof, Sb 2 O 5 , ZnO 2 , SnO 2 , In 2 O 3 , antimony-doped tin oxide (ATO), The metal oxide fine particles or mixture comprising tin-doped indium oxide (ITO), F-doped tin oxide (FTO), phosphorus-doped tin oxide (PTO), and aluminum-doped zinc oxide (AZO). Of producing modified metal oxide fine particle powder. 溶媒置換することなく、かつ加水分解触媒を使用しないことを特徴とする請求項1に記載の改質金属酸化物微粒子粉末の製造方法。   The method for producing the modified metal oxide fine particle powder according to claim 1, wherein the solvent substitution is not performed and a hydrolysis catalyst is not used. 下記式(1)で表される有機金属化合物で表面処理された改質金属酸化物微粒子の粉末であって、
粉末の平均粒子径(DMP)が1〜200μmの範囲にあり、一次粒子および二次粒子の集合体から構成されてなり、
二次粒子のレーザー法で測定した平均二次粒子径(DM2)が5〜500nmの範囲にあり、一次粒子のTEM写真を観察して測定した平均一次粒子径(DM1)が5〜500nmの範囲にあり、
平均二次粒子径(DM2)と平均一次粒子径(DM1)との比(DM2)/(DM1)が1〜10の範囲にあり、
安息角が40°以下である、改質金属酸化物微粒子粉末。
p-MXq-p ・・・・・・・(1)
(但し、式中、Mは金属元素、Rは炭素数1〜20の非置換または置換炭化水素基であって、互いに同一であっても異なっていてもよい。Xは炭素数1〜4のアルコキシ基、水酸基、ハロゲン、水素を示し、qは金属元素Mの価数であって3または4、p:0〜2の整数であってq−pが2または3)
A powder of modified metal oxide fine particles surface-treated with an organometallic compound represented by the following formula (1),
The average particle diameter (D MP ) of the powder is in the range of 1 to 200 μm, and is composed of an aggregate of primary particles and secondary particles,
The average secondary particle diameter (D M2 ) measured by the laser method of the secondary particles is in the range of 5 to 500 nm, and the average primary particle diameter (D M1 ) measured by observing a TEM photograph of the primary particles is 5 to 500 nm. In the range of
The ratio (D M2 ) / (D M1 ) between the average secondary particle size (D M2 ) and the average primary particle size (D M1 ) is in the range of 1 to 10,
Modified metal oxide fine particle powder having an angle of repose of 40 ° or less.
R p -MX qp (1)
(Wherein, M is a metal element, R is an unsubstituted or substituted hydrocarbon group having 1 to 20 carbon atoms, and may be the same or different from each other. X is a group having 1 to 4 carbon atoms. An alkoxy group, a hydroxyl group, halogen or hydrogen, q is the valence of the metal element M, 3 or 4, p: an integer of 0 to 2, and qp is 2 or 3)
前記金属元素MがSi、Ti、Zr、Alから選ばれる少なくとも1種であることを特徴とする請求項10に記載の改質金属酸化物微粒子粉末。   The modified metal oxide fine particle powder according to claim 10, wherein the metal element M is at least one selected from Si, Ti, Zr, and Al. 前記有機金属化合物の金属MがSiの場合、29Si MAS NMRスペクトルの主ピークの半値幅が3〜15ppmの範囲にあることを特徴とする請求項10または11に記載の改質金属酸化物微粒子粉末。 The modified metal oxide fine particles according to claim 10 or 11, wherein when the metal M of the organometallic compound is Si, the half width of the main peak of the 29 Si MAS NMR spectrum is in the range of 3 to 15 ppm. Powder. 前記金属酸化物微粒子の平均粒子径(DM)が5〜500nmの範囲にあり、前記平均二次粒子径(DM2)との比(DM2)/(DM)が0.2〜5の範囲にあることを特徴とする請求項10〜12のいずれかに記載の改質金属酸化物微粒子粉末。 The average particle size (D M ) of the metal oxide fine particles is in the range of 5 to 500 nm, and the ratio (D M2 ) / (D M ) to the average secondary particle size (D M2 ) is 0.2 to 5 The modified metal oxide fine particle powder according to any one of claims 10 to 12, which is in the range of
JP2013072919A 2013-03-29 2013-03-29 Modified metal oxide particulate powder and method for producing the same Pending JP2014196215A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013072919A JP2014196215A (en) 2013-03-29 2013-03-29 Modified metal oxide particulate powder and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013072919A JP2014196215A (en) 2013-03-29 2013-03-29 Modified metal oxide particulate powder and method for producing the same

Publications (1)

Publication Number Publication Date
JP2014196215A true JP2014196215A (en) 2014-10-16

Family

ID=52357348

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013072919A Pending JP2014196215A (en) 2013-03-29 2013-03-29 Modified metal oxide particulate powder and method for producing the same

Country Status (1)

Country Link
JP (1) JP2014196215A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019017305A1 (en) * 2017-07-19 2019-01-24 関東電化工業株式会社 Coated inorganic fine particle and method for producing same
CN113526977A (en) * 2020-04-16 2021-10-22 中集绿建环保新材料(连云港)有限公司 Preparation method of foamed ceramic and dry powder preparation method thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03137005A (en) * 1989-10-19 1991-06-11 Hitachi Chem Co Ltd Powder for high-temperature superconductor and its production
JPH07316298A (en) * 1994-05-20 1995-12-05 Mitsubishi Chem Corp Inorganic powder, coating fluid for inorganic powder, and production thereof
JPH11322306A (en) * 1998-05-11 1999-11-24 Nippon Aerosil Kk Production of surface-modified metal oxide fine powder, and production of toner composition for electrophotography
JP2004231498A (en) * 2003-01-31 2004-08-19 Nippon Aerosil Co Ltd Surface modified silica fine powder
JP2007161510A (en) * 2005-12-12 2007-06-28 Tokuyama Corp Hydrophobic inorganic powder and its manufacturing method
JP2010532742A (en) * 2007-07-06 2010-10-14 キャボット コーポレイション Surface-treated metal oxide particles
WO2011090084A1 (en) * 2010-01-19 2011-07-28 日産化学工業株式会社 Silane surface-treated metal oxide fine particles and production method for same.
WO2012078645A1 (en) * 2010-12-08 2012-06-14 Dow Corning Toray Co., Ltd. Methods of modifying metal-oxide nanoparticles

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03137005A (en) * 1989-10-19 1991-06-11 Hitachi Chem Co Ltd Powder for high-temperature superconductor and its production
JPH07316298A (en) * 1994-05-20 1995-12-05 Mitsubishi Chem Corp Inorganic powder, coating fluid for inorganic powder, and production thereof
JPH11322306A (en) * 1998-05-11 1999-11-24 Nippon Aerosil Kk Production of surface-modified metal oxide fine powder, and production of toner composition for electrophotography
JP2004231498A (en) * 2003-01-31 2004-08-19 Nippon Aerosil Co Ltd Surface modified silica fine powder
JP2007161510A (en) * 2005-12-12 2007-06-28 Tokuyama Corp Hydrophobic inorganic powder and its manufacturing method
JP2010532742A (en) * 2007-07-06 2010-10-14 キャボット コーポレイション Surface-treated metal oxide particles
WO2011090084A1 (en) * 2010-01-19 2011-07-28 日産化学工業株式会社 Silane surface-treated metal oxide fine particles and production method for same.
WO2012078645A1 (en) * 2010-12-08 2012-06-14 Dow Corning Toray Co., Ltd. Methods of modifying metal-oxide nanoparticles

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
""MP-1040"", 日産化学工業株式会社 製品検索, vol. [online], JPN6017006467, 21 February 2017 (2017-02-21), ISSN: 0003506725 *
海保守,外: "粉体の流動性におよぼす吸着水の影響 (その1)", 粉体工学研究会誌, vol. 12, no. 6, JPN6017006464, 1975, pages 324 - 327, ISSN: 0003506726 *
荒川 正文: "色材の科学−2", 色材工学ハンドブック, vol. 第1版, JPN6017006468, 1989, pages 109 - 120, ISSN: 0003506724 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019017305A1 (en) * 2017-07-19 2019-01-24 関東電化工業株式会社 Coated inorganic fine particle and method for producing same
JPWO2019017305A1 (en) * 2017-07-19 2020-07-16 関東電化工業株式会社 Coated inorganic fine particles and method for producing the same
JP7190431B2 (en) 2017-07-19 2022-12-15 関東電化工業株式会社 Coated inorganic fine particles and method for producing the same
CN113526977A (en) * 2020-04-16 2021-10-22 中集绿建环保新材料(连云港)有限公司 Preparation method of foamed ceramic and dry powder preparation method thereof

Similar Documents

Publication Publication Date Title
KR101712886B1 (en) Silane surface-treated metal oxide fine particles and production method for same
JP4276077B2 (en) Nanoparticles with rutile-like crystal phase and method for preparing the same
JP5795840B2 (en) Silica particle material, silica particle material-containing composition, and silica particle surface treatment method
JP5252898B2 (en) Method for producing modified zirconia fine particles, coating liquid for forming transparent film containing modified zirconia fine particles, and substrate with transparent film
JP7060583B2 (en) Method for producing iron-containing rutile-type titanium oxide fine particle dispersion, iron-containing rutile-type titanium oxide fine particles and their uses
JP2008266043A (en) Transparent titanium oxide sol and method for preparing the same
WO2007018176A1 (en) Zirconium oxide-tin oxide composite sol, coating composition and optical member
KR20080083249A (en) Substrate for hard coating film and coating solution for hard coating film
JP4994187B2 (en) Method for producing modified zirconia fine particles
JP6198379B2 (en) Modified zirconia fine particle powder, modified zirconia fine particle dispersed sol and method for producing the same
JP2015048297A (en) Method of producing surface-modified mesoporous silica nanoparticle
JP5865466B2 (en) Silica particle material and filler-containing resin composition
JP6214412B2 (en) Core-shell type oxide fine particle dispersion, method for producing the same, and use thereof
JP5754884B2 (en) Phosphoric acid (excluding phosphoric acid salt) -treated metal oxide fine particles and production method thereof, coating solution for forming a transparent film containing the phosphoric acid (excluding phosphoric acid salt) -treated metal oxide fine particles, and transparent Substrate with coating
JP2014196216A (en) Modified metal oxide particulate powder, modified metal oxide particulate dispersion and method for producing the same
JP2014086526A (en) Light-emitting diode
JP6080583B2 (en) Surface-modified inorganic composite oxide fine particles, production method thereof, dispersion containing the fine particles, coating solution for optical substrate, coating film for optical substrate, and coated substrate
JP2014196215A (en) Modified metal oxide particulate powder and method for producing the same
JP5626788B2 (en) Sealant paint and use thereof
JP2011136857A (en) Hydrophobic zirconium oxide particle, method of producing the same, resin composition containing the hydrophobic zirconium oxide particle and base material with cured resin film
JP5687785B2 (en) Method for surface treatment of silica particles
JP5116285B2 (en) Base material with transparent coating
KR102019698B1 (en) Reformed zirconia fine particle, dispersion sol of reformed zirconia fine particle and its preparation method
CN103922397B (en) Modified zirconia fine-particle powder, modified oxidized particulate zirconia dispersion sol and its manufacture method
JP6278902B2 (en) Water and / or organic solvent dispersion containing linked crystalline inorganic oxide fine particle group, method for producing the same, and coating solution for optical substrate containing linked crystalline inorganic oxide fine particle group

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160315

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170501

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20171107