JP2014196004A - Multidirectional movable body module - Google Patents

Multidirectional movable body module Download PDF

Info

Publication number
JP2014196004A
JP2014196004A JP2011174142A JP2011174142A JP2014196004A JP 2014196004 A JP2014196004 A JP 2014196004A JP 2011174142 A JP2011174142 A JP 2011174142A JP 2011174142 A JP2011174142 A JP 2011174142A JP 2014196004 A JP2014196004 A JP 2014196004A
Authority
JP
Japan
Prior art keywords
belt
driving
bodies
moving
pair
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011174142A
Other languages
Japanese (ja)
Inventor
幸平 國松
Kohei Kunimatsu
幸平 國松
園田 勝敏
Katsutoshi Sonoda
勝敏 園田
友明 中安
Tomoaki Nakayasu
友明 中安
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsubakimoto Chain Co
Original Assignee
Tsubakimoto Chain Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsubakimoto Chain Co filed Critical Tsubakimoto Chain Co
Priority to JP2011174142A priority Critical patent/JP2014196004A/en
Priority to PCT/JP2012/068999 priority patent/WO2013021829A1/en
Publication of JP2014196004A publication Critical patent/JP2014196004A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D15/00Steering not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D55/00Endless track vehicles
    • B62D55/06Endless track vehicles with tracks without ground wheels
    • B62D55/065Multi-track vehicles, i.e. more than two tracks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D55/00Endless track vehicles
    • B62D55/08Endless track units; Parts thereof
    • B62D55/18Tracks
    • B62D55/26Ground engaging parts or elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B19/00Wheels not otherwise provided for or having characteristics specified in one of the subgroups of this group
    • B60B19/003Multidirectional wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B19/00Wheels not otherwise provided for or having characteristics specified in one of the subgroups of this group
    • B60B19/12Roller-type wheels

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Manipulator (AREA)
  • Motorcycle And Bicycle Frame (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a multidirectional movable body module which avoids abrasion caused by a movable surface, which smoothly, freely and stably moves multidirectionally along the movable surface, and which avoids damage to the movable surface and an outer peripheral surface of a rotor.SOLUTION: A multidirectional movable body module 100 includes a movable body module body 110, and a pair of driver units 120A and 120B that have a pair of strip-shaped drivers 121AL and 121AR, a pair of strip-shaped drivers 121BL and 121BR, and a plurality of rotors 122AL, 122AR, 122BL and 122BR, respectively.

Description

本発明は、搭乗者の移動手段や被搬送物を搬送する搬送手段に応用される多方向移動体モジュールに関するものである。   The present invention relates to a multidirectional moving body module applied to a moving means for a passenger and a conveying means for conveying an object to be conveyed.

従来、移動体を転回する方法としては、例えば車両に設けられたタイヤなどの回転体を傾けて移動方向を変更する方法がある。
また、車両などの移動体に左右一対で設けられた無限軌道によって移動体を移動させる方法やホイール体に設けられたローラ体によって移動方向を変更するホイールいわゆるメカナムホイール(例えば、特許文献1参照。)がある。
Conventionally, as a method of rotating a moving body, for example, there is a method of changing a moving direction by tilting a rotating body such as a tire provided in a vehicle.
Also, a method of moving a moving body by an endless track provided on a pair of left and right moving bodies such as a vehicle or a so-called mecanum wheel that changes a moving direction by a roller body provided on a wheel body (see, for example, Patent Document 1) .)

特表2009−504465号公報(特許請求の範囲、図1参照。)JP-T 2009-504465 (refer to claims, FIG. 1)

しかしながら、上述したホイールでは、一つのローラ体の一軸に荷重が集中してしまうため許容荷重に制限があるうえ複数のローラ体の一つのみを走行面すなわち移動面に常時接触させた状態で移動体本体の駆動力を得ているため、荷重分散のため接触面積を増大させて多方向に円滑且つ自在に移動体を移動させることを困難にさせてしまうという問題点があった。
また、負荷を軽減させるため上述のホイールを車両などの移動体本体の四隅に配置した場合、各ホイールに設けられたローラ体を軸支するローラ軸径を大きくして駆動軸の強度を高めた状態で移動体本体の荷重を支えるため、ホイール体のサイズ増大に伴って接地面すなわち移動面に対する移動体の重心を高く設定する設計変更を生じさせて移動体本体の移動を不安定にさせてしまうという問題点があった。
また、無限軌道の場合、転回時に走行面との間に「すべり」が生じ、すべりにより走行面及び無限軌道を損傷するおそれがあるという問題点があった。
However, in the wheel described above, the load concentrates on one axis of one roller body, so that the allowable load is limited, and only one of the plurality of roller bodies is moved in a state where it is always in contact with the traveling surface, that is, the moving surface. Since the driving force of the body body is obtained, there is a problem that it is difficult to move the moving body smoothly and freely in multiple directions by increasing the contact area for load distribution.
In addition, when the above-mentioned wheels are arranged at the four corners of a moving body main body such as a vehicle in order to reduce the load, the roller shaft diameter that supports the roller body provided on each wheel is increased to increase the strength of the drive shaft. In order to support the load of the mobile body in the state, the design of the ground plane, that is, the center of gravity of the mobile body with respect to the moving surface is set higher with the increase in the size of the wheel body, and the movement of the mobile body is made unstable. There was a problem of end.
Further, in the case of an endless track, there has been a problem that “slip” occurs between the traveling surface and the traveling surface during turning, which may damage the traveling surface and the endless track.

そこで、本発明が解決しようとする技術的課題、すなわち、本発明の目的は、移動面に対する摩耗を回避するとともに移動面に沿って多方向に円滑且つ自在に安定して移動し、高さ方向に沿った機構のサイズ増大を回避し、しかも走行面すなわち移動面や無限軌道の損傷を回避する多方向移動体モジュールを提供することである。   Therefore, the technical problem to be solved by the present invention, that is, the object of the present invention is to avoid wear on the moving surface and to move stably and freely in multiple directions along the moving surface in the height direction. And a multi-directional moving body module that avoids damage to the traveling surface, that is, the moving surface and the endless track.

まず、本請求項1の発明に係る多方向移動体モジュールは、移動面に沿って移動する移動体モジュール本体と、前記移動体モジュール本体に設けられているとともに相互に独立して進退自在に駆動される一対の帯状駆動体と該帯状駆動体の駆動方向に沿って前記帯状駆動体に配列されているとともに前記帯状駆動体の駆動方向に対して斜交する回転軸がそれぞれ平行となるように軸着された状態で前記移動面に外周面をそれぞれ接触させる複数の回転体とをそれぞれ有して前記帯状駆動体の駆動方向に配列された一対の駆動体ユニットとを備えていることにより、前述した課題を解決したものである。   First, a multidirectional moving body module according to the first aspect of the present invention includes a moving body module main body that moves along a moving surface, and is provided in the moving body module main body and is driven independently of each other. A pair of belt-like drive bodies and a rotation axis that is arranged in the belt-like drive body along the drive direction of the belt-like drive body and that are oblique to the drive direction of the belt-like drive body are parallel to each other. A plurality of rotating bodies each having an outer peripheral surface in contact with the moving surface in a state of being axially attached, and a pair of driving body units arranged in the driving direction of the belt-like driving body This solves the aforementioned problems.

そして、本請求項2の発明に係る多方向移動体モジュールは、請求項1の発明に係る多方向移動体モジュールにおいて、前記一対の帯状駆動体のそれぞれの駆動方向が、相互に平行であることにより、前述した課題をさらに解決したものである。   And the multidirectional moving body module which concerns on invention of Claim 2 is a multidirectional moving body module which concerns on invention of Claim 1, Each drive direction of a pair of said strip | belt-shaped drive body is mutually parallel. Thus, the above-described problem is further solved.

そして、本請求項3の発明に係る多方向移動体モジュールは、請求項2の発明に係る多方向移動体モジュールにおいて、前記一対の帯状駆動体の一方に設けられた回転体の回転軸線と前記一対の帯状駆動体の他方に設けられた回転体の回転軸線とが、相互に交差していることにより、前述した課題をさらに解決したものである。   The multidirectional moving body module according to the invention of claim 3 is the multidirectional moving body module according to the invention of claim 2, wherein the rotation axis of the rotating body provided on one of the pair of belt-like driving bodies and the The rotation axis of the rotating body provided on the other of the pair of belt-like driving bodies intersects with each other, thereby further solving the above-described problem.

そして、本請求項4の発明に係る多方向移動体モジュールは、請求項3の発明に係る多方向移動体モジュールにおいて、前記一対の帯状駆動体の一方に設けられた回転体の回転軸と前記一対の帯状駆動体の他方に設けられた回転体の回転軸とが、前記帯状駆動体の駆動方向に対して45°の角度を形成していることにより、前述した課題をさらに解決したものである。   And the multidirectional moving body module which concerns on invention of this invention 4 is a multidirectional moving body module which concerns on invention of Claim 3, and the rotating shaft of the rotary body provided in one side of said pair of strip | belt-shaped drive bodies, and said The rotation axis of the rotating body provided on the other of the pair of belt-like driving bodies forms an angle of 45 ° with respect to the driving direction of the belt-like driving body, thereby further solving the above-described problem. is there.

そして、本請求項5の発明に係る多方向移動体モジュールは、請求項1乃至請求項4のいずれか一つの発明に係る多方向移動体モジュールにおいて、前記一対の帯状駆動体が、前記一対の帯状駆動体のそれぞれに対応して前記移動体モジュール本体に設けられた動力伝達用回転体に巻き掛けられた状態で進退自在に駆動される無端形状をそれぞれ形成していることにより、前述した課題をさらに解決したものである。   The multi-directional moving body module according to the invention of claim 5 is the multi-directional moving body module according to any one of claims 1 to 4, wherein the pair of belt-like driving bodies are the pair of driving bodies. The above-mentioned problems are achieved by forming endless shapes that are driven to move forward and backward in a state of being wound around a power transmission rotating body provided in the movable body module body corresponding to each of the belt-like driving bodies. Is a further solution.

本請求項1に係る多方向移動体モジュールは、移動面に沿って移動する移動体モジュール本体と、前記移動体モジュール本体に設けられているとともに相互に独立して進退自在に駆動される一対の帯状駆動体と該帯状駆動体の駆動方向に沿って前記帯状駆動体に配列されているとともに前記帯状駆動体の駆動方向に対して斜交する回転軸がそれぞれ平行となるように軸着された状態で前記移動面に外周面をそれぞれ接触させる複数の回転体とをそれぞれ有して前記帯状駆動体の駆動方向に配列された一対の駆動体ユニットとを備えていることにより、複数の回転体のそれぞれの外周面を移動面に接触させた状態で移動体モジュール本体の荷重を各回転体で分担して支持するとともに移動体モジュール本体の荷重に応じて移動面から各回転体に作用する力に対する反作用力の合力方向に移動体モジュール本体の駆動力を発生させるため、各回転体表面の摩耗を回避するとともに移動面に沿って多方向に円滑且つ自在に移動体モジュール本体を移動させ、移動体モジュールを大型化させることなくしかも移動体モジュール本体の重心を高い位置に設計変更しないで安定して移動体モジュール本体を移動させるとともに移動面に対して回転体を回転させて滑りを起こさせないうえ帯状駆動体に回転体を多数設けることで荷重を分散させることができるので移動面や回転体の外周面の損傷を回避することができる。   The multidirectional moving body module according to claim 1 is a pair of a moving body module main body that moves along a moving surface, and a pair of movable body modules that are provided on the moving body module main body and that are driven independently of each other. The belt-like drive body and the belt-like drive body are arranged along the drive direction of the belt-like drive body, and the rotation axes that are oblique to the drive direction of the belt-like drive body are mounted in parallel. A plurality of rotating bodies each having an outer peripheral surface in contact with the moving surface in a state and having a pair of driving body units arranged in a driving direction of the belt-like driving body, thereby providing a plurality of rotations. With each outer peripheral surface of the body in contact with the moving surface, the load of the moving body module main body is shared and supported by each rotating body, and from the moving surface to each rotating body according to the load of the moving body module main body. In order to generate the driving force of the mobile module main body in the direction of the reaction force against the force to be used, wear of each rotary body surface is avoided and the mobile module main body is moved smoothly and freely in multiple directions along the moving surface. The mobile module module can be stably moved without increasing the size of the mobile module and without changing the design of the center of gravity of the mobile module main body to a high position. Since the load can be dispersed by providing a large number of rotating bodies in the belt-like driving body, damage to the moving surface and the outer peripheral surface of the rotating body can be avoided.

そして、本請求項2の発明に係る多方向移動体モジュールは、請求項1の発明に係る多方向移動体モジュールが奏する効果に加えて、前記一対の帯状駆動体のそれぞれの駆動方向が、相互に平行であることにより、一対の帯状駆動体の駆動方向と駆動速度との2つのパラメータを制御して移動体モジュール本体の移動速度及びその方向を調整することが容易になり、簡便な駆動制御システム及び方法で移動体モジュール本体を移動面に沿って多方向に円滑且つ自在に移動させることができる。   The multidirectional moving body module according to the second aspect of the invention has the above-described effects of the multidirectional moving body module according to the first aspect of the invention. , It is easy to adjust the moving speed and direction of the moving body module body by controlling the two parameters of the driving direction and the driving speed of the pair of belt-like driving bodies, and simple driving control. The mobile module main body can be moved smoothly and freely in multiple directions along the moving surface by the system and method.

そして、本請求項3の発明に係る多方向移動体モジュールは、請求項2の発明に係る多方向移動体モジュールが奏する効果に加えて、前記一対の帯状駆動体の一方に設けられた回転体の回転軸線と前記一対の帯状駆動体の他方に設けられた回転体の回転軸線とが、相互に交差していることにより、各回転軸を無秩序に軸支した状態で帯状駆動体の駆動方向に斜交させている場合に比べて移動面から各回転体に作用する反作用力の合力の大きさ及びその方向を設定しやすくなるため、より一層簡便な駆動制御システム及び方法で移動体モジュール本体を移動面に沿って多方向に円滑且つ自在に移動させることができる。   The multi-directional moving body module according to the third aspect of the invention has a rotating body provided on one of the pair of belt-like driving bodies in addition to the effects exhibited by the multi-directional moving body module according to the second aspect of the invention. The rotation axis of the belt and the rotation axis of the rotating body provided on the other of the pair of belt-like driving bodies cross each other, so that the driving direction of the belt-like driving body is supported in a state in which each rotation shaft is supported in a disorderly manner. Compared with the case where it is obliquely crossed, it is easier to set the magnitude and direction of the resultant reaction force acting on each rotating body from the moving surface. Can be moved smoothly and freely in multiple directions along the moving surface.

そして、本請求項4の発明に係る多方向移動体モジュールは、請求項3の発明に係る多方向移動体モジュールが奏する効果に加えて、前記一対の帯状駆動体の一方に設けられた回転体の回転軸と前記一対の帯状駆動体の他方に設けられた回転体の回転軸とが、前記帯状駆動体の駆動方向に対して45°の角度を形成していることにより、各回転軸を無秩序に駆動方向に斜交させている場合に比べて移動面から各回転体に作用する反作用力の合力方向をより一層設定しやすくなるため、簡便な駆動制御システム及び方法で移動体モジュール本体を移動面に沿って多方向に円滑且つ自在に効率良く移動させることをより確実に実現することができる。   And the multidirectional moving body module which concerns on invention of this invention 4 in addition to the effect which the multidirectional moving body module which concerns on invention of Claim 3 show | plays, the rotary body provided in one side of said pair of strip | belt-shaped drive body And the rotation axis of the rotary body provided on the other of the pair of belt-like drive bodies form an angle of 45 ° with respect to the drive direction of the belt-like drive body, thereby Compared with the case where the drive body is obliquely crossed in the drive direction, it is easier to set the resultant direction of the reaction force acting on each rotating body from the moving surface, so the mobile module module body can be mounted with a simple drive control system and method. It is possible to more reliably realize efficient and smooth movement in multiple directions along the moving surface.

そして、本請求項5の発明に係る多方向移動体モジュールは、請求項1乃至請求項4のいずれか一つの発明に係る多方向移動体モジュールが奏する効果に加えて、前記一対の帯状駆動体が、前記一対の帯状駆動体のそれぞれに対応して前記移動体モジュール本体に設けられた動力伝達用回転体に巻き掛けられた状態で進退自在に駆動される無端形状をそれぞれ形成していることにより、複数の回転体を移動面すなわち接地面に接地させた状態で移動面から回転体に作用する荷重全体を各回転体に分担支持させて回転体及びその回転軸間の荷重負担を軽減するため、回転体及びその回転軸間の荷重負担を下げるためにその回転軸の軸径を大きくすることに伴う回転体や回転体の支持部のサイズ増大を回避し、多方向移動体モジュールの重心を高くすることなく移動体モジュール本体を移動面に沿って多方向に円滑且つ自在に移動させることができる。   The multi-directional moving body module according to the invention of claim 5 has the pair of belt-like driving bodies in addition to the effect produced by the multi-directional moving body module according to any one of claims 1 to 4. However, each of the pair of belt-like drive bodies has an endless shape that is driven to move forward and backward while being wound around a power transmission rotating body provided in the movable body module body. Thus, with the plurality of rotating bodies in contact with the moving surface, that is, the grounding surface, the entire load acting on the rotating body from the moving surface is shared and supported by each rotating body to reduce the load burden between the rotating body and its rotating shaft. For this reason, an increase in the size of the rotating body and the supporting part of the rotating body accompanying an increase in the shaft diameter of the rotating shaft in order to reduce the load burden between the rotating body and the rotating shaft can be avoided. The high It can be moved smoothly and freely in multiple directions along the moving surface of the moving body module body without.

本発明の実施例に係る多方向移動体モジュールの斜視図。The perspective view of the multidirectional moving body module which concerns on the Example of this invention. 本発明の実施例に係る多方向移動体モジュールの平面図。The top view of the multidirectional moving body module which concerns on the Example of this invention. 図2に複数の回転体を示した平面図。The top view which showed the some rotary body in FIG. 一対の駆動体ユニットを構成する一対の帯状駆動体のそれぞれを正方向に同速度で駆動した際に多方向移動体モジュールが移動する移動方向を示した説明図。Explanatory drawing which showed the moving direction which a multidirectional moving body module moves when each of a pair of strip | belt-shaped drive body which comprises a pair of drive body unit drives to the normal direction at the same speed. 一対の駆動体ユニットを構成する一対の帯状駆動体のそれぞれを逆方向に同速度で駆動した際に多方向移動体モジュールが移動する移動方向を示した説明図。Explanatory drawing which showed the moving direction which a multidirectional moving body module moves when each of a pair of strip | belt-shaped drive body which comprises a pair of drive body unit drives to a reverse direction at the same speed. 多方向移動体モジュールの中心に対して点対称位置に設置された帯状駆動体のそれぞれを同方向に同速度で駆動した際に多方向移動体モジュールが移動する移動方向を示した説明図。Explanatory drawing which showed the moving direction which a multidirectional moving body module moves, when each of the strip | belt-shaped drive body installed in the point symmetrical position with respect to the center of a multidirectional moving body module is driven at the same speed in the same direction. 多方向移動体モジュールの中心に対して点対称位置に設置された帯状駆動体のそれぞれを同方向に同速度で駆動した際に多方向移動体モジュールが移動する移動方向を示した説明図。Explanatory drawing which showed the moving direction which a multidirectional moving body module moves, when each of the strip | belt-shaped drive body installed in the point symmetrical position with respect to the center of a multidirectional moving body module is driven at the same speed in the same direction. 多方向移動体モジュールの中心に対して点対称位置に設置された2つの帯状駆動体の組のみを同方向に同速度で駆動した際に多方向移動体モジュールが移動する移動方向を示した説明図。Explanation showing the moving direction in which the multi-directional moving module moves when only two sets of belt-shaped driving bodies installed at point-symmetrical positions with respect to the center of the multi-directional moving module are driven in the same direction and at the same speed. Figure. 多方向移動体モジュールの中心に対して点対称位置に設置された2つの帯状駆動体の組のみを同方向に同速度で駆動した際に多方向移動体モジュールが移動する移動方向を示した説明図。Explanation showing the moving direction in which the multi-directional moving module moves when only two sets of belt-shaped driving bodies installed at point-symmetrical positions with respect to the center of the multi-directional moving module are driven in the same direction and at the same speed. Figure. 多方向移動体モジュールの中心に対して点対称位置に設置された2つの帯状駆動体の組のみを相互に異なる方向に同速度で駆動した際に多方向移動体モジュールが方向転換する向きを示した説明図。Indicates the direction in which the multidirectional mobile module changes direction when only two sets of belt-like drive bodies installed at point-symmetrical positions with respect to the center of the multidirectional mobile module are driven in different directions at the same speed. Explanatory drawing. 多方向移動体モジュールの中心に対して点対称位置に設置された2つの帯状駆動体の一組のみを相互に異なる方向に同速度で駆動した際に多方向移動体モジュールが方向転換する向きを示した説明図。The direction in which the multi-directional mobile module changes direction when only one set of two belt-like drive bodies installed at point symmetrical positions with respect to the center of the multi-directional mobile module is driven in different directions at the same speed. FIG. 前後に設置された2つの帯状駆動体の駆動方向を同一方向に設定した状態で帯状駆動体の幅方向に沿って対向する2つの帯状駆動体を相互に異なる方向に駆動した際に多方向移動体モジュールが方向転換する向きを示した説明図。Multi-directional movement when two belt-like driving bodies facing each other along the width direction of the belt-like driving body are driven in different directions with the driving directions of the two belt-like driving bodies installed at the front and rear being set in the same direction. Explanatory drawing which showed the direction where a body module changes direction. 前後に設置された2つの帯状駆動体の駆動方向を同一方向に設定した状態で帯状駆動体の幅方向に沿って対向する2つの帯状駆動体を相互に異なる方向に駆動した際に多方向移動体モジュールが方向転換する向きを示した説明図。Multi-directional movement when two belt-like driving bodies facing each other along the width direction of the belt-like driving body are driven in different directions with the driving directions of the two belt-like driving bodies installed at the front and rear being set in the same direction. Explanatory drawing which showed the direction where a body module changes direction. 一方の駆動体ユニットに含まれる一対の帯状駆動体のみを駆動させた状態でこれら一対の帯状駆動体の駆動方向を相互に異なる方向に設定した際に多方向移動体モジュールが方向転換する向きを示した説明図。The direction in which the multi-directional moving body module changes direction when the driving directions of the pair of belt-like driving bodies are set to different directions while only the pair of belt-like driving bodies included in one driving body unit is driven. FIG. 一方の駆動体ユニットに含まれる一対の帯状駆動体のみを駆動させた状態でこれら一対の帯状駆動体の駆動方向を相互に異なる方向に設定した際に多方向移動体モジュールが方向転換する向きを示した説明図。The direction in which the multi-directional moving body module changes direction when the driving directions of the pair of belt-like driving bodies are set to different directions while only the pair of belt-like driving bodies included in one driving body unit is driven. FIG.

本発明の多方向移動体モジュールは、移動面に沿って移動する移動体モジュール本体と、移動体モジュール本体に設けられているとともに相互に独立して進退自在に駆動される一対の帯状駆動体とこの帯状駆動体の駆動方向に沿って帯状駆動体に配列されているとともに帯状駆動体の駆動方向に対して斜交する回転軸がそれぞれ平行となるように軸着された状態で移動面に外周面をそれぞれ接触させる複数の回転体とをそれぞれ有して帯状駆動体の駆動方向に配列された一対の駆動体ユニットとを備えているものであれば、その具体的な実施の態様は、如何なるものであっても何ら構わない。
例えば、帯状駆動体は、樹脂又は金属から構成されたベルトであってもよいし、チェーンであってもよい。
また、複数の回転体は、複数の回転体のうち帯状駆動体の駆動方向に沿って少なくとも相互に隣り合う2つの回転体を一組としてこの組を一定の間隔で周期的に配列させた状態で配列されていてもよいし、一対の帯状駆動体のそれぞれに配列された回転体を帯状駆動体の駆動方向に沿って互い違いに配列させて全体として千鳥状の配列状態を構成するように配列されていてもよい。
The multi-directional moving body module of the present invention includes a moving body module body that moves along a moving surface, a pair of belt-like driving bodies that are provided on the moving body module body and are driven independently of each other. The outer periphery of the moving surface is arranged in a belt-like drive body along the drive direction of the belt-like drive body and is mounted so that the rotation axes oblique to the drive direction of the belt-like drive body are parallel to each other. Any specific embodiment may be used as long as it has a plurality of rotating bodies that contact the surfaces and a pair of driving body units arranged in the driving direction of the belt-like driving body. It doesn't matter what it is.
For example, the belt-like drive body may be a belt made of resin or metal, or may be a chain.
In addition, the plurality of rotating bodies is a state in which at least two rotating bodies adjacent to each other along the driving direction of the belt-like driving body among the plurality of rotating bodies are arranged as a set at regular intervals. The rotating bodies arranged in each of the pair of belt-like driving bodies may be arranged alternately along the driving direction of the belt-like driving body to form a staggered arrangement state as a whole. May be.

以下、本発明の実施例に係る多方向移動体モジュール100を図1乃至図15に基づいて説明する。
ここで、図1は、本発明の実施例に係る多方向移動体モジュールの斜視図であり、図2は、本発明の実施例に係る多方向移動体モジュールの平面図であり、図3は、図2に複数の回転体を示した平面図であり、図4は、一対の駆動体ユニットを構成する一対の帯状駆動体のそれぞれを正方向に同速度で駆動した際に多方向移動体モジュールが移動する移動方向を示した説明図であり、図5は、一対の駆動体ユニットを構成する一対の帯状駆動体のそれぞれを逆方向に同速度で駆動した際に多方向移動体モジュールが移動する移動方向を示した説明図であり、図6及び図7は、多方向移動体モジュールの中心に対して点対称位置に設置された帯状駆動体のそれぞれを同方向に同速度で駆動した際に多方向移動体モジュールが移動する移動方向を示した説明図であり、図8及び図9は、多方向移動体モジュールの中心に対して点対称位置に設置された2つの帯状駆動体の組のみを同方向に同速度で駆動した際に多方向移動体モジュールが移動する移動方向を示した説明図であり、図10及び図11は、多方向移動体モジュールの中心に対して点対称位置に設置された2つの帯状駆動体の組のみを相互に異なる方向に同速度で駆動した際に多方向移動体モジュールが方向転換する向きを示した説明図であり、図12及び図13は、前後に設置された2つの帯状駆動体の駆動方向を同一方向に設定した状態で帯状駆動体の幅方向に沿って対向する2つの帯状駆動体を相互に異なる方向に駆動した際に多方向移動体モジュールが方向転換する向きを示した説明図であり、図14及び図15は、一方の駆動体ユニットに含まれる一対の帯状駆動体のみを駆動させた状態でこれら一対の帯状駆動体の駆動方向を相互に異なる方向に設定した際に多方向移動体モジュールが方向転換する向きを示した説明図である。
なお、本実施形態において、帯状駆動体を正方向に駆動するとは、帯状駆動体の接地面側部分すなわち移動面側部分である下側部分を後退方向Bに駆動するとともに帯状駆動体の上側部分を前進方向Fに駆動するように帯状駆動体全体を駆動することをいい、帯状駆動体を逆方向に駆動するとは、上述の正方向に対して逆向きに帯状駆動体全体を駆動することをいう。
Hereinafter, a multidirectional moving body module 100 according to an embodiment of the present invention will be described with reference to FIGS.
Here, FIG. 1 is a perspective view of a multidirectional mobile module according to an embodiment of the present invention, FIG. 2 is a plan view of the multidirectional mobile module according to an embodiment of the present invention, and FIG. 2 is a plan view showing a plurality of rotating bodies in FIG. 2, and FIG. 4 is a multidirectional moving body when each of a pair of belt-like driving bodies constituting a pair of driving body units is driven in the forward direction at the same speed. FIG. 5 is an explanatory diagram showing the moving direction in which the module moves. FIG. 5 shows the multidirectional moving body module when the pair of belt-like driving bodies constituting the pair of driving body units are driven in the opposite directions at the same speed. FIG. 6 and FIG. 7 are diagrams illustrating driving directions in which the belt-like driving bodies installed at point-symmetrical positions with respect to the center of the multidirectional moving body module are driven in the same direction and at the same speed. When moving the multi-directional mobile module FIGS. 8 and 9 are diagrams illustrating a case where only two sets of belt-like driving bodies installed at point-symmetrical positions with respect to the center of the multidirectional moving body module are driven in the same direction at the same speed. It is explanatory drawing which showed the moving direction which a direction moving body module moves, and FIG.10 and FIG.11 shows only the group of two strip | belt-shaped drive bodies installed in the point symmetrical position with respect to the center of a multidirectional moving body module. It is explanatory drawing which showed the direction which a multi-directional moving body module changes direction when it drives at the same speed in a mutually different direction, FIG.12 and FIG.13 is the drive direction of two strip | belt-shaped drive bodies installed in the front and back Is an explanatory view showing the direction in which the multidirectional moving body module changes its direction when the two belt-like driving bodies facing each other along the width direction of the belt-like driving body are driven in different directions in a state in which the direction is set in the same direction. And FIG. 14 and FIG. The direction in which the multidirectional mobile module changes direction when the driving directions of the pair of belt-like drive bodies are set to different directions while only the pair of belt-like drive bodies included in the other drive body unit is driven. It is explanatory drawing shown.
In the present embodiment, driving the belt-like drive body in the forward direction means driving the grounding surface side portion of the belt-like drive body, that is, the lower portion, which is the moving surface side portion, in the backward direction B and the upper portion of the belt-like drive body. Driving the entire belt-like drive body so as to drive in the forward direction F. Driving the belt-like drive body in the reverse direction means driving the entire belt-like drive body in the direction opposite to the above-mentioned forward direction. Say.

まず、図1乃至図3を参照しながら、本実施例に係る多方向移動体モジュール100の構成を説明する。
なお、本実施例では、一対の帯状駆動体121AL、121AR及びこれらに固定設置された複数の回転体122AL、122ARが一対の駆動体ユニットの一方すなわち駆動体ユニット120Aを構成し、一対の帯状駆動体121BL、121BR及びこれらに固定設置された複数の回転体122BL、122BRが一対の駆動体ユニットの他方すなわち駆動体ユニット120Bを構成している。
First, the configuration of the multidirectional moving body module 100 according to the present embodiment will be described with reference to FIGS. 1 to 3.
In the present embodiment, the pair of belt-like drive bodies 121AL and 121AR and the plurality of rotating bodies 122AL and 122AR fixedly installed thereon constitute one of the pair of drive body units, that is, the drive body unit 120A. The bodies 121BL and 121BR and the plurality of rotating bodies 122BL and 122BR fixedly installed thereon constitute the other of the pair of driving body units, that is, the driving body unit 120B.

図1乃至図3に示すように、多方向移動体モジュール100は、移動面Pに沿って移動する移動体モジュール本体110と、移動体モジュール本体110に設けられているとともに相互に独立して進退自在に駆動される一対の帯状駆動体121AL、121AR及び相互に独立して進退自在に駆動される一対の帯状駆動体121BL、121BRと帯状駆動体121AL、121AR、121BL、121BRの駆動方向D1に沿って例えば等間隔すなわち間隔dで帯状駆動体121AL、121AR、121BL、121BRに配列されているとともに帯状駆動体121AL、121AR、121BL、121BRの駆動方向D1に対して斜交する回転軸123AL、123AR、123BL、123BRがそれぞれ平行となるように軸着された状態で移動面Pに外周面124をそれぞれ接触させる複数の回転体122AL、122AR、122BL、122BRとをそれぞれ有して帯状駆動体121AL、121AR、121BL、121BRの駆動方向D1に配列された一対の駆動体ユニット120A、120Bとを備えていることにより、複数の回転体122AL、122AR、122BL、122BRのそれぞれの外周面124を移動面Pに接触させた状態で移動体モジュール本体110の荷重を各回転体122AL、122AR、122BL、122BRで分担して支持するとともに移動体モジュール本体110の荷重に応じて移動面Pから各回転体122AL、122AR、122BL、122BRに作用する力に対する反作用力の合力方向に移動体モジュール本体110の駆動力を発生させるため、各回転体122AL、122AR、122BL、122BRの表面の摩耗を回避するとともに移動面Pに沿って多方向に円滑且つ自在に移動体モジュール本体110を移動させ、多方向移動体モジュール100を大型化させることなくしかも移動体モジュール本体110の重心を高い位置に設計変更しないで安定して多方向移動体モジュール100を移動させるとともに移動面Pに対して回転体122AL、122AR、122BL、122BRを回転させて滑りを起こさせないうえ帯状駆動体121AL、121AR、121BL、121BRに回転体122AL、122AR、122BL、122BRを多数設けることで荷重を分散させることができるので移動面Pや外周面124の損傷を回避するようになっている。
なお、本実施例では、帯状駆動体121AL、121AR、121BL、121BRとしてチェーンを用いている。
また、図2に示すように、動力伝達用回転体130AL−Fの駆動軸141AL−Fと動力伝達用回転体130AR−Fの駆動軸141AR−Fは、相互に繋がっていない。
動力伝達用回転体130AL−Bの駆動軸141AL−Bと動力伝達用回転体130AR−Bの駆動軸141AR−Bも、相互に繋がっていない。
駆動モータ140AFは、図中上下方向すなわち多方向移動体モジュール100の前進方向F及び後退方向Bに沿って並列配置された一対の動力伝達用回転体130AL−F、130AL−Bのうち動力伝達用回転体130AL−Fを駆動するとともに動力伝達用回転体130AL−Fに対して動力伝達用回転体130AL−Bを従動させる。
駆動モータ140ABは、図中上下方向すなわち多方向移動体モジュール100の前進方向F及び後退方向Bに沿って並列配置された一対の動力伝達用回転体130AR−F、130AR−Bのうち動力伝達用回転体130AR−Bを駆動するとともに動力伝達用回転体130AR−Bに対して動力伝達用回転体130AR−Fを従動させる。
動力伝達用回転体130BL−Fの駆動軸141BL−Fと動力伝達用回転体130BR−Fの駆動軸141BR−Fは、相互に繋がっていない。
動力伝達用回転体130BL−Bの駆動軸141BL−Bと動力伝達用回転体130BR−Bの駆動軸141BR−Bも、相互に繋がっていない。
駆動モータ140BFは、図中上下方向すなわち多方向移動体モジュール100の前進方向F及び後退方向Bに沿って並列配置された一対の動力伝達用回転体130BL−F、130BL−Bのうち動力伝達用回転体130BL−Fを駆動するとともに動力伝達用回転体130BL−Fに対して動力伝達用回転体130BL−Bを従動させる。
駆動モータ140BBは、図中上下方向すなわち多方向移動体モジュール100の前進方向F及び後退方向Bに沿って並列配置された一対の動力伝達用回転体130BR−F、130BR−Bのうち動力伝達用回転体130BR−Bを駆動するとともに動力伝達用回転体130BR−Bに対して動力伝達用回転体130BR−Fを従動させる。
すなわち、図中上下左右に配置された帯状駆動体121AL、121AR、121BL、121BRは、相互に独立して駆動される。
また、多方向駆動体モジュール100の重量バランスをとることとモータの設置スペースを確保することとの両方を実現するために、図2に示すように、各駆動体ユニット120A、120Bのそれぞれについて前後に一つずつ駆動モータ140AF、140AB、140BF、140BBが配置されている。
As shown in FIGS. 1 to 3, the multidirectional moving body module 100 includes a moving body module main body 110 that moves along the moving surface P, and the moving body module main body 110 that is provided on the moving body module main body 110 and that advances and retreats independently of each other. Along the driving direction D1 of the pair of belt-like drive bodies 121AL and 121AR that are freely driven and the pair of belt-like drive bodies 121BL and 121BR and the belt-like drive bodies 121AL, 121AR, 121BL, and 121BR that are driven independently of each other. For example, the rotation shafts 123AL, 123AR, which are arranged in the belt-like drive bodies 121AL, 121AR, 121BL, 121BR at equal intervals, that is, the gap d, and obliquely intersect with the drive direction D1 of the belt-like drive bodies 121AL, 121AR, 121BL, 121BR, Attached so that 123BL and 123BR are parallel to each other In this state, a plurality of rotating bodies 122AL, 122AR, 122BL, and 122BR that respectively contact the outer peripheral surface 124 with the moving surface P are arranged in the driving direction D1 of the strip-shaped driving bodies 121AL, 121AR, 121BL, and 121BR. By providing the pair of driving body units 120A and 120B, the load of the moving body module main body 110 in a state where the outer peripheral surfaces 124 of the plurality of rotating bodies 122AL, 122AR, 122BL, and 122BR are in contact with the moving surface P. Of each of the rotating bodies 122AL, 122AR, 122BL, 122BR, and the reaction force against the force acting on each rotating body 122AL, 122AR, 122BL, 122BR from the moving surface P according to the load of the moving body module main body 110 Mobile module body in direction of resultant force In order to generate 10 driving forces, the surface of each rotating body 122AL, 122AR, 122BL, 122BR is avoided, and the moving body module body 110 is moved along the moving surface P smoothly and freely in many directions. The multi-directional mobile module 100 can be moved stably with respect to the moving surface P without increasing the size of the directional mobile module 100 and without changing the design of the center of gravity of the mobile module main body 110 to a high position. 122AR, 122BL, 122BR is not caused to rotate by rotating 122AR, 121AR, 121BL, 121BR, and by providing a large number of rotating bodies 122AL, 122AR, 122BL, 122BR, the load can be dispersed, so the moving plane P And avoiding damage to the outer surface 124 It has become.
In this embodiment, chains are used as the belt-like driving bodies 121AL, 121AR, 121BL, and 121BR.
Further, as shown in FIG. 2, the drive shaft 141AL-F of the power transmission rotating body 130AL-F and the drive shaft 141AR-F of the power transmission rotating body 130AR-F are not connected to each other.
The drive shaft 141AL-B of the power transmission rotating body 130AL-B and the drive shaft 141AR-B of the power transmission rotating body 130AR-B are also not connected to each other.
The drive motor 140AF is used for power transmission among a pair of power transmission rotating bodies 130AL-F and 130AL-B arranged in parallel in the vertical direction in the figure, that is, in the forward direction F and the backward direction B of the multidirectional moving body module 100. The rotator 130AL-F is driven, and the power transmission rotator 130AL-B is driven by the power transmission rotator 130AL-F.
The drive motor 140AB is used for power transmission among a pair of power transmission rotating bodies 130AR-F and 130AR-B arranged in parallel in the vertical direction in the figure, that is, in the forward direction F and the backward direction B of the multi-directional moving body module 100. The rotator 130AR-B is driven, and the power transmission rotator 130AR-F is driven by the power transmission rotator 130AR-B.
The drive shaft 141BL-F of the power transmission rotating body 130BL-F and the drive shaft 141BR-F of the power transmission rotating body 130BR-F are not connected to each other.
The drive shaft 141BL-B of the power transmission rotating body 130BL-B and the drive shaft 141BR-B of the power transmission rotating body 130BR-B are not connected to each other.
The drive motor 140BF is used for power transmission among a pair of power transmission rotating bodies 130BL-F and 130BL-B arranged in parallel in the vertical direction in the drawing, that is, in the forward direction F and the backward direction B of the multidirectional moving body module 100. The rotating body 130BL-F is driven and the power transmission rotating body 130BL-F is driven by the power transmitting rotating body 130BL-F.
The drive motor 140BB is used for power transmission among a pair of power transmission rotors 130BR-F and 130BR-B arranged in parallel in the vertical direction in the drawing, that is, along the forward direction F and the backward direction B of the multi-directional moving body module 100. The rotating body 130BR-B is driven, and the power transmission rotating body 130BR-F is driven with respect to the power transmitting rotating body 130BR-B.
That is, the belt-like drive bodies 121AL, 121AR, 121BL, 121BR arranged on the top, bottom, left, and right in the figure are driven independently of each other.
Further, in order to realize both the weight balance of the multidirectional driver module 100 and the securing of the installation space for the motor, as shown in FIG. Drive motors 140AF, 140AB, 140BF, and 140BB are arranged one by one.

また、多方向移動体モジュール100は、一対の帯状駆動体121AL、121ARや一対の帯状駆動体121BL、121BRのそれぞれの駆動方向D1が、相互に平行であることにより、一対の帯状駆動体121AL、121ARや一対の帯状駆動体121BL、121BRの回転駆動方向と駆動速度との2つのパラメータを制御して移動体モジュール本体110の移動速度及びその方向を調整することが容易になり、簡便な駆動制御システム及び方法で移動体モジュール本体110を移動面Pに沿って多方向に円滑且つ自在に移動させるようになっている。   In addition, the multi-directional moving body module 100 includes a pair of belt-like drive bodies 121AL, 121AR and a pair of belt-like drive bodies 121BL, 121BR. It becomes easy to adjust the moving speed and the direction of the moving body module main body 110 by controlling the two parameters of the rotational driving direction and the driving speed of the 121AR and the pair of belt-like driving bodies 121BL and 121BR, and simple driving control. The movable body module body 110 is smoothly and freely moved in multiple directions along the moving surface P by the system and method.

また、多方向移動体モジュール100は、一対の帯状駆動体121AL、121ARの一方に設けられた回転体122ALの回転軸線123AL−Aと一対の帯状駆動体121AL、121ARの他方に設けられた回転体122ARの回転軸線123AR−Aとが、相互に交差しているとともに、一対の帯状駆動体121BL、121BRの一方に設けられた回転体122BLの回転軸線123BL−Aと一対の帯状駆動体121BL、121BRの他方に設けられた回転体122BRの回転軸線123BR−Aとが、相互に交差していることにより、各回転軸123AL、123AR、123BL、123BRを無秩序に軸支した状態で駆動方向D1に斜交させている場合に比べて各回転体122AL、122BL、122AR、122BRに移動面Pから作用する反作用力の合力の大きさ及びその方向を設定しやすくなるため、より一層簡便な駆動制御システム及び方法で移動体モジュール本体110を移動面Pに沿って多方向に円滑且つ自在に移動させるようになっている。   In addition, the multidirectional moving body module 100 includes a rotation axis 123AL-A of the rotating body 122AL provided on one of the pair of belt-like driving bodies 121AL and 121AR and a rotating body provided on the other of the pair of belt-like driving bodies 121AL and 121AR. The rotational axis 123AR-A of 122AR intersects with each other, and the rotational axis 123BL-A of the rotational body 122BL provided on one of the pair of belt-like driving bodies 121BL and 121BR and the pair of belt-like driving bodies 121BL and 121BR. The rotational axis 123BR-A of the rotating body 122BR provided on the other side of each of the first and second rotors crosses each other, so that the rotating shafts 123AL, 123AR, 123BL, and 123BR are supported in a disorderly manner in the driving direction D1. Each rotating body 122AL, 122BL, 122AR, 122B compared to the case where they intersect Since it is easy to set the magnitude and direction of the resultant reaction force acting from the moving surface P, the moving body module body 110 can be smoothly moved in multiple directions along the moving surface P with a simpler drive control system and method. It can be moved freely.

また、一対の帯状駆動体121AL、121ARの一方に設けられた回転体122ALの回転軸123ALと一対の帯状駆動体121AL、121ARの他方に設けられた回転体122ARの回転軸123ARとが、帯状駆動体121AL、121ARの駆動方向D1に対して45°の角度を形成していることにより、各回転軸123AL、123ARを無秩序に駆動方向D1に斜交させている場合に比べて移動面Pから各回転体122AL、122ARに作用する反作用力の合力方向をより一層設定しやすくなるため、多方向移動体モジュール100は、簡便な駆動制御システム及び方法で移動体モジュール本体110を移動面Pに沿って多方向に円滑且つ自在に効率良く移動させることをより確実に実現することができる。
同様に、一対の帯状駆動体121BL、121BRの一方に設けられた回転体122BLの回転軸123BLと一対の帯状駆動体121BL、121BRの他方に設けられた回転体122BRの回転軸123BRとが、帯状駆動体121BL、121BRの駆動方向D1に対して45°の角度を形成していることにより、各回転軸123BL、123BRを無秩序に駆動方向D1に斜交させている場合に比べて移動面Pから各回転体122BL、122BRに作用する反作用力の合力方向をより一層設定しやすくなるため、多方向移動体モジュール100は、簡便な駆動制御システム及び方法で移動体モジュール本体110を移動面Pに沿って多方向に円滑且つ自在に効率良く移動させることをより確実に実現することができる。
Further, the rotation shaft 123AL of the rotating body 122AL provided on one of the pair of belt-like driving bodies 121AL and 121AR and the rotation shaft 123AR of the rotating body 122AR provided on the other of the pair of belt-like driving bodies 121AL and 121AR are belt-like driving. By forming an angle of 45 ° with respect to the drive direction D1 of the bodies 121AL and 121AR, each rotation shaft 123AL and 123AR is separated from the moving plane P in comparison with the case where the rotation axes 123AL and 123AR are obliquely crossed in the drive direction D1. Since it becomes easier to set the resultant direction of the reaction force acting on the rotating bodies 122AL and 122AR, the multidirectional moving body module 100 moves the moving body module main body 110 along the moving plane P with a simple drive control system and method. It is possible to more reliably realize smooth and free efficient movement in multiple directions.
Similarly, the rotating shaft 123BL of the rotating body 122BL provided on one of the pair of strip-shaped driving bodies 121BL and 121BR and the rotating shaft 123BR of the rotating body 122BR provided on the other of the pair of strip-shaped driving bodies 121BL and 121BR are strip-shaped. By forming an angle of 45 ° with respect to the drive direction D1 of the drive bodies 121BL and 121BR, the rotation shafts 123BL and 123BR are separated from the moving surface P in comparison with the case where the rotation axes 123BL and 123BR are obliquely crossed in the drive direction D1. Since it becomes easier to set the resultant direction of the reaction force acting on each rotating body 122BL, 122BR, the multidirectional moving body module 100 moves the moving body module main body 110 along the moving plane P with a simple drive control system and method. Thus, it is possible to more surely realize efficient movement smoothly and freely in multiple directions.

また、多方向移動体モジュール100は、一対の帯状駆動体121AL、121ARや一対の帯状駆動体121BL、121BRが、一対の帯状駆動体121AL、121ARや一対の帯状駆動体121BL、121BRのそれぞれに対応して移動体モジュール本体110に設けられた動力伝達用回転体130AL−F、130AL−B、130AR−F、130AR−F、130BL−F、130BL−B、130BR−F、130BR−B、に巻き掛けられた状態で進退自在に駆動される無端形状をそれぞれ形成していることにより、複数の回転体122AL、122AR、122BL、122BRを移動面Pすなわち接地面に接地させた状態で移動面Pから回転体122AL、122AR、122BL、122BRに作用する荷重全体を各回転体に分担支持させて回転体122AL、122AR、122BL、122BR及びその回転軸123AL、123AR、123BL、123BR間の荷重負担を軽減するため、回転体122AL、122AR、122BL、122BR及びその回転軸123AL、123AR、123BL、123BR間の荷重負担を下げるためにその回転軸123AL、123AR、123BL、123BRの軸径を大きくすることに伴う回転体122AL、122AR、122BL、122BRやその支持部のサイズ増大を回避し、多方向移動体モジュール100の重心を高くすることなく移動体モジュール本体110を移動面Pに沿って多方向に円滑且つ自在に移動させるようになっている。   Further, in the multidirectional moving body module 100, the pair of belt-like driving bodies 121AL and 121AR and the pair of belt-like driving bodies 121BL and 121BR correspond to the pair of belt-like driving bodies 121AL and 121AR and the pair of belt-like driving bodies 121BL and 121BR, respectively. Then, it is wound around a power transmission rotating body 130AL-F, 130AL-B, 130AR-F, 130AR-F, 130BL-F, 130BL-B, 130BR-F, 130BR-B provided in the mobile module main body 110. By forming an endless shape that is driven to move forward and backward in a hung state, the plurality of rotating bodies 122AL, 122AR, 122BL, and 122BR are moved from the moving surface P in a state where they are grounded to the moving surface P, that is, the ground surface. Overall load acting on rotating body 122AL, 122AR, 122BL, 122BR In order to reduce the load burden between the rotating bodies 122AL, 122AR, 122BL, and 122BR and their rotating shafts 123AL, 123AR, 123BL, and 123BR by supporting each rotating body, the rotating bodies 122AL, 122AR, 122BL, and 122BR and their rotating shafts are reduced. Increasing the size of the rotating body 122AL, 122AR, 122BL, 122BR and its supporting part as the shaft diameter of the rotating shaft 123AL, 123AR, 123BL, 123BR is increased in order to reduce the load burden between 123AL, 123AR, 123BL, 123BR Thus, the mobile module module main body 110 can be moved smoothly and freely in multiple directions along the moving plane P without increasing the center of gravity of the multidirectional mobile module 100.

次に、図1乃至図15を参照しながら、前述した本実施例の多方向移動体モジュール100の動作を詳細に説明する。
なお、説明の便宜上、図1乃至図15に多方向移動体モジュール100の前進方向F、後退方向B、右進行方向R及び左進行方向Lを矢印で示している。
また、図1に示した白抜き矢印及び図4乃至図15に示した白抜きのV字形印は、無端形状すなわち無限軌道を有する帯状駆動体121AL、121AR、121BL、121BRのうち移動面Pの側に臨む下側部分の速度ベクトルを示している。
より具体的には、例えば、図1に示した帯状駆動体121AR、121BRのうち移動面Pの側に臨む下側部分における速度ベクトルVは、図4に示した帯状駆動体121AR、121BRの速度ベクトルDAR1、DBR1に一致している。
このような速度ベクトルは、帯状駆動体121AL、121AR、121BL、121BRの駆動速度およびその方向、回転体122AL、122AR、122BL、122BRの配置方向、並びにその構成及び位置等の各種パラメータと、駆動モータ140の駆動力との兼ね合いで設定される。
また、以下で示す多方向移動体モジュール100の移動方向や転回方向は一例であり、多方向移動体モジュール100は、帯状駆動体121AL、121AR、121BL、121BRのそれぞれの速度ベクトルの大きさ及び向きの組み合わせを変更することによって移動面P内の全ての方向に移動するとともにその場で方向転換することができる。
Next, the operation of the multi-directional moving body module 100 of the above-described embodiment will be described in detail with reference to FIGS.
For convenience of explanation, the forward direction F, the backward direction B, the right traveling direction R, and the left traveling direction L of the multidirectional moving body module 100 are indicated by arrows in FIGS.
Further, the white arrow shown in FIG. 1 and the white V-shaped mark shown in FIGS. 4 to 15 indicate the end face of the moving surface P among the belt-like drivers 121AL, 121AR, 121BL, 121BR having endless tracks. The velocity vector of the lower part facing the side is shown.
More specifically, for example, the velocity vector V in the lower part facing the moving surface P of the belt-like drive bodies 121AR and 121BR shown in FIG. 1 is the speed of the belt-like drive bodies 121AR and 121BR shown in FIG. It matches the vectors DAR1 and DBR1.
Such a speed vector includes various parameters such as the driving speed and direction of the belt-like driving bodies 121AL, 121AR, 121BL, and 121BR, the arrangement direction of the rotating bodies 122AL, 122AR, 122BL, and 122BR, and the configuration and position thereof, and the driving motor. It is set in consideration of 140 driving force.
In addition, the moving direction and the turning direction of the multidirectional moving body module 100 shown below are examples, and the multidirectional moving body module 100 has the magnitude and direction of each velocity vector of the belt-like driving bodies 121AL, 121AR, 121BL, and 121BR. By changing the combination, it is possible to move in all directions in the moving surface P and change the direction on the spot.

図1乃至図4に示すように、一対の帯状駆動体121AL、121ARの速度ベクトルDAL1、DAR1の大きさが相互に等しいとともにそれらの向きが後退方向Bに一致し、しかも一対の帯状駆動体121BL、121BRの速度ベクトルDBL1、DBR1の大きさが相互に等しいとともにそれらの向きが後退方向Bに一致している場合、各回転体122AL、122AR、122BL、122BRの外周面124から移動面Pに作用する作用力ベクトルFAL1、FAR1、FBL1、FBR1の和である合力ベクトルFX1の向きが後退方向Bに一致し、合力ベクトルFX1に応じて移動面Pから移動体モジュール100に作用する反作用力FY1の向きが前進方向Fに一致するため、多方向移動体モジュール100は前進方向Fに移動することができる。   As shown in FIGS. 1 to 4, the speed vectors DAL1 and DAR1 of the pair of belt-like driving bodies 121AL and 121AR are equal to each other, their directions coincide with the backward direction B, and the pair of belt-like driving bodies 121BL. , 121BR velocity vectors DBL1, DBR1 are equal to each other and their directions coincide with the backward direction B, the outer peripheral surface 124 of each rotating body 122AL, 122AR, 122BL, 122BR acts on the moving surface P. The direction of the resultant force vector FX1, which is the sum of the acting force vectors FAL1, FAR1, FBL1, and FBR1, coincides with the backward direction B, and the direction of the reaction force FY1 acting on the moving body module 100 from the moving surface P according to the resultant force vector FX1. Is in the forward direction F, the multidirectional mobile module 100 is in the forward direction F. It can be moved.

また、図1乃至図3、図5に示すように、一対の帯状駆動体121AL、121ARの速度ベクトルDAL2、DAR2の大きさが相互に等しいとともにそれらの向きが前進方向Fに一致し、しかも一対の帯状駆動体121BL、121BRの速度ベクトルDBL2、DBR2の大きさが相互に等しいとともにそれらの向きが前進方向Fに一致している場合、各回転体122AL、122AR、122BL、122BRの外周面124から移動面Pに作用する作用力ベクトルFAL2、FAR2、FBL2、FBR2の和である合力ベクトルFX2の向きが前進方向Fに一致し、合力ベクトルFX2に応じて移動面Pから移動体モジュール100に作用する反作用力FY2の向きが後退方向Bに一致するため、多方向移動体モジュール100は後退方向Bに移動することができる。   Further, as shown in FIGS. 1 to 3 and FIG. 5, the speed vectors DAL2 and DAR2 of the pair of belt-like drive bodies 121AL and 121AR are equal to each other, their directions coincide with the forward direction F, and the pair When the speed vectors DBL2 and DBR2 of the belt-like driving bodies 121BL and 121BR of the belt-shaped driving bodies 121BL and 121BR are equal to each other and their directions coincide with the forward direction F, the outer peripheral surfaces 124 of the rotating bodies 122AL, 122AR, 122BL and 122BR The direction of the resultant force vector FX2, which is the sum of the acting force vectors FAL2, FAR2, FBL2, and FBR2 acting on the moving surface P, coincides with the forward direction F and acts on the moving body module 100 from the moving surface P according to the resultant force vector FX2. Since the direction of the reaction force FY2 coincides with the backward direction B, the multidirectional moving body module 100 It can be moved in the backward direction B.

また、図1乃至図3、図6に示すように、帯状駆動体121AL、121BRの速度ベクトルDAL3、DBR3の大きさが相互に等しいとともに速度ベクトルDAL3、DBR3の向きが後退方向Bに一致し、しかも帯状駆動体121AR、121BLの速度ベクトルDAR3、DBL3の大きさが相互に等しいとともに速度ベクトルDAR3、DBL3の向きが前進方向Fに一致している場合、各回転体122AL、122AR、122BL、122BRの外周面124から移動面Pに作用する作用力ベクトルFAL3、FAR3、FBL3、FBR3の和である合力ベクトルFX3の向きが左進行方向Lに一致し、合力ベクトルFX3に応じて移動面Pから移動体モジュール100に作用する反作用力FY3の向きが右進行方向Rに一致するため、多方向移動体モジュール100は右進行方向Rに移動することができる。   Further, as shown in FIGS. 1 to 3 and 6, the magnitudes of the velocity vectors DAL3 and DBR3 of the belt-like drivers 121AL and 121BR are equal to each other, and the directions of the velocity vectors DAL3 and DBR3 coincide with the backward direction B. Moreover, when the speed vectors DAR3 and DBL3 of the belt-like driving bodies 121AR and 121BL are equal to each other and the directions of the speed vectors DAR3 and DBL3 coincide with the forward direction F, each of the rotating bodies 122AL, 122AR, 122BL and 122BR The direction of the resultant force vector FX3 that is the sum of the acting force vectors FAL3, FAR3, FBL3, and FBR3 acting on the moving surface P from the outer peripheral surface 124 coincides with the left traveling direction L, and the moving body P moves from the moving surface P according to the resultant force vector FX3. The direction of the reaction force FY3 acting on the module 100 is the same in the right traveling direction R. To multidirectional mobile module 100 can move in the right direction of travel R.

また、図1乃至図3、図7に示すように、帯状駆動体121AL、121BRの速度ベクトルDAL4、DBR4の大きさが相互に等しいとともに速度ベクトルDAL4、DBR4の向きが前進方向Fに一致し、しかも帯状駆動体121AR、121BLの速度ベクトルDAR4、DBL4の大きさが相互に等しいとともに速度ベクトルDAR4、DBL4の向きが後退方向Bに一致している場合、各回転体122AL、122AR、122BL、122BRの外周面124から移動面Pに作用する作用力ベクトルFAL4、FAR4、FBL4、FBR4の和である合力ベクトルFX4の向きが右進行方向Rに一致し、合力ベクトルFX4に応じて移動面Pから移動体モジュール100に作用する反作用力FY4の向きが左進行方向Lに一致するため、多方向移動体モジュール100は左進行方向Lに移動することができる。   Further, as shown in FIGS. 1 to 3 and 7, the magnitudes of the velocity vectors DAL4 and DBR4 of the belt-like drivers 121AL and 121BR are equal to each other, and the directions of the velocity vectors DAL4 and DBR4 coincide with the forward direction F. In addition, when the speed vectors DAR4 and DBL4 of the belt-like drive bodies 121AR and 121BL are equal to each other and the directions of the speed vectors DAR4 and DBL4 coincide with the backward direction B, each of the rotating bodies 122AL, 122AR, 122BL, and 122BR The direction of the resultant force vector FX4 that is the sum of the acting force vectors FAL4, FAR4, FBL4, and FBR4 acting on the moving surface P from the outer peripheral surface 124 coincides with the right traveling direction R, and the moving body P moves from the moving surface P according to the resultant force vector FX4. The direction of the reaction force FY4 acting on the module 100 is equal to the left traveling direction L. To multidirectional mobile module 100 can move in the left direction of travel L.

また、図1乃至図3、図8に示すように、一対の帯状駆動体121AL、121ARの一方すなわち帯状駆動体121ARの速度ベクトルの大きさがゼロであるとともに一対の帯状駆動体121BL、121BRの一方すなわち帯状駆動体121BLの速度ベクトルの大きさがゼロである場合、より具体的には、帯状駆動体121ALの速度ベクトルDAL5の大きさがゼロでないとともにその向きが後退方向Bに一致し、しかも帯状駆動体121BRの速度ベクトルDBR5の大きさがゼロでないとともにその向きが後退方向Bに一致している場合、各回転体122AL、122BRの外周面124から移動面Pに作用する作用力ベクトルFAL5、FBR5の和である合力ベクトルFX5の向きが左進行方向L及び後退方向Bのそれぞれに対して45°の角度を形成する向きに一致し、合力ベクトルFX5に応じて移動面Pから移動体モジュール100に作用する反作用力FY5の向きが右進行方向R及び前進方向Fのそれぞれに対して45°の角度を形成する向きに一致するため、多方向移動体モジュール100は、右進行方向R及び前進方向Fのそれぞれに対して45°の角度を形成する向きに移動することができる。   Further, as shown in FIGS. 1 to 3 and FIG. 8, the velocity vector of one of the pair of belt-like drive bodies 121AL and 121AR, that is, the belt-like drive body 121AR has zero magnitude, and the pair of belt-like drive bodies 121BL and 121BR. On the other hand, that is, when the speed vector of the belt-like drive body 121BL is zero, more specifically, the speed vector DAL5 of the belt-like drive body 121AL is not zero and its direction coincides with the backward direction B. When the magnitude of the velocity vector DBR5 of the belt-like drive body 121BR is not zero and the direction thereof coincides with the backward direction B, the acting force vector FAL5 acting on the moving surface P from the outer peripheral surface 124 of each rotating body 122AL, 122BR, The direction of the resultant force vector FX5, which is the sum of FBR5, is the left traveling direction L and the backward direction B, respectively. The direction of the reaction force FY5 that acts on the moving body module 100 from the moving surface P in accordance with the resultant vector FX5 corresponds to the direction of forming an angle of 45 ° with respect to the right traveling direction R and the forward direction F, respectively. In order to match the direction forming the 45 ° angle, the multi-directional moving body module 100 can move in the direction forming the 45 ° angle with respect to each of the right traveling direction R and the forward traveling direction F.

また、図1乃至図3、図9に示すように、一対の帯状駆動体121AL、121ARの一方すなわち帯状駆動体121ARの速度ベクトルの大きさがゼロであるとともに一対の帯状駆動体121BL、121BRの一方すなわち帯状駆動体121BLの速度ベクトルの大きさがゼロである場合、より具体的には、帯状駆動体121ALの速度ベクトルDAL6の大きさがゼロでないとともにその向きが前進方向Fに一致し、しかも帯状駆動体121BRの速度ベクトルDBR6の大きさがゼロでないとともにその向きが前進方向Fに一致している場合、各回転体122AL、122BRの外周面124から移動面Pに作用する作用力ベクトルFAL6、FBR6の和である合力ベクトルFX6の向きが右進行方向R及び前進方向Fのそれぞれに対して45°の角度を形成する向きに一致し、合力ベクトルFX6に応じて移動面Pから移動体モジュール100に作用する反作用力FY6の向きが左進行方向L及び後退方向Bのそれぞれに対して45°の角度を形成する向きに一致するため、多方向移動体モジュール100は、左進行方向L及び後退方向Bのそれぞれに対して45°の角度を形成する向きに移動することができる。   Further, as shown in FIGS. 1 to 3 and FIG. 9, the magnitude of the velocity vector of one of the pair of belt-like drive bodies 121AL and 121AR, that is, the belt-like drive body 121AR is zero and the pair of belt-like drive bodies 121BL and 121BR. On the other hand, that is, when the magnitude of the velocity vector of the belt-like drive body 121BL is zero, more specifically, the magnitude of the velocity vector DAL6 of the belt-like drive body 121AL is not zero and its direction matches the forward direction F. When the magnitude of the velocity vector DBR6 of the belt-like drive body 121BR is not zero and the direction thereof coincides with the forward direction F, the acting force vector FAL6 acting on the moving surface P from the outer peripheral surface 124 of each rotating body 122AL, 122BR, The direction of the resultant force vector FX6, which is the sum of FBR6, is the right direction R and the forward direction F, respectively. The direction of the reaction force FY6 acting on the moving body module 100 from the moving plane P in accordance with the resultant force vector FX6 corresponds to the direction of forming an angle of 45 ° with respect to the left traveling direction L and the backward direction B, respectively. The multi-directional moving body module 100 can move in a direction that forms an angle of 45 ° with respect to each of the left traveling direction L and the backward direction B because it corresponds to the direction that forms an angle of 45 °.

また、図1乃至図3、図10に示すように、一対の帯状駆動体121AL、121ARの一方すなわち帯状駆動体121ARの速度ベクトルの大きさがゼロであるとともに一対の帯状駆動体121BL、121BRの一方すなわち帯状駆動体121BLの速度ベクトルの大きさがゼロである場合、より具体的には、帯状駆動体121ALの速度ベクトルDAL7の大きさがゼロでないとともにその向きが後退方向Bに一致し、しかも帯状駆動体121BRの速度ベクトルDBR7の大きさがゼロでないとともにその向きが前進方向Fに一致している場合、各回転体122AL、122BRの外周面124から移動面Pに作用する作用力ベクトルFAL7、FBR7に応じて多方向移動体モジュール100から移動面Pに対して回転モーメントMX7が反時計回り方向に作用し、回転モーメントMX7に応じて移動面Pから移動体モジュール100に対して回転モーメントMY7が時計周り方向に作用するため、多方向移動体モジュール100はその場で時計周り方向に方向転換することができる。   Further, as shown in FIGS. 1 to 3 and FIG. 10, the magnitude of the velocity vector of one of the pair of strip-like driving bodies 121AL and 121AR, that is, the strip-like driving body 121AR is zero, and the pair of strip-like driving bodies 121BL and 121BR. On the other hand, that is, when the speed vector of the belt-like drive body 121BL is zero, more specifically, the speed vector DAL7 of the belt-like drive body 121AL is not zero and its direction matches the backward direction B. When the magnitude of the velocity vector DBR7 of the belt-like drive body 121BR is not zero and the direction thereof coincides with the forward direction F, the acting force vector FAL7 acting on the moving surface P from the outer peripheral surface 124 of each rotating body 122AL, 122BR, Rotational moment from the multidirectional moving body module 100 to the moving surface P according to FBR7 X7 acts in the counterclockwise direction, and the rotational moment MY7 acts in the clockwise direction from the moving surface P to the movable body module 100 according to the rotational moment MX7. The direction can be changed around.

また、図1乃至図3、図11に示すように、一対の帯状駆動体121AL、121ARの一方すなわち帯状駆動体121ARの速度ベクトルの大きさがゼロであるとともに一対の帯状駆動体121BL、121BRの一方すなわち帯状駆動体121BLの速度ベクトルの大きさがゼロである場合、より具体的には、帯状駆動体121ALの速度ベクトルDAL8の大きさがゼロでないとともにその向きが前進方向Fに一致し、しかも帯状駆動体121BRの速度ベクトルDBR8の大きさがゼロでないとともにその向きが後退方向Bに一致している場合、各回転体122AL、122BRの外周面124から移動面Pに作用する作用力ベクトルFAL8、FBR8に応じて多方向移動体モジュール100から移動面Pに対して回転モーメントMX8が時計回り方向に作用し、回転モーメントMX8に応じて移動面Pから移動体モジュール100に対して回転モーメントMY8が反時計周り方向に作用するため、多方向移動体モジュール100はその場で反時計周り方向に方向転換することができる。   Further, as shown in FIGS. 1 to 3 and FIG. 11, the velocity vector of one of the pair of belt-like drive bodies 121AL and 121AR, that is, the belt-like drive body 121AR is zero, and the pair of belt-like drive bodies 121BL and 121BR. On the other hand, that is, when the speed vector of the belt-like drive body 121BL is zero, more specifically, the speed vector DAL8 of the belt-like drive body 121AL is not zero and its direction matches the forward direction F. When the magnitude of the velocity vector DBR8 of the belt-like drive body 121BR is not zero and the direction thereof coincides with the backward direction B, the acting force vector FAL8 acting on the moving surface P from the outer peripheral surface 124 of each rotating body 122AL, 122BR, Rotational moment from the multidirectional moving body module 100 to the moving surface P according to the FBR8 Since X8 acts in the clockwise direction and the rotational moment MY8 acts in the counterclockwise direction from the moving surface P to the moving body module 100 in accordance with the rotating moment MX8, the multidirectional moving body module 100 is counteracted on the spot. The direction can be changed clockwise.

また、図1乃至図3、図12に示すように、一対の帯状駆動体121AL、121ARの速度ベクトルDAL9、DAR9が、それぞれ前進方向F及び後退方向Bに向いているとともに一対の帯状駆動体121BL、121BRの速度ベクトルDBL9、DBR9が、それぞれ後退方向B及び前進方向Fに向いている場合、各回転体122AL、122AR、122BL、122BRの外周面124から移動面Pに作用する作用力ベクトルFAL9、FAR9、FBL9、FBR9に応じて多方向移動体モジュール100から移動面Pに対して回転モーメントMX9が反時計回り方向に作用し、回転モーメントMX9に応じて移動面Pから移動体モジュール100に対して回転モーメントMY9が時計周り方向に作用するため、多方向移動体モジュール100はその場で時計周り方向に方向転換することができる。   Further, as shown in FIGS. 1 to 3 and FIG. 12, the speed vectors DAL9 and DAR9 of the pair of belt-like driving bodies 121AL and 121AR are directed in the forward direction F and the backward direction B, respectively, and the pair of belt-like driving bodies 121BL. , 121BR speed vectors DBL9, DBR9 are directed in the backward direction B and forward direction F, respectively, the acting force vector FAL9 acting on the moving surface P from the outer peripheral surface 124 of each rotating body 122AL, 122AR, 122BL, 122BR, In response to FAR9, FBL9, and FBR9, the rotational moment MX9 acts on the moving surface P from the multidirectional moving body module 100 in the counterclockwise direction, and from the moving surface P to the moving body module 100 in response to the rotating moment MX9. Since the rotational moment MY9 acts in the clockwise direction, the multidirectional moving body Joule 100 can be diverted in the clockwise direction on the spot.

また、図1乃至図3、図13に示すように、一対の帯状駆動体121AL、121ARの速度ベクトルDAL10、DAR10がそれぞれ前進方向F及び後退方向Bに向き、しかも一対の帯状駆動体121BL、121BRの速度ベクトルDBL10、DBR10がそれぞれ前進方向F及び後退方向Bに向いている場合、各回転体122AL、122AR、122BL、122BRの外周面124から移動面Pに作用する作用力ベクトルFAL10、FAR10、FBL10、FBR10に応じて多方向移動体モジュール100から移動面Pに対して回転モーメントMX10が時計回り方向に作用し、回転モーメントMX10に応じて移動面Pから移動体モジュール100に対して回転モーメントMY10が反時計周り方向に作用するため、多方向移動体モジュール100はその場で反時計周り方向に方向転換することができる。   Further, as shown in FIGS. 1 to 3 and FIG. 13, the velocity vectors DAL10 and DAR10 of the pair of belt-like driving bodies 121AL and 121AR are directed in the forward direction F and the backward direction B, respectively, and the pair of belt-like driving bodies 121BL and 121BR. When the velocity vectors DBL10 and DBR10 are directed in the forward direction F and the reverse direction B, respectively, the acting force vectors FAL10, FAR10, and FBL10 acting on the moving surface P from the outer peripheral surface 124 of each of the rotating bodies 122AL, 122AR, 122BL, and 122BR. The rotational moment MX10 acts on the moving surface P from the multi-directional moving body module 100 in the clockwise direction according to the FBR10, and the rotating moment MY10 acts on the moving body module 100 from the moving surface P in response to the rotational moment MX10. Because it works counterclockwise, Direction moving body module 100 can be diverted in the counterclockwise direction on the spot.

また、図1乃至図3、図14に示すように、一対の帯状駆動体121AL、121ARの速度ベクトルDAL11、DAR11が、それぞれ後退方向B及び前進方向Fに向いているとともに一対の帯状駆動体121BL、121BRの速度ベクトルがゼロである場合、各回転体122AL、122ARの外周面124から移動面Pに作用する作用力ベクトルFAL11、FAR11に応じた回転モーメントMX11が左進行方向Lに沿って円弧状且つ反時計周り方向に向き、回転モーメントMX11に応じて移動面Pから移動体モジュール100に対して作用する回転モーメントMY11が回転モーメントMX11に対して逆向きすなわち右進行方向Rに沿って円弧状且つ時計周り方向に向くため、多方向移動体モジュール100は右進行方向Rに沿って円弧状に移動するとともに時計周り方向に方向転換することができる。   Further, as shown in FIG. 1 to FIG. 3 and FIG. 14, the speed vectors DAL11 and DAR11 of the pair of belt-like drive bodies 121AL and 121AR are directed in the backward direction B and the forward direction F, respectively, and the pair of belt-like drive bodies 121BL. When the velocity vector of 121BR is zero, the rotational moment MX11 corresponding to the acting force vectors FAL11 and FAR11 acting on the moving surface P from the outer peripheral surface 124 of each of the rotating bodies 122AL and 122AR is arcuate along the left traveling direction L. Further, the rotational moment MY11 acting on the moving body module 100 from the moving surface P according to the rotational moment MX11 is directed in the counterclockwise direction, and is arcuate in the opposite direction to the rotational moment MX11, that is, along the right traveling direction R. Because it faces clockwise, the multi-directional mobile module 100 moves to the right It can be diverted in the clockwise direction together with the movement in an arc shape along the R.

また、図1乃至図3、図15に示すように、一対の帯状駆動体121AL、121ARの速度ベクトルDAL12、DAR12がそれぞれ前進方向F及び後退方向Bに向き、しかも一対の帯状駆動体121BL、121BRの速度ベクトルがゼロである場合、各回転体122AL、122ARの外周面124から移動面Pに作用する作用力ベクトルFAL12、FAR12に応じた回転モーメントMX12が右進行方向Rに沿って円弧状且つ時計周り方向に向き、回転モーメントMX12に応じて移動面Pから移動体モジュール100に対して作用する回転モーメントMY12が、回転モーメントMX12に対して逆向きすなわち左進行方向Lに沿って円弧状且つ反時計周り方向に向くため、多方向移動体モジュール100は左進行方向Lに沿って円弧状に移動するとともに反時計周り方向に方向転換することができる。   Further, as shown in FIGS. 1 to 3 and FIG. 15, the speed vectors DAL12 and DAR12 of the pair of belt-like driving bodies 121AL and 121AR are directed in the forward direction F and the backward direction B, respectively, and the pair of belt-like driving bodies 121BL and 121BR. Is zero, the rotational moment MX12 corresponding to the acting force vectors FAL12 and FAR12 acting on the moving surface P from the outer peripheral surface 124 of each of the rotating bodies 122AL and 122AR is arcuate and clockwise along the right traveling direction R. A rotational moment MY12 that is directed in the circumferential direction and acts on the moving body module 100 from the moving surface P in accordance with the rotational moment MX12 is opposite to the rotational moment MX12, that is, arcuate and counterclockwise along the leftward traveling direction L. The multi-directional moving body module 100 moves in the left direction L because it faces in the surrounding direction. It can be diverted in the counterclockwise direction together with the moving arcuately I.

このようにして得られた本実施例の多方向移動体モジュール100は、移動面Pに沿って移動する移動体モジュール本体110と、移動体モジュール本体110に設けられているとともに相互に独立して進退自在に駆動される一対の帯状駆動体121AL、121AR、121BL、121BRと帯状駆動体121AL、121AR、121BL、121BRの駆動方向D1に沿って帯状駆動体121AL、121AR、121BL、121BRに配列されているとともに帯状駆動体121AL、121AR、121BL、121BRの駆動方向D1に対して斜交する回転軸123AL、123AR、123BL、123BRがそれぞれ平行となるように軸着された状態で移動面Pに外周面124をそれぞれ接触させる複数の回転体122AL、122AR、122BL、122BRとをそれぞれ有して帯状駆動体121AL、121AR、121BL、121BRの駆動方向D1に配列された一対の駆動体ユニット120A、120Bとを備えていることにより、各回転体122AL、122AR、122BL、122BRの表面の摩耗を回避するとともに移動面Pに沿って多方向に円滑且つ自在に移動体モジュール本体110を移動させ、多方向移動体モジュール100を大型化させることなくしかも移動体モジュール本体110の重心を高い位置に設計変更しないで安定して多方向移動体モジュール100を移動させるとともに移動面Pに対して回転体122AL、122AR、122BL、122BRを回転させて滑りを起こさせないうえ帯状駆動体121AL、121AR、121BL、121BRに回転体122AL、122AR、122BL、122BRを多数設けることで荷重を分散させることができるので移動面Pや外周面124の損傷を回避することができるなど、その効果は甚大である。   The multi-directional moving body module 100 of the present embodiment obtained in this way is provided on the moving body module main body 110 that moves along the moving surface P, and on the moving body module main body 110 and is independent of each other. A pair of belt-like driving bodies 121AL, 121AR, 121BL, 121BR and belt-like driving bodies 121AL, 121AR, 121BL, 121BR that are driven to move forward and backward are arranged in strip-like driving bodies 121AL, 121AR, 121BL, 121BR along the driving direction D1. And the outer peripheral surface of the moving surface P in a state where the rotation shafts 123AL, 123AR, 123BL, and 123BR that are oblique to the drive direction D1 of the belt-like driving bodies 121AL, 121AR, 121BL, and 121BR are parallel to each other. A plurality of rotating bodies 122A that respectively contact 124 , 122AR, 122BL, and 122BR, respectively, and a pair of driver units 120A and 120B arranged in the driving direction D1 of the belt-like drivers 121AL, 121AR, 121BL, and 121BR. , 122AR, 122BL, 122BR, while avoiding the wear of the surface, moving the mobile module body 110 smoothly and freely in multiple directions along the moving surface P, and without moving the multi-directional mobile module 100 upsizing The multi-directional moving body module 100 is stably moved without changing the design of the center of gravity of the body module main body 110 to a high position, and the rotating bodies 122AL, 122AR, 122BL, 122BR are rotated with respect to the moving surface P to prevent slippage. Upper belt-like drive body 121AL, 121A , 121BL and 121BR are provided with a large number of rotating bodies 122AL, 122AR, 122BL and 122BR, so that the load can be dispersed, so that the damage to the moving surface P and the outer peripheral surface 124 can be avoided, and the effect is enormous. .

100 ・・・ 多方向移動体モジュール
110 ・・・ 移動体モジュール本体
120A、120B、 ・・・ 駆動体ユニット
121AL、121AR、121BL、121BR ・・・ 帯状駆動体
122AL、122AR、122BL、122BR ・・・ 回転体
123AL、123AR、123BL、123BR ・・・回転体の回転軸
124 ・・・ 回転体の外周面
130AL−F、130AL−B、130AR−F、130AR−B、130BL−F、130BL−B、130BR−F、130BR−B ・・・ 動力伝達用回転体
140AF、140AB、140BF、140BB ・・・ 駆動モータ
141AL−F、141AL−B、141AR−F、141AR−B、141BL−F、141BL−B、141BR−F、141BR−B ・・・ 動力伝達用回転体の駆動軸
P ・・・ 多方向移動体モジュールの移動面
F ・・・ 多方向移動体モジュールの前進方向
B ・・・ 多方向移動体モジュールの後退方向
R ・・・ 多方向移動体モジュールの右進行方向
L ・・・ 多方向移動体モジュールの左進行方向
DESCRIPTION OF SYMBOLS 100 ... Multi-directional moving body module 110 ... Moving body module main body 120A, 120B, ... Driver unit 121AL, 121AR, 121BL, 121BR ... Band-shaped driving body 122AL, 122AR, 122BL, 122BR ... Rotating body 123AL, 123AR, 123BL, 123BR ... rotating shaft 124 of rotating body ... outer peripheral surface of rotating body 130AL-F, 130AL-B, 130AR-F, 130AR-B, 130BL-F, 130BL-B, 130BR-F, 130BR-B ... Power transmission rotating body 140AF, 140AB, 140BF, 140BB ... Drive motor 141AL-F, 141AL-B, 141AR-F, 141AR-B, 141BL-F, 141BL-B 141BR-F, 141B -B: Driving shaft of the power transmission rotating body P: Moving surface of the multidirectional moving module F: Forward direction of the multidirectional moving module B: Reverse direction of the multidirectional moving module R ... Right traveling direction of multi-directional moving body module L ... Left traveling direction of multi-directional moving body module

Claims (5)

移動面に沿って移動する移動体モジュール本体と、
前記移動体モジュール本体に設けられているとともに相互に独立して進退自在に駆動される一対の帯状駆動体と該帯状駆動体の駆動方向に沿って前記帯状駆動体に配列されているとともに前記帯状駆動体の駆動方向に対して斜交する回転軸がそれぞれ平行となるように軸着された状態で前記移動面に外周面をそれぞれ接触させる複数の回転体とをそれぞれ有して前記帯状駆動体の駆動方向に配列された一対の駆動体ユニットとを備えていることを特徴とする多方向移動体モジュール。
A moving body module body that moves along the moving surface;
A pair of belt-like drive bodies that are provided in the movable body module body and are driven independently of each other, and are arranged in the belt-like drive bodies along the driving direction of the belt-like drive bodies and the belt-like shapes A plurality of rotating bodies each contacting an outer peripheral surface with the moving surface in a state in which the rotating shafts obliquely intersecting with the driving direction of the driving body are parallel to each other; A multidirectional moving body module comprising a pair of driving body units arranged in the driving direction.
前記一対の帯状駆動体のそれぞれの駆動方向が、相互に平行であることを特徴とする請求項1に記載の多方向移動体モジュール。   The multidirectional moving body module according to claim 1, wherein the driving directions of the pair of belt-like driving bodies are parallel to each other. 前記一対の帯状駆動体の一方に設けられた回転体の回転軸線と前記一対の帯状駆動体の他方に設けられた回転体の回転軸線とが、相互に交差していることを特徴とする請求項2に記載の多方向移動体モジュール。   The rotation axis of a rotating body provided on one of the pair of belt-like driving bodies and the rotation axis of a rotating body provided on the other of the pair of belt-like driving bodies cross each other. Item 3. The multidirectional moving body module according to Item 2. 前記一対の帯状駆動体の一方に設けられた回転体の回転軸と前記一対の帯状駆動体の他方に設けられた回転体の回転軸とが、前記帯状駆動体の駆動方向に対して45°の角度を形成していることを特徴とする請求項3に記載の多方向移動体モジュール。   A rotating shaft of a rotating body provided on one of the pair of belt-like driving bodies and a rotating shaft of a rotating body provided on the other of the pair of belt-like driving bodies are 45 ° with respect to the driving direction of the belt-like driving body. The multi-directional moving body module according to claim 3, wherein the angle is formed as follows. 前記一対の帯状駆動体が、前記一対の帯状駆動体のそれぞれに対応して前記移動体モジュール本体に設けられた動力伝達用回転体に巻き掛けられた状態で進退自在に駆動される無端形状をそれぞれ形成していることを特徴とする請求項1乃至請求項4のいずれか一つに記載の多方向移動体モジュール。   An endless shape in which the pair of belt-like drive bodies are driven to move forward and backward in a state of being wound around a power transmission rotating body provided in the movable body module body corresponding to each of the pair of belt-like drive bodies. The multidirectional moving body module according to any one of claims 1 to 4, wherein each of the multidirectional moving body modules is formed.
JP2011174142A 2011-08-09 2011-08-09 Multidirectional movable body module Withdrawn JP2014196004A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011174142A JP2014196004A (en) 2011-08-09 2011-08-09 Multidirectional movable body module
PCT/JP2012/068999 WO2013021829A1 (en) 2011-08-09 2012-07-26 Mobile body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011174142A JP2014196004A (en) 2011-08-09 2011-08-09 Multidirectional movable body module

Publications (1)

Publication Number Publication Date
JP2014196004A true JP2014196004A (en) 2014-10-16

Family

ID=47668343

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011174142A Withdrawn JP2014196004A (en) 2011-08-09 2011-08-09 Multidirectional movable body module

Country Status (2)

Country Link
JP (1) JP2014196004A (en)
WO (1) WO2013021829A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9988109B2 (en) 2016-05-13 2018-06-05 Caterpillar Inc. Capless and unibeam track roller mounting systems

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150014057A (en) * 2013-07-29 2015-02-06 주재훈 Omni-directional caterpillar tracks and omni-directional moving vehicle using thereof
EP2930088A1 (en) * 2014-04-09 2015-10-14 BIBA Bremer Institut für Produktion und Logistik GmbH Running gear, tracked vehicle and sub-vehicle with same and vehicle with such a tracked vehicle or sub-vehicle
CN104192217B (en) * 2014-09-02 2016-06-15 中国科学院沈阳自动化研究所 A kind of portable mobile robot
CN104386154B (en) * 2014-11-17 2016-10-05 张豫南 One efficiently turns to crawler belt and platform thereof
EP3103708A1 (en) * 2015-06-10 2016-12-14 General Electric Technology GmbH Omnidirectional moving device and omnidirectional treading system incorporated in such device
CN106627823A (en) * 2016-12-06 2017-05-10 哈工大机器人集团上海有限公司 Omni-directional motion robot transmission track
MX2021004765A (en) 2018-10-25 2021-08-24 Gestion Inogec Inc Omniwheel track system and platform using the same.
US11524523B2 (en) * 2019-06-12 2022-12-13 Toyota Motor North America, Inc. Omni-wheel brake devices and methods for braking an omni-wheel
CN110588809B (en) * 2019-10-18 2021-12-14 西安石油大学 Wheel-crawler type switching type all-terrain robot

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62130619A (en) * 1985-11-30 1987-06-12 井関農機株式会社 Running apparatus in combine
JP2604112B2 (en) * 1993-06-30 1997-04-30 茂男 広瀬 Omnidirectional vehicle
JP2002046667A (en) * 2000-08-07 2002-02-12 Mitsutoshi Hashiba Constitution of crawler belt
JP4523244B2 (en) * 2003-05-22 2010-08-11 独立行政法人科学技術振興機構 Power-assisted mobile trolley
JP5292283B2 (en) * 2007-04-20 2013-09-18 本田技研工業株式会社 Omnidirectional drive device and omnidirectional vehicle using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9988109B2 (en) 2016-05-13 2018-06-05 Caterpillar Inc. Capless and unibeam track roller mounting systems

Also Published As

Publication number Publication date
WO2013021829A1 (en) 2013-02-14

Similar Documents

Publication Publication Date Title
JP2014196004A (en) Multidirectional movable body module
JP5292283B2 (en) Omnidirectional drive device and omnidirectional vehicle using the same
EP1832445B1 (en) Universal transmission roller wheel
JP4759323B2 (en) Crawler type traveling device
JP5426682B2 (en) Friction type driving device and inverted pendulum type moving body
WO2010052890A1 (en) Friction-type drive device and omnidirectional movable body using same
WO2013022017A1 (en) Multi-directionally movable body module
WO2014043841A1 (en) Track type omnibearing moving platform
JP5305285B2 (en) Sphere drive omnidirectional movement device
JP2010173570A (en) Spherical body driving type omnidirectional moving device
CN204714478U (en) A kind of Omni-mobile driving engine installation car
US10087005B1 (en) Shunting transmission device and shunting transmission method using the same
CN101570218A (en) Method for arranging shifting carrying platform of wheels based on rotating shaft fixed type two-dimensional motion and mobile platform
JP2016049921A (en) Wheel driving device
JP6422482B2 (en) Moving transport mechanism
CN104870291A (en) Transport apparatus for screw drive
WO2013141017A1 (en) Multidirectional mobile object module
CN108437768A (en) A kind of driving device and carrier
WO2013022013A1 (en) Multi-directionally movable body module
JPS63149270A (en) Carrier vehicle
JP2012091762A (en) Supporting structure for driving wheel of carriage
Long et al. Effect of double-row active omni wheel on stability of single-track vehicle in roll direction
KR20140106304A (en) Moving object having driving unit
JP2015005020A (en) Unmanned carrier
JP2015105080A (en) Wheel with rotor and movable body

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20141104