JP2014194358A - Non-contact thickness measuring device - Google Patents

Non-contact thickness measuring device Download PDF

Info

Publication number
JP2014194358A
JP2014194358A JP2013070168A JP2013070168A JP2014194358A JP 2014194358 A JP2014194358 A JP 2014194358A JP 2013070168 A JP2013070168 A JP 2013070168A JP 2013070168 A JP2013070168 A JP 2013070168A JP 2014194358 A JP2014194358 A JP 2014194358A
Authority
JP
Japan
Prior art keywords
wave
probe
thickness
ultrasonic
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013070168A
Other languages
Japanese (ja)
Other versions
JP6204675B2 (en
Inventor
Kazuo Oraku
和夫 大楽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP2013070168A priority Critical patent/JP6204675B2/en
Publication of JP2014194358A publication Critical patent/JP2014194358A/en
Application granted granted Critical
Publication of JP6204675B2 publication Critical patent/JP6204675B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a measuring method for measuring a thickness in non-contact.SOLUTION: A burst wave or a chirp wave ultrasonic transmission probe 3 is arranged on one face of an object 1, and a burst wave or chirp wave ultrasonic reception probe 4 is arranged on the other face, and a thickness of a film is measured by a reception strength or a reception reciprocal of the burst wave or the chirp ultrasonic wave which is transmitted from the transmission probe, permeates the object, and is received by the reception probe.

Description

本発明は、非接触で厚さを測定する測定方法に関する。   The present invention relates to a measuring method for measuring thickness without contact.

工業的製品の厚さを測定し管理することは重要である。そして、工場では高速で生産工程を流れているため、非接触かつ自動的な測定方法によることが望ましい。対象物が透明であれば、レーザー光を用いた厚さ測定が可能であり、非接触法として設備は比較的安価であり精度も優れている。 It is important to measure and control the thickness of industrial products. And since the production process flows at high speed in the factory, it is desirable to use a non-contact and automatic measurement method. If the object is transparent, it is possible to measure the thickness using laser light, and the equipment is relatively inexpensive and has excellent accuracy as a non-contact method.

しかし不透明の場合にはレーザー光による方法は難しく、β線や超音波による方法が用いられていた。β線による厚さ測定法は、機器が高価でありかつ放射線使用に伴う管理が必要である等、簡便な測定法とは言い難い。   However, when opaque, the method using a laser beam is difficult, and a method using β rays or ultrasonic waves has been used. The thickness measurement method using β rays is not a simple measurement method because the equipment is expensive and management associated with radiation use is necessary.

超音波による厚さ特定法は簡便であり、対象物が透明でなくても測定できるが、対象物と超音波発信プローブとの間に空気層が存在すると、超音波は、対象物と空気との界面で大半が反射されるため接触式でないと膜厚の測定は難しかった(特許文献1)。   The thickness identification method using ultrasound is simple and can be measured even if the object is not transparent, but if there is an air layer between the object and the ultrasound transmission probe, the ultrasound will be separated from the object and air. Since most of the light is reflected at the interface, it is difficult to measure the film thickness unless it is a contact type (Patent Document 1).

空気を介して対象物に超音波を透過させた非接触の厚さ測定計は、原理的には可能であるが、超音波の減衰が大きいため発信プローブとの距離を3〜20mmm程度と近接させた上でベルト上を自動搬送されている対象物が重なっていることを判定するなど、精度が低くても実用化できるような用途に用いられていた(特許文献3)。   A non-contact thickness meter that allows ultrasonic waves to pass through an object through air is possible in principle, but because the attenuation of ultrasonic waves is large, the distance from the transmitting probe is as close as 3 to 20 mm. It is used for applications that can be put into practical use even if the accuracy is low, such as determining that the objects automatically conveyed on the belt overlap each other (Patent Document 3).

一般に対象物を透過した超音波は、受信プローブで検出されると同時に反対方向に反射し、これがさらに対象物表面で反射し再度受信プローブで検出される。このような反射波の伝播する行程が短いと、透過波に重なってとらえられる。反射波は、対象物表面の平滑状態などに大きく影響されるため、これが重なると透過波を正確にとらえることはできない。   In general, an ultrasonic wave transmitted through an object is reflected in the opposite direction at the same time as it is detected by the receiving probe, and this is further reflected by the surface of the object and detected again by the receiving probe. When the process of propagation of such reflected waves is short, it can be captured overlapping the transmitted waves. Since the reflected wave is greatly affected by the smooth state of the surface of the object, the transmitted wave cannot be accurately captured if they overlap.

パルス波による超音波を空中で伝播させサンプル膜に透過させる場合、超音波の減衰が大きく、ある程度以上距離をはなすと測定に十分な強度の透過波が得られないため、反射波と重なるリスクを冒して送信装置や受信装置と膜との距離を短くしている(特許文献2)。その結果、精度のよい測定は難しい。したがって、膜厚を非接触で測定する精度よく扱いやすい測定方法の開発が待たれていた。   When ultrasonic waves generated by pulse waves are propagated in the air and transmitted through the sample film, the attenuation of the ultrasonic waves is large, and if a distance of a certain distance is exceeded, a transmitted wave of sufficient strength for measurement cannot be obtained. As a result, the distance between the transmission device and the reception device and the film is shortened (Patent Document 2). As a result, accurate measurement is difficult. Therefore, it has been awaited to develop a measurement method that can measure the film thickness without contact with high accuracy.

特開2010−101656JP 2010-101656 A 特開2005−249486JP-A-2005-249486 特開2000−25987JP 2000-25987

本発明の目的は、厚さを非接触で計測する測定方法を提供することにある。   The objective of this invention is providing the measuring method which measures thickness non-contactingly.

本発明は、厚さを非接触により測定する方法に係るものである。
すなわち本発明は、以下の構成を有するものである。
The present invention relates to a method for measuring thickness without contact.
That is, the present invention has the following configuration.

1).対象物の一方の面にバースト波もしくはチャープ波超音波発信プローブを配置し、他方の面にバースト波もしくはチャープ波超音波の受信プローブを配置し、発信プローブから発せられ、対象物を透過し受信プローブで受信されるバースト波もしくはチャープ波超音波の受信波の強度または強度の逆数から対象物の厚さを測定する厚さの非接触測定方法。   1). A burst wave or chirp wave ultrasonic wave transmission probe is placed on one side of the object, and a burst wave or chirp wave ultrasonic wave reception probe is placed on the other side. A non-contact measurement method for measuring the thickness of an object from the intensity of a received wave of a burst wave or chirp wave received by a probe or the inverse of the intensity.

2).発信プローブ及び受信プローブと対象物との間に空気を介する1)に記載の非接触厚さ測定方法。   2). The non-contact thickness measuring method according to 1), wherein air is interposed between the transmitting probe and the receiving probe and the object.

3).対象物と発信プローブ及び受信プローブとの距離が50mm以上である1)または2)に記載の非接触厚さ測定方法。   3). The non-contact thickness measuring method according to 1) or 2), wherein the distance between the object and the transmitting probe and the receiving probe is 50 mm or more.

4).発信する超音波の周波数が20kHzから60kHzである1)〜3)のいずれかに記載の非接触厚さ測定方法。   4). The non-contact thickness measurement method according to any one of 1) to 3), wherein the frequency of ultrasonic waves to be transmitted is 20 kHz to 60 kHz.

5).対象物が厚さ1μmから130μmの膜状物である1)〜4)のいずれかに記載の非接触厚さ測定方法。   5). The non-contact thickness measurement method according to any one of 1) to 4), wherein the object is a film-like object having a thickness of 1 μm to 130 μm.

非接触で対象物の厚さを自動的に計測する測定方法を提供する。従来のレーザー光を用いた方法は対象物が光を透過する場合に限って測定できたが、本法は光が透過しない場合でもなんら問題なく測定が可能である。また、β線による測定方法のように放射線被爆の対策をとる必要もなく設備も安価であり工場への応用も容易である。 Provided is a measurement method for automatically measuring the thickness of an object without contact. The conventional method using laser light can be measured only when the object transmits light, but the present method can measure without any problem even when light does not transmit. Moreover, there is no need to take measures against radiation exposure unlike the measurement method using β-rays, and the equipment is inexpensive and the application to the factory is easy.

本発明の実施例1に係る検査装置の図である。It is a figure of the inspection apparatus which concerns on Example 1 of this invention. 本発明の実施例1に係る受信波の強度の逆数と膜厚の関係を示す図である。It is a figure which shows the relationship between the reciprocal number of the intensity | strength of the received wave and film thickness which concern on Example 1 of this invention. サンプル膜と送信および受信プローブとの距離200mmにおける透過波の波形。The waveform of the transmitted wave at a distance of 200 mm between the sample film and the transmission and reception probes. サンプル膜と送信および受信プローブとの距離50mmにおける透過波の波形。The waveform of the transmitted wave at a distance of 50 mm between the sample film and the transmission and reception probes. サンプル膜と送信および受信プローブとの距離20mmにおける透過波の波形。The waveform of the transmitted wave at a distance of 20 mm between the sample film and the transmission and reception probes.

本発明の厚さの測定方法は、測定対象の一方の面にバースト波もしくはチャープ波超音波発信プローブを配置し、他方の面に、超音波の受信プローブを配置し、発信プローブから発せられ、対象物の略反対側に設けられた受信プローブで受信されるバースト波もしくはチャープ波超音波の受信波の強度または強度の逆数を計算し非接触で厚さを測定することを特徴とする測定方法である。 The thickness measuring method of the present invention is arranged by placing a burst wave or chirp wave ultrasonic wave transmission probe on one surface of a measurement object and placing an ultrasonic wave reception probe on the other surface, emitted from the transmission probe, A measurement method characterized by calculating the intensity of a received wave of a burst wave or chirp wave ultrasonic wave received by a receiving probe provided on substantially the opposite side of the object or the inverse of the intensity and measuring the thickness in a non-contact manner. It is.

発信プローブから発せられた超音波は対象物を透過し、略反対側の受信プローブで受信される。得られた受信波の強度、すなわち超音波振動のピーク高さと膜厚とは負の相関関係があるので、この関係を利用して受信されたピーク高さから膜厚を計算するか、もしくはピーク高さの逆数と膜厚は直線関係にあるので、この関係を用いるものである。   The ultrasonic wave emitted from the transmission probe passes through the object and is received by the reception probe on the substantially opposite side. Since there is a negative correlation between the intensity of the received wave, that is, the peak height of ultrasonic vibration and the film thickness, the film thickness is calculated from the received peak height using this relationship, or the peak Since the reciprocal of the height and the film thickness are in a linear relationship, this relationship is used.

発信プローブ及び又は受信プローブは対象物を除けば直接受信できるような位置関係、すなわち対象物を境に互いに相対するように設けることが望ましいが、超音波発信装置、受信装置は、超音波を実質的に減衰なく導くことができる導波路等を設けることにより任意に設置することができる。その場合、導波路等は対象物を境に相対するように設けることが好ましい。   It is desirable that the transmitting probe and / or the receiving probe be provided so as to be directly received except for the object, that is, to be opposed to each other with the object as a boundary. It can be arbitrarily installed by providing a waveguide or the like that can be guided without attenuation. In that case, the waveguide or the like is preferably provided so as to face the object.

本発明の厚さの測定方法においては、バースト波超音波やチャープ波超音波は、図1に示すように、超音波発信・受信装置2において電気信号として発せられ、発信プローブ3から超音波となって空気中へ発信される。次に、サンプル1を透過した超音波は受信プローブ4にて受信され電気信号に変換され、プリアンプ5で増幅され、超音波発信・受信装置2に入力され、必要な信号処理を施されて、受信波として表示装置6に表示される。プリアンプ5は設けても設けなくても良い。設ける場合、図1に示すように別に設ける場合、受信プローブ内、超音波発信・受信装置内に設けても構わない。   In the thickness measuring method of the present invention, burst wave ultrasonic waves and chirp wave ultrasonic waves are emitted as electrical signals in the ultrasonic wave transmitting / receiving device 2 as shown in FIG. It is transmitted to the air. Next, the ultrasonic wave that has passed through the sample 1 is received by the reception probe 4 and converted into an electrical signal, amplified by the preamplifier 5, input to the ultrasonic transmission / reception device 2, and subjected to necessary signal processing, It is displayed on the display device 6 as a received wave. The preamplifier 5 may or may not be provided. When provided, as shown in FIG. 1, it may be provided in the receiving probe or in the ultrasonic wave transmitting / receiving device.

発信する超音波は、30kHzから100kHzの周波数が好ましく、40kHzから50kHzの範囲の周波数がより好ましい。本発明はパルス波よりもバースト波あるいはチャープ波はの方が測定の精度が高いことを見いだし、それを厚さ特定に用いることが特徴である。バースト波とは、パルス波を繰り返すものでありその波数は3から6波程度のパルス波を繰り返すのが望ましい。さらに、条件によってはバースト波よりも周波数を変調させるチャープ波が効果的であることがある。   The transmitted ultrasonic wave preferably has a frequency of 30 kHz to 100 kHz, and more preferably a frequency in the range of 40 kHz to 50 kHz. The present invention is characterized in that a burst wave or a chirp wave has a higher measurement accuracy than a pulse wave, and is used for specifying the thickness. The burst wave repeats a pulse wave, and it is desirable to repeat a pulse wave having a wave number of about 3 to 6. Further, depending on conditions, a chirp wave that modulates the frequency may be more effective than a burst wave.

対象物と発信プローブ及び受信プローブとの間の距離は、それぞれある程度の間隔を設けておくことが好ましい。ある程度の間隔とはそれぞれ15mm以上であることが好ましく、40mm、100mm、さらには150mm以上がより好ましい。また、それぞれ、500mm以下、さらには450mm以下、特には300mm以下が好ましい。対象物と発信プローブ及び受信プローブとの間の距離は同じでなくても構わない。   It is preferable that the distance between the object and the transmitting probe and the receiving probe is set at a certain distance. Each of the certain intervals is preferably 15 mm or more, more preferably 40 mm, 100 mm, and even more preferably 150 mm or more. Moreover, 500 mm or less, respectively 450 mm or less, and especially 300 mm or less are preferable respectively. The distance between the object and the transmission probe and the reception probe may not be the same.

このように、各プローブと膜との距離を離すことにより、対象物を透過し、受信プローブに到達した透過波とプローブと対象物との間で発生する反射波が重なることを防ぎ、精度よく透過波の強度を測定することができる。対本発明の測定方法は常温の大気圧雰囲気下で行うことができ、特定温度、減圧あるいは特定気体雰囲気下等の特定条件下で行わなくてもかまわない。また、対象とプローブの間には特定の物質例えば、気体、物質(液体、ゲル状物等)、固体、器具等、特別なものを介在させなくてもかまわない。   In this way, by separating the distance between each probe and the membrane, it is possible to prevent the transmitted wave that has passed through the object and has reached the reception probe from overlapping with the reflected wave generated between the probe and the object, with high accuracy. The intensity of the transmitted wave can be measured. The measurement method of the present invention can be performed in an atmospheric pressure atmosphere at room temperature, and may not be performed under specific conditions such as a specific temperature, reduced pressure, or a specific gas atmosphere. Further, a specific substance such as a gas, a substance (liquid, gel, etc.), a solid, or an instrument may not be interposed between the object and the probe.

本発明に係る厚さ測定方法で測定できる対象物は、バースト波あるいはチャープ波の超音波が透過するものであれば特に限定はないが、膜状物が好ましい。膜状物の場合、膜厚は、厚さの下限は0.5μm、さらには1μm、特には5μmを好ましい例としてあげることができる。また、上限としては500μmが好ましく、より好ましくは250μm、さらには130μm、特には90μmが好ましく、最も好ましいものは60μmをあげることができる。対象物の表面は平滑であることが好ましいが、対象物の平均厚さの±25%の略連続的な凹凸が設けられたあるいは凹凸が存在するものでも構わない。   The object that can be measured by the thickness measuring method according to the present invention is not particularly limited as long as it can transmit burst wave or chirp wave ultrasonic waves, but a film-like object is preferable. In the case of a film-like material, the preferred lower limit of the thickness is 0.5 μm, further 1 μm, especially 5 μm. The upper limit is preferably 500 μm, more preferably 250 μm, further 130 μm, particularly preferably 90 μm, and most preferably 60 μm. The surface of the object is preferably smooth, but it may be provided with substantially continuous unevenness of ± 25% of the average thickness of the object or with unevenness.

対象物が膜状物である場合、発信する超音波の波長は膜の平均膜厚より小さいことが好ましく、平均膜厚の10〜95%、さらには25〜80%、特には30〜70%の超音波を用いることが好ましい。   When the object is a film-like object, the wavelength of the transmitted ultrasonic wave is preferably smaller than the average film thickness, and is 10 to 95%, more preferably 25 to 80%, and particularly 30 to 70% of the average film thickness. It is preferable to use ultrasonic waves.

膜状物の材質としては、合成樹脂が好ましく、透明であっても実質的に光を通さない膜状物であっても構わない。   The material of the film-like material is preferably a synthetic resin, and may be a film-like material that is transparent or substantially impermeable to light.

(実施例1)
膜の厚さ測定にかかる実施形態例である測定装置について、図1を用いて説明する。
測定対象のサンプル膜1をはさんで、片側に発信プローブ3を配置、反対側に受信プローブ4を配置する。超音波発信・受信装置2で生成されたバースト波超音波信号を発信プローブ3から超音波としてサンプル膜1に発信し、サンプル膜1を透過した超音波を受信プローブ4で受信し、プリアンプ5で増幅し超音波発信・受信装置2に入力し信号処理を施し、受信波形すなわちエコーを表示装置6に表示する。このエコー高さを読み取る。
Example 1
A measuring apparatus which is an embodiment of the film thickness measurement will be described with reference to FIG.
The transmitting probe 3 is disposed on one side and the receiving probe 4 is disposed on the opposite side across the sample film 1 to be measured. The burst wave ultrasonic signal generated by the ultrasonic transmission / reception device 2 is transmitted from the transmission probe 3 to the sample film 1 as an ultrasonic wave, and the ultrasonic wave transmitted through the sample film 1 is received by the reception probe 4. The signal is amplified and input to the ultrasonic transmission / reception device 2 to perform signal processing. Read this echo height.

厚さ12.5、25、75、125μmである合成樹脂製膜をサンプルとした。サンプル膜1と発信プローブの距離は200mm、膜の反対側に位置する受信プローブとの距離は250mmである。発信する超音波の周波数は42KHzの5波のバースト波を用いた。受信波の強度の逆数と膜厚をプロットしたものが図2である。膜厚と透過波強度の逆数が直線関係にあることから、本発明の方法により簡便に非接触で膜の厚さを正確に測定できることがわかる。   A synthetic resin film having a thickness of 12.5, 25, 75, and 125 μm was used as a sample. The distance between the sample film 1 and the transmitting probe is 200 mm, and the distance between the receiving probe located on the opposite side of the film is 250 mm. As the frequency of the ultrasonic wave to be transmitted, five burst waves of 42 kHz were used. FIG. 2 is a plot of the reciprocal of the intensity of the received wave and the film thickness. Since the reciprocal of the film thickness and the transmitted wave intensity is in a linear relationship, it can be seen that the thickness of the film can be accurately measured simply and non-contacted by the method of the present invention.

(実施例2、比較例1)
実施例1と同じ測定装置を用い、従来技術であるパルス波超音波とバースト波超音波を比較した。両者の出力はいずれも20Vである。またバースト波は5波である。
サンプル膜と発信プローブ、受信プローブとの距離は、同一とし、下表のとおりそれぞれその距離を200mm、50mm,20mmの3水準について透過波の強度を測定した。サンプル膜は厚さ75μmの合成樹脂製膜である。
(Example 2, Comparative Example 1)
Using the same measurement apparatus as in Example 1, pulse wave ultrasonic waves and burst wave ultrasonic waves, which are conventional techniques, were compared. Both outputs are 20V. There are five burst waves.
The distance between the sample film, the transmitting probe, and the receiving probe was the same, and the intensity of the transmitted wave was measured at three levels of 200 mm, 50 mm, and 20 mm as shown in the table below. The sample film is a synthetic resin film having a thickness of 75 μm.

Figure 2014194358
Figure 2014194358

観測された透過波の波形を図3〜5にしめす。膜と送信プローブおよび受信プローブとの距離が200mmあれば、透過波は、単純なパターンを示しているが、50mmと膜と装置が接近すると波形が複雑になってくる様子がわかる。さらに20mmにすると一見単純なパターンとみえるが、50mmのとき、分離されて観測されていた複数の波が重なって一つの波の集合に合成されている。 The observed transmitted wave waveforms are shown in FIGS. If the distance between the membrane and the transmitting probe and the receiving probe is 200 mm, the transmitted wave shows a simple pattern, but it can be seen that the waveform becomes complicated when the membrane and the device approach 50 mm. Furthermore, when it is 20 mm, it seems to be a simple pattern, but when it is 50 mm, a plurality of waves that are separated and observed are overlapped and synthesized into a set of waves.

以上、バースト波においては20mm、さらには50mm以上はなすことにより透過波の波長重なりが少なくなり膜厚測定精度が向上することがわかる。一方、パルス波の場合には距離が大きくなると共に波長強度が小さくなり膜厚測定には適しないことがわかる。   As described above, it can be seen that when the burst wave is 20 mm or more than 50 mm, the wavelength overlap of the transmitted wave is reduced and the film thickness measurement accuracy is improved. On the other hand, in the case of a pulse wave, the distance increases and the wavelength intensity decreases, indicating that it is not suitable for film thickness measurement.

1. サンプル膜
2. 超音波発信・受信装置
3. 発信プローブ
4. 受信プローブ
5. プリアンプ
6. 表示装置
1. Sample film2. 2. Ultrasonic transmission / reception device 3. Transmitting probe 4. Reception probe Preamplifier 6. Display device

Claims (5)

対象物の一方の面にバースト波もしくはチャープ波超音波発信プローブを配置し、他方の面にバースト波もしくはチャープ波超音波の受信プローブを配置し、発信プローブから発せられ、対象物を透過し受信プローブで受信されるバースト波もしくはチャープ波超音波の受信波の強度または強度の逆数から対象物の厚さを測定する非接触厚さ測定方法。 A burst wave or chirp wave ultrasonic wave transmission probe is placed on one side of the object, and a burst wave or chirp wave ultrasonic wave reception probe is placed on the other side. A non-contact thickness measurement method for measuring the thickness of an object from the intensity of a received wave of a burst wave or chirp wave received by a probe or the inverse of the intensity. 発信プローブ及び受信プローブと対象物との間に空気を介する請求項1に記載の非接触厚さ測定方法。 The non-contact thickness measuring method according to claim 1, wherein air is interposed between the transmitting probe and the receiving probe and the object. 対象物と発信プローブ及び受信プローブとの距離が50mm以上である請求項1または2に記載の非接触厚さ測定方法。 The non-contact thickness measuring method according to claim 1 or 2, wherein a distance between the object, the transmitting probe, and the receiving probe is 50 mm or more. 発信する超音波の周波数が20kHzから60kHzである請求項1〜3のいずれかに記載の非接触厚さ測定方法。 The non-contact thickness measurement method according to any one of claims 1 to 3, wherein the frequency of the transmitted ultrasonic wave is 20 kHz to 60 kHz. 対象物が厚さ1μmから130μmの膜状物である請求項1〜4のいずれかに記載の非接触厚さ測定方法。 The non-contact thickness measurement method according to claim 1, wherein the object is a film-like object having a thickness of 1 μm to 130 μm.
JP2013070168A 2013-03-28 2013-03-28 Non-contact thickness measurement method Active JP6204675B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013070168A JP6204675B2 (en) 2013-03-28 2013-03-28 Non-contact thickness measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013070168A JP6204675B2 (en) 2013-03-28 2013-03-28 Non-contact thickness measurement method

Publications (2)

Publication Number Publication Date
JP2014194358A true JP2014194358A (en) 2014-10-09
JP6204675B2 JP6204675B2 (en) 2017-09-27

Family

ID=51839702

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013070168A Active JP6204675B2 (en) 2013-03-28 2013-03-28 Non-contact thickness measurement method

Country Status (1)

Country Link
JP (1) JP6204675B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112325814A (en) * 2020-11-03 2021-02-05 成都锐科软控科技有限公司 Ultrasonic correlation thickness gauge and thickness measuring method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020166383A1 (en) * 2001-05-08 2002-11-14 Wei Han Method and apparatus for pulsed ultrasonic doppler measurement of wall deposition
JP2005106560A (en) * 2003-09-30 2005-04-21 Fujitsu Ltd Ultrasonic distance measuring device or ultrasonic type coordinate input device
JP2010038680A (en) * 2008-08-04 2010-02-18 Nireco Corp Ultrasonic thickness detector and ultrasonic edge position detector
JP2012215561A (en) * 2011-03-28 2012-11-08 Toyota Motor Corp Ultrasonic measuring method and ultrasonic measuring device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020166383A1 (en) * 2001-05-08 2002-11-14 Wei Han Method and apparatus for pulsed ultrasonic doppler measurement of wall deposition
JP2005106560A (en) * 2003-09-30 2005-04-21 Fujitsu Ltd Ultrasonic distance measuring device or ultrasonic type coordinate input device
JP2010038680A (en) * 2008-08-04 2010-02-18 Nireco Corp Ultrasonic thickness detector and ultrasonic edge position detector
JP2012215561A (en) * 2011-03-28 2012-11-08 Toyota Motor Corp Ultrasonic measuring method and ultrasonic measuring device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112325814A (en) * 2020-11-03 2021-02-05 成都锐科软控科技有限公司 Ultrasonic correlation thickness gauge and thickness measuring method thereof

Also Published As

Publication number Publication date
JP6204675B2 (en) 2017-09-27

Similar Documents

Publication Publication Date Title
CN107024542B (en) Airborne ultrasonic testing system for test object
US10054685B2 (en) Foreign-matter detecting apparatus and method for detecting foreign-matter in powder using terahertz pulse wave
ATE514919T1 (en) DISTANCE MEASUREMENT METHOD FOR A REFERENCE LINE PROJECTING DEVICE AND DEVICE SAME
RU2010127782A (en) DEVICE AND METHOD FOR PIPELINE CONTROL USING ULTRASONIC WAVES OF TWO DIFFERENT TYPES
JP6395325B2 (en) Equipment for evaluating the properties of electrical steel sheets
JP2017198459A (en) Method for inspecting separation of laminate and separation inspection device
ATE515678T1 (en) OPTICAL MEASURING DEVICE AND MEASURING METHOD
Osumi et al. Imaging slit in metal plate using aerial ultrasound source scanning and nonlinear harmonic method
JP2014119441A (en) Ultrasonic testing device and method
WO2009016405A3 (en) Optical measurement apparatus and method therefor
KR101251204B1 (en) Ultrasonic nondestructive inspection device and ultrasonic nondestructive inspection method
JP6204675B2 (en) Non-contact thickness measurement method
KR101934069B1 (en) Liquid level measuring equipment
CN110440896B (en) Ultrasonic measurement system and measurement method
JP2009236620A (en) Ultrasonic flaw detection method
JP3188847U (en) Probe and length measuring device
JP5733029B2 (en) Inspection device and inspection method for underwater transmitter
US9829469B2 (en) Apparatus and method for measuring nonlinear parameters
CN202066785U (en) Optical fiber coupling opto-acoustic detector probe
RU2548735C2 (en) Food products quality express evaluation device
JP6761780B2 (en) Defect evaluation method
JP2017125712A (en) Noncontact inspection device for measuring thickness of structure
JP2020176916A (en) Aerial ultrasonic flaw detector
CN208847145U (en) The detection device of straightness
CN115389046B (en) Temperature measurement method and device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170530

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170731

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170815

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170901

R150 Certificate of patent or registration of utility model

Ref document number: 6204675

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250