JP2014192454A - Manufacturing method of composite coated soft magnetic metal powder, composite coated soft magnetic metal powder, and powder magnetic core using the same - Google Patents

Manufacturing method of composite coated soft magnetic metal powder, composite coated soft magnetic metal powder, and powder magnetic core using the same Download PDF

Info

Publication number
JP2014192454A
JP2014192454A JP2013068564A JP2013068564A JP2014192454A JP 2014192454 A JP2014192454 A JP 2014192454A JP 2013068564 A JP2013068564 A JP 2013068564A JP 2013068564 A JP2013068564 A JP 2013068564A JP 2014192454 A JP2014192454 A JP 2014192454A
Authority
JP
Japan
Prior art keywords
powder
soft magnetic
magnetic metal
coated soft
iron oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013068564A
Other languages
Japanese (ja)
Inventor
Fumi Kurita
ふみ 栗田
Hisato Tokoro
久人 所
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2013068564A priority Critical patent/JP2014192454A/en
Publication of JP2014192454A publication Critical patent/JP2014192454A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To obtain soft magnetic metal powder of high specific resistance, low loss and high magnetic flux density while using low-priced raw materials.SOLUTION: A manufacturing method of composite coated soft magnetic metal powder includes: a mixing step of weighing and mixing carbon powder and borosilicate glass powder, respectively, in such a manner that the quantity of carbon powder to be added to iron oxide powder becomes 2.3 or more and 3.4 or less in mol% and the quantity of borosilicate glass powder to be added to iron oxide powder in mass 100 becomes 0.05 or more and 20 or less in mass%; and a step of performing heat treatment on obtained mixed powder at a temperature of 1000°C or higher and 1600°C or lower in a non-oxidation atmosphere containing nitrogen.

Description

本発明は、複合被覆軟磁性金属粉末の製造方法および複合被覆軟磁性金属粉末、並びにこれを用いた圧粉磁心に関するものである。 The present invention relates to a method for producing a composite coated soft magnetic metal powder, a composite coated soft magnetic metal powder, and a dust core using the same.

近年、軟磁性材料を用いる電気・電子情報部品における小型化、高周波化が進んでおり、従来使用されている電磁鋼板やソフトフェライトなどに比べて高周波域での磁心損失が小さく飽和磁化が大きい金属軟磁性材料を圧粉磁心とし、リアクトル、インダクタ、チョークコイル、モーター磁心等に用いることが望まれ、開発が進められている。 In recent years, electrical and electronic information components using soft magnetic materials have become smaller and higher in frequency, and metals with lower magnetic core loss and higher saturation magnetization in the high frequency range than conventional magnetic steel sheets and soft ferrites. It is desired to use a soft magnetic material as a powder magnetic core for use in a reactor, an inductor, a choke coil, a motor magnetic core, etc.

圧粉磁心の損失は、一般に渦電流損失とヒステリシス損失から構成される。高周波域で損失の主原因となる渦電流損失は、軟磁性金属粉末に絶縁性物質を被膜などの形態で介在させ、圧粉磁心の比抵抗を高くすることで、抑制することができる。また、ヒステリシス損失の大きさは保磁力と相関がある。圧粉磁心は加圧成形により作製されることから、粉末粒子には歪が導入される。歪は保磁力を増大させる要因の一つであり、歪の除去を目的とする熱処理を行うことで、ヒステリシス損失の低減を実現することができる。このような圧粉磁心は、粉末を加圧成形して作製するため形状自由度が高いことなどからも多くの軟磁性部品への適用を期待され、開発が行われている。例えば、特許文献1には窒化ホウ素を主体とする被覆層を有する複合軟磁性金属粉末が開示されている。 The loss of the dust core is generally composed of eddy current loss and hysteresis loss. Eddy current loss, which is the main cause of loss in the high frequency region, can be suppressed by interposing an insulating material in the form of a film or the like in the soft magnetic metal powder and increasing the specific resistance of the dust core. The magnitude of hysteresis loss is correlated with the coercive force. Since the dust core is produced by pressure molding, strain is introduced into the powder particles. Strain is one of the factors that increase the coercive force, and the hysteresis loss can be reduced by performing heat treatment for the purpose of removing the strain. Such a powder magnetic core has been developed with the expectation that it will be applied to many soft magnetic parts due to its high degree of freedom in shape because it is produced by pressure-molding powder. For example, Patent Document 1 discloses a composite soft magnetic metal powder having a coating layer mainly composed of boron nitride.

国際公開WO2012/132783A1公報International Publication WO2012 / 132783A1

しかしながら、特許文献1の方法では、窒化鉄粉末とホウ素粉末を原料として用いており、いずれも高価な原料であることから製造コストが高くなるという問題がある。
従って、本発明では安価な原料を用いて粒子表面に絶縁性の高い化合物を形成することにより、高比抵抗で低損失、且つ高磁束密度である複合被覆軟磁性金属粉末を提供することを目的とする。さらには、粒子表面に耐熱性の高い被覆膜を備えて高温での歪取熱処理を可能とし得る複合被覆軟磁性金属粉末と、その粉末により作製した低損失でかつ高磁束密度である圧粉磁心を提供することを目的とする。
However, in the method of Patent Document 1, iron nitride powder and boron powder are used as raw materials, both of which are expensive raw materials, and thus there is a problem that the manufacturing cost increases.
Accordingly, an object of the present invention is to provide a composite coated soft magnetic metal powder having a high specific resistance, a low loss, and a high magnetic flux density by forming a highly insulating compound on the particle surface using an inexpensive raw material. And Furthermore, a composite coated soft magnetic metal powder having a coating film with high heat resistance on the particle surface and capable of high-temperature strain-removing heat treatment, and a low-loss and high magnetic flux density green compact produced from the powder The purpose is to provide a magnetic core.

本発明者らは安価な原材料を用いて鉄系コア粒子の表面に窒化硼素及び金属酸化物が形成された複合被覆軟磁性金属粉末を得ることが出来ることを見出し、本発明に至った。 The present inventors have found that a composite coated soft magnetic metal powder in which boron nitride and a metal oxide are formed on the surface of an iron-based core particle can be obtained using an inexpensive raw material, and the present invention has been achieved.

本発明は、酸化鉄粉末に対する炭素粉末の添加量をモル比率で2.3以上3.4以下、酸化鉄粉末の質量100に対する硼珪酸ガラス粉末の添加量を質量比率で0.05以上20以下となるように、それぞれ秤量し混合する混合工程と、得られた混合粉を窒素を含む非酸化性雰囲気中、1000℃以上1600℃以下で熱処理する工程と、を有する複合被覆軟磁性金属粉末の製造方法である。   In the present invention, the addition amount of carbon powder to iron oxide powder is 2.3 to 3.4 in terms of molar ratio, and the addition amount of borosilicate glass powder to mass 100 of iron oxide powder is 0.05 to 20 in terms of mass ratio. A composite coating soft magnetic metal powder having a mixing step of weighing and mixing each of the obtained mixed powder and a step of heat-treating the obtained mixed powder in a non-oxidizing atmosphere containing nitrogen at 1000 ° C. to 1600 ° C. It is a manufacturing method.

前記混合工程において、さらに前記酸化鉄粉末に対して炭化珪素粉末のモル比率が0.019以上0.35以下になるように混合することができる。
また、前記混合工程において、前記炭素粉末と硼珪酸ガラス粉末を予備混合してから前記酸化鉄粉末及び炭化珪素粉末を混合することが望ましい。
前記混合工程において、さらに酸化硼素粉末及び/又は硼酸粉末を、全硼素量が前記酸化鉄粉末の質量100に対して質量比率で0.004以上2.5以下となるよう添加することが望ましい。また、この混合工程において、前記酸化硼素粉末及び/又は硼酸粉末と前記炭素粉末及び硼珪酸ガラス粉末とを予備混合し、その後前記酸化鉄粉末及び炭化珪素粉末を混合することが望ましい。
In the mixing step, the silicon oxide powder can be further mixed so that the molar ratio of the silicon carbide powder is 0.019 or more and 0.35 or less with respect to the iron oxide powder.
In the mixing step, it is preferable that the carbon powder and borosilicate glass powder are premixed and then the iron oxide powder and silicon carbide powder are mixed.
In the mixing step, it is desirable to further add boron oxide powder and / or boric acid powder so that the total boron amount is 0.004 or more and 2.5 or less by mass ratio with respect to 100 mass of the iron oxide powder. In this mixing step, it is desirable to premix the boron oxide powder and / or boric acid powder with the carbon powder and borosilicate glass powder, and then mix the iron oxide powder and silicon carbide powder.

本発明は、上記製造方法により得られた軟磁性金属粉末であって、平均粒径が1μm〜100μmの鉄系コア粒子の表面に窒化硼素および前記硼珪酸ガラス成分由来の金属元素の酸化物が形成された複合被覆軟磁性金属粉末である。
この複合被覆軟磁性金属粉末は、XPS法によって測定される最表面の組成が、前記鉄系コア粒子に含まれる元素、硼素、窒素、酸素、炭素、および、前記硼珪酸ガラス成分由来の金属元素の和を100原子%として、前記硼素の割合が原子比で24原子%以上である。また、前記硼素はその98.5原子%以上が窒化硼素として存在していることが望ましい。
The present invention is a soft magnetic metal powder obtained by the above production method, wherein boron nitride and an oxide of a metal element derived from the borosilicate glass component are present on the surface of an iron-based core particle having an average particle diameter of 1 μm to 100 μm. It is the formed composite coated soft magnetic metal powder.
In this composite coated soft magnetic metal powder, the composition of the outermost surface measured by XPS method is an element contained in the iron-based core particles, boron, nitrogen, oxygen, carbon, and a metal element derived from the borosilicate glass component Is 100 atomic%, and the boron ratio is 24 atomic% or more in terms of atomic ratio. Further, it is preferable that 98.5 atomic% or more of boron is present as boron nitride.

本発明は、上記複合被覆軟磁性金属粉末を用いてなる圧粉磁心である。   The present invention is a dust core using the above composite-coated soft magnetic metal powder.

本発明によれば、鉄系コア粒子の最表面に窒化硼素及び金属酸化物が形成された高比抵抗で低損失、且つ高磁束密度である複合被覆軟磁性金属粉末を安価に得ることができる。さらに、高温での歪取熱処理が可能となり、より低損失な圧粉磁心となる。 According to the present invention, a composite coated soft magnetic metal powder having a high specific resistance, a low loss, and a high magnetic flux density in which boron nitride and a metal oxide are formed on the outermost surface of an iron-based core particle can be obtained at low cost. . Furthermore, high temperature strain relief heat treatment is possible, resulting in a powder core having lower loss.

本発明における、酸化鉄粉末に対する炭素粉末のモル比率と磁束密度の関係を示すグラフである。It is a graph which shows the relationship between the molar ratio of the carbon powder with respect to iron oxide powder, and magnetic flux density in this invention. 本発明における、酸化鉄粉末に対する硼珪酸ガラス粉末の質量比と比抵抗及び質量比と磁束密度の関係を示すグラフである。It is a graph which shows the relationship between the mass ratio of borosilicate glass powder with respect to iron oxide powder, specific resistance, mass ratio, and magnetic flux density in this invention.

以下、本発明の実施形態について図面を参照して説明する。なお、本発明は以下に述べる実施例に限定されるものではない。 Embodiments of the present invention will be described below with reference to the drawings. In addition, this invention is not limited to the Example described below.

[複合被覆軟磁性金属粉末の製造]
(原料)
複合被覆軟磁性金属粉末は、酸化鉄粉末、硼珪酸ガラス粉末等を混合し、熱処理することで作製することができる。尚、この混合粉に炭素粉末を添加することが望ましい。
酸化鉄粉末は、Fe、Fe、FeOなどの酸化鉄を用いることができる。特にFeは安価に入手が可能であり好ましい。酸化鉄粉末粒子の平均粒径は0.01μm以上、3.0μm以下が好ましい。ここで平均粒径とは、レーザー回折/散乱式粒度分布測定装置を用いて測定した時に得られるD50で表す。平均粒径が0.01μm未満であると磁性金属粉末の平均粒径が1μm未満となってしまい、窒化硼素及び金属酸化物を主体とする被覆層の体積に対して金属粒子の体積が少なくなり、磁性材の占積率が低くなってしまう。また、粉末の流動性が低下し成形時の取り扱いが困難になる。一方、3.0μmを超える酸化鉄粉末の製造は困難であり、工業材料としての入手や製造が難しく実用的ではない。
[Production of composite coated soft magnetic metal powder]
(material)
The composite-coated soft magnetic metal powder can be produced by mixing iron oxide powder, borosilicate glass powder, and the like and heat-treating them. In addition, it is desirable to add carbon powder to this mixed powder.
As the iron oxide powder, iron oxide such as Fe 2 O 3 , Fe 3 O 4 , and FeO can be used. In particular, Fe 2 O 3 is preferable because it can be obtained at low cost. The average particle diameter of the iron oxide powder particles is preferably 0.01 μm or more and 3.0 μm or less. Here, the average particle size, expressed by D 50 obtained when measured using a laser diffraction / scattering particle size distribution measuring apparatus. When the average particle size is less than 0.01 μm, the average particle size of the magnetic metal powder is less than 1 μm, and the volume of the metal particles is smaller than the volume of the coating layer mainly composed of boron nitride and metal oxide. The space factor of the magnetic material will be low. In addition, the fluidity of the powder is lowered and handling during molding becomes difficult. On the other hand, it is difficult to produce iron oxide powder exceeding 3.0 μm, and it is difficult and practical to obtain and manufacture as an industrial material.

炭素粉末は、グラファイトやカーボンブラック、天然黒鉛が適している。炭素を含む化合物、すなわち石炭や活性炭、コークスや脂肪酸、ポリビニルアルコールなどの高分子であってもよい。上記炭素粉末の平均粒径は0.01〜100μmが好ましく、より好ましくは0.01〜50μmである。0.01μm未満の炭素粉末は高価で実用的ではない。また100μmを超えると酸化鉄との混合に偏りが生じ、酸化鉄粉末に対する炭素粉末の固相還元が不十分となって好ましくない。炭素はグラファイト状の炭素を用いている。但しアモルファス状であっても構わない。 As the carbon powder, graphite, carbon black, and natural graphite are suitable. A compound containing carbon, that is, a polymer such as coal, activated carbon, coke, fatty acid, and polyvinyl alcohol may be used. The average particle size of the carbon powder is preferably 0.01 to 100 μm, more preferably 0.01 to 50 μm. Carbon powders of less than 0.01 μm are expensive and impractical. On the other hand, when the thickness exceeds 100 μm, mixing with iron oxide is biased, and solid-phase reduction of the carbon powder with respect to the iron oxide powder is not preferable. Carbon is graphitic carbon. However, it may be amorphous.

前記酸化鉄粉末と炭素粉末は、酸化鉄粉末に対して炭素粉末のモル比率が2.3以上3.4以下の範囲で配合する。さらには2.4以上3.4以下となることがより望ましい。炭素粉末の酸化鉄粉末に対するモル比率が2.3未満の時は、熱処理時に鉄系コア粒子同士の焼結による粒成長が促進され、所望の磁気特性が得られない。3.4を超える場合は、作製した複合被覆軟磁性金属粉末における炭素含有量が多くなり、磁束密度等の磁気特性の低下を招くため好ましくない。 The iron oxide powder and the carbon powder are blended so that the molar ratio of the carbon powder to the iron oxide powder is in the range of 2.3 to 3.4. Furthermore, it is more desirable to be 2.4 or more and 3.4 or less. When the molar ratio of the carbon powder to the iron oxide powder is less than 2.3, grain growth due to sintering of iron-based core particles is promoted during heat treatment, and desired magnetic properties cannot be obtained. If it exceeds 3.4, the carbon content in the produced composite-coated soft magnetic metal powder is increased, which leads to a decrease in magnetic properties such as magnetic flux density.

酸化鉄粉末は鉄を主成分とするが、磁心損失をより低減するためにはSiを0.5mass%以上含有させたFe−Si系合金が好ましい。これにより磁気特性がより優れる。ただし、Si量が多くなると粉末が硬くなり成形時に塑性変形しづらくなるため成形性が低下するという問題がある。このため、Siは8.0mass%を上限とする。より好ましくは1.0mass%以上7.0mass%以下である。金属粒子の組成をFe−Si合金とするためには、炭化珪素粉末等を添加する。すなわち、酸化鉄粉末に対して炭化珪素粉末のモル比率が0.019以上0.35以下になるよう混合することが望ましい。ここで、酸化鉄粉末に対する炭化珪素粉末のモル比率が0.019のとき、Siを0.5mass%含有するFe−Si合金が合成されるため、0.019未満では損失低減の効果が少ない。モル比率が0.35のとき、Siを8.0mass%含有するFe−Si合金が合成されるため、0.35を超えると粉末が硬くなり成形性が低下する。より好ましくは、0.029以上0.30以下である。このときのFe−Si合金におけるSi含有量は、1.0mass%以上7.0mass%以下に相当する。 The iron oxide powder contains iron as a main component, but in order to further reduce the core loss, an Fe-Si alloy containing 0.5 mass% or more of Si is preferable. Thereby, magnetic characteristics are more excellent. However, if the amount of Si increases, the powder becomes hard and difficult to be plastically deformed during molding. Therefore, the upper limit of Si is 8.0 mass%. More preferably, it is 1.0 mass% or more and 7.0 mass% or less. In order to make the composition of the metal particles Fe-Si alloy, silicon carbide powder or the like is added. That is, it is desirable to mix so that the molar ratio of the silicon carbide powder to the iron oxide powder is 0.019 or more and 0.35 or less. Here, when the molar ratio of the silicon carbide powder to the iron oxide powder is 0.019, an Fe—Si alloy containing 0.5 mass% of Si is synthesized. When the molar ratio is 0.35, an Fe—Si alloy containing 8.0 mass% of Si is synthesized. Therefore, when the molar ratio exceeds 0.35, the powder becomes hard and the formability is lowered. More preferably, it is 0.029 or more and 0.30 or less. At this time, the Si content in the Fe—Si alloy corresponds to 1.0 mass% or more and 7.0 mass% or less.

硼珪酸ガラス粉末は、SiO、BあるいはBを主成分とし、その他にAl、CaO、MgO、SrO、BaO、ZnO、NaO、KO、LiO、CoO、CuO等のうちの一種以上を含有するものが好ましい。硼珪酸ガラスには様々な組成のものがあり、そのうちに含まれる酸化硼素量も数%から数十%と組成により異なる。上記硼珪酸ガラス粉末の平均粒径は0.05〜100μmが好ましく、より好ましくは0.05〜10μmである。100μmを超えると酸化鉄や炭素との混合に偏りが生じ、被覆形成が困難となる。0.05μmの硼珪酸ガラス粉末を得るには、あらかじめ粉砕媒体を用いる粉砕工程が必要となり、粉砕媒体からの不純物の混入量が増加するため好ましくない。硼珪酸ガラス粉末の添加量は、酸化鉄粉末の質量100に対して、質量比率で0.05以上20以下とすることが好ましい。ここで、硼珪酸ガラスは酸化鉄や炭素などのように分子量が明確ではないため、その添加量を酸化鉄粉末の質量100に対する質量比率で表す。より好ましくは、0.1以上13以下である。硼珪酸ガラス粉末の添加量が、酸化鉄粉末の質量100に対して質量比率で0.05未満の時は、被覆形成に寄与するガラス量が少なく絶縁性を発揮することができず、低比抵抗となってしまう。20を超える場合は作製した複合被覆軟磁性金属粉末における磁性成分が少なくなり、磁束密度の低下を招くため好ましくない。 Borosilicate glass powder is mainly composed of SiO 2 , B 2 O 3 or B 2 O 5 , and in addition, Al 2 O 3 , CaO, MgO, SrO, BaO, ZnO, Na 2 O, K 2 O, Li 2 Those containing one or more of O, CoO, CuO and the like are preferable. Borosilicate glass has various compositions, and the amount of boron oxide contained therein varies from several percent to several tens percent depending on the composition. The average particle diameter of the borosilicate glass powder is preferably 0.05 to 100 μm, more preferably 0.05 to 10 μm. If it exceeds 100 μm, the mixing with iron oxide or carbon will be biased, making it difficult to form a coating. In order to obtain a 0.05 μm borosilicate glass powder, a pulverization step using a pulverization medium is required in advance, which increases the amount of impurities mixed from the pulverization medium, which is not preferable. The addition amount of the borosilicate glass powder is preferably 0.05 or more and 20 or less by mass ratio with respect to 100 mass of the iron oxide powder. Here, since the molecular weight of borosilicate glass is not clear like iron oxide and carbon, the addition amount is represented by a mass ratio with respect to the mass 100 of the iron oxide powder. More preferably, it is 0.1 or more and 13 or less. When the addition amount of the borosilicate glass powder is less than 0.05 by mass ratio with respect to the mass 100 of the iron oxide powder, the amount of glass contributing to coating formation is small and insulation cannot be exhibited, and the low ratio It becomes resistance. When it exceeds 20, the magnetic component in the produced composite-coated soft magnetic metal powder is reduced, and the magnetic flux density is lowered.

また、例えば酸化硼素量がおおよそ15mass%〜40mass%の硼珪酸ガラス粉末を用いることができ、その硼珪酸ガラスに加え、酸化硼素粉末や硼酸粉末を硼素源として添加してもよい。その場合は、添加する全硼素量が前記酸化鉄粉末の質量100に対して質量比率が0.004以上2.5以下となることが望ましい。尚、これは、酸化鉄粉末に対する硼珪酸ガラス粉末の添加量の好ましい範囲と硼珪酸ガラス中の酸化硼素の含有量を算出したものである。添加する全硼素量の酸化鉄粉末の質量100に対する質量比率が0.004未満では生成する窒化硼素量が少なすぎて絶縁性が十分ではない。2.5を超えると非磁性成分の割合が多くなり、磁束密度の低下を招く。 Further, for example, a borosilicate glass powder having a boron oxide amount of approximately 15 mass% to 40 mass% can be used, and in addition to the borosilicate glass, boron oxide powder or boric acid powder may be added as a boron source. In that case, it is desirable that the total boron amount to be added is 0.004 or more and 2.5 or less with respect to 100 mass of the iron oxide powder. This is a calculation of a preferable range of the addition amount of the borosilicate glass powder to the iron oxide powder and the content of boron oxide in the borosilicate glass. If the mass ratio of the total boron added to the mass of iron oxide powder 100 is less than 0.004, the amount of boron nitride produced is too small and the insulation is not sufficient. If it exceeds 2.5, the ratio of the non-magnetic component increases and the magnetic flux density is reduced.

(混合・乾燥)
前記酸化鉄粉末、炭素粉末、炭化珪素粉末、硼珪酸ガラス粉末等は、乳鉢、V型混合機、ライカイ機、ボールミル、ビーズミル、各種回転式ミキサーを用いて乾式あるいは湿式で混合することができる。混合は10分から200時間行う。好ましくは20分から100時間である。前記混合工程において、あらかじめ炭素粉末と硼珪酸ガラス粉末等を混合しておく予備混合を行い、その後酸化鉄粉末及び炭化珪素粉末との混合を行うことがより効果的である。硼珪酸ガラス粉末と炭素粉末の混合をあらかじめ行うことで、後述するように硼珪酸ガラス中の酸化硼素を炭素粉末によって還元、雰囲気中の窒素によって窒化し窒化硼素を生成する反応を促進する効果が得られる。また、硼珪酸ガラス粉末に加えて酸化硼素粉末及び/又は硼酸粉末を添加する場合もこのときに予備混合することが望ましい。予備混合は10分から200時間行う。好ましくは20分から100時間である。前記混合が湿式の場合は、流動層乾燥機や噴霧乾燥機等を用いて乾燥させることができる。
(Mixing and drying)
The iron oxide powder, carbon powder, silicon carbide powder, borosilicate glass powder, and the like can be mixed dry or wet using a mortar, a V-type mixer, a reiki machine, a ball mill, a bead mill, or various rotary mixers. Mixing is performed for 10 minutes to 200 hours. Preferably it is 20 minutes to 100 hours. In the mixing step, it is more effective to perform preliminary mixing in which carbon powder and borosilicate glass powder are mixed in advance, and then to mix iron oxide powder and silicon carbide powder. By mixing borosilicate glass powder and carbon powder in advance, as described later, boron oxide in borosilicate glass is reduced with carbon powder, and the effect of nitriding with nitrogen in the atmosphere to promote boron nitride is effective. can get. Further, when adding boron oxide powder and / or boric acid powder in addition to borosilicate glass powder, it is desirable to premix at this time. Premixing is performed for 10 minutes to 200 hours. Preferably it is 20 minutes to 100 hours. When the mixing is wet, it can be dried using a fluidized bed dryer or a spray dryer.

(熱処理)
得られた混合粉をアルミナ製るつぼに入れ、電気炉にて熱処理を行う。この熱処理を窒素を(例えば99.5%以上)含む非酸化性雰囲気下で行うことによって、酸化鉄粉末は炭素粉末等に酸素を奪われ還元され、鉄粒子となる。原料配合時に炭化珪素を添加している場合は、Fe−Si粒子となる。また、この熱処理によって硼珪酸ガラス中の酸化硼素が還元及び窒化され、窒化硼素が生成する。残りのガラス成分は金属酸化物として鉄粒子表面に残る。それ故窒化硼素及び硼珪酸ガラス成分由来の金属元素の酸化物が表面に形成された鉄系コア粒子が合成される。
また、前記混合粉にバインダを添加して造粒し、金型を用いて圧縮成形した後に熱処理を行うこともできる。
(Heat treatment)
The obtained mixed powder is put into an alumina crucible and heat-treated in an electric furnace. By performing this heat treatment in a non-oxidizing atmosphere containing nitrogen (for example, 99.5% or more), the iron oxide powder is deprived of oxygen by carbon powder or the like and becomes iron particles. When silicon carbide is added at the time of mixing raw materials, Fe-Si particles are obtained. Further, by this heat treatment, boron oxide in the borosilicate glass is reduced and nitrided to generate boron nitride. The remaining glass component remains on the iron particle surface as a metal oxide. Therefore, iron-based core particles in which oxides of metal elements derived from boron nitride and borosilicate glass components are formed on the surface are synthesized.
In addition, the mixed powder may be granulated by adding a binder, and heat treatment may be performed after compression molding using a mold.

熱処理時の雰囲気は非酸化性雰囲気であることが好ましく、安全かつ安価で窒化を実現するためには窒素雰囲気であることが望ましい。熱処理温度は、800℃以上であるが、実用的には1000℃以上1600℃以下とすることが好ましい。1000℃未満では熱処理時間が著しく長時間となる。一方1600℃を超えると電気炉に耐熱部材を使用する必要が生じ、製造コストが嵩んでしまう。熱処理時間は、10分から200時間が良い。好ましくは2時間程度の保持である。 The atmosphere during the heat treatment is preferably a non-oxidizing atmosphere, and in order to realize nitriding safely and inexpensively, a nitrogen atmosphere is desirable. The heat treatment temperature is 800 ° C. or higher, but it is preferable that the heat treatment temperature is practically 1000 ° C. or higher and 1600 ° C. or lower. If it is less than 1000 degreeC, the heat processing time will become remarkably long. On the other hand, when the temperature exceeds 1600 ° C., it is necessary to use a heat-resistant member in the electric furnace, and the manufacturing cost increases. The heat treatment time is preferably 10 minutes to 200 hours. The holding is preferably about 2 hours.

(精製)
熱処理後に非磁性成分が残存する場合は、熱処理後の粉末をイソプロピルアルコールなどの有機溶媒中に投入して超音波照射による分散をさせたのち、永久磁石で磁性粒子のみを捕集する磁気分離操作によって本発明の複合被覆軟磁性金属粉末を得ることができる。
(Purification)
If non-magnetic components remain after heat treatment, put the heat-treated powder into an organic solvent such as isopropyl alcohol, disperse by ultrasonic irradiation, and then collect only magnetic particles with a permanent magnet Thus, the composite-coated soft magnetic metal powder of the present invention can be obtained.

上記製造方法によれば、鉄系コア粒子の表面に窒化硼素及び硼珪酸ガラス成分由来の金属元素の酸化物が形成された、平均粒径が1μm〜100μmの複合被覆軟磁性金属粉末が製造できる。平均粒径が、1μm未満であると窒化硼素及び硼珪酸ガラス成分由来の金属元素の酸化物の体積に対して金属粒子の体積が少なくなり、磁性材の占積率が低くなってしまう。また、粉末の流動性が低下し成形時の取扱いが難しい。平均粒径が100μmを超える場合は中高周波数域での渦電流損失を十分抑制することができない。さらに好ましい範囲は2μm〜50μmである。 According to the above production method, a composite coated soft magnetic metal powder having an average particle diameter of 1 μm to 100 μm in which an oxide of a metal element derived from boron nitride and a borosilicate glass component is formed on the surface of the iron-based core particle can be produced. . When the average particle size is less than 1 μm, the volume of the metal particles is smaller than the volume of the oxide of the metal element derived from the boron nitride and borosilicate glass components, and the space factor of the magnetic material is lowered. In addition, the fluidity of the powder is reduced, making it difficult to handle during molding. When the average particle diameter exceeds 100 μm, eddy current loss in the middle and high frequency range cannot be sufficiently suppressed. A more preferable range is 2 μm to 50 μm.

また、XPS(X−ray Photoelectron Spectroscopy)法によって測定される複合被覆軟磁性金属粉末の最表面の組成が、鉄系コア粒子に含まれる元素(Fe、Mn、Si)、硼素、窒素、酸素、炭素、及び用いた硼珪酸ガラス成分由来の金属元素(Si、Al、Ca、Ba、Sr、Zn、Mg、Li、Na、Cu、Co等)の和を100原子%として、前記硼素の割合が原子比で24原子%以上であることが望ましい。より好ましくは24.5原子%以上である。尚、ここで用いた硼珪酸ガラス成分由来の金属元素としたのは、硼珪酸ガラスには様々な組成のものがあり、Al、CaO、MgO、SrO、BaO、ZnO、NaO、KO、LiO、CoO、CuOなどを1種類以上含むことが好ましいが特定できないので由来成分とした。また、酸化鉄粉末に対する硼珪酸ガラス粉末の添加量が少ない場合は、添加した硼珪酸ガラス中に微量に含まれる元素は、複合被覆軟磁性金属粉末の表面から検出されない場合がある。
また、上述の硼素のうちその98.5原子%以上が窒化硼素として存在していることが望ましい。より好ましくは99原子%以上である。98.5原子%以上であると歪取り熱処理において耐高温性が出てくる。XPSでは、超高真空中で試料に単色X線を照射し、放出される光電子のエネルギー値を観測することにより、試料表面の元素組成や化学状態に関する情報を得ることができる。具体的にはサーベイスペクトルを測定し、最表面の元素組成を分析する。これにより窒化硼素と酸化硼素のどちらで存在しているかの区別が出来る。また、化学状態の特定と定量分析を行うには、ナロースペクトルを測定する。ここで最表面とは、粒子表面からおよそ5nmの領域のことを表す。これはXPS分析深さに相当する。
Further, the composition of the outermost surface of the composite coated soft magnetic metal powder measured by XPS (X-ray Photoelectron Spectroscopy) method is an element (Fe, Mn, Si), boron, nitrogen, oxygen, When the sum of carbon and the metal element derived from the borosilicate glass component used (Si, Al, Ca, Ba, Sr, Zn, Mg, Li, Na, Cu, Co, etc.) is 100 atomic%, the boron ratio is The atomic ratio is desirably 24 atomic% or more. More preferably, it is 24.5 atomic% or more. The metal element derived from the borosilicate glass component used here has various compositions of borosilicate glass, such as Al 2 O 3 , CaO, MgO, SrO, BaO, ZnO, Na 2 O. , K 2 O, Li 2 O, CoO, CuO and the like are preferably included, but they are not specified, so they are used as the derived components. In addition, when the amount of borosilicate glass powder added relative to the iron oxide powder is small, elements contained in a trace amount in the added borosilicate glass may not be detected from the surface of the composite coated soft magnetic metal powder.
Further, it is desirable that 98.5 atomic% or more of the above boron exists as boron nitride. More preferably, it is 99 atomic% or more. When it is 98.5 atomic% or more, high-temperature resistance appears in the strain relief heat treatment. In XPS, information on the elemental composition and chemical state of the sample surface can be obtained by irradiating the sample with monochromatic X-rays in an ultra-high vacuum and observing the energy value of the emitted photoelectrons. Specifically, the survey spectrum is measured and the elemental composition of the outermost surface is analyzed. This makes it possible to distinguish between boron nitride and boron oxide. In order to identify the chemical state and perform quantitative analysis, a narrow spectrum is measured. Here, the outermost surface represents a region of about 5 nm from the particle surface. This corresponds to the XPS analysis depth.

[圧粉磁心の作製]
圧粉磁心の作製方法について説明する。上記複合被覆軟磁性金属粉末にバインダを添加して造粒した。バインダとしてはポリビニルブチラール(PVB)、ポリビニルアルコール(PVA)、フェノール樹脂、アクリルエマルジョン、コロイダルシリカなどが用いられる。前記造粒粉を外径13.4mm、内径7.7mmの金型を用い、油圧プレスで500〜2000MPa(5〜20ton/cm)の圧力で圧縮成形することによりトロイダルリング状の圧粉磁心を作製した。
[Production of dust core]
A method for producing a dust core will be described. The composite coated soft magnetic metal powder was granulated by adding a binder. As the binder, polyvinyl butyral (PVB), polyvinyl alcohol (PVA), phenol resin, acrylic emulsion, colloidal silica, or the like is used. The granulated powder is compression-molded at a pressure of 500 to 2000 MPa (5 to 20 ton / cm 2 ) with a hydraulic press using a mold having an outer diameter of 13.4 mm and an inner diameter of 7.7 mm, and a toroidal ring-shaped dust core. Was made.

(歪取熱処理における耐熱性の確認)
圧粉磁心の歪取を行う場合は、歪取り熱処理を電気炉にて行う。この熱処理は窒素雰囲気などの非酸化性雰囲気下で行うことが望ましい。熱処理温度は600℃〜800℃であることが好ましい。できるだけ高温で耐熱性があることが望ましいので、本実施形態では800℃における耐熱性の確認を行った。保持時間は、10分から10時間とし、好ましくは2時間保持程度としている。
(Confirmation of heat resistance in strain relief heat treatment)
When straining the dust core, strain relief heat treatment is performed in an electric furnace. This heat treatment is desirably performed in a non-oxidizing atmosphere such as a nitrogen atmosphere. The heat treatment temperature is preferably 600 ° C to 800 ° C. Since it is desirable to have heat resistance at as high a temperature as possible, in this embodiment, heat resistance at 800 ° C. was confirmed. The holding time is 10 minutes to 10 hours, preferably about 2 hours.

[圧粉磁心の評価方法]
(磁束密度の評価)
圧粉磁心の評価方法について説明する。得られた圧粉磁心の質量と寸法から、磁心密度を算出した。磁心損失は、樹脂製のケースに磁心を入れ、一次(励磁巻線)、二次(検出巻線)共にφ0.25mmのエナメル銅線を30ターン巻いて、B−Hアナライザで励磁磁束密度を0.1Tとして周波数を10〜200kHzまで変化させて測定した。磁束密度については、磁心を樹脂製のケースに入れ、励磁巻線としてφ0.5mmのエナメル銅線を40ターン、検出巻線としてφ0.25mmのエナメル銅線を30ターン巻き、直流磁化特性試験装置にて最大印加磁界13kA/mのときの磁束密度を測定した。磁束密度の好ましい範囲は、おおよそ0.6T以上である。
[Dust core evaluation method]
(Evaluation of magnetic flux density)
A method for evaluating the dust core will be described. The magnetic core density was calculated from the mass and dimensions of the obtained powder magnetic core. For the core loss, put a magnetic core in a resin case, wind 30 turns of 0.25 mm enameled copper wire for both the primary (excitation winding) and secondary (detection winding), and use the BH analyzer to determine the excitation magnetic flux density. It was measured by changing the frequency from 10 to 200 kHz as 0.1T. For magnetic flux density, put the magnetic core in a resin case, 40 turns of enameled copper wire of φ0.5mm as excitation winding, 30 turns of enameled copper wire of φ0.25mm as detection winding, DC magnetic characteristics test equipment The magnetic flux density when the maximum applied magnetic field was 13 kA / m was measured. A preferable range of the magnetic flux density is approximately 0.6 T or more.

(比抵抗の評価)
比抵抗は、前記造粒粉を外径13mmの金型を用い、油圧プレスで1470MPa(15ton/cm)の圧力で圧縮成形することにより円板状試料を作製し、試料のプレス面にInGa合金を塗布し、岩崎通信機株式会社製デジタルマルチメータを用いて4端子法で測定した。比抵抗の好ましい範囲は、おおよそ1.0×10μΩ・m以上である。なお、装置の測定限界である値は、1.0×10μΩ・m程度である。
(Evaluation of resistivity)
The specific resistance is obtained by compression-molding the granulated powder with a pressure of 1470 MPa (15 ton / cm 2 ) using a die having an outer diameter of 13 mm and a pressure of 1470 MPa (15 ton / cm 2 ). The alloy was applied, and measurement was performed by a four-terminal method using a digital multimeter manufactured by Iwasaki Tsushinki Co., Ltd. A preferable range of the specific resistance is approximately 1.0 × 10 3 μΩ · m or more. The value that is the measurement limit of the apparatus is about 1.0 × 10 1 μΩ · m.

以下、実施例について説明する。まずは、複合被覆軟磁性金属粉末の製造方法において、酸化鉄粉末に対する炭素粉末のモル比率を変えた場合、酸化鉄粉末に対する硼珪酸ガラス粉末の質量比率を変えた場合、また、酸化鉄粉末に対する炭化珪素粉末のモル比率を変えた場合の実施例及び比較例を示し、その結果を表1に示す。 Examples will be described below. First, in the method for producing a composite coated soft magnetic metal powder, when the molar ratio of the carbon powder to the iron oxide powder is changed, the mass ratio of the borosilicate glass powder to the iron oxide powder is changed, and the carbonization to the iron oxide powder is performed. The Example and comparative example at the time of changing the molar ratio of silicon powder are shown, and the result is shown in Table 1.

(実施例1)
平均粒径1μmの酸化鉄粉末、平均粒径0.01μmの炭化珪素粉末、平均粒径0.02μmの炭素粉末、平均粒径5μmの硼珪酸ガラス粉末を用意し、酸化鉄粉末に対して炭素粉末のモル比率がC/Fe=2.5となるように、酸化鉄粉末に対して炭化珪素粉末のモル比率がSiC/Fe=0.04となるように、また硼珪酸ガラス粉末は、酸化鉄粉末の質量100に対して質量比率で3.8となるように、それぞれ秤量した。これらの原料を湿式ボールミルにより混合し、乾燥させて混合粉を得た。得られた混合粉をアルミナ製るつぼに入れ、電気炉にて窒素を含む非酸化性雰囲気中(以下、窒素雰囲気中と言う)1200℃、2時間保持の熱処理を行った。熱処理後の粉末に対しては、磁気分離精製により非磁性成分を除去し、複合被覆軟磁性金属粉末を得た。得られた複合被覆軟磁性金属粉末にPVB/エタノール溶液を添加して造粒し、油圧プレスで1470MPaの圧力で圧縮成形することにより、トロイダルリング状の圧粉磁心を製造した。印加磁界13kA/mのときの磁束密度は0.930Tであった。
Example 1
Prepare iron oxide powder with an average particle size of 1 μm, silicon carbide powder with an average particle size of 0.01 μm, carbon powder with an average particle size of 0.02 μm, and borosilicate glass powder with an average particle size of 5 μm. The molar ratio of the silicon carbide powder to the iron oxide powder is SiC / Fe 2 O 3 = 0.04 so that the molar ratio of the powder is C / Fe 2 O 3 = 2.5, and boron The silicate glass powder was weighed so that the mass ratio was 3.8 with respect to the mass 100 of the iron oxide powder. These raw materials were mixed by a wet ball mill and dried to obtain a mixed powder. The obtained mixed powder was put into an alumina crucible and subjected to heat treatment at 1200 ° C. for 2 hours in a non-oxidizing atmosphere containing nitrogen (hereinafter referred to as “nitrogen atmosphere”) in an electric furnace. The non-magnetic component was removed from the heat-treated powder by magnetic separation and purification to obtain a composite coated soft magnetic metal powder. A PVB / ethanol solution was added to the obtained composite coated soft magnetic metal powder, granulated, and compression molded at a pressure of 1470 MPa with a hydraulic press to produce a toroidal ring-shaped dust core. The magnetic flux density at an applied magnetic field of 13 kA / m was 0.930T.

(実施例2)
平均粒径1μmの酸化鉄粉末、平均粒径0.01μmの炭化珪素粉末、平均粒径0.02μmの炭素粉末、平均粒径5μmの硼珪酸ガラス粉末を用意し、以下実施例1と同様に、モル比率でC/Fe=3.0、モル比率でSiC/Fe=0.04、硼珪酸ガラス粉末は、酸化鉄粉末の質量100に対して質量比率で3.8となるように、それぞれ秤量した。これらの原料を湿式ボールミルにより混合し、乾燥させて混合粉を得た。得られた混合粉をアルミナ製るつぼに入れ、電気炉にて窒素雰囲気中1200℃、2時間保持の熱処理を行った。熱処理後の粉末に対しては、磁気分離精製により非磁性成分を除去し、複合被覆軟磁性金属粉末を得た。得られた複合被覆軟磁性金属粉末にPVB/エタノール溶液を添加して造粒し、油圧プレスで1470MPaの圧力で圧縮成形することにより、トロイダルリング状の圧粉磁心を製造した。印加磁界13kA/mのときの磁束密度は0.850Tであった。
(Example 2)
An iron oxide powder having an average particle diameter of 1 μm, a silicon carbide powder having an average particle diameter of 0.01 μm, a carbon powder having an average particle diameter of 0.02 μm, and a borosilicate glass powder having an average particle diameter of 5 μm are prepared. The molar ratio of C / Fe 2 O 3 = 3.0, the molar ratio of SiC / Fe 2 O 3 = 0.04, and the borosilicate glass powder has a mass ratio of 3.8 to the mass 100 of the iron oxide powder. Each was weighed so that These raw materials were mixed by a wet ball mill and dried to obtain a mixed powder. The obtained mixed powder was put into an alumina crucible and subjected to heat treatment in an electric furnace at 1200 ° C. for 2 hours in a nitrogen atmosphere. The non-magnetic component was removed from the heat-treated powder by magnetic separation and purification to obtain a composite coated soft magnetic metal powder. A PVB / ethanol solution was added to the obtained composite coated soft magnetic metal powder, granulated, and compression molded at a pressure of 1470 MPa with a hydraulic press to produce a toroidal ring-shaped dust core. The magnetic flux density when the applied magnetic field was 13 kA / m was 0.850T.

(実施例3)
平均粒径1μmの酸化鉄粉末、平均粒径0.01μmの炭化珪素粉末、平均粒径0.02μmの炭素粉末、平均粒径5μmの硼珪酸ガラス粉末を用意し、以下実施例1と同様に、モル比率でC/Fe=3.3、モル比率でSiC/Fe=0.04、硼珪酸ガラス粉末は酸化鉄粉末の質量100に対して質量比率で3.8となるように、それぞれ秤量した。これらの原料を湿式ボールミルにより混合し、乾燥させて混合粉を得た。得られた混合粉をアルミナ製るつぼに入れ、電気炉にて窒素雰囲気中1200℃、2時間保持の熱処理を行った。熱処理後の粉末に対しては、磁気分離精製により非磁性成分を除去し、複合被覆軟磁性金属粉末を得た。得られた複合被覆軟磁性金属粉末にPVB/エタノール溶液を添加して造粒し、油圧プレスで1470MPaの圧力で圧縮成形することにより、トロイダルリング状の圧粉磁心を製造した。印加磁界13kA/mのときの磁束密度は0.663T、比抵抗は8.8×10μΩ・mであった。
(Example 3)
An iron oxide powder having an average particle diameter of 1 μm, a silicon carbide powder having an average particle diameter of 0.01 μm, a carbon powder having an average particle diameter of 0.02 μm, and a borosilicate glass powder having an average particle diameter of 5 μm are prepared. The molar ratio of C / Fe 2 O 3 = 3.3, the molar ratio of SiC / Fe 2 O 3 = 0.04, and the borosilicate glass powder has a mass ratio of 3.8 to the mass 100 of the iron oxide powder. Each was weighed. These raw materials were mixed by a wet ball mill and dried to obtain a mixed powder. The obtained mixed powder was put into an alumina crucible and subjected to heat treatment in an electric furnace at 1200 ° C. for 2 hours in a nitrogen atmosphere. The non-magnetic component was removed from the heat-treated powder by magnetic separation and purification to obtain a composite coated soft magnetic metal powder. A PVB / ethanol solution was added to the obtained composite coated soft magnetic metal powder, granulated, and compression molded at a pressure of 1470 MPa with a hydraulic press to produce a toroidal ring-shaped dust core. When the applied magnetic field was 13 kA / m, the magnetic flux density was 0.663 T, and the specific resistance was 8.8 × 10 3 μΩ · m.

(比較例1)
平均粒径1μmの酸化鉄粉末、平均粒径0.01μmの炭化珪素粉末、平均粒径0.02μmの炭素粉末、平均粒径5μmの硼珪酸ガラス粉末を用意し、以下実施例1と同様に、モル比率でC/Fe=2.2、モル比率でSiC/Fe=0.04、硼珪酸ガラス粉末は酸化鉄粉末の質量100に対して質量比率で3.8となるように、それぞれ秤量した。これらの原料を湿式ボールミルにより混合し、乾燥させて混合粉を得た。得られた混合粉をアルミナ製るつぼに入れ、電気炉にて窒素雰囲気中1200℃、2時間保持の熱処理を行った。熱処理後は塊状になり粉末を得られず、圧粉磁心として評価することができなかった。
(Comparative Example 1)
An iron oxide powder having an average particle diameter of 1 μm, a silicon carbide powder having an average particle diameter of 0.01 μm, a carbon powder having an average particle diameter of 0.02 μm, and a borosilicate glass powder having an average particle diameter of 5 μm are prepared. The molar ratio of C / Fe 2 O 3 = 2.2, the molar ratio of SiC / Fe 2 O 3 = 0.04, and the borosilicate glass powder has a mass ratio of 3.8 to the mass 100 of the iron oxide powder. Each was weighed. These raw materials were mixed by a wet ball mill and dried to obtain a mixed powder. The obtained mixed powder was put into an alumina crucible and subjected to heat treatment in an electric furnace at 1200 ° C. for 2 hours in a nitrogen atmosphere. After the heat treatment, the powder became agglomerated and no powder was obtained, and could not be evaluated as a dust core.

(比較例2)
平均粒径1μmの酸化鉄粉末、平均粒径0.01μmの炭化珪素粉末、平均粒径0.02μmの炭素粉末、平均粒径5μmの硼珪酸ガラス粉末を用意し、以下実施例1と同様に、モル比率でC/Fe=3.6、モル比率でSiC/Fe=0.04、硼珪酸ガラス粉末は酸化鉄粉末の質量100に対して質量比率で3.8となるように、それぞれ秤量した。これらの原料を湿式ボールミルにより混合し、乾燥させて混合粉を得た。得られた混合粉をアルミナ製るつぼに入れ、電気炉にて窒素雰囲気中1200℃、2時間保持の熱処理を行った。熱処理後の粉末に対しては、磁気分離精製により非磁性成分を除去し、複合被覆軟磁性金属粉末を得た。得られた複合被覆軟磁性金属粉末にPVB/エタノール溶液を添加して造粒し、油圧プレスで1470MPaの圧力で圧縮成形することにより、トロイダルリング状の圧粉磁心を製造した。印加磁界13kA/mのときの磁束密度は0.429Tであった。
(Comparative Example 2)
An iron oxide powder having an average particle diameter of 1 μm, a silicon carbide powder having an average particle diameter of 0.01 μm, a carbon powder having an average particle diameter of 0.02 μm, and a borosilicate glass powder having an average particle diameter of 5 μm are prepared. The molar ratio of C / Fe 2 O 3 = 3.6, the molar ratio of SiC / Fe 2 O 3 = 0.04, and the borosilicate glass powder has a mass ratio of 3.8 to the mass 100 of the iron oxide powder. Each was weighed. These raw materials were mixed by a wet ball mill and dried to obtain a mixed powder. The obtained mixed powder was put into an alumina crucible and subjected to heat treatment in an electric furnace at 1200 ° C. for 2 hours in a nitrogen atmosphere. The non-magnetic component was removed from the heat-treated powder by magnetic separation and purification to obtain a composite coated soft magnetic metal powder. A PVB / ethanol solution was added to the obtained composite coated soft magnetic metal powder, granulated, and compression molded at a pressure of 1470 MPa with a hydraulic press to produce a toroidal ring-shaped dust core. The magnetic flux density when the applied magnetic field was 13 kA / m was 0.429 T.

(実施例4)
平均粒径1μmの酸化鉄粉末、平均粒径0.01μmの炭化珪素粉末、平均粒径0.02μmの炭素粉末、平均粒径5μmの硼珪酸ガラス粉末を用意し、以下実施例1と同様に、モル比率でC/Fe=3.3、モル比率でSiC/Fe=0.04、硼珪酸ガラス粉末は酸化鉄粉末の質量100に対して質量比率で1.3となるように、それぞれ秤量した。これらの原料を湿式ボールミルにより混合し、乾燥させて混合粉を得た。得られた混合粉をアルミナ製るつぼに入れ、電気炉にて窒素雰囲気中1200℃、2時間保持の熱処理を行った。熱処理後の粉末に対しては、磁気分離精製により非磁性成分を除去し、複合被覆軟磁性金属粉末を得た。得られた複合被覆軟磁性金属粉末にPVB/エタノール溶液を添加して造粒し、油圧プレスで1470MPaの圧力で圧縮成形することにより、トロイダルリング状の圧粉磁心を製造した。印加磁界13kA/mのときの磁束密度は0.814T、比抵抗は2.6×10μΩ・mであった。
Example 4
An iron oxide powder having an average particle diameter of 1 μm, a silicon carbide powder having an average particle diameter of 0.01 μm, a carbon powder having an average particle diameter of 0.02 μm, and a borosilicate glass powder having an average particle diameter of 5 μm are prepared. The molar ratio C / Fe 2 O 3 = 3.3, the molar ratio SiC / Fe 2 O 3 = 0.04, and the borosilicate glass powder has a mass ratio of 1.3 with respect to the mass 100 of the iron oxide powder. Each was weighed. These raw materials were mixed by a wet ball mill and dried to obtain a mixed powder. The obtained mixed powder was put into an alumina crucible and subjected to heat treatment in an electric furnace at 1200 ° C. for 2 hours in a nitrogen atmosphere. The non-magnetic component was removed from the heat-treated powder by magnetic separation and purification to obtain a composite coated soft magnetic metal powder. A PVB / ethanol solution was added to the obtained composite coated soft magnetic metal powder, granulated, and compression molded at a pressure of 1470 MPa with a hydraulic press to produce a toroidal ring-shaped dust core. When the applied magnetic field was 13 kA / m, the magnetic flux density was 0.814 T, and the specific resistance was 2.6 × 10 3 μΩ · m.

(実施例5)
平均粒径1μmの酸化鉄粉末、平均粒径0.01μmの炭化珪素粉末、平均粒径0.02μmの炭素粉末、平均粒径5μmの硼珪酸ガラス粉末を用意し、以下実施例1と同様に、モル比率でC/Fe=3.3、モル比率でSiC/Fe=0.04、硼珪酸ガラス粉末は酸化鉄粉末の質量100に対して質量比率で12.6となるように、それぞれ秤量した。これらの原料を湿式ボールミルにより混合し、乾燥させて混合粉を得た。得られた混合粉をアルミナ製るつぼに入れ、電気炉にて窒素雰囲気中1200℃、2時間保持の熱処理を行った。熱処理後の粉末に対しては、磁気分離精製により非磁性成分を除去し、複合被覆軟磁性金属粉末を得た。得られた複合被覆軟磁性金属粉末にPVB/エタノール溶液を添加して造粒し、油圧プレスで1470MPaの圧力で圧縮成形することにより、トロイダルリング状の圧粉磁心を製造した。印加磁界13kA/mのときの磁束密度は0.628T、比抵抗は9.0×10μΩ・mであった。
(Example 5)
An iron oxide powder having an average particle diameter of 1 μm, a silicon carbide powder having an average particle diameter of 0.01 μm, a carbon powder having an average particle diameter of 0.02 μm, and a borosilicate glass powder having an average particle diameter of 5 μm are prepared. The molar ratio C / Fe 2 O 3 = 3.3, the molar ratio SiC / Fe 2 O 3 = 0.04, and the borosilicate glass powder has a mass ratio of 12.6 to the mass 100 of the iron oxide powder. Each was weighed. These raw materials were mixed by a wet ball mill and dried to obtain a mixed powder. The obtained mixed powder was put into an alumina crucible and subjected to heat treatment in an electric furnace at 1200 ° C. for 2 hours in a nitrogen atmosphere. The non-magnetic component was removed from the heat-treated powder by magnetic separation and purification to obtain a composite coated soft magnetic metal powder. A PVB / ethanol solution was added to the obtained composite coated soft magnetic metal powder, granulated, and compression molded at a pressure of 1470 MPa with a hydraulic press to produce a toroidal ring-shaped dust core. When the applied magnetic field was 13 kA / m, the magnetic flux density was 0.628 T, and the specific resistance was 9.0 × 10 6 μΩ · m.

(比較例3)
平均粒径1μmの酸化鉄粉末、平均粒径0.01μmの炭化珪素粉末、平均粒径0.02μmの炭素粉末、平均粒径5μmの硼珪酸ガラス粉末を用意し、以下実施例1と同様に、モル比率でC/Fe=3.3、モル比率でSiC/Fe=0.04、硼珪酸ガラス粉末は酸化鉄粉末の質量100に対して質量比率で0.04となるよう、それぞれ秤量した。これらの原料を湿式ボールミルにより混合し、乾燥させて混合粉を得た。得られた混合粉をアルミナ製るつぼに入れ、電気炉にて窒素雰囲気中1200℃、2時間保持の熱処理を行った。熱処理後の粉末に対しては、磁気分離精製により非磁性成分を除去し、複合被覆軟磁性金属粉末を得た。得られた複合被覆軟磁性金属粉末にPVB/エタノール溶液を添加して造粒し、油圧プレスで1470MPaの圧力で圧縮成形することにより、トロイダルリング状の圧粉磁心を製造した。印加磁界13kA/mのときの磁束密度は0.970T、比抵抗は3.0×10μΩ・mであった。
(Comparative Example 3)
An iron oxide powder having an average particle diameter of 1 μm, a silicon carbide powder having an average particle diameter of 0.01 μm, a carbon powder having an average particle diameter of 0.02 μm, and a borosilicate glass powder having an average particle diameter of 5 μm are prepared. The molar ratio C / Fe 2 O 3 = 3.3, the molar ratio SiC / Fe 2 O 3 = 0.04, and the borosilicate glass powder has a mass ratio of 0.04 to the mass 100 of the iron oxide powder. Each was weighed. These raw materials were mixed by a wet ball mill and dried to obtain a mixed powder. The obtained mixed powder was put into an alumina crucible and subjected to heat treatment in an electric furnace at 1200 ° C. for 2 hours in a nitrogen atmosphere. The non-magnetic component was removed from the heat-treated powder by magnetic separation and purification to obtain a composite coated soft magnetic metal powder. A PVB / ethanol solution was added to the obtained composite coated soft magnetic metal powder, granulated, and compression molded at a pressure of 1470 MPa with a hydraulic press to produce a toroidal ring-shaped dust core. When the applied magnetic field was 13 kA / m, the magnetic flux density was 0.970 T, and the specific resistance was 3.0 × 10 2 μΩ · m.

(比較例4)
平均粒径1μmの酸化鉄粉末、平均粒径0.01μmの炭化珪素粉末、平均粒径0.02μmの炭素粉末、平均粒径5μmの硼珪酸ガラス粉末を用意し、以下実施例1と同様に、モル比率でC/Fe=3.3、モル比率でSiC/Fe=0.04、硼珪酸ガラス粉末は酸化鉄粉末の質量100に対して質量比率で20.1となるよう、それぞれ秤量した。これらの原料を湿式ボールミルにより混合し、乾燥させて混合粉を得た。得られた混合粉をアルミナ製るつぼに入れ、電気炉にて窒素雰囲気中1200℃、2時間保持の熱処理を行った。熱処理後の粉末に対しては、磁気分離精製により非磁性成分を除去し、複合被覆軟磁性金属粉末を得た。得られた複合被覆軟磁性金属粉末にPVB/エタノール溶液を添加して造粒し、油圧プレスで1470MPaの圧力で圧縮成形することにより、トロイダルリング状の圧粉磁心を製造した。印加磁界13kA/mのときの磁束密度は0.352T、比抵抗は1.2×10μΩ・mであった。
(Comparative Example 4)
An iron oxide powder having an average particle diameter of 1 μm, a silicon carbide powder having an average particle diameter of 0.01 μm, a carbon powder having an average particle diameter of 0.02 μm, and a borosilicate glass powder having an average particle diameter of 5 μm are prepared. The molar ratio C / Fe 2 O 3 = 3.3, the molar ratio SiC / Fe 2 O 3 = 0.04, and the borosilicate glass powder has a mass ratio of 20.1 to the mass 100 of the iron oxide powder. Each was weighed. These raw materials were mixed by a wet ball mill and dried to obtain a mixed powder. The obtained mixed powder was put into an alumina crucible and subjected to heat treatment in an electric furnace at 1200 ° C. for 2 hours in a nitrogen atmosphere. The non-magnetic component was removed from the heat-treated powder by magnetic separation and purification to obtain a composite coated soft magnetic metal powder. A PVB / ethanol solution was added to the obtained composite coated soft magnetic metal powder, granulated, and compression molded at a pressure of 1470 MPa with a hydraulic press to produce a toroidal ring-shaped dust core. When the applied magnetic field was 13 kA / m, the magnetic flux density was 0.352 T, and the specific resistance was 1.2 × 10 9 μΩ · m.

(実施例6)
平均粒径1μmの酸化鉄粉末、平均粒径0.02μmの炭素粉末、平均粒径5μmの硼珪酸ガラス粉末を用意し、以下実施例1と同様に、モル比率でC/Fe=3.3、硼珪酸ガラス粉末は酸化鉄粉末の質量100に対して質量比率で3.8となるように、それぞれ秤量した。よって、本実施例では炭化珪素粉末を添加していないが以下同様に、これらの原料を湿式ボールミルにより混合し、乾燥させて混合粉を得た。得られた混合粉をアルミナ製るつぼに入れ、電気炉にて窒素雰囲気中1200℃、2時間保持の熱処理を行った。熱処理後の粉末に対しては、磁気分離精製により非磁性成分を除去し、複合被覆軟磁性金属粉末を得た。得られた複合被覆軟磁性金属粉末にPVB/エタノール溶液を添加して造粒し、油圧プレスで1470MPaの圧力で圧縮成形することにより、トロイダルリング状の圧粉磁心を製造した。印加磁界13kA/mのときの磁束密度は0.762Tであった。
(Example 6)
An iron oxide powder having an average particle diameter of 1 μm, a carbon powder having an average particle diameter of 0.02 μm, and a borosilicate glass powder having an average particle diameter of 5 μm were prepared. In the same manner as in Example 1, C / Fe 2 O 3 = 3.3 The borosilicate glass powder was weighed so that the mass ratio was 3.8 with respect to the mass 100 of the iron oxide powder. Therefore, in this example, silicon carbide powder was not added, but in the same manner, these raw materials were mixed by a wet ball mill and dried to obtain a mixed powder. The obtained mixed powder was put into an alumina crucible and subjected to heat treatment in an electric furnace at 1200 ° C. for 2 hours in a nitrogen atmosphere. The non-magnetic component was removed from the heat-treated powder by magnetic separation and purification to obtain a composite coated soft magnetic metal powder. A PVB / ethanol solution was added to the obtained composite coated soft magnetic metal powder, granulated, and compression molded at a pressure of 1470 MPa with a hydraulic press to produce a toroidal ring-shaped dust core. The magnetic flux density when the applied magnetic field was 13 kA / m was 0.762T.

Figure 2014192454
Figure 2014192454

図1は、表1の結果を基に酸化鉄粉末に対する炭素粉末のモル比率(C/Fe2O3)と磁束密度の関係を示している。また、図2は、酸化鉄粉末の質量100に対して添加する硼珪酸ガラス粉末の質量比率と比抵抗との関係を左軸に、同じく磁束密度との関係を右軸に示している。ここで磁束密度は、ほぼ0.6T以上であれば実用に供し得ると考えている。また、比抵抗については、ほぼ1×103μΩ・m以上であれば絶縁性を有し、損失を低減できると考えている。よって、実施例1〜3及び比較例1〜2によれば、酸化鉄粉末に対する炭素粉末の添加量はモル比率で2.3以上3.4以下とすることが好ましい。また、実施例3〜5及び比較例3〜4によれば、酸化鉄粉末の質量100に対する硼珪酸ガラス粉末の添加量は質量比率で0.05以上20以下とすることが好ましいことが分かる。
また、実施例6から炭化珪素を添加しない場合でも一定の効果は得られている。よって、炭化珪素を添加することは好ましいことであるが必須ではないと考えている。
FIG. 1 shows the relationship between the molar ratio of carbon powder to iron oxide powder (C / Fe 2 O 3 ) and magnetic flux density based on the results in Table 1. FIG. 2 shows the relationship between the mass ratio of the borosilicate glass powder added to the mass 100 of the iron oxide powder and the specific resistance on the left axis, and the relationship with the magnetic flux density on the right axis. Here, it is considered that the magnetic flux density can be practically used if it is approximately 0.6 T or more. As for the specific resistance, it is considered that if it is approximately 1 × 10 3 μΩ · m or more, it has insulation and can reduce loss. Therefore, according to Examples 1-3 and Comparative Examples 1-2, it is preferable that the addition amount of the carbon powder with respect to an iron oxide powder shall be 2.3 or more and 3.4 or less by molar ratio. Moreover, according to Examples 3-5 and Comparative Examples 3-4, it turns out that it is preferable that the addition amount of the borosilicate glass powder with respect to the mass 100 of an iron oxide powder shall be 0.05-20.
Moreover, even when silicon carbide is not added from Example 6, a certain effect is obtained. Therefore, adding silicon carbide is preferable but not essential.

次に、複合被覆軟磁性金属粉末の製造方法において、酸化鉄、炭素粉末、炭化珪素粉末、硼珪酸ガラス粉末の混合粉の還元熱処理温度を変えた場合の実施例及び比較例を示す。実施例3を含め熱処理温度順に比抵抗と共にその結果を表2に示す。 Next, in the method for producing a composite coated soft magnetic metal powder, examples and comparative examples in which the reduction heat treatment temperature of the mixed powder of iron oxide, carbon powder, silicon carbide powder, and borosilicate glass powder are changed are shown. The results are shown in Table 2 together with the specific resistance in the order of heat treatment temperature including Example 3.

(実施例7)
平均粒径1μmの酸化鉄粉末、平均粒径0.01μmの炭化珪素粉末、平均粒径0.02μmの炭素粉末、平均粒径5μmの硼珪酸ガラス粉末を用意し、以下実施例1と同様に、モル比率でC/Fe=3.3、モル比率でSiC/Fe=0.04、硼珪酸ガラス粉末は酸化鉄粉末の質量100に対して質量比率で3.8となるように、それぞれ秤量した。これらの原料を湿式ボールミルにより混合し、乾燥させて混合粉を得た。得られた混合粉をアルミナ製るつぼに入れ、電気炉にて窒素雰囲気中1000℃、2時間保持の熱処理を行った。熱処理後の粉末に対しては、磁気分離精製により非磁性成分を除去し、複合被覆軟磁性金属粉末を得た。得られた複合被覆軟磁性金属粉末にPVB/エタノール溶液を添加して造粒し、油圧プレスで1470MPaの圧力で圧縮成形した。比抵抗は3.6×10μΩ・mであった。
(Example 7)
An iron oxide powder having an average particle diameter of 1 μm, a silicon carbide powder having an average particle diameter of 0.01 μm, a carbon powder having an average particle diameter of 0.02 μm, and a borosilicate glass powder having an average particle diameter of 5 μm are prepared. The molar ratio of C / Fe 2 O 3 = 3.3, the molar ratio of SiC / Fe 2 O 3 = 0.04, and the borosilicate glass powder has a mass ratio of 3.8 to the mass 100 of the iron oxide powder. Each was weighed. These raw materials were mixed by a wet ball mill and dried to obtain a mixed powder. The obtained mixed powder was put into an alumina crucible and heat-treated in an electric furnace at 1000 ° C. for 2 hours in a nitrogen atmosphere. The non-magnetic component was removed from the heat-treated powder by magnetic separation and purification to obtain a composite coated soft magnetic metal powder. The resulting composite coated soft magnetic metal powder was granulated by adding a PVB / ethanol solution, and compression molded at a pressure of 1470 MPa with a hydraulic press. The specific resistance was 3.6 × 10 4 μΩ · m.

(実施例8)
平均粒径1μmの酸化鉄粉末、平均粒径0.01μmの炭化珪素粉末、平均粒径0.02μmの炭素粉末、平均粒径5μmの硼珪酸ガラス粉末を用意し、以下実施例1と同様に、モル比率でC/Fe=3.3、モル比率でSiC/Fe=0.04、硼珪酸ガラス粉末は酸化鉄粉末の質量100に対して質量比率で3.8となるよう、それぞれ秤量した。これらの原料を湿式ボールミルにより混合し、乾燥させて混合粉を得た。得られた混合粉をアルミナ製るつぼに入れ、電気炉にて窒素雰囲気中1500℃、2時間保持の熱処理を行った。熱処理後の粉末に対しては、磁気分離精製により非磁性成分を除去し、複合被覆軟磁性金属粉末を得た。得られた複合被覆軟磁性金属粉末にPVB/エタノール溶液を添加して造粒し、油圧プレスで1470MPaの圧力で圧縮成形した。比抵抗は5.4×10μΩ・mであった。
(Example 8)
An iron oxide powder having an average particle diameter of 1 μm, a silicon carbide powder having an average particle diameter of 0.01 μm, a carbon powder having an average particle diameter of 0.02 μm, and a borosilicate glass powder having an average particle diameter of 5 μm are prepared. The molar ratio of C / Fe 2 O 3 = 3.3, the molar ratio of SiC / Fe 2 O 3 = 0.04, and the borosilicate glass powder has a mass ratio of 3.8 to the mass 100 of the iron oxide powder. Each was weighed. These raw materials were mixed by a wet ball mill and dried to obtain a mixed powder. The obtained mixed powder was put into an alumina crucible and subjected to heat treatment in an electric furnace at 1500 ° C. for 2 hours in a nitrogen atmosphere. The non-magnetic component was removed from the heat-treated powder by magnetic separation and purification to obtain a composite coated soft magnetic metal powder. The resulting composite coated soft magnetic metal powder was granulated by adding a PVB / ethanol solution, and compression molded at a pressure of 1470 MPa with a hydraulic press. The specific resistance was 5.4 × 10 3 μΩ · m.

(実施例9)
平均粒径1μmの酸化鉄粉末、平均粒径0.01μmの炭化珪素粉末、平均粒径0.02μmの炭素粉末、平均粒径5μmの硼珪酸ガラス粉末を用意し、以下実施例1と同様に、モル比率でC/Fe=3.3、モル比率でSiC/Fe=0.04、硼珪酸ガラス粉末は酸化鉄粉末の質量100に対して質量比率で3.8となるよう、それぞれ秤量した。これらの原料を湿式ボールミルにより混合し、乾燥させて混合粉を得た。得られた混合粉をアルミナ製るつぼに入れ、電気炉にて窒素雰囲気中1600℃、2時間保持の熱処理を行った。熱処理後の粉末に対しては、磁気分離精製により非磁性成分を除去し、複合被覆軟磁性金属粉末を得た。得られた複合被覆軟磁性金属粉末にPVB/エタノール溶液を添加して造粒し、油圧プレスで1470MPaの圧力で圧縮成形した。比抵抗は4.2×10μΩ・mであった。
Example 9
An iron oxide powder having an average particle diameter of 1 μm, a silicon carbide powder having an average particle diameter of 0.01 μm, a carbon powder having an average particle diameter of 0.02 μm, and a borosilicate glass powder having an average particle diameter of 5 μm are prepared. The molar ratio of C / Fe 2 O 3 = 3.3, the molar ratio of SiC / Fe 2 O 3 = 0.04, and the borosilicate glass powder has a mass ratio of 3.8 to the mass 100 of the iron oxide powder. Each was weighed. These raw materials were mixed by a wet ball mill and dried to obtain a mixed powder. The obtained mixed powder was put into an alumina crucible, and was heat-treated in an electric furnace at 1600 ° C. for 2 hours in a nitrogen atmosphere. The non-magnetic component was removed from the heat-treated powder by magnetic separation and purification to obtain a composite coated soft magnetic metal powder. The resulting composite coated soft magnetic metal powder was granulated by adding a PVB / ethanol solution, and compression molded at a pressure of 1470 MPa with a hydraulic press. The specific resistance was 4.2 × 10 3 μΩ · m.

(比較例5)
平均粒径1μmの酸化鉄粉末、平均粒径0.01μmの炭化珪素粉末、平均粒径0.02μmの炭素粉末、平均粒径5μmの硼珪酸ガラス粉末を用意し、以下実施例1と同様に、モル比率でC/Fe=3.3、モル比率でSiC/Fe=0.04、硼珪酸ガラス粉末は酸化鉄粉末の質量100に対して質量比率で3.8となるよう、それぞれ秤量した。これらの原料を湿式ボールミルにより混合し、乾燥させて混合粉を得た。得られた混合粉をアルミナ製るつぼに入れ、電気炉にて窒素雰囲気中900℃、2時間保持の熱処理を行った。しかし、熱処理後の粉末は還元が不十分であり酸化鉄が残存していたため、評価を行えなかった。
(Comparative Example 5)
An iron oxide powder having an average particle diameter of 1 μm, a silicon carbide powder having an average particle diameter of 0.01 μm, a carbon powder having an average particle diameter of 0.02 μm, and a borosilicate glass powder having an average particle diameter of 5 μm are prepared. The molar ratio of C / Fe 2 O 3 = 3.3, the molar ratio of SiC / Fe 2 O 3 = 0.04, and the borosilicate glass powder has a mass ratio of 3.8 to the mass 100 of the iron oxide powder. Each was weighed. These raw materials were mixed by a wet ball mill and dried to obtain a mixed powder. The obtained mixed powder was put into an alumina crucible and subjected to heat treatment in an electric furnace at 900 ° C. for 2 hours in a nitrogen atmosphere. However, since the powder after the heat treatment was not sufficiently reduced and iron oxide remained, the evaluation could not be performed.

Figure 2014192454
Figure 2014192454

表2から明らかなように還元熱処理温度が1000℃以上1600℃以下の範囲であれば、高比抵抗の圧粉磁心を実現できることが分かる。尚、1600℃を超えると電気炉に耐熱部材を使用しなければならない等負荷が増えるので製造コストが高くなる。 As apparent from Table 2, it can be seen that a powder core having a high specific resistance can be realized if the reduction heat treatment temperature is in the range of 1000 ° C. to 1600 ° C. In addition, when it exceeds 1600 degreeC, since the load which must use a heat-resistant member for an electric furnace will increase, manufacturing cost will become high.

次に、複合被覆軟磁性金属粉末における硼素の割合と、予備混合の有無についての実施例及び比較例の結果を表3に示す。また、XPSによる表面組成分析により、複合被覆軟磁性金属粉末における最表面の組成と、硼素の存在形態について表4に示す。また、得られた複合被覆軟磁性金属粉末を用いて作製した圧粉磁心について歪取熱処理したときの軟磁気特性を表5に示す。 Next, Table 3 shows the results of Examples and Comparative Examples regarding the ratio of boron in the composite-coated soft magnetic metal powder and the presence or absence of premixing. Table 4 shows the composition of the outermost surface of the composite-coated soft magnetic metal powder and the presence form of boron by XPS surface composition analysis. Table 5 shows the soft magnetic properties when the powder magnetic core produced using the obtained composite-coated soft magnetic metal powder is subjected to strain relief heat treatment.

(実施例10)
平均粒径1μmの酸化鉄粉末、平均粒径0.01μmの炭化珪素粉末、平均粒径0.02μmの炭素粉末、平均粒径5μmの硼珪酸ガラス粉末を用意し、以下実施例1と同様に、モル比率でC/Fe=3.0、モル比率でSiC/Fe=0.04、硼珪酸ガラス粉末は酸化鉄粉末の質量100に対して質量比率で12.4となるよう秤量した。このときの硼珪酸ガラス中の硼素量は酸化鉄粉末の質量100に対して質量比率で1.5であった。これらの原料を湿式ボールミルにより混合し、乾燥させて混合粉を得た。得られた混合粉をアルミナ製るつぼに入れ、電気炉にて窒素雰囲気中1300℃、2時間保持の熱処理を行った。熱処理後の粉末に対しては、磁気分離精製により非磁性成分を除去し、複合被覆軟磁性金属粉末を得た。
(Example 10)
An iron oxide powder having an average particle diameter of 1 μm, a silicon carbide powder having an average particle diameter of 0.01 μm, a carbon powder having an average particle diameter of 0.02 μm, and a borosilicate glass powder having an average particle diameter of 5 μm are prepared. The molar ratio C / Fe 2 O 3 = 3.0, the molar ratio SiC / Fe 2 O 3 = 0.04, and the borosilicate glass powder has a mass ratio of 12.4 to the mass 100 of the iron oxide powder. Weighed so that The amount of boron in the borosilicate glass at this time was 1.5 in terms of mass ratio with respect to 100 mass of the iron oxide powder. These raw materials were mixed by a wet ball mill and dried to obtain a mixed powder. The obtained mixed powder was put into an alumina crucible, and was heat-treated in an electric furnace at 1300 ° C. for 2 hours in a nitrogen atmosphere. The non-magnetic component was removed from the heat-treated powder by magnetic separation and purification to obtain a composite coated soft magnetic metal powder.

また、この粉末の最表面の組成は表4に示す通りであり、硼素の割合は原子比で29.4%であった。ここで硼素は100%が窒化硼素として存在していた。
次に、得られた複合被覆軟磁性金属粉末にPVB/エタノール溶液を添加して造粒し、油圧プレスで1470MPaの圧力で圧縮成形することにより、トロイダルリング状の圧粉磁心を製造した。印加磁界13kA/mのときの磁束密度は0.677T、励磁磁束密度0.1T、周波数20kHzにおける損失は640kW/m、比抵抗は1.0×10μΩ・mであった。
その後、耐熱性を確認するため、電気炉にて窒素雰囲気中800℃、2時間保持の加熱処理を行った。加熱後の、印加磁界13kA/mのときの磁束密度は0.694T、励磁磁束密度0.1T、周波数20kHzにおける損失は424kW/m、比抵抗は2.6×10μΩ・mであった。以上より、複合被覆軟磁性金属粉末の最表面において硼素が100%窒化硼素として存在している場合は、耐熱性が良好であることが分かった。よって、高温での歪取熱処理を行った場合に損失を低減することができる。
The composition of the outermost surface of this powder was as shown in Table 4, and the proportion of boron was 29.4% by atomic ratio. Here, 100% of boron was present as boron nitride.
Next, a PVB / ethanol solution was added to the obtained composite coated soft magnetic metal powder, granulated, and compression molded at a pressure of 1470 MPa with a hydraulic press to produce a toroidal ring-shaped powder magnetic core. When the applied magnetic field was 13 kA / m, the magnetic flux density was 0.677 T, the excitation magnetic flux density was 0.1 T, the loss at a frequency of 20 kHz was 640 kW / m 3 , and the specific resistance was 1.0 × 10 5 μΩ · m.
Thereafter, in order to confirm heat resistance, heat treatment was performed in an electric furnace at 800 ° C. for 2 hours in a nitrogen atmosphere. After heating, the magnetic flux density at an applied magnetic field of 13 kA / m was 0.694 T, the excitation magnetic flux density was 0.1 T, the loss at a frequency of 20 kHz was 424 kW / m 3 , and the specific resistance was 2.6 × 10 4 μΩ · m. It was. From the above, it was found that the heat resistance was good when boron was present as 100% boron nitride on the outermost surface of the composite coated soft magnetic metal powder. Therefore, loss can be reduced when strain relief heat treatment is performed at a high temperature.

(実施例11)
平均粒径1μmの酸化鉄粉末、平均粒径0.01μmの炭化珪素粉末、平均粒径0.02μmの炭素粉末、平均粒径5μmの硼珪酸ガラス粉末を用意し、以下実施例1と同様に、モル比率でC/Fe=3.3、モル比率でSiC/Fe=0.04、硼珪酸ガラス粉末は酸化鉄粉末の質量100に対して質量比率で3.8となるようにそれぞれ秤量し、加えて全硼素量が酸化鉄粉末の質量100に対して質量比率で0.47となるように酸化硼素粉末を秤量し添加した。この実施例では、先ず炭素粉末と硼珪酸ガラス粉末及び酸化硼素粉末を予備混合し、その後酸化鉄粉末と炭化珪素粉末との混合を行い、乾燥させて混合粉を得た。得られた混合粉をアルミナ製るつぼに入れ、電気炉にて窒素雰囲気中1200℃、2時間保持の熱処理を行った。熱処理後の粉末に対しては、磁気分離精製により非磁性成分を除去し、複合被覆軟磁性金属粉末を得た。
(Example 11)
An iron oxide powder having an average particle diameter of 1 μm, a silicon carbide powder having an average particle diameter of 0.01 μm, a carbon powder having an average particle diameter of 0.02 μm, and a borosilicate glass powder having an average particle diameter of 5 μm are prepared. The molar ratio of C / Fe 2 O 3 = 3.3, the molar ratio of SiC / Fe 2 O 3 = 0.04, and the borosilicate glass powder has a mass ratio of 3.8 to the mass 100 of the iron oxide powder. In addition, the boron oxide powder was weighed and added so that the total boron content was 0.47 by mass ratio with respect to the mass 100 of the iron oxide powder. In this example, first, carbon powder, borosilicate glass powder and boron oxide powder were premixed, and then iron oxide powder and silicon carbide powder were mixed and dried to obtain a mixed powder. The obtained mixed powder was put into an alumina crucible and subjected to heat treatment in an electric furnace at 1200 ° C. for 2 hours in a nitrogen atmosphere. The non-magnetic component was removed from the heat-treated powder by magnetic separation and purification to obtain a composite coated soft magnetic metal powder.

この粉末の最表面の組成は表4に示す通りであり、硼素の割合は原子比で25.3%であった。また、その硼素は100%が窒化硼素として存在していた。
次に、得られた複合被覆軟磁性金属粉末にPVB/エタノール溶液を添加して造粒し、油圧プレスで1470MPaの圧力で圧縮成形することにより、トロイダルリング状の圧粉磁心を製造した。印加磁界13kA/mのときの磁束密度は0.663T、励磁磁束密度0.1T、周波数20kHzにおける損失は613kW/m、比抵抗は8.8×10μΩ・mであった。その後、耐熱性を確認するため、電気炉にて窒素雰囲気中800℃、保持2時間の加熱処理を行った。加熱後の、印加磁界13kA/mのときの磁束密度は0.532T、励磁磁束密度0.1T、周波数20kHzにおける損失は602kW/m、比抵抗は5.5×10μΩ・mであった。このように、上記実施例と同様に粉末の最表面において硼素が100%窒化硼素として存在している場合は、耐熱性が良好であることが確認できた。
The composition of the outermost surface of this powder was as shown in Table 4, and the proportion of boron was 25.3% by atomic ratio. Further, 100% of the boron was present as boron nitride.
Next, a PVB / ethanol solution was added to the obtained composite coated soft magnetic metal powder, granulated, and compression molded at a pressure of 1470 MPa with a hydraulic press to produce a toroidal ring-shaped powder magnetic core. When the applied magnetic field was 13 kA / m, the magnetic flux density was 0.663 T, the excitation magnetic flux density was 0.1 T, the loss at a frequency of 20 kHz was 613 kW / m 3 , and the specific resistance was 8.8 × 10 3 μΩ · m. Thereafter, in order to confirm the heat resistance, heat treatment was performed in a nitrogen atmosphere at 800 ° C. for 2 hours in an electric furnace. After heating, the magnetic flux density at an applied magnetic field of 13 kA / m was 0.532 T, the excitation magnetic flux density was 0.1 T, the loss at a frequency of 20 kHz was 602 kW / m 3 , and the specific resistance was 5.5 × 10 2 μΩ · m. It was. Thus, it was confirmed that the heat resistance was good when boron was present as 100% boron nitride on the outermost surface of the powder as in the above example.

(実施例12)
平均粒径1μmの酸化鉄粉末、平均粒径0.01μmの炭化珪素粉末、平均粒径0.02μmの炭素粉末、平均粒径5μmの硼珪酸ガラス粉末を用意し、以下実施例1と同様に、モル比率でC/Fe=3.3、モル比率でSiC/Fe=0.04、硼珪酸ガラス粉末は酸化鉄粉末の質量100に対して質量比率で5.0となるようにそれぞれ秤量し、加えて全硼素量が酸化鉄粉末の質量100に対して質量比率で0.62となるように酸化硼素粉末を秤量した。これらの原料を湿式ボールミルにより混合し、乾燥させて混合粉を得た。得られた混合粉をアルミナ製るつぼに入れ、電気炉にて窒素雰囲気中1200℃、2時間保持の熱処理を行った。熱処理後の粉末に対しては、磁気分離精製により非磁性成分を除去し、複合被覆軟磁性金属粉末を得た。
(Example 12)
An iron oxide powder having an average particle diameter of 1 μm, a silicon carbide powder having an average particle diameter of 0.01 μm, a carbon powder having an average particle diameter of 0.02 μm, and a borosilicate glass powder having an average particle diameter of 5 μm are prepared. The molar ratio C / Fe 2 O 3 = 3.3, the molar ratio SiC / Fe 2 O 3 = 0.04, and the borosilicate glass powder has a mass ratio of 5.0 with respect to the mass 100 of the iron oxide powder. In addition, the boron oxide powder was weighed so that the total boron amount was 0.62 in terms of mass ratio with respect to 100 mass of the iron oxide powder. These raw materials were mixed by a wet ball mill and dried to obtain a mixed powder. The obtained mixed powder was put into an alumina crucible and subjected to heat treatment in an electric furnace at 1200 ° C. for 2 hours in a nitrogen atmosphere. The non-magnetic component was removed from the heat-treated powder by magnetic separation and purification to obtain a composite coated soft magnetic metal powder.

この粉末の最表面の組成は表4に示す通りであり、硼素の割合は原子比で25.2%であった。また、その硼素は97.2%が窒化硼素、2.8%が酸化硼素として存在していた。
次に、得られた複合被覆軟磁性金属粉末にPVB/エタノール溶液を添加して造粒し、油圧プレスで1470MPaの圧力で圧縮成形することにより、トロイダルリング状の圧粉磁心を製造した。印加磁界13kA/mのときの磁束密度は0.640T、励磁磁束密度0.1T、周波数20kHzにおける損失は434kW/m、比抵抗は9.4×10μΩ・mであった。
その後、耐熱性を確認するため、電気炉にて窒素雰囲気中800℃、2時間保持の加熱処理を行った。加熱後の、印加磁界13kA/mのときの磁束密度は0.640T、励磁磁束密度0.1T、周波数20kHzにおける損失は4029kW/m、比抵抗は装置の測定限界である1.0×10μΩ・m以下であった。この例では耐熱性があるとは言い難く、それは粉末の最表面における窒化硼素の占める割合が影響していると考える。
The composition of the outermost surface of this powder is as shown in Table 4, and the proportion of boron was 25.2% by atomic ratio. Further, 97.2% of the boron was present as boron nitride and 2.8% as boron oxide.
Next, a PVB / ethanol solution was added to the obtained composite coated soft magnetic metal powder, granulated, and compression molded at a pressure of 1470 MPa with a hydraulic press to produce a toroidal ring-shaped powder magnetic core. When the applied magnetic field was 13 kA / m, the magnetic flux density was 0.640 T, the excitation magnetic flux density was 0.1 T, the loss at a frequency of 20 kHz was 434 kW / m 3 , and the specific resistance was 9.4 × 10 3 μΩ · m.
Thereafter, in order to confirm heat resistance, heat treatment was performed in an electric furnace at 800 ° C. for 2 hours in a nitrogen atmosphere. After heating, the magnetic flux density at an applied magnetic field of 13 kA / m is 0.640 T, the excitation magnetic flux density is 0.1 T, the loss at a frequency of 20 kHz is 4029 kW / m 3 , and the specific resistance is 1.0 × 10 which is the measurement limit of the apparatus. 1 μΩ · m or less. In this example, it is difficult to say that there is heat resistance, which is considered to be influenced by the proportion of boron nitride in the outermost surface of the powder.

(実施例13)
平均粒径1μmの酸化鉄粉末、平均粒径0.01μmの炭化珪素粉末、平均粒径0.02μmの炭素粉末、平均粒径5μmの硼珪酸ガラス粉末を用意し、以下実施例1と同様に、モル比率でC/Fe=3.3、モル比率でSiC/Fe=0.04、硼珪酸ガラス粉末は酸化鉄粉末の質量100に対して質量比率で1.3となるようにそれぞれ秤量し、加えて全硼素量が酸化鉄粉末の質量100に対して質量比率で0.1となるように酸化硼素粉末を秤量した。これらの原料を湿式ボールミルにより混合し、乾燥させて混合粉を得た。得られた混合粉をアルミナ製るつぼに入れ、電気炉にて窒素雰囲気中1200℃、2時間保持の熱処理を行った。熱処理後の粉末に対しては、磁気分離精製により非磁性成分を除去し、複合被覆軟磁性金属粉末を得た。
(Example 13)
An iron oxide powder having an average particle diameter of 1 μm, a silicon carbide powder having an average particle diameter of 0.01 μm, a carbon powder having an average particle diameter of 0.02 μm, and a borosilicate glass powder having an average particle diameter of 5 μm are prepared. The molar ratio C / Fe 2 O 3 = 3.3, the molar ratio SiC / Fe 2 O 3 = 0.04, and the borosilicate glass powder has a mass ratio of 1.3 with respect to the mass 100 of the iron oxide powder. In addition, the boron oxide powder was weighed so that the total boron amount was 0.1 in terms of the mass ratio with respect to the mass 100 of the iron oxide powder. These raw materials were mixed by a wet ball mill and dried to obtain a mixed powder. The obtained mixed powder was put into an alumina crucible and subjected to heat treatment in an electric furnace at 1200 ° C. for 2 hours in a nitrogen atmosphere. The non-magnetic component was removed from the heat-treated powder by magnetic separation and purification to obtain a composite coated soft magnetic metal powder.

この粉末の最表面の組成は表4に示す通りであり、硼素の割合は原子比で24.9%であった。また、その硼素は98.1%が窒化硼素、1.9%が酸化硼素として存在していた。
次に、得られた複合被覆軟磁性金属粉末にPVB/エタノール溶液を添加して造粒し、油圧プレスで1470MPaの圧力で圧縮成形することにより、トロイダルリング状の圧粉磁心を製造した。印加磁界13kA/mのときの磁束密度は0.728T、励磁磁束密度0.1T、周波数20kHzにおける損失は428kW/m、比抵抗は1.0×10μΩ・mであった。その後、耐熱性を確認するため、電気炉にて窒素雰囲気中800℃、2時間保持の加熱処理を行った。加熱後の、印加磁界13kA/mのときの磁束密度は0.726T、励磁磁束密度0.1T、周波数20kHzにおける損失は3602kW/m、比抵抗は装置の測定限界である1.0×10μΩ・m以下であった。この例は粉末の最表面における窒化硼素の占める割合が98.1%であったが耐熱性があるとは言い難い。このようなことから98.5原子%以上が窒化硼素として存在している場合に耐熱性が向上すると考えられる。
The composition of the outermost surface of this powder is as shown in Table 4, and the proportion of boron was 24.9% by atomic ratio. Further, 98.1% of the boron was present as boron nitride and 1.9% as boron oxide.
Next, a PVB / ethanol solution was added to the obtained composite coated soft magnetic metal powder, granulated, and compression molded at a pressure of 1470 MPa with a hydraulic press to produce a toroidal ring-shaped powder magnetic core. When the applied magnetic field was 13 kA / m, the magnetic flux density was 0.728 T, the excitation magnetic flux density was 0.1 T, the loss at a frequency of 20 kHz was 428 kW / m 3 , and the specific resistance was 1.0 × 10 3 μΩ · m. Thereafter, in order to confirm heat resistance, heat treatment was performed in an electric furnace at 800 ° C. for 2 hours in a nitrogen atmosphere. After heating, the magnetic flux density at an applied magnetic field of 13 kA / m is 0.726 T, the excitation magnetic flux density is 0.1 T, the loss at a frequency of 20 kHz is 3602 kW / m 3 , and the specific resistance is 1.0 × 10 which is the measurement limit of the apparatus. 1 μΩ · m or less. In this example, the proportion of boron nitride in the outermost surface of the powder was 98.1%, but it is difficult to say that it has heat resistance. For this reason, it is considered that the heat resistance is improved when 98.5 atomic% or more exists as boron nitride.

(比較例6)
本例では硼珪酸ガラス粉末を混合せずに、平均粒径1μmの酸化鉄粉末、平均粒径0.01μmの炭化珪素粉末、平均粒径0.02μmの炭素粉末を用意し、以下実施例1と同様に、モル比率でC/Fe=3.6、モル比率でSiC/Fe=0.04となるよう秤量した。これらの原料を湿式ボールミルにより混合し、乾燥させて混合粉を得た。得られた混合粉をアルミナ製るつぼに入れ、電気炉にて窒素雰囲気中1200℃、2時間保持の熱処理を行った。熱処理後の粉末に対しては、磁気分離精製により非磁性成分を除去し、複合被覆軟磁性金属粉末を得た。
(Comparative Example 6)
In this example, iron oxide powder having an average particle diameter of 1 μm, silicon carbide powder having an average particle diameter of 0.01 μm, and carbon powder having an average particle diameter of 0.02 μm were prepared without mixing borosilicate glass powder. Similarly, it was weighed so that C / Fe 2 O 3 = 3.6 in terms of molar ratio and SiC / Fe 2 O 3 = 0.04 in terms of molar ratio. These raw materials were mixed by a wet ball mill and dried to obtain a mixed powder. The obtained mixed powder was put into an alumina crucible and subjected to heat treatment in an electric furnace at 1200 ° C. for 2 hours in a nitrogen atmosphere. The non-magnetic component was removed from the heat-treated powder by magnetic separation and purification to obtain a composite coated soft magnetic metal powder.

この粉末の最表面の組成は表4に示す通りであり、硼素は検出されない。
次に、得られた複合被覆軟磁性金属粉末にPVB/エタノール溶液を添加して造粒し、油圧プレスで1470MPaの圧力で圧縮成形することにより、トロイダルリング状の圧粉磁心を製造した。印加磁界13kA/mのときの磁束密度は0.609T、励磁磁束密度0.1T、周波数20kHzにおける損失は714kW/m、比抵抗は6.6×10μΩ・mであった。その後、耐熱性を確認するため電気炉にて窒素雰囲気中800℃、2時間保持の歪取熱処理を行った。熱処理後、印加磁界13kA/mのときの磁束密度は0.582T、励磁磁束密度0.1T、周波数20kHzにおける損失は5910kW/m、比抵抗は装置の測定限界である1.0×10μΩ・m以下であった。
The composition of the outermost surface of this powder is as shown in Table 4, and boron is not detected.
Next, a PVB / ethanol solution was added to the obtained composite coated soft magnetic metal powder, granulated, and compression molded at a pressure of 1470 MPa with a hydraulic press to produce a toroidal ring-shaped powder magnetic core. When the applied magnetic field was 13 kA / m, the magnetic flux density was 0.609 T, the excitation magnetic flux density was 0.1 T, the loss at a frequency of 20 kHz was 714 kW / m 3 , and the specific resistance was 6.6 × 10 2 μΩ · m. Then, in order to confirm heat resistance, the distortion removal heat processing hold | maintained at 800 degreeC in nitrogen atmosphere for 2 hours was performed with the electric furnace. After the heat treatment, the magnetic flux density at an applied magnetic field of 13 kA / m is 0.582 T, the excitation magnetic flux density is 0.1 T, the loss at a frequency of 20 kHz is 5910 kW / m 3 , and the specific resistance is 1.0 × 10 1 which is the measurement limit of the apparatus. It was below μΩ · m.

Figure 2014192454
Figure 2014192454

Figure 2014192454
Figure 2014192454

Figure 2014192454
Figure 2014192454

酸化鉄粉末に対する硼珪酸ガラス粉末の添加量の好ましい範囲と硼珪酸ガラス中の酸化硼素の割合から、酸化鉄粉末の質量100に対する硼素量が0.004以上2.5以下となるように、硼珪酸ガラス粉末及び酸化硼素粉末を添加し、本発明の製造方法により作製した軟磁性金属粉末は、表4から最表面における硼素の割合が原子比で24%以上であり、それを用いた圧粉磁心は表3に示すようにいずれも比抵抗が高く、損失が700kW/m(励磁磁束密度0.1T、周波数20kHz)以下で良好である。また、耐熱性を確認した結果、軟磁性金属粉末最表面の硼素の98.5%以上が窒化硼素として存在している場合、高い耐熱性をもち、歪取熱処理後にも比抵抗の低下が小さく、励磁磁束密度0.1T、周波数20kHzにおける損失を低減することができた。

From the preferable range of the addition amount of the borosilicate glass powder to the iron oxide powder and the ratio of boron oxide in the borosilicate glass, the boron content with respect to 100 mass of the iron oxide powder is 0.004 or more and 2.5 or less. The soft magnetic metal powder prepared by adding the silicate glass powder and the boron oxide powder according to the production method of the present invention has a boron ratio of 24% or more in terms of atomic ratio from the outermost surface as shown in Table 4, and a compact using the same As shown in Table 3, the magnetic core has a high specific resistance and a loss of 700 kW / m 3 (excitation magnetic flux density of 0.1 T, frequency of 20 kHz) or less. In addition, as a result of confirming heat resistance, when 98.5% or more of boron on the outermost surface of the soft magnetic metal powder exists as boron nitride, it has high heat resistance, and the decrease in specific resistance is small even after strain relief heat treatment. The loss at an excitation magnetic flux density of 0.1 T and a frequency of 20 kHz could be reduced.

Claims (9)

酸化鉄粉末に対する炭素粉末の添加量をモル比率で2.3以上3.4以下、酸化鉄粉末の質量100に対する硼珪酸ガラス粉末の添加量を質量比率で0.05以上20以下となるように、それぞれ秤量し混合する混合工程と、
得られた混合粉を窒素を含む非酸化性雰囲気中、1000℃以上1600℃以下で熱処理する工程と、
を有することを特徴とする複合被覆軟磁性金属粉末の製造方法。
The amount of carbon powder added to iron oxide powder is 2.3 to 3.4 in terms of molar ratio, and the amount of borosilicate glass powder added to mass 100 of iron oxide powder is 0.05 to 20 in mass ratio. A mixing step of weighing and mixing each,
A step of heat-treating the obtained mixed powder at 1000 ° C. or higher and 1600 ° C. or lower in a non-oxidizing atmosphere containing nitrogen;
A method for producing a composite-coated soft magnetic metal powder characterized by comprising:
前記混合工程において、さらに前記酸化鉄粉末に対して炭化珪素粉末のモル比率が0.019以上0.35以下になるように混合することを特徴とする請求項1に記載の複合被覆軟磁性金属粉末の製造方法。 2. The composite coated soft magnetic metal according to claim 1, wherein in the mixing step, mixing is further performed so that a molar ratio of the silicon carbide powder to the iron oxide powder is 0.019 or more and 0.35 or less. Powder manufacturing method. 前記混合工程において、前記炭素粉末と前記硼珪酸ガラス粉末を予備混合してから前記酸化鉄粉末及び炭化珪素粉末を混合することを特徴とする請求項2に記載の複合被覆軟磁性金属粉末の製造方法。 3. The composite coated soft magnetic metal powder according to claim 2, wherein in the mixing step, the iron powder and silicon carbide powder are mixed after the carbon powder and the borosilicate glass powder are premixed. Method. 前記混合工程において、さらに酸化硼素粉末及び/又は硼酸粉末を、全硼素量が前記酸化鉄粉末の質量100に対して質量比率で0.004以上2.5以下となるよう添加することを特徴とする請求項1〜3の何れかに記載の複合被覆軟磁性金属粉末の製造方法。 In the mixing step, boron oxide powder and / or boric acid powder is further added so that the total boron amount is 0.004 or more and 2.5 or less by mass ratio with respect to 100 mass of the iron oxide powder. A method for producing a composite-coated soft magnetic metal powder according to any one of claims 1 to 3. 前記混合工程において、前記酸化硼素粉末及び/又は硼酸粉末と前記炭素粉末及び硼珪酸ガラス粉末とを予備混合し、その後前記酸化鉄粉末及び炭化珪素粉末を混合することを特徴とする請求項4に記載の複合被覆軟磁性金属粉末の製造方法。 The said mixing process WHEREIN: The said boron oxide powder and / or a boric acid powder, the said carbon powder, and a borosilicate glass powder are premixed, and the said iron oxide powder and a silicon carbide powder are mixed after that. A method for producing the composite coated soft magnetic metal powder as described. 請求項1〜5の何れかに記載の製造方法により得られた軟磁性金属粉末であって、平均粒径が1μm〜100μmの鉄系コア粒子の表面に窒化硼素および前記硼珪酸ガラス成分由来の金属元素の酸化物が形成されたことを特徴とする複合被覆軟磁性金属粉末。 A soft magnetic metal powder obtained by the production method according to any one of claims 1 to 5, wherein the surface of iron-based core particles having an average particle diameter of 1 µm to 100 µm is derived from boron nitride and the borosilicate glass component. A composite coated soft magnetic metal powder characterized in that an oxide of a metal element is formed. XPS法によって測定される最表面の組成が、前記鉄系コア粒子に含まれる元素、硼素、窒素、酸素、炭素、および、前記硼珪酸ガラス成分由来の金属元素の和を100原子%として、
前記硼素の割合が原子比で24原子%以上であることを特徴とする請求項6に記載の複合被覆軟磁性金属粉末。
The composition of the outermost surface measured by the XPS method is 100 atomic%, where the sum of the elements contained in the iron-based core particles, boron, nitrogen, oxygen, carbon, and the metal element derived from the borosilicate glass component is 100 atomic%.
The composite coated soft magnetic metal powder according to claim 6, wherein the boron ratio is 24 atomic% or more in atomic ratio.
前記硼素はその98.5原子%以上が窒化硼素として存在していることを特徴とする請求項7に記載の複合被覆軟磁性金属粉末。 The composite-coated soft magnetic metal powder according to claim 7, wherein 98.5 atomic% or more of boron is present as boron nitride. 請求項6〜8の何れか1項に記載の複合被覆軟磁性金属粉末を用いてなる圧粉磁心。

A dust core using the composite-coated soft magnetic metal powder according to any one of claims 6 to 8.

JP2013068564A 2013-03-28 2013-03-28 Manufacturing method of composite coated soft magnetic metal powder, composite coated soft magnetic metal powder, and powder magnetic core using the same Pending JP2014192454A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013068564A JP2014192454A (en) 2013-03-28 2013-03-28 Manufacturing method of composite coated soft magnetic metal powder, composite coated soft magnetic metal powder, and powder magnetic core using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013068564A JP2014192454A (en) 2013-03-28 2013-03-28 Manufacturing method of composite coated soft magnetic metal powder, composite coated soft magnetic metal powder, and powder magnetic core using the same

Publications (1)

Publication Number Publication Date
JP2014192454A true JP2014192454A (en) 2014-10-06

Family

ID=51838421

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013068564A Pending JP2014192454A (en) 2013-03-28 2013-03-28 Manufacturing method of composite coated soft magnetic metal powder, composite coated soft magnetic metal powder, and powder magnetic core using the same

Country Status (1)

Country Link
JP (1) JP2014192454A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015233120A (en) * 2014-05-14 2015-12-24 Tdk株式会社 Soft magnetic metal powder, and soft magnetic metal powder compact core arranged by use thereof
JP2015233118A (en) * 2014-05-14 2015-12-24 Tdk株式会社 Soft magnetic metal powder, and soft magnetic metal powder compact core arranged by use thereof
JP2015233119A (en) * 2014-05-14 2015-12-24 Tdk株式会社 Soft magnetic metal powder, and soft magnetic metal powder compact core arranged by use thereof
JP2016167478A (en) * 2015-03-09 2016-09-15 Tdk株式会社 Coil-sealed dust core
JP2016167479A (en) * 2015-03-09 2016-09-15 Tdk株式会社 Coil-sealed dust core
JP2016167477A (en) * 2015-03-09 2016-09-15 Tdk株式会社 Coil-sealed dust core
JP2016184641A (en) * 2015-03-26 2016-10-20 Tdk株式会社 Soft magnetic metal dust core, and reactor or inductor
KR20170064257A (en) * 2015-12-01 2017-06-09 재단법인 포항산업과학연구원 Composite metal particles, and method for manufacturing the same
WO2018092664A1 (en) 2016-11-16 2018-05-24 昭栄化学工業株式会社 Method for producing metal powder
CN110787295A (en) * 2019-11-20 2020-02-14 南京航空航天大学 Boron neutron capture therapeutic reagent and preparation method and application thereof
CN113451039A (en) * 2021-07-01 2021-09-28 中钢天源股份有限公司 Novel FeSi-based water atomized Fe-Si-Cr soft magnetic powder core and preparation method thereof
KR102438455B1 (en) * 2021-07-01 2022-09-01 (주)영빔 Method for manufacturing magnetic metal powder absorbing electromagnetic wave

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0532409A (en) * 1990-02-16 1993-02-09 Toshiba Ceramics Co Ltd Production of boron-dissolved silicon carbide powder
JP2002193662A (en) * 2000-12-27 2002-07-10 Kyocera Corp Dielectric ceramic and its manufacturing method
JP2004221453A (en) * 2003-01-17 2004-08-05 Hitachi Metals Ltd Method of manufacturing dust core and dust core
JP2004259807A (en) * 2003-02-25 2004-09-16 Hitachi Metals Ltd Dust core and magnetic powder therefor
JP2005089796A (en) * 2003-09-16 2005-04-07 Hitachi Metals Ltd Metal hyperfine particle, method of producing metal hyperfine particle, method of producing microbody, and microbody
JP2005232514A (en) * 2004-02-18 2005-09-02 Hitachi Metals Ltd Metal particulate, and method for producing metal particulate
JP2005281786A (en) * 2004-03-30 2005-10-13 Hitachi Metals Ltd Magnetic metal particle and production method therefor
JP2010156054A (en) * 2004-02-24 2010-07-15 Hitachi Metals Ltd Metallic microparticle, manufacturing method therefor, and magnetic bead
JP2010236021A (en) * 2009-03-31 2010-10-21 Honda Motor Co Ltd Soft magnetic powder, soft magnetic material and method for producing the material
WO2012132783A1 (en) * 2011-03-28 2012-10-04 日立金属株式会社 Composite soft magnetic powder, method for producing same, and powder magnetic core using same

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0532409A (en) * 1990-02-16 1993-02-09 Toshiba Ceramics Co Ltd Production of boron-dissolved silicon carbide powder
JP2002193662A (en) * 2000-12-27 2002-07-10 Kyocera Corp Dielectric ceramic and its manufacturing method
JP2004221453A (en) * 2003-01-17 2004-08-05 Hitachi Metals Ltd Method of manufacturing dust core and dust core
JP2004259807A (en) * 2003-02-25 2004-09-16 Hitachi Metals Ltd Dust core and magnetic powder therefor
JP2005089796A (en) * 2003-09-16 2005-04-07 Hitachi Metals Ltd Metal hyperfine particle, method of producing metal hyperfine particle, method of producing microbody, and microbody
JP2005232514A (en) * 2004-02-18 2005-09-02 Hitachi Metals Ltd Metal particulate, and method for producing metal particulate
JP2010156054A (en) * 2004-02-24 2010-07-15 Hitachi Metals Ltd Metallic microparticle, manufacturing method therefor, and magnetic bead
JP2005281786A (en) * 2004-03-30 2005-10-13 Hitachi Metals Ltd Magnetic metal particle and production method therefor
JP2010236021A (en) * 2009-03-31 2010-10-21 Honda Motor Co Ltd Soft magnetic powder, soft magnetic material and method for producing the material
WO2012132783A1 (en) * 2011-03-28 2012-10-04 日立金属株式会社 Composite soft magnetic powder, method for producing same, and powder magnetic core using same

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9779861B2 (en) 2014-05-14 2017-10-03 Tdk Corporation Soft magnetic metal powder and soft magnetic metal powder core using the same
JP2015233118A (en) * 2014-05-14 2015-12-24 Tdk株式会社 Soft magnetic metal powder, and soft magnetic metal powder compact core arranged by use thereof
JP2015233119A (en) * 2014-05-14 2015-12-24 Tdk株式会社 Soft magnetic metal powder, and soft magnetic metal powder compact core arranged by use thereof
US9881721B2 (en) 2014-05-14 2018-01-30 Tdk Corporation Soft magnetic metal powder and soft magnetic metal powder core using the same
US9793035B2 (en) 2014-05-14 2017-10-17 Tdk Corporation Soft magnetic metal powder and soft magnetic metal powder core using the same
JP2015233120A (en) * 2014-05-14 2015-12-24 Tdk株式会社 Soft magnetic metal powder, and soft magnetic metal powder compact core arranged by use thereof
JP2016167477A (en) * 2015-03-09 2016-09-15 Tdk株式会社 Coil-sealed dust core
JP2016167479A (en) * 2015-03-09 2016-09-15 Tdk株式会社 Coil-sealed dust core
JP2016167478A (en) * 2015-03-09 2016-09-15 Tdk株式会社 Coil-sealed dust core
JP2016184641A (en) * 2015-03-26 2016-10-20 Tdk株式会社 Soft magnetic metal dust core, and reactor or inductor
KR20170064257A (en) * 2015-12-01 2017-06-09 재단법인 포항산업과학연구원 Composite metal particles, and method for manufacturing the same
KR102378523B1 (en) 2015-12-01 2022-03-23 재단법인 포항산업과학연구원 Composite metal particles, and method for manufacturing the same
KR20190085940A (en) 2016-11-16 2019-07-19 소에이 가가쿠 고교 가부시키가이샤 METHOD FOR PRODUCING METAL POWDER
WO2018092665A1 (en) 2016-11-16 2018-05-24 昭栄化学工業株式会社 Method for producing metal powder
KR20190086469A (en) 2016-11-16 2019-07-22 소에이 가가쿠 고교 가부시키가이샤 METHOD FOR PRODUCING METAL POWDER
WO2018092664A1 (en) 2016-11-16 2018-05-24 昭栄化学工業株式会社 Method for producing metal powder
US11426791B2 (en) 2016-11-16 2022-08-30 Shoei Chemical Inc. Method for producing metal powder
US11458536B2 (en) 2016-11-16 2022-10-04 Shoei Chemical Inc. Method for producing metal powder
CN110787295A (en) * 2019-11-20 2020-02-14 南京航空航天大学 Boron neutron capture therapeutic reagent and preparation method and application thereof
CN113451039A (en) * 2021-07-01 2021-09-28 中钢天源股份有限公司 Novel FeSi-based water atomized Fe-Si-Cr soft magnetic powder core and preparation method thereof
KR102438455B1 (en) * 2021-07-01 2022-09-01 (주)영빔 Method for manufacturing magnetic metal powder absorbing electromagnetic wave
CN113451039B (en) * 2021-07-01 2023-03-14 中钢天源股份有限公司 FeSi-based water atomized Fe-Si-Cr soft magnetic powder core and preparation method thereof

Similar Documents

Publication Publication Date Title
JP2014192454A (en) Manufacturing method of composite coated soft magnetic metal powder, composite coated soft magnetic metal powder, and powder magnetic core using the same
JP5501970B2 (en) Powder magnetic core and manufacturing method thereof
JP5739348B2 (en) Reactor and manufacturing method thereof
US8797137B2 (en) Soft magnetic powder, granulated powder, dust core, electromagnetic component, and method for producing dust core
EP2806433A1 (en) Dust core, coil component, and method for producing dust core
JP6365670B2 (en) Magnetic core, magnetic core manufacturing method, and coil component
US8999075B2 (en) Composite magnetic material and process for production
JPWO2012132783A1 (en) COMPOSITE SOFT MAGNETIC POWDER, PROCESS FOR PRODUCING THE SAME, AND DUST CORE WITH THE SAME
JP3964213B2 (en) Manufacturing method of dust core and high frequency reactor
US20120092106A1 (en) Composite magnetic body and method for producing the same
JP2013098384A (en) Dust core
JP5439888B2 (en) Composite magnetic material and method for producing the same
JP2008172257A (en) Method for manufacturing insulating soft magnetic metal powder molding
JP6213809B2 (en) Powder magnetic core, coil component using the same, and method for manufacturing powder magnetic core
JP4847553B2 (en) Powder magnetic core and manufacturing method thereof
JP2013008762A (en) Composite magnetic material
JP6229166B2 (en) Composite magnetic material for inductor and manufacturing method thereof
JP2012186255A (en) Dust core and manufacturing method therefor
CN109716454B (en) Magnetic core and coil component
JP2006183121A (en) Iron based powder for powder magnetic core and powder magnetic core using the same
JP2008140929A (en) Powder magnetic core and its manufacturing method
JP2011211026A (en) Composite magnetic material
JP2010185126A (en) Composite soft magnetic material and method for producing the same
JP2006213531A (en) Manganese-cobalt-zinc-based ferrite
JP2013203632A (en) Ferrite sintered compact and core for pulse transformer including the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170106

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170623