JP2014190680A - Absorption heat pump - Google Patents

Absorption heat pump Download PDF

Info

Publication number
JP2014190680A
JP2014190680A JP2013069439A JP2013069439A JP2014190680A JP 2014190680 A JP2014190680 A JP 2014190680A JP 2013069439 A JP2013069439 A JP 2013069439A JP 2013069439 A JP2013069439 A JP 2013069439A JP 2014190680 A JP2014190680 A JP 2014190680A
Authority
JP
Japan
Prior art keywords
pressure
absorber
low
evaporator
refrigerant vapor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013069439A
Other languages
Japanese (ja)
Inventor
Atsushi Aoyama
淳 青山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Refrigeration Equipment and Systems Co Ltd
Original Assignee
Ebara Refrigeration Equipment and Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Refrigeration Equipment and Systems Co Ltd filed Critical Ebara Refrigeration Equipment and Systems Co Ltd
Priority to JP2013069439A priority Critical patent/JP2014190680A/en
Publication of JP2014190680A publication Critical patent/JP2014190680A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an absorption heat pump that generally levels loads of a plurality of absorbers.SOLUTION: An absorption heat pump 1 comprises: a first absorber 110 that allows a heating target medium W to remove absorption heat generated when a first absorbent fluid Sw2 absorbs first refrigerant steam Ve1; a second absorber 210 that allows the heating target medium W to remove absorption heat generated when a second absorbent fluid Sa absorbs second refrigerant steam Ve2; and a condenser that introduces at least either refrigerant steam Vg separated from a first diluted fluid Sw1 or refrigerant steam Vg desorbed from a second diluted fluid Sw2, and that condenses the introduced refrigerant steam Vg by allowing the heating target medium W to remove heat held in the introduced refrigerant steam Vg. The heating target medium W is distributed to the first absorber 110 and the second absorber 210, and the heating target medium W discharged from the first absorber 110 and the heating target medium W discharged from the second absorber 210 are supplied to the condenser 40.

Description

本発明は吸収ヒートポンプに関し、特に複数段の吸収器の負荷を概ね平準化する吸収ヒートポンプに関する。   The present invention relates to an absorption heat pump, and more particularly to an absorption heat pump that generally leveles the load of a plurality of stages of absorbers.

低温の熱源から熱を汲み上げて被加熱媒体を加熱する機器であるヒートポンプのうち、熱駆動のものとして、吸収ヒートポンプが知られている。吸収ヒートポンプには、熱源として投入した熱量より多くの熱量を得る増熱型のヒートポンプである第一種吸収ヒートポンプと、駆動熱源温度より高い温度の被加熱媒体を取り出す昇温型のヒートポンプである第二種吸収ヒートポンプとがある。第一種吸収ヒートポンプは、冷媒液を蒸発させる蒸発器、冷媒蒸気を溶液で吸収させる吸収器、溶液から冷媒を離脱させる再生器、冷媒蒸気を凝縮させる凝縮器を主要構成として備え、凝縮圧力が蒸発圧力よりも高くなるように構成されている。また、蒸発器及び吸収器を、圧力の高い高段側と、圧力の低い低段側との多段に構成した多段吸収ヒートポンプがある。   An absorption heat pump is known as a heat-driven heat pump that is a device that pumps heat from a low-temperature heat source and heats a medium to be heated. The absorption heat pump is a first type absorption heat pump that is a heat increase type heat pump that obtains a larger amount of heat than the amount of heat input as a heat source, and a temperature rising type heat pump that takes out a heated medium at a temperature higher than the driving heat source temperature. There are two types of absorption heat pumps. The first type absorption heat pump mainly comprises an evaporator for evaporating refrigerant liquid, an absorber for absorbing refrigerant vapor with a solution, a regenerator for removing the refrigerant from the solution, and a condenser for condensing the refrigerant vapor. It is comprised so that it may become higher than an evaporation pressure. In addition, there is a multistage absorption heat pump in which the evaporator and the absorber are configured in multiple stages of a high pressure side having a high pressure and a low pressure side having a low pressure.

図4に示すように、従来の多段吸収ヒートポンプ91では、被加熱媒体Wを、まず高段側の吸収器110に供給して加熱し、次いで低段側の吸収器210に供給して加熱し、その後凝縮器40に供給して加熱し、凝縮器40で加熱した被加熱媒体Wを外部へ供給していた。換言すれば、高段側の吸収器110及び低段側の吸収器210に対して被加熱媒体Wを直列に供給していた。なお、従来の多段吸収ヒートポンプ91では、高段側の吸収器110と高段側の蒸発器120とが水平方向に近接して配置され、これらの鉛直上方に低段側の吸収器210と低段側の蒸発器220とが水平方向に近接して配置され、これらの鉛直上方に凝縮器40と再生器30とが配置され、熱源となる温水hが高段側の蒸発器120及び低段側の蒸発器220に対して直列に供給されている。   As shown in FIG. 4, in the conventional multistage absorption heat pump 91, the heated medium W is first supplied to the high-stage absorber 110 and heated, and then supplied to the low-stage absorber 210 and heated. Then, it supplied to the condenser 40 and heated, and the to-be-heated medium W heated with the condenser 40 was supplied outside. In other words, the heated medium W is supplied in series to the high-stage absorber 110 and the low-stage absorber 210. In the conventional multi-stage absorption heat pump 91, the high-stage absorber 110 and the high-stage evaporator 120 are arranged close to each other in the horizontal direction, and the low-stage absorber 210 and the low-stage absorber 210 are disposed above these vertically. The stage-side evaporator 220 is disposed close to the horizontal direction, the condenser 40 and the regenerator 30 are disposed vertically above them, and the hot water h serving as a heat source is supplied to the high-stage evaporator 120 and the low-stage evaporator. It is supplied in series to the evaporator 220 on the side.

従来の多段吸収ヒートポンプは、低段側の吸収器に供給される被加熱媒体の入口温度が高段側の吸収器に供給される被加熱媒体の入口温度よりも高くなるため、高段側の吸収器に低段側の吸収器よりも大きな負荷がかかり、高段側の吸収器の負荷と低段側の吸収器の負荷との間に不均衡が生じていた。   In the conventional multi-stage absorption heat pump, the inlet temperature of the heated medium supplied to the lower stage absorber is higher than the inlet temperature of the heated medium supplied to the higher stage absorber. A larger load was applied to the absorber than the absorber on the lower stage side, and an imbalance occurred between the load on the higher stage side absorber and the load on the lower stage side absorber.

本発明は上述の課題に鑑み、複数段の吸収器の負荷を概ね平準化する吸収ヒートポンプを提供することを目的とする。   In view of the above-described problems, an object of the present invention is to provide an absorption heat pump that approximately equalizes the load of a plurality of stages of absorbers.

上記目的を達成するために、本発明の第1の態様に係る吸収ヒートポンプは、例えば図1に示すように、第1の吸収液Sw2に第1の冷媒蒸気Ve1を吸収させ、第1の吸収液Sw2が第1の冷媒蒸気Ve1を吸収する際に生じる吸収熱を被加熱媒体Wに奪わせる第1の吸収器110と;第2の吸収液Saに第2の冷媒蒸気Ve2を吸収させ、第2の吸収液Saが第2の冷媒蒸気Ve2を吸収する際に生じる吸収熱を被加熱媒体Wに奪わせる第2の吸収器210であって、第1の吸収器110よりも作動圧力が低い第2の吸収器210と;第1の吸収器110で第1の吸収液Sw2が第1の冷媒蒸気Ve1を吸収して生じた第1の希溶液Sw1から離脱された冷媒蒸気Vg、及び第2の吸収器210で第2の吸収液Sa2が第2の冷媒蒸気Ve2を吸収して生じた第2の希溶液Sw2から離脱された冷媒蒸気Vgの少なくとも一方を導入し、導入した冷媒蒸気Vgが保有する熱を被加熱媒体Wに奪わせて導入した冷媒蒸気Vgを凝縮させる凝縮器40とを備え;被加熱媒体Wが第1の吸収器110及び第2の吸収器210に分配され、第1の吸収器110から導出された被加熱媒体W及び第2の吸収器210から導出された被加熱媒体Wが凝縮器40に供給されるように構成されている。   In order to achieve the above object, the absorption heat pump according to the first aspect of the present invention causes the first absorption liquid Sw2 to absorb the first refrigerant vapor Ve1, for example, as shown in FIG. A first absorber 110 that causes the heated medium W to absorb absorption heat generated when the liquid Sw2 absorbs the first refrigerant vapor Ve1, and a second absorption liquid Sa that absorbs the second refrigerant vapor Ve2. A second absorber 210 that causes the heated medium W to absorb absorbed heat generated when the second absorbing liquid Sa absorbs the second refrigerant vapor Ve2, and has an operating pressure higher than that of the first absorber 110. A low second absorber 210; a refrigerant vapor Vg desorbed from the first dilute solution Sw1 generated by the first absorber 110 absorbing the first refrigerant vapor Ve1 in the first absorber 110, and In the second absorber 210, the second absorbing liquid Sa2 is converted into the second refrigerant vapor V. The refrigerant vapor Vg introduced by introducing at least one of the refrigerant vapor Vg released from the second dilute solution Sw2 generated by absorbing 2 and causing the heated medium W to take away the heat held by the introduced refrigerant vapor Vg. The heated medium W is distributed to the first absorber 110 and the second absorber 210, and is heated from the first absorber 110 and the second medium. The heated medium W led out from the absorber 210 is configured to be supplied to the condenser 40.

このように構成すると、第1の吸収器に導入される被加熱媒体と第2の吸収器に導入される被加熱媒体との入口温度が同じになるため、第1の吸収器の負荷と第2の吸収器の負荷とを概ね平準化することができる。   If comprised in this way, since the inlet_port | entrance temperature of the to-be-heated medium introduced into a 1st absorber and the to-be-heated medium introduced into a 2nd absorber becomes the same, the load of a 1st absorber and the 1st The load of the second absorber can be approximately leveled.

また、本発明の第2の態様に係る吸収ヒートポンプは、例えば図3に示すように、上記本発明の第1の態様に係る吸収ヒートポンプにおいて、凝縮器が、第1の希溶液Sw1から離脱された冷媒蒸気Vg1を導入し、導入した冷媒蒸気Vg1が保有する熱を被加熱媒体Wに奪わせて導入した冷媒蒸気Vg1を凝縮させる第1の凝縮器140と、第2の希溶液Sw2から離脱された冷媒蒸気Vg2を導入し、導入した冷媒蒸気Vg2が保有する熱を被加熱媒体Wに奪わせて導入した冷媒蒸気Vg2を凝縮させる第2の凝縮器240と、を含んで構成され;第1の吸収器110から導出された被加熱媒体Wが第1の凝縮器140に供給され;第2の吸収器210から導出された被加熱媒体Wが第2の凝縮器240に供給されるように構成されている。   Further, the absorption heat pump according to the second aspect of the present invention is, for example, as shown in FIG. 3, in the absorption heat pump according to the first aspect of the present invention, the condenser is detached from the first dilute solution Sw1. From the first condenser 140 for condensing the refrigerant vapor Vg1 introduced by causing the heated medium W to take in the heat held by the refrigerant vapor Vg1 and the second dilute solution Sw2. A second condenser 240 that introduces the introduced refrigerant vapor Vg2 and condenses the refrigerant vapor Vg2 introduced by causing the heated medium W to take away the heat held by the introduced refrigerant vapor Vg2; The heated medium W derived from the first absorber 110 is supplied to the first condenser 140; the heated medium W derived from the second absorber 210 is supplied to the second condenser 240. Configured to .

このように構成すると、第1の吸収器の圧力と第2の吸収器の圧力との差を適切に維持することができる。   If comprised in this way, the difference of the pressure of a 1st absorber and the pressure of a 2nd absorber can be maintained appropriately.

また、本発明の第3の態様に係る吸収ヒートポンプは、例えば図1に示すように、上記本発明の第1の態様又は第2の態様に係る吸収ヒートポンプ1において、被冷却媒体cの熱で冷媒液Vfを蒸発させて第1の冷媒蒸気Ve1を生成する第1の蒸発器120であって、冷媒液Vf及び第1の冷媒蒸気Ve1を収容する第1の蒸発器缶胴127と、第1の蒸発器缶胴127内の液滴の第1の吸収器110への飛散を防ぐ第1のエリミネータ125と、被冷却媒体cの流路を形成する第1の被冷却媒体流路形成部材121と、を有する第1の蒸発器120と;被冷却媒体cの熱で冷媒液Vfを蒸発させて第2の冷媒蒸気Ve2を生成する第2の蒸発器220であって、冷媒液Vf及び第2の冷媒蒸気Ve2を収容する第2の蒸発器缶胴227と、第2の蒸発器缶胴227内の液滴の第2の吸収器210への飛散を防ぐ第2のエリミネータ225と、被冷却媒体cの流路を形成する第2の被冷却媒体流路形成部材221と、を有する第2の蒸発器220とを備え;被冷却媒体cが、第1の蒸発器120に供給され、第1の蒸発器120から導出された被冷却媒体cが第2の蒸発器220に供給されるように構成され;第1の吸収器110が、被加熱媒体Wの流路を形成する第1の被加熱媒体流路形成部材111及び第1の希溶液Sw1を収容する第1の吸収器缶胴117を有し;第2の吸収器210が、被加熱媒体Wの流路を形成する第2の被加熱媒体流路形成部材211及び第2の希溶液Sw2を収容する第2の吸収器缶胴217を有し;第1の蒸発器缶胴127及び第2の蒸発器缶胴227が、第1の吸収器缶胴117及び第2の吸収器缶胴217よりも上方に配置されている。   Moreover, the absorption heat pump according to the third aspect of the present invention is the absorption heat pump 1 according to the first aspect or the second aspect of the present invention described above, for example, as shown in FIG. A first evaporator 120 for generating a first refrigerant vapor Ve1 by evaporating the refrigerant liquid Vf, a first evaporator can body 127 containing the refrigerant liquid Vf and the first refrigerant vapor Ve1, A first eliminator 125 for preventing droplets in one evaporator can body 127 from scattering to the first absorber 110, and a first cooled medium flow path forming member that forms a flow path of the cooled medium c. 121, a second evaporator 220 that generates the second refrigerant vapor Ve2 by evaporating the refrigerant liquid Vf with the heat of the medium c to be cooled, the refrigerant liquid Vf and A second evaporator can body 227 containing the second refrigerant vapor Ve2; The second eliminator 225 for preventing the droplets in the second evaporator can body 227 from scattering to the second absorber 210 and the second cooled medium flow path forming the flow path of the cooled medium c And a second evaporator 220 having a member 221; the medium c to be cooled is supplied to the first evaporator 120, and the medium c to be cooled derived from the first evaporator 120 is the second It is configured to be supplied to the evaporator 220; the first absorber 110 contains the first heated medium flow path forming member 111 that forms the flow path of the heated medium W and the first dilute solution Sw1. The second absorber 210 has a second heated medium flow path forming member 211 and a second dilute solution Sw2 that form a flow path of the heated medium W. A second absorber can body 217 for housing; a first evaporator can body 127 and a second evaporator can 227 is disposed above the first absorber can barrel 117 and the second absorber can body 217.

このように構成すると、第1の吸収器缶胴内の液滴及び第2の吸収器缶胴内の液滴が蒸発器に飛散するのを防ぐエリミネータを省略することができる。   If comprised in this way, the eliminator which prevents the droplet in a 1st absorber can body and the droplet in a 2nd absorber can body from scattering to an evaporator can be abbreviate | omitted.

本発明によれば、第1の吸収器に導入される被加熱媒体と第2の吸収器に導入される被加熱媒体との入口温度が同じになるため、第1の吸収器の負荷と第2の吸収器の負荷とを概ね平準化することができる。   According to the present invention, since the inlet temperatures of the heated medium introduced into the first absorber and the heated medium introduced into the second absorber are the same, the load of the first absorber and the first The load of the second absorber can be approximately leveled.

(A)は本発明の実施の形態に係る吸収ヒートポンプの概略構成図、(B)は高圧吸収器及び高圧蒸発器の部分詳細図である。(A) is a schematic block diagram of the absorption heat pump which concerns on embodiment of this invention, (B) is a partial detail drawing of a high pressure absorber and a high pressure evaporator. 本発明の実施の形態に係る吸収ヒートポンプのデューリング線図である。It is a Duhring diagram of the absorption heat pump concerning an embodiment of the invention. 本発明の実施の形態の変形例に係る吸収ヒートポンプの概略構成図である。It is a schematic block diagram of the absorption heat pump which concerns on the modification of embodiment of this invention. 従来の吸収ヒートポンプの概略構成図である。It is a schematic block diagram of the conventional absorption heat pump.

以下、図面を参照して本発明の実施の形態について説明する。なお、各図において互いに同一又は相当する部材には同一あるいは類似の符号を付し、重複した説明は省略する。   Embodiments of the present invention will be described below with reference to the drawings. In the drawings, the same or similar members are denoted by the same or similar reference numerals, and redundant description is omitted.

まず図1を参照して、本発明の実施の形態に係る吸収ヒートポンプ1を説明する。図1(A)は吸収ヒートポンプ1の概略構成図、図1(B)は高圧吸収器110及び高圧蒸発器120の部分詳細図である。吸収ヒートポンプ1は、増熱型の第一種吸収ヒートポンプである。また、吸収ヒートポンプ1は、吸収器及び蒸発器が、それぞれ高段側と低段側との2段を有する2段吸収ヒートポンプである。吸収ヒートポンプ1は、吸収ヒートポンプサイクルを行う主要構成機器として、第1の吸収器としての高圧吸収器110、第2の吸収器としての低圧吸収器210、第1の蒸発器としての高圧蒸発器120、第2の蒸発器としての低圧蒸発器220、再生器30、及び凝縮器40とを備えている。   First, an absorption heat pump 1 according to an embodiment of the present invention will be described with reference to FIG. FIG. 1A is a schematic configuration diagram of the absorption heat pump 1, and FIG. 1B is a partial detailed view of the high-pressure absorber 110 and the high-pressure evaporator 120. The absorption heat pump 1 is a heat increase type first-type absorption heat pump. The absorption heat pump 1 is a two-stage absorption heat pump in which the absorber and the evaporator each have two stages of a high stage side and a low stage side. The absorption heat pump 1 includes a high-pressure absorber 110 as a first absorber, a low-pressure absorber 210 as a second absorber, and a high-pressure evaporator 120 as a first evaporator as main components that perform an absorption heat pump cycle. And a low-pressure evaporator 220 as a second evaporator, a regenerator 30, and a condenser 40.

吸収ヒートポンプ1は、吸収液に対して冷媒が相変化をしながら循環することで熱移動を行わせ、被加熱媒体を昇温させる機器である。以下の説明において、吸収液に関し、ヒートポンプサイクル上における区別を容易にするために、性状やヒートポンプサイクル上の位置に応じて、「高圧希溶液Sw1」、「低圧希溶液Sw2」、「濃溶液Sa」等と呼称するが、性状等を不問にするときは総称して「溶液S」ということとする。また、冷媒に関し、ヒートポンプサイクル上における区別を容易にするために、性状やヒートポンプサイクル上の位置に応じて、「高圧冷媒蒸気Ve1」、「低圧冷媒蒸気Ve2」、「再生器冷媒蒸気Vg」、「冷媒液Vf」等と呼称するが、性状等を不問にするときは総称して「冷媒V」ということとする。本実施の形態では、溶液S(吸収剤と冷媒との混合物)としてLiBr水溶液が用いられており、冷媒Vとして水(HO)が用いられており、被加熱媒体Wとして水(HO)が用いられているが、被加熱媒体Wとして水(HO)以外の流体を使用することもできる。 The absorption heat pump 1 is a device that causes a heat transfer to occur by circulating a refrigerant while undergoing a phase change with respect to an absorption liquid, and raises the temperature of a medium to be heated. In the following description, in order to easily distinguish the absorption liquid on the heat pump cycle, the “high pressure dilute solution Sw1”, “low pressure dilute solution Sw2”, “concentrated solution Sa” are selected according to the properties and the position on the heat pump cycle. However, when the property or the like is unquestioned, it is generally referred to as “solution S”. Further, regarding the refrigerant, in order to facilitate the distinction on the heat pump cycle, “high pressure refrigerant vapor Ve1”, “low pressure refrigerant vapor Ve2”, “regenerator refrigerant vapor Vg”, depending on the properties and the position on the heat pump cycle, Although it is referred to as “refrigerant liquid Vf” or the like, it is generally referred to as “refrigerant V” when the property or the like is not questioned. In this embodiment, the solution S and LiBr solution is used as (a mixture of absorbent and refrigerant), and water (H 2 O) is used as the refrigerant V, water as the heated medium W (H 2 O) is used, but a fluid other than water (H 2 O) can be used as the heated medium W.

高圧吸収器110は、被加熱媒体Wの流路を形成する第1の被加熱媒体流路形成部材としての高圧加熱管111と、溶液Sを散布する高圧溶液散布ノズル112とを、第1の吸収器缶胴としての高圧吸収器缶胴117の内部に有している。高圧溶液散布ノズル112は、散布した溶液Sが高圧加熱管111に降りかかるように高圧加熱管111の上方に配設されている。高圧吸収器110は、高圧溶液散布ノズル112から溶液Sが散布され、溶液Sが高圧冷媒蒸気Ve1を吸収する際に吸収熱を発生させる。この吸収熱を、高圧加熱管111を流れる被加熱媒体Wが受熱して、被加熱媒体Wが加熱されるように構成されている。高圧吸収器缶胴117は、散布された溶液Sが高圧冷媒蒸気Ve1を吸収して濃度が低下した高圧希溶液Sw1(第1の希溶液に相当)が下部に貯留されるように構成されている。   The high pressure absorber 110 includes a high pressure heating pipe 111 as a first heated medium flow path forming member that forms a flow path of the heated medium W, and a high pressure solution spray nozzle 112 that sprays the solution S. It has in the inside of the high voltage | pressure absorber can body 117 as an absorber can body. The high-pressure solution spray nozzle 112 is disposed above the high-pressure heating tube 111 so that the sprayed solution S falls on the high-pressure heating tube 111. The high pressure absorber 110 generates heat of absorption when the solution S is sprayed from the high pressure solution spray nozzle 112 and the solution S absorbs the high pressure refrigerant vapor Ve1. The heated medium W that flows through the high-pressure heating tube 111 receives this absorbed heat, and the heated medium W is heated. The high-pressure absorber can body 117 is configured such that the sprayed solution S absorbs the high-pressure refrigerant vapor Ve1 and the high-pressure dilute solution Sw1 (corresponding to the first dilute solution) having a reduced concentration is stored in the lower part. Yes.

低圧吸収器210は、外見上の構成が、高圧吸収器110と同様になっている。低圧吸収器210は、高圧吸収器110における高圧加熱管111、高圧溶液散布ノズル112、高圧吸収器缶胴117に対応する構成として、第2の被加熱媒体流路形成部材としての低圧加熱管211、低圧溶液散布ノズル212、第2の吸収器缶胴としての低圧吸収器缶胴217をそれぞれ有している。低圧吸収器210は、低圧溶液散布ノズル212から散布された溶液Sが、低圧冷媒蒸気Ve2を吸収する際に吸収熱を発生させ、溶液Sが低圧冷媒蒸気Ve2を吸収して濃度が低下した低圧希溶液Sw2(第2の希溶液に相当)が低圧吸収器缶胴217の下部に貯留されるように構成されている。低圧吸収器210は、高圧吸収器110に対して、水平方向に近接して配設されている。   The low pressure absorber 210 has the same external configuration as the high pressure absorber 110. The low-pressure absorber 210 has a configuration corresponding to the high-pressure heating tube 111, the high-pressure solution spray nozzle 112, and the high-pressure absorber can body 117 in the high-pressure absorber 110, and the low-pressure heating tube 211 as a second heated medium flow path forming member. , A low-pressure solution spray nozzle 212, and a low-pressure absorber can body 217 as a second absorber can body. The low-pressure absorber 210 generates a heat of absorption when the solution S sprayed from the low-pressure solution spray nozzle 212 absorbs the low-pressure refrigerant vapor Ve2, and the solution S absorbs the low-pressure refrigerant vapor Ve2 to reduce the concentration. The dilute solution Sw <b> 2 (corresponding to the second dilute solution) is configured to be stored in the lower portion of the low-pressure absorber can body 217. The low pressure absorber 210 is disposed close to the high pressure absorber 110 in the horizontal direction.

高圧蒸発器120は、冷媒液Vfを加熱する被冷却媒体としての冷水cの流路を形成する第1の被冷却媒体流路形成部材としての高圧冷水管121と、冷媒液Vfを散布する高圧冷媒液散布ノズル122とを、第1の蒸発器缶胴としての高圧蒸発器缶胴127の内部に有している。高圧冷媒液散布ノズル122は、散布した冷媒液Vfが高圧冷水管121に降りかかるように、高圧冷水管121の上方に配設されている。高圧蒸発器120は、高圧冷媒液散布ノズル122から冷媒液Vfが散布され、散布された冷媒液Vfが高圧冷水管121内を流れる冷水cから熱を奪って蒸発して高圧冷媒蒸気Ve1が発生するように構成されている。高圧冷媒蒸気Ve1は、高圧蒸発器120で生成される冷媒の蒸気であり、第1の冷媒蒸気に相当する。高圧蒸発器120は、散布された冷媒液Vfのうち蒸発しなかった冷媒液Vfが下部に貯留されるように構成されている。   The high-pressure evaporator 120 has a high-pressure cold water pipe 121 as a first cooled medium flow path forming member that forms a flow path of cold water c as a cooled medium that heats the refrigerant liquid Vf, and a high pressure that sprays the refrigerant liquid Vf. The refrigerant | coolant liquid spraying nozzle 122 has in the inside of the high pressure evaporator can body 127 as a 1st evaporator can body. The high-pressure refrigerant liquid spray nozzle 122 is disposed above the high-pressure cold water pipe 121 so that the sprayed refrigerant liquid Vf falls on the high-pressure cold water pipe 121. In the high-pressure evaporator 120, the refrigerant liquid Vf is sprayed from the high-pressure refrigerant liquid spray nozzle 122, and the sprayed refrigerant liquid Vf takes heat from the cold water c flowing in the high-pressure cold water pipe 121 and evaporates to generate a high-pressure refrigerant vapor Ve1. Is configured to do. The high-pressure refrigerant vapor Ve1 is a refrigerant vapor generated by the high-pressure evaporator 120 and corresponds to the first refrigerant vapor. The high-pressure evaporator 120 is configured such that the refrigerant liquid Vf that has not evaporated out of the dispersed refrigerant liquid Vf is stored in the lower part.

低圧蒸発器220は、外見上の構成が、高圧蒸発器120と同様になっている。低圧蒸発器220は、高圧蒸発器120における高圧冷水管121、高圧冷媒液散布ノズル122、高圧蒸発器缶胴127に対応する構成として、第2の被冷却媒体流路形成部材としての低圧冷水管221、低圧冷媒液散布ノズル222、第2の蒸発器缶胴としての低圧蒸発器缶胴227をそれぞれ有している。低圧蒸発器220は、低圧冷媒液散布ノズル222から散布された冷媒液Vが、低圧冷水管221内を流れる冷水cから熱を奪って蒸発して低圧冷媒蒸気Ve2が発生し、散布された冷媒液Vfのうち蒸発しなかった冷媒液Vfが低圧蒸発器缶胴227の下部に貯留されるように構成されている。低圧冷媒蒸気Ve2は、低圧蒸発器220で生成される冷媒の蒸気であり、第2の冷媒蒸気に相当する。低圧蒸発器220は、高圧蒸発器120に対して、水平方向に近接して配設されている。   The low-pressure evaporator 220 has the same configuration as the high-pressure evaporator 120 in appearance. The low-pressure evaporator 220 has a configuration corresponding to the high-pressure chilled water pipe 121, the high-pressure refrigerant liquid spray nozzle 122, and the high-pressure evaporator can body 127 in the high-pressure evaporator 120, and the low-pressure chilled water pipe as the second cooled medium flow path forming member. 221, a low-pressure refrigerant liquid spraying nozzle 222, and a low-pressure evaporator can body 227 as a second evaporator can body. In the low-pressure evaporator 220, the refrigerant liquid V sprayed from the low-pressure refrigerant liquid spray nozzle 222 takes heat from the cold water c flowing in the low-pressure cold water pipe 221 and evaporates to generate low-pressure refrigerant vapor Ve2, and the sprayed refrigerant Of the liquid Vf, the refrigerant liquid Vf that has not evaporated is stored in the lower part of the low-pressure evaporator can body 227. The low-pressure refrigerant vapor Ve2 is a refrigerant vapor generated by the low-pressure evaporator 220 and corresponds to the second refrigerant vapor. The low-pressure evaporator 220 is disposed close to the high-pressure evaporator 120 in the horizontal direction.

高圧蒸発器120及び低圧蒸発器220は、高圧吸収器110及び低圧吸収器210の鉛直上方に配設されており、詳細には、高圧蒸発器120が高圧吸収器110の鉛直上方に配設され、低圧蒸発器220が低圧吸収器210の鉛直上方に配設されている。高圧蒸発器缶胴127の上部と高圧吸収器缶胴117の上部とは、高圧冷媒蒸気流路126を介して連通している。図1(A)では、理解の容易のために高圧吸収器缶胴117及び高圧蒸発器缶胴127を別体に示した都合上、高圧冷媒蒸気流路126が配管のように示されているが、実際は、図1(B)の部分詳細図に示すように、高圧吸収器缶胴117の内部の高圧溶液散布ノズル112の上方に高圧蒸発器缶胴127が設けられ、高圧吸収器缶胴117の内部に区画された高圧蒸発器缶胴127の上部が開口されることで、高圧冷媒蒸気流路126が形成されている。高圧蒸発器120は、高圧冷媒蒸気流路126に、高圧蒸発器缶胴127内の液滴が高圧吸収器缶胴117に飛散するのを抑制する第1のエリミネータとしての高圧エリミネータ125を有している。他方、低圧蒸発器缶胴227の上部と低圧吸収器缶胴217の上部とは、低圧冷媒蒸気流路226を介して連通している。なお、詳細図は省略するが、低圧吸収器210及び低圧蒸発器220も、高圧吸収器110及び高圧蒸発器120(図1(B)参照)と同様に、低圧吸収器缶胴217の内部の低圧溶液散布ノズル212の上方に低圧蒸発器缶胴227が設けられ、低圧吸収器缶胴217の内部に区画された低圧蒸発器缶胴227の上部が開口されて低圧冷媒蒸気流路226が形成され、低圧蒸発器220は、低圧冷媒蒸気流路226に、低圧蒸発器缶胴227内の液滴が低圧吸収器缶胴217に飛散するのを抑制する第2のエリミネータとしての低圧エリミネータ225を有している。なお、高圧蒸発器120及び低圧蒸発器220が、高圧吸収器110及び低圧吸収器210の鉛直上方に配設されていることで、高圧吸収器缶胴117内の液滴の高圧蒸発器缶胴127への飛散、及び低圧吸収器缶胴217内の液滴の低圧蒸発器缶胴227への飛散を回避することができる。したがって、高圧吸収器110及び低圧吸収器210には、それぞれ、エリミネータを設けなくて済む。   The high-pressure evaporator 120 and the low-pressure evaporator 220 are disposed vertically above the high-pressure absorber 110 and the low-pressure absorber 210. Specifically, the high-pressure evaporator 120 is disposed vertically above the high-pressure absorber 110. A low-pressure evaporator 220 is disposed vertically above the low-pressure absorber 210. The upper part of the high-pressure evaporator can body 127 and the upper part of the high-pressure absorber can body 117 communicate with each other via a high-pressure refrigerant vapor channel 126. In FIG. 1A, the high-pressure refrigerant can channel 117 and the high-pressure evaporator can body 127 are shown as separate bodies for the sake of easy understanding, and therefore the high-pressure refrigerant vapor channel 126 is shown as a pipe. However, in fact, as shown in the partial detail view of FIG. 1B, a high-pressure evaporator can body 127 is provided above the high-pressure solution spray nozzle 112 inside the high-pressure absorber can body 117, and the high-pressure absorber can body. The upper portion of the high-pressure evaporator can body 127 partitioned inside 117 is opened, so that a high-pressure refrigerant vapor channel 126 is formed. The high pressure evaporator 120 has a high pressure eliminator 125 as a first eliminator that suppresses the droplets in the high pressure evaporator can body 127 from scattering to the high pressure absorber can body 117 in the high pressure refrigerant vapor channel 126. ing. On the other hand, the upper part of the low-pressure evaporator can body 227 and the upper part of the low-pressure absorber can body 217 communicate with each other via a low-pressure refrigerant vapor channel 226. Although not shown in detail, the low-pressure absorber 210 and the low-pressure evaporator 220 are also arranged inside the low-pressure absorber can body 217 in the same manner as the high-pressure absorber 110 and the high-pressure evaporator 120 (see FIG. 1B). A low-pressure evaporator can body 227 is provided above the low-pressure solution spray nozzle 212, and an upper portion of the low-pressure evaporator can body 227 defined inside the low-pressure absorber can body 217 is opened to form a low-pressure refrigerant vapor channel 226. The low-pressure evaporator 220 has a low-pressure eliminator 225 as a second eliminator that suppresses droplets in the low-pressure evaporator can body 227 from being scattered in the low-pressure absorber can body 217 in the low-pressure refrigerant vapor channel 226. Have. The high-pressure evaporator 120 and the low-pressure evaporator 220 are disposed vertically above the high-pressure absorber 110 and the low-pressure absorber 210, so that the high-pressure evaporator can body of droplets in the high-pressure absorber can body 117 can be obtained. It is possible to avoid scattering to 127 and droplets in the low-pressure absorber can body 217 to the low-pressure evaporator can body 227. Therefore, the high pressure absorber 110 and the low pressure absorber 210 do not need to be provided with an eliminator.

再生器30は、低濃度の溶液Sを導入し、加熱することで、溶液S中の冷媒Vを離脱させ、高濃度の溶液S(以下「濃溶液Sa」という。)を生成する部位である。再生器30において、溶液Sから離脱した冷媒Vは蒸気の状態であり、この冷媒Vの蒸気を再生器冷媒蒸気Vgということとする。再生器30は、溶液Sを加熱する加熱部31と、導入した溶液Sを貯留する再生器缶胴37とを有している。加熱部31は、再生器缶胴37の内部に配設されている。加熱部31は、典型的には、バーナーの燃焼熱あるいは外部から導入した蒸気や温水等の熱で、溶液Sを加熱することができるように構成されている。再生器30として、貫流式再生器や煙管型再生器、液管型再生器等を用いることができる。   The regenerator 30 is a part that introduces and heats the low-concentration solution S to release the refrigerant V in the solution S and generates a high-concentration solution S (hereinafter referred to as “concentrated solution Sa”). . In the regenerator 30, the refrigerant V detached from the solution S is in a vapor state, and the vapor of the refrigerant V is referred to as a regenerator refrigerant vapor Vg. The regenerator 30 includes a heating unit 31 that heats the solution S and a regenerator can body 37 that stores the introduced solution S. The heating unit 31 is disposed inside the regenerator can body 37. The heating unit 31 is typically configured to be able to heat the solution S with combustion heat of a burner or heat such as steam or hot water introduced from the outside. As the regenerator 30, a once-through regenerator, a smoke pipe type regenerator, a liquid pipe type regenerator, or the like can be used.

凝縮器40は、被加熱媒体Wの流路を形成する部材である凝縮器加熱管41と、凝縮器缶胴47とを有している。凝縮器加熱管41は、凝縮器缶胴47の内部に配設されている。凝縮器缶胴47は、再生器缶胴37に隣接して配設されている。再生器缶胴37の上部と凝縮器缶胴47の上部とは、再生器冷媒蒸気流路35を介して連通している。凝縮器40は、再生器冷媒蒸気流路35を介して再生器30から再生器冷媒蒸気Vgを導入し、凝縮器加熱管41を流れる被加熱媒体Wに再生器冷媒蒸気Vgの熱を奪わせて、再生器冷媒蒸気Vgを凝縮させて冷媒液Vfにすると共に、被加熱媒体Wの温度を上昇させるように構成されている。凝縮器缶胴47及び再生器缶胴37は、高圧蒸発器缶胴127及び低圧吸収器缶胴217の鉛直上方に配設されている。   The condenser 40 includes a condenser heating tube 41 that is a member that forms a flow path of the medium to be heated W, and a condenser can body 47. The condenser heating tube 41 is disposed inside the condenser can body 47. The condenser can body 47 is disposed adjacent to the regenerator can body 37. The upper part of the regenerator can body 37 and the upper part of the condenser can body 47 communicate with each other via a regenerator refrigerant vapor channel 35. The condenser 40 introduces the regenerator refrigerant vapor Vg from the regenerator 30 via the regenerator refrigerant vapor channel 35, and causes the heated medium W flowing through the condenser heating pipe 41 to take the heat of the regenerator refrigerant vapor Vg. Thus, the regenerator refrigerant vapor Vg is condensed into the refrigerant liquid Vf, and the temperature of the heated medium W is increased. The condenser can body 47 and the regenerator can body 37 are disposed vertically above the high pressure evaporator can body 127 and the low pressure absorber can body 217.

高圧吸収器缶胴117の底部又は下部と、再生器缶胴37とは、高圧希溶液管51で接続されている。高圧希溶液管51には、高圧希溶液ポンプ51pが配設されている。吸収ヒートポンプ1は、高圧希溶液ポンプ51pにより、高圧吸収器缶胴117内の高圧希溶液Sw1を再生器缶胴37内に搬送することができるように構成されている。再生器缶胴37内では、導入された高圧希溶液Sw1が、入口から出口に移動するに連れて希溶液Sw中から冷媒Vが離脱して濃度が上昇するようになっている。   The bottom or lower portion of the high pressure absorber can body 117 and the regenerator can body 37 are connected by a high pressure dilute solution pipe 51. The high pressure dilute solution pipe 51 is provided with a high pressure dilute solution pump 51p. The absorption heat pump 1 is configured such that the high-pressure dilute solution Sw1 in the high-pressure absorber can body 117 can be conveyed into the regenerator can body 37 by the high-pressure dilute solution pump 51p. In the regenerator can body 37, as the introduced high-pressure dilute solution Sw1 moves from the inlet to the outlet, the refrigerant V is removed from the dilute solution Sw and the concentration is increased.

低圧吸収器缶胴217の底部又は下部と、高圧溶液散布ノズル112とは、低圧希溶液管52で接続されている。低圧希溶液管52には、低圧希溶液ポンプ52pが配設されている。吸収ヒートポンプ1は、低圧希溶液ポンプ52pにより、低圧吸収器缶胴217内の低圧希溶液Sw2を高圧溶液散布ノズル112に搬送することができるように構成されている。この構成により、高圧溶液散布ノズル112から低圧希溶液Sw2が散布されることとなるため、吸収ヒートポンプ1では低圧希溶液Sw2が第1の吸収液に相当する。   The bottom or lower portion of the low-pressure absorber can body 217 and the high-pressure solution spray nozzle 112 are connected by a low-pressure dilute solution pipe 52. The low pressure dilute solution pipe 52 is provided with a low pressure dilute solution pump 52p. The absorption heat pump 1 is configured so that the low-pressure dilute solution Sw2 in the low-pressure absorber can body 217 can be conveyed to the high-pressure solution spray nozzle 112 by the low-pressure dilute solution pump 52p. With this configuration, since the low-pressure dilute solution Sw2 is sprayed from the high-pressure solution spray nozzle 112, the low-pressure dilute solution Sw2 corresponds to the first absorbent in the absorption heat pump 1.

再生器缶胴37の濃溶液Saが導出される部分と、低圧溶液散布ノズル212とは、濃溶液管53で接続されている。吸収ヒートポンプ1は、高圧希溶液ポンプ51pによって高圧希溶液Sw1が再生器缶胴37に搬送され、再生器缶胴37内で冷媒Vが離脱して生成された濃溶液Saが、濃溶液管53を介して低圧溶液散布ノズル212に導入されるように構成されている。この構成により、低圧溶液散布ノズル212から濃溶液Saが散布されることとなるため、吸収ヒートポンプ1では濃溶液Saが第2の吸収液に相当する。なお、吸収ヒートポンプ1では、濃溶液Saが低圧冷媒蒸気Ve2を吸収して低圧希溶液Sw2が生じ、低圧希溶液Sw2が高圧冷媒蒸気Ve1を吸収して高圧希溶液Sw1が生じるため、高圧希溶液Sw1には低圧希溶液Sw2が含まれていると見ることができ、再生器30で高圧希溶液Sw1から離脱した冷媒蒸気は、低圧希溶液Sw2から離脱した冷媒蒸気が含まれていると見ることができる。高圧希溶液管51及び濃溶液管53には、高圧希溶液管51を流れる高圧希溶液Sw1と濃溶液管53を流れる濃溶液Saとの間で熱交換を行わせる溶液熱交換器81が挿入されて配置されている。   A portion of the regenerator can body 37 from which the concentrated solution Sa is led out and the low-pressure solution spray nozzle 212 are connected by a concentrated solution tube 53. In the absorption heat pump 1, the high-pressure dilute solution Sw <b> 1 is conveyed to the regenerator can body 37 by the high-pressure dilute solution pump 51 p, and the concentrated solution Sa generated by the release of the refrigerant V in the regenerator can body 37 is the concentrated solution tube 53. It is configured to be introduced into the low-pressure solution spray nozzle 212 via With this configuration, the concentrated solution Sa is sprayed from the low-pressure solution spray nozzle 212. Therefore, in the absorption heat pump 1, the concentrated solution Sa corresponds to the second absorbing liquid. In the absorption heat pump 1, the concentrated solution Sa absorbs the low-pressure refrigerant vapor Ve2 to generate the low-pressure dilute solution Sw2, and the low-pressure dilute solution Sw2 absorbs the high-pressure refrigerant vapor Ve1 to generate the high-pressure dilute solution Sw1. It can be seen that Sw1 contains the low-pressure dilute solution Sw2, and the refrigerant vapor separated from the high-pressure dilute solution Sw1 by the regenerator 30 is seen to contain the refrigerant vapor separated from the low-pressure dilute solution Sw2. Can do. A solution heat exchanger 81 for performing heat exchange between the high pressure dilute solution Sw1 flowing through the high pressure dilute solution tube 51 and the concentrated solution Sa flowing through the concentrated solution tube 53 is inserted into the high pressure dilute solution tube 51 and the concentrated solution tube 53. Has been placed.

凝縮器缶胴47の底部又は下部と高圧蒸発器缶胴127とは、凝縮冷媒液管54で接続されており、凝縮器缶胴47内の冷媒液Vfを位置ヘッド及び両者の内圧の差で高圧蒸発器缶胴127内に導くことができるように構成されている。高圧蒸発器缶胴127の下部と低圧蒸発器缶胴227の下部とは、連通冷媒液管55で接続されており、高圧蒸発器缶胴127内の冷媒液Vfを低圧蒸発器缶胴227内に導くことができるように構成されている。   The bottom or lower portion of the condenser can body 47 and the high pressure evaporator can body 127 are connected by a condensed refrigerant liquid pipe 54, and the refrigerant liquid Vf in the condenser can body 47 is moved by the difference between the position head and the internal pressure of both. The high pressure evaporator can body 127 is configured to be guided. The lower part of the high-pressure evaporator can body 127 and the lower part of the low-pressure evaporator can body 227 are connected by a communication refrigerant liquid pipe 55, and the refrigerant liquid Vf in the high-pressure evaporator can body 127 is transferred into the low-pressure evaporator can body 227. It is configured to be able to lead to.

低圧蒸発器缶胴227の底部又は下部には、被蒸発冷媒液管56の一端が接続されている。被蒸発冷媒液管56には、冷媒液ポンプ56pが配設されている。被蒸発冷媒液管56の他端は、分岐しており、高圧冷媒液管58の一端及び低圧冷媒液管59の一端がそれぞれ接続されている。高圧冷媒液管58の他端は、高圧冷媒液散布ノズル122に接続されている。低圧冷媒液管59の他端は、低圧冷媒液散布ノズル222に接続されている。吸収ヒートポンプ1は、冷媒液ポンプ56pにより、低圧蒸発器缶胴227内の冷媒液Vfを高圧冷媒液散布ノズル122及び低圧冷媒液散布ノズル222に搬送することができるように構成されている。   One end of the evaporative refrigerant liquid pipe 56 is connected to the bottom or lower portion of the low-pressure evaporator can body 227. A refrigerant liquid pump 56 p is disposed in the evaporative refrigerant liquid pipe 56. The other end of the evaporated refrigerant liquid pipe 56 is branched, and one end of the high-pressure refrigerant liquid pipe 58 and one end of the low-pressure refrigerant liquid pipe 59 are connected to each other. The other end of the high-pressure refrigerant liquid pipe 58 is connected to the high-pressure refrigerant liquid spray nozzle 122. The other end of the low-pressure refrigerant liquid pipe 59 is connected to the low-pressure refrigerant liquid spray nozzle 222. The absorption heat pump 1 is configured so that the refrigerant liquid Vf in the low-pressure evaporator can body 227 can be conveyed to the high-pressure refrigerant liquid spray nozzle 122 and the low-pressure refrigerant liquid spray nozzle 222 by the refrigerant liquid pump 56p.

吸収ヒートポンプ1は、被加熱媒体Wを外部から導入する被加熱媒体導入管61と、被加熱媒体連絡管62と、被加熱媒体Wを外部に導出する被加熱媒体導出管63とを備えている。被加熱媒体導入管61は、高圧被加熱媒体導入管61Aと低圧被加熱媒体導入管61Bに分岐している。高圧被加熱媒体導入管61Aは、高圧加熱管111の一端に接続されている。低圧被加熱媒体導入管61Bは、低圧加熱管211の一端に接続されている。高圧加熱管111の他端には、高圧被加熱媒体連絡管62Aの一端が接続されている。低圧加熱管211の他端には、低圧被加熱媒体連絡管62Bの一端が接続されている。高圧被加熱媒体連絡管62A及び低圧被加熱媒体連絡管62Bは、他端同士で合流して被加熱媒体連絡管62となっている。被加熱媒体連絡管62は、凝縮器加熱管41の一端に接続されている。凝縮器加熱管41の他端には、被加熱媒体導出管63が接続されている。   The absorption heat pump 1 includes a heated medium introducing pipe 61 for introducing the heated medium W from the outside, a heated medium connecting pipe 62, and a heated medium outlet pipe 63 for leading the heated medium W to the outside. . The heated medium introduction pipe 61 is branched into a high pressure heated medium introduction pipe 61A and a low pressure heated medium introduction pipe 61B. The high-pressure heated medium introduction pipe 61 </ b> A is connected to one end of the high-pressure heating pipe 111. The low-pressure heated medium introduction pipe 61B is connected to one end of the low-pressure heating pipe 211. One end of a high-pressure heated medium communication tube 62A is connected to the other end of the high-pressure heating tube 111. One end of a low-pressure heated medium communication pipe 62B is connected to the other end of the low-pressure heating pipe 211. The high-pressure heated medium communication pipe 62A and the low-pressure heated medium communication pipe 62B merge at the other ends to form a heated medium communication pipe 62. The heated medium communication tube 62 is connected to one end of the condenser heating tube 41. A heated medium outlet pipe 63 is connected to the other end of the condenser heating pipe 41.

吸収ヒートポンプ1は、また、冷水cを外部から導入する冷水導入管64と、冷水連絡管65と、冷水cを外部に導出する冷水導出管66とを備えている。冷水導入管64は、高圧冷水管121の一端に接続されている。高圧冷水管121の他端と低圧冷水管221の一端とは、冷水連絡管65を介して接続されている。低圧冷水管221の他端には、冷水導出管66が接続されている。   The absorption heat pump 1 also includes a cold water introduction pipe 64 that introduces cold water c from the outside, a cold water communication pipe 65, and a cold water outlet pipe 66 that leads the cold water c to the outside. The cold water introduction pipe 64 is connected to one end of the high pressure cold water pipe 121. The other end of the high-pressure cold water pipe 121 and one end of the low-pressure cold water pipe 221 are connected via a cold water communication pipe 65. A cold water outlet pipe 66 is connected to the other end of the low pressure cold water pipe 221.

引き続き図1を参照して、吸収ヒートポンプ1の作用を説明する。吸収ヒートポンプ1の運転が開始されると、冷水c及び被加熱媒体Wの流動が開始されると共に、再生器30の加熱部31における加熱が開始される。冷水cは、冷水導入管64から吸収ヒートポンプ1に導入され、高圧冷水管121を流れた後に冷水連絡管65に至り、その後、低圧冷水管221を流れ、冷水導出管66を介して吸収ヒートポンプ1の外に導出される。   With continued reference to FIG. 1, the operation of the absorption heat pump 1 will be described. When the operation of the absorption heat pump 1 is started, the flow of the cold water c and the medium to be heated W is started, and the heating in the heating unit 31 of the regenerator 30 is started. The chilled water c is introduced into the absorption heat pump 1 from the chilled water introduction pipe 64, flows through the high-pressure chilled water pipe 121, reaches the chilled water communication pipe 65, then flows through the low-pressure chilled water pipe 221, and passes through the chilled water outlet pipe 66. Derived outside of.

被加熱媒体Wは、典型的には被加熱媒体ポンプ(不図示)によって流動され、被加熱媒体導入管61から吸収ヒートポンプ1に導入される。被加熱媒体Wは、被加熱媒体導入管61を流れていくと、高圧被加熱媒体導入管61Aと低圧被加熱媒体導入管61Bとに分流される。高圧被加熱媒体導入管61Aを流れる被加熱媒体Wは、高圧加熱管111を流れた後に高圧被加熱媒体連絡管62Aに至る。低圧被加熱媒体導入管61Bを流れる被加熱媒体Wは、低圧加熱管211を流れた後に低圧被加熱媒体連絡管62Bに至る。高圧被加熱媒体連絡管62Aを流れる被加熱媒体W及び低圧被加熱媒体連絡管62Bを流れる被加熱媒体Wは、合流して被加熱媒体連絡管62を流れる。被加熱媒体連絡管62を流れる被加熱媒体Wは、凝縮器加熱管41を流れた後、被加熱媒体導出管63を介して吸収ヒートポンプ1の外に導出され、被加熱媒体Wの利用場所に供給される。このように、被加熱媒体Wは、高圧吸収器110及び低圧吸収器210に並列に供給された後に凝縮器40に供給される。   The heated medium W is typically flowed by a heated medium pump (not shown) and introduced into the absorption heat pump 1 from the heated medium introduction pipe 61. As the heated medium W flows through the heated medium introduction pipe 61, it is divided into a high pressure heated medium introduction pipe 61A and a low pressure heated medium introduction pipe 61B. The heated medium W flowing through the high-pressure heated medium introduction pipe 61A reaches the high-pressure heated medium communication pipe 62A after flowing through the high-pressure heated pipe 111. The heated medium W flowing through the low-pressure heated medium introduction pipe 61B reaches the low-pressure heated medium communication pipe 62B after flowing through the low-pressure heated pipe 211. The heated medium W flowing through the high-pressure heated medium communication pipe 62A and the heated medium W flowing through the low-pressure heated medium communication pipe 62B merge and flow through the heated medium communication pipe 62. The heated medium W flowing through the heated medium communication pipe 62 flows through the condenser heating pipe 41, and then is led out of the absorption heat pump 1 through the heated medium outlet pipe 63, to the place where the heated medium W is used. Supplied. Thus, the heated medium W is supplied to the condenser 40 after being supplied in parallel to the high-pressure absorber 110 and the low-pressure absorber 210.

吸収ヒートポンプ1内の冷媒Vのサイクルは、以下のように行われる。再生器冷媒蒸気流路35を介して再生器30から凝縮器40に導入された再生器冷媒蒸気Vgは、凝縮器加熱管41を流れる被加熱媒体Wに冷却されて凝縮し、冷媒液Vfとなって凝縮器缶胴47の下部に貯留される。再生器冷媒蒸気Vgを冷却した被加熱媒体Wは、温度が上昇して被加熱媒体導出管63から導出される。凝縮器缶胴47内の冷媒液Vfは、凝縮冷媒液管54を介して高圧蒸発器缶胴127内に導入される。凝縮器缶胴47から高圧蒸発器缶胴127に導入された冷媒液Vfは、高圧冷媒液散布ノズル122から散布されて蒸発しなかった冷媒液Vfと混合し、連通冷媒液管55を介して低圧蒸発器缶胴227内に導入される。低圧蒸発器缶胴227内の冷媒液Vfは、冷媒液ポンプ56pにより、被蒸発冷媒液管56を流れ、高圧冷媒液管58及び低圧冷媒液管59に分流されて、高圧冷媒液散布ノズル122及び低圧冷媒液散布ノズル222に至る。   The cycle of the refrigerant V in the absorption heat pump 1 is performed as follows. The regenerator refrigerant vapor Vg introduced from the regenerator 30 into the condenser 40 via the regenerator refrigerant vapor channel 35 is cooled and condensed by the heated medium W flowing through the condenser heating pipe 41, and the refrigerant liquid Vf. And stored in the lower part of the condenser can body 47. The heated medium W that has cooled the regenerator refrigerant vapor Vg rises in temperature and is led out from the heated medium outlet pipe 63. The refrigerant liquid Vf in the condenser can body 47 is introduced into the high-pressure evaporator can body 127 via the condensed refrigerant liquid pipe 54. The refrigerant liquid Vf introduced into the high-pressure evaporator can body 127 from the condenser can body 47 is mixed with the refrigerant liquid Vf sprayed from the high-pressure refrigerant liquid spray nozzle 122 and not evaporated, and is connected via the communication refrigerant liquid pipe 55. It is introduced into the low-pressure evaporator can body 227. The refrigerant liquid Vf in the low-pressure evaporator can body 227 flows through the refrigerant liquid pipe 56 to be evaporated by the refrigerant liquid pump 56p, and is divided into the high-pressure refrigerant liquid pipe 58 and the low-pressure refrigerant liquid pipe 59, and the high-pressure refrigerant liquid spray nozzle 122. And the low-pressure refrigerant liquid spray nozzle 222.

高圧冷媒液散布ノズル122に至った冷媒液Vfは、高圧冷水管121に向けて散布され、高圧冷水管121を流れる冷水cの熱を得て一部が蒸発して高圧冷媒蒸気Ve1となり、高圧冷媒蒸気流路126を介して高圧吸収器缶胴117に導入される。高圧冷媒液散布ノズル122から散布されて蒸発しなかった冷媒液Vfは、高圧蒸発器缶胴127の下部に貯留される。他方、低圧冷媒液散布ノズル222に至った冷媒液Vfは、低圧冷水管221に向けて散布され、低圧冷水管221を流れる冷水cの熱を得て一部が蒸発して低圧冷媒蒸気Ve2となり、低圧冷媒蒸気流路226を介して低圧吸収器缶胴217に導入される。低圧冷水管221に導入される冷水cは、高圧冷水管121を流れる際に冷媒液Vf熱を与えて温度が低下しているため、高圧冷水管121に導入される冷水cよりも温度が低くなっている。このため、低圧蒸発器220は、高圧蒸発器120よりも、作動時の温度及び圧力が低くなっている。なお、低圧冷媒液散布ノズル222から散布されて蒸発しなかった冷媒液Vfは、低圧蒸発器缶胴227の下部に貯留される。   The refrigerant liquid Vf that has reached the high-pressure refrigerant liquid spray nozzle 122 is sprayed toward the high-pressure cold water pipe 121, obtains the heat of the cold water c flowing through the high-pressure cold water pipe 121, and partially evaporates into the high-pressure refrigerant vapor Ve1. The refrigerant is introduced into the high-pressure absorber can body 117 via the refrigerant vapor channel 126. The refrigerant liquid Vf sprayed from the high-pressure refrigerant liquid spray nozzle 122 and not evaporated is stored in the lower part of the high-pressure evaporator can body 127. On the other hand, the refrigerant liquid Vf that reaches the low-pressure refrigerant liquid spraying nozzle 222 is sprayed toward the low-pressure cold water pipe 221, obtains the heat of the cold water c flowing through the low-pressure cold water pipe 221, and partially evaporates to become the low-pressure refrigerant vapor Ve <b> 2. Then, it is introduced into the low-pressure absorber can body 217 via the low-pressure refrigerant vapor channel 226. The chilled water c introduced into the low-pressure chilled water pipe 221 is lower in temperature than the chilled water c introduced into the high-pressure chilled water pipe 121 because the temperature of the chilled water c is reduced by giving the heat of the refrigerant Vf when flowing through the high-pressure chilled water pipe 121. It has become. For this reason, the low-pressure evaporator 220 has a lower temperature and pressure during operation than the high-pressure evaporator 120. The refrigerant liquid Vf sprayed from the low-pressure refrigerant liquid spray nozzle 222 and not evaporated is stored in the lower part of the low-pressure evaporator can body 227.

次に吸収ヒートポンプ1内の溶液Sのサイクルを説明する。高圧吸収器缶胴117内の高圧希溶液Sw1は、高圧希溶液ポンプ51pにより、高圧希溶液管51を流れ、溶液熱交換器81で温度が上昇した後に、再生器缶胴37に導入される。再生器缶胴37に導入された高圧希溶液Sw1は、加熱部31によって加熱され、冷媒Vが離脱して濃溶液Saとなる。他方、高圧希溶液Sw1から離脱した冷媒Vは、再生器冷媒蒸気Vgとして、再生器冷媒蒸気流路35を介して凝縮器缶胴47内に送られる。   Next, the cycle of the solution S in the absorption heat pump 1 will be described. The high-pressure dilute solution Sw1 in the high-pressure absorber can body 117 flows through the high-pressure dilute solution pipe 51 by the high-pressure dilute solution pump 51p and is introduced into the regenerator can body 37 after the temperature rises in the solution heat exchanger 81. . The high-pressure dilute solution Sw1 introduced into the regenerator can body 37 is heated by the heating unit 31, and the refrigerant V is released to become a concentrated solution Sa. On the other hand, the refrigerant V separated from the high-pressure dilute solution Sw <b> 1 is sent as regenerator refrigerant vapor Vg into the condenser can body 47 via the regenerator refrigerant vapor channel 35.

再生器缶胴37内で生成された濃溶液Saは、濃溶液管53を流れ、溶液熱交換器81において高圧希溶液Sw1と熱交換して温度が低下したうえで低圧溶液散布ノズル212に至る。低圧溶液散布ノズル212に至った濃溶液Saは、低圧加熱管211に向けて散布され、低圧冷媒蒸気流路226から導入された低圧冷媒蒸気Ve2を吸収し濃度が低下して低圧希溶液Sw2となる。低圧吸収器缶胴217内において、濃溶液Saが低圧冷媒蒸気Ve2を吸収する際には吸収熱が発生する。この吸収熱が、低圧加熱管211を流れる被加熱媒体Wに伝達され、被加熱媒体Wが加熱される。低圧吸収器缶胴217内で生じた低圧希溶液Sw2は、低圧吸収器缶胴217内に貯留される。   The concentrated solution Sa generated in the regenerator can body 37 flows through the concentrated solution tube 53, exchanges heat with the high-pressure dilute solution Sw <b> 1 in the solution heat exchanger 81, and reaches the low-pressure solution spray nozzle 212 after the temperature decreases. . The concentrated solution Sa reaching the low-pressure solution spray nozzle 212 is sprayed toward the low-pressure heating pipe 211, absorbs the low-pressure refrigerant vapor Ve2 introduced from the low-pressure refrigerant vapor channel 226, and decreases in concentration to form the low-pressure dilute solution Sw2. Become. In the low-pressure absorber can body 217, absorption heat is generated when the concentrated solution Sa absorbs the low-pressure refrigerant vapor Ve2. This absorbed heat is transmitted to the heated medium W flowing through the low-pressure heating pipe 211, and the heated medium W is heated. The low-pressure dilute solution Sw2 generated in the low-pressure absorber can body 217 is stored in the low-pressure absorber can body 217.

低圧吸収器缶胴217内の低圧希溶液Sw2は、低圧希溶液ポンプ52pにより、低圧希溶液管52を流れ、高圧溶液散布ノズル112に至る。高圧溶液散布ノズル112に至った低圧希溶液Sw2は、高圧加熱管111に向けて散布され、高圧冷媒蒸気流路126から導入された高圧冷媒蒸気Ve1を吸収し濃度が低下して高圧希溶液Sw1となる。高圧吸収器缶胴117内において、低圧希溶液Sw2が高圧冷媒蒸気Ve1を吸収する際には吸収熱が発生する。この吸収熱が、高圧加熱管111を流れる被加熱媒体Wに伝達され、被加熱媒体Wが加熱される。高圧吸収器缶胴117内で生じた高圧希溶液Sw1は、高圧吸収器缶胴117内に貯留される。   The low-pressure dilute solution Sw2 in the low-pressure absorber can body 217 flows through the low-pressure dilute solution pipe 52 by the low-pressure dilute solution pump 52p and reaches the high-pressure solution spray nozzle 112. The low-pressure dilute solution Sw2 that has reached the high-pressure solution spray nozzle 112 is sprayed toward the high-pressure heating pipe 111, absorbs the high-pressure refrigerant vapor Ve1 introduced from the high-pressure refrigerant vapor channel 126, and decreases in concentration, resulting in a high-pressure dilute solution Sw1. It becomes. In the high-pressure absorber can body 117, absorption heat is generated when the low-pressure dilute solution Sw2 absorbs the high-pressure refrigerant vapor Ve1. This absorbed heat is transmitted to the heated medium W flowing through the high-pressure heating tube 111, and the heated medium W is heated. The high-pressure dilute solution Sw <b> 1 generated in the high-pressure absorber can body 117 is stored in the high-pressure absorber can body 117.

図2のデューリング線図をも参照して、吸収ヒートポンプ1の作用の説明を補足する。図2のデューリング線図は、縦軸に冷媒V(本実施の形態では水)の露点温度を、横軸に溶液S(本実施の形態ではLiBr水溶液)の温度をとっている。右上がりの線は溶液Sの等濃度線を表し、右に行くほど高濃度、左に行くほど低濃度となり、図中の原点を通る右上がりの線は溶液濃度0%(すなわち冷媒のみ)の線である。なお、縦軸が示す露点温度は飽和圧力と対応関係にあるため、冷媒蒸気Ve1、Ve2、Vgが飽和蒸気である本実施の形態のヒートポンプサイクルでは、縦軸は主要構成機器である高圧吸収器110、低圧吸収器210、高圧蒸発器120、低圧蒸発器220、再生器30、凝縮器40の内部圧力を表していると見ることもできる。   The explanation of the operation of the absorption heat pump 1 will be supplemented also with reference to the Dueling diagram of FIG. In the Dueling diagram of FIG. 2, the vertical axis represents the dew point temperature of the refrigerant V (water in the present embodiment), and the horizontal axis represents the temperature of the solution S (LiBr aqueous solution in the present embodiment). The line rising to the right represents the isoconcentration line of the solution S. The concentration increases toward the right and decreases toward the left. The line rising to the right passing through the origin in the figure has a solution concentration of 0% (that is, only the refrigerant). Is a line. Since the dew point temperature indicated by the vertical axis has a corresponding relationship with the saturation pressure, in the heat pump cycle of the present embodiment in which the refrigerant vapors Ve1, Ve2, and Vg are saturated vapors, the vertical axis indicates a high-pressure absorber that is a main component device. 110, the low pressure absorber 210, the high pressure evaporator 120, the low pressure evaporator 220, the regenerator 30, and the condenser 40.

図2中、吸収ヒートポンプ1の定格運転における吸収液Sの状態は溶液線SDで表され、定格運転における冷媒Vの状態は冷媒線VDで表されている。図2中、溶液線SDにおいて、露点温度P1は低圧吸収器210の状態を、露点温度P2は高圧吸収器110の状態を、露点温度P3は再生器30の状態をそれぞれ表している。また、冷媒線VDにおいて、露点温度P1は低圧蒸発器220の状態を、露点温度P2は高圧蒸発器120の状態を、露点温度P3は凝縮器40の状態をそれぞれ表している。なお、冷媒Vの蒸気を移動させるために互いに連通している高圧吸収器110と高圧蒸発器120、低圧吸収器210と低圧蒸発器220、再生器30と凝縮器40の内部圧力は、厳密に言えば冷媒Vの蒸気の下流側となる方が冷媒Vの蒸気の流動による圧力損失分だけ低くなるが、ほぼ同じ圧力である。   In FIG. 2, the state of the absorbing liquid S in the rated operation of the absorption heat pump 1 is represented by a solution line SD, and the state of the refrigerant V in the rated operation is represented by a refrigerant line VD. In FIG. 2, in the solution line SD, the dew point temperature P1 represents the state of the low pressure absorber 210, the dew point temperature P2 represents the state of the high pressure absorber 110, and the dew point temperature P3 represents the state of the regenerator 30. In refrigerant line VD, dew point temperature P1 represents the state of low-pressure evaporator 220, dew point temperature P2 represents the state of high pressure evaporator 120, and dew point temperature P3 represents the state of condenser 40. Note that the internal pressures of the high-pressure absorber 110 and the high-pressure evaporator 120, the low-pressure absorber 210 and the low-pressure evaporator 220, and the regenerator 30 and the condenser 40 that are in communication with each other to move the vapor of the refrigerant V are strictly In other words, the pressure on the downstream side of the vapor of the refrigerant V becomes lower by the pressure loss due to the flow of the vapor of the refrigerant V, but the pressure is almost the same.

図2において、溶液Sのサイクルは、溶液線SD上を時計回りに循環する。露点温度P3の状態にある再生器30から導出された濃度Cr4の濃溶液Saは、低圧吸収器210に導入される際に、濃度Cr4のまま露点温度P1まで低下する。低圧吸収器210に導入された濃溶液Saは、低圧冷媒蒸気Ve2を吸収しつつ低圧加熱管211を流れる被加熱媒体Wによって溶液温度T1まで冷却されて、濃度Cr2の低圧希溶液Sw2となる。低圧吸収器210の低圧希溶液Sw2は、低圧希溶液ポンプ52pによって露点温度P2まで上昇し、濃度Cr2のまま高圧吸収器110に導入される。高圧吸収器110に導入された低圧希溶液Sw2は、高圧冷媒蒸気Ve1を吸収しつつ高圧加熱管111を流れる被加熱媒体Wによって冷却される。このとき、吸収ヒートポンプ1では、被加熱媒体Wが高圧吸収器110と低圧吸収器210とに並列に供給されるので、両者に供給される被加熱媒体Wの温度は同じになる。したがって、高圧冷媒蒸気Ve1を吸収した低圧希溶液Sw2は、露点温度P2において溶液温度T1まで冷却され、これによって濃度Cr1の高圧希溶液Sw1となる。高圧吸収器110の高圧希溶液Sw1は、高圧希溶液ポンプ51pによって露点温度P3まで上昇し、濃度Cr1のまま再生器30に導入される。再生器30に導入された高圧冷媒蒸気Ve1は、加熱部31によって加熱されることで冷媒Vが離脱して濃縮され、濃度Cr4の濃溶液Saとなる。吸収ヒートポンプ1は、上述のような溶液Sのサイクルが行われるので、高圧吸収器110と低圧吸収器210とで、負荷が概ね同じになる。   In FIG. 2, the cycle of the solution S circulates clockwise on the solution line SD. When the concentrated solution Sa having the concentration Cr4 derived from the regenerator 30 in the state of the dew point temperature P3 is introduced into the low-pressure absorber 210, the concentration Cr4 remains at the dew point temperature P1. The concentrated solution Sa introduced into the low-pressure absorber 210 is cooled to the solution temperature T1 by the heated medium W flowing through the low-pressure heating pipe 211 while absorbing the low-pressure refrigerant vapor Ve2, and becomes the low-pressure dilute solution Sw2 having the concentration Cr2. The low-pressure dilute solution Sw2 of the low-pressure absorber 210 is raised to the dew point temperature P2 by the low-pressure dilute solution pump 52p, and is introduced into the high-pressure absorber 110 with the concentration Cr2. The low-pressure dilute solution Sw2 introduced into the high-pressure absorber 110 is cooled by the heated medium W flowing through the high-pressure heating pipe 111 while absorbing the high-pressure refrigerant vapor Ve1. At this time, in the absorption heat pump 1, since the heated medium W is supplied in parallel to the high-pressure absorber 110 and the low-pressure absorber 210, the temperature of the heated medium W supplied to both is the same. Therefore, the low-pressure dilute solution Sw2 that has absorbed the high-pressure refrigerant vapor Ve1 is cooled to the solution temperature T1 at the dew point temperature P2, thereby becoming the high-pressure dilute solution Sw1 having the concentration Cr1. The high-pressure dilute solution Sw1 in the high-pressure absorber 110 is raised to the dew point temperature P3 by the high-pressure dilute solution pump 51p, and is introduced into the regenerator 30 with the concentration Cr1. The high-pressure refrigerant vapor Ve1 introduced into the regenerator 30 is heated by the heating unit 31 to be separated from the refrigerant V and concentrated to become a concentrated solution Sa having a concentration Cr4. Since the absorption heat pump 1 is cycled with the solution S as described above, the high-pressure absorber 110 and the low-pressure absorber 210 have substantially the same load.

本実施の形態に係る吸収ヒートポンプ1との比較として、従来の吸収ヒートポンプ91(図4参照)の溶液のサイクルについて、図2及び図4を参照しながら言及する。吸収ヒートポンプ91は、被加熱媒体Wが、高圧吸収器110、低圧吸収器210、凝縮器40の順で直列に供給されるものであり、被加熱媒体Wの温度はこれらを通過するごとに高くなる。したがって、吸収ヒートポンプ91においては、被加熱媒体Wの温度が、高圧吸収器110に供給されるときよりも、低圧吸収器210に供給されるときの方が高くなる。これを、図2のデューリング線図上で見てみると、低圧吸収器210では、溶液温度T1よりも高い溶液温度T2までしか溶液Sが冷却されないため、低圧吸収器210で生成される溶液Sは濃度Cr3となる。吸収ヒートポンプ91では、濃度Cr3の溶液Sが高圧吸収器110に導入され、濃度Cr1の溶液Sとなる(図2中、二点鎖線で示している)。図2を見ると、明らかに、高圧吸収器110の負荷が低圧吸収器210の負荷よりも大きくなっており、一般にその割合は7対3程度である。このように、従来の吸収ヒートポンプ91では、高圧吸収器110に低圧吸収器210よりも大きな負荷がかかり、高圧吸収器110の負荷と低圧吸収器210の負荷とで不均衡(アンバランス)が生じていた。   As a comparison with the absorption heat pump 1 according to the present embodiment, the solution cycle of the conventional absorption heat pump 91 (see FIG. 4) will be described with reference to FIGS. The absorption heat pump 91 is such that the medium to be heated W is supplied in series in the order of the high-pressure absorber 110, the low-pressure absorber 210, and the condenser 40, and the temperature of the medium to be heated W increases as it passes through them. Become. Therefore, in the absorption heat pump 91, the temperature of the heated medium W is higher when supplied to the low pressure absorber 210 than when supplied to the high pressure absorber 110. When this is seen on the Duhring diagram of FIG. 2, since the solution S is cooled only to the solution temperature T2 higher than the solution temperature T1 in the low-pressure absorber 210, the solution generated in the low-pressure absorber 210. S has a concentration of Cr3. In the absorption heat pump 91, the solution S with the concentration Cr3 is introduced into the high-pressure absorber 110 to become the solution S with the concentration Cr1 (indicated by a two-dot chain line in FIG. 2). Referring to FIG. 2, it is apparent that the load of the high pressure absorber 110 is larger than the load of the low pressure absorber 210, and the ratio is generally about 7 to 3. As described above, in the conventional absorption heat pump 91, the high-pressure absorber 110 is subjected to a larger load than the low-pressure absorber 210, and an imbalance occurs between the load of the high-pressure absorber 110 and the load of the low-pressure absorber 210. It was.

以上で説明したように、本実施の形態に係る吸収ヒートポンプ1によれば、被加熱媒体Wが高圧吸収器110と低圧吸収器210とに並列に供給されるので、高圧吸収器110の負荷と低圧吸収器210の負荷とを概ね平準化することができる。また、被加熱媒体Wが高圧吸収器110と低圧吸収器210とに並列に供給されるので、高圧被加熱媒体連絡管62A及び低圧被加熱媒体連絡管62B等にバルブ等の流量調節手段を設けることで、高圧吸収器110及び低圧吸収器210へ供給される被加熱媒体Wの分配比率を容易に変えることができる。また、高圧蒸発器缶胴127及び低圧蒸発器缶胴227が、高圧吸収器缶胴117及び低圧吸収器缶胴217よりも鉛直上方に配置されているので、高圧吸収器缶胴117内の液滴の高圧蒸発器缶胴127への飛散、及び低圧吸収器缶胴217内の液滴の低圧蒸発器缶胴227への飛散を回避することができ、高圧吸収器110及び低圧吸収器210には、それぞれ、エリミネータを設けなくて済む。   As described above, according to the absorption heat pump 1 according to the present embodiment, the medium to be heated W is supplied in parallel to the high-pressure absorber 110 and the low-pressure absorber 210. The load of the low-pressure absorber 210 can be generally leveled. Further, since the heated medium W is supplied in parallel to the high-pressure absorber 110 and the low-pressure absorber 210, a flow rate adjusting means such as a valve is provided in the high-pressure heated medium communication pipe 62A, the low-pressure heated medium communication pipe 62B, and the like. Thus, the distribution ratio of the heated medium W supplied to the high-pressure absorber 110 and the low-pressure absorber 210 can be easily changed. Further, since the high-pressure evaporator can body 127 and the low-pressure evaporator can body 227 are arranged vertically above the high-pressure absorber can body 117 and the low-pressure absorber can body 217, the liquid in the high-pressure absorber can body 117 It is possible to avoid the droplets from being scattered to the high-pressure evaporator can body 127 and the droplets in the low-pressure absorber can body 217 to the low-pressure evaporator can body 227. Each does not require an eliminator.

次に図3を参照して、本発明の実施の形態の変形例に係る吸収ヒートポンプ3を説明する。図3は、吸収ヒートポンプ3の概略構成図である。吸収ヒートポンプ3は、吸収ヒートポンプ1(図1参照)と比較して、以下の点が異なっている。まず、吸収ヒートポンプ3は、再生器が高圧再生器130と低圧再生器230とに分かれており、凝縮器が第1の凝縮器としての高圧凝縮器140と第2の凝縮器としての低圧凝縮器240とに分かれている。高圧再生器130及び低圧再生器230は、それぞれ、外見上の構成が再生器30(図1参照)と同様になっている。再生器30の加熱部31及び再生器缶胴37(図1参照)に対応する構成として、高圧再生器130は高圧加熱部131及び高圧再生器缶胴137を、低圧再生器230は低圧加熱部231及び低圧再生器缶胴237を、それぞれ有している。高圧凝縮器140及び低圧凝縮器240は、それぞれ、外見上の構成が凝縮器40(図1参照)と同様になっている。凝縮器40の凝縮器加熱管41及び凝縮器缶胴47(図1参照)に対応する構成として、高圧凝縮器140は高圧凝縮器加熱管141及び高圧凝縮器缶胴147を、低圧凝縮器240は低圧凝縮器加熱管241及び低圧凝縮器缶胴247を、それぞれ有している。   Next, with reference to FIG. 3, the absorption heat pump 3 which concerns on the modification of embodiment of this invention is demonstrated. FIG. 3 is a schematic configuration diagram of the absorption heat pump 3. The absorption heat pump 3 differs from the absorption heat pump 1 (see FIG. 1) in the following points. First, in the absorption heat pump 3, the regenerator is divided into a high pressure regenerator 130 and a low pressure regenerator 230, and the condenser is a high pressure condenser 140 as a first condenser and a low pressure condenser as a second condenser. 240. Each of the high pressure regenerator 130 and the low pressure regenerator 230 has the same appearance as the regenerator 30 (see FIG. 1). As a configuration corresponding to the heating unit 31 and the regenerator can body 37 (see FIG. 1) of the regenerator 30, the high pressure regenerator 130 includes the high pressure heating unit 131 and the high pressure regenerator can body 137, and the low pressure regenerator 230 includes the low pressure heating unit. 231 and a low-pressure regenerator can body 237, respectively. Each of the high-pressure condenser 140 and the low-pressure condenser 240 has the same configuration as the condenser 40 (see FIG. 1). As a configuration corresponding to the condenser heating tube 41 and the condenser can body 47 (see FIG. 1) of the condenser 40, the high pressure condenser 140 includes the high pressure condenser heating tube 141 and the high pressure condenser can body 147, and the low pressure condenser 240. Has a low pressure condenser heating tube 241 and a low pressure condenser can body 247, respectively.

高圧再生器缶胴137と高圧凝縮器缶胴147とは、水平方向に隣接して配置され、高圧蒸発器缶胴127の鉛直上方に配設されている。高圧再生器缶胴137の上部と高圧凝縮器缶胴147の上部とは、高圧再生器冷媒蒸気Vg1を高圧再生器130から高圧凝縮器140へと導く高圧再生器冷媒蒸気流路135を介して連通している。他方、低圧再生器缶胴237と低圧凝縮器缶胴247とは、水平方向に隣接して配置され、低圧蒸発器缶胴227の鉛直上方に配設されている。低圧再生器缶胴237の上部と低圧凝縮器缶胴247の上部とは、低圧再生器冷媒蒸気Vg2を低圧再生器230から低圧凝縮器240へと導く低圧再生器冷媒蒸気流路235を介して連通している。なお、吸収ヒートポンプ3の高圧蒸発器120、低圧蒸発器220、高圧吸収器110、低圧吸収器210は、吸収ヒートポンプ1(図1参照)が備えているものと同じ構成である。   The high-pressure regenerator can body 137 and the high-pressure condenser can body 147 are disposed adjacent to each other in the horizontal direction, and are disposed vertically above the high-pressure evaporator can body 127. The upper part of the high-pressure regenerator can body 137 and the upper part of the high-pressure condenser can body 147 are connected via a high-pressure regenerator refrigerant vapor channel 135 that leads the high-pressure regenerator refrigerant vapor Vg1 from the high-pressure regenerator 130 to the high-pressure condenser 140. Communicate. On the other hand, the low pressure regenerator can body 237 and the low pressure condenser can body 247 are disposed adjacent to each other in the horizontal direction, and are disposed vertically above the low pressure evaporator can body 227. The upper portion of the low pressure regenerator can body 237 and the upper portion of the low pressure condenser can body 247 are connected via a low pressure regenerator refrigerant vapor channel 235 that guides the low pressure regenerator refrigerant vapor Vg2 from the low pressure regenerator 230 to the low pressure condenser 240. Communicate. The high-pressure evaporator 120, the low-pressure evaporator 220, the high-pressure absorber 110, and the low-pressure absorber 210 of the absorption heat pump 3 have the same configuration as that of the absorption heat pump 1 (see FIG. 1).

吸収ヒートポンプ3では、高圧吸収器缶胴117に接続された高圧希溶液管51の他端が、高圧再生器缶胴137に接続されている。また、高圧溶液散布ノズル112には、低圧吸収器缶胴217の低圧希溶液Sw2ではなく、高圧再生器130で濃縮された高圧濃溶液Sa1を高圧吸収器110に導く高圧濃溶液管153が接続されている。したがって、高圧溶液散布ノズル112から散布されるのは高圧濃溶液Sa1となり、吸収ヒートポンプ3では高圧濃溶液Sa1が第1の吸収液に相当する。高圧希溶液管51には、吸収ヒートポンプ1における溶液熱交換器81(図1参照)に代えて、高圧溶液熱交換器181が配設されている。高圧溶液熱交換器181は、高圧濃溶液管153が接続されており、高圧希溶液Sw1と高圧濃溶液Sa1との間で熱交換を行わせるように構成されている。   In the absorption heat pump 3, the other end of the high-pressure dilute solution pipe 51 connected to the high-pressure absorber can body 117 is connected to the high-pressure regenerator can body 137. Further, not the low pressure dilute solution Sw2 in the low pressure absorber can body 217 but the high pressure concentrated solution tube 153 that leads the high pressure concentrated solution Sa1 concentrated in the high pressure regenerator 130 to the high pressure absorber 110 is connected to the high pressure solution spray nozzle 112. Has been. Therefore, the high-pressure concentrated solution Sa1 is sprayed from the high-pressure solution spray nozzle 112, and in the absorption heat pump 3, the high-pressure concentrated solution Sa1 corresponds to the first absorbent. The high-pressure dilute solution tube 51 is provided with a high-pressure solution heat exchanger 181 instead of the solution heat exchanger 81 (see FIG. 1) in the absorption heat pump 1. The high-pressure solution heat exchanger 181 is connected to the high-pressure concentrated solution tube 153, and is configured to exchange heat between the high-pressure diluted solution Sw1 and the high-pressure concentrated solution Sa1.

また、吸収ヒートポンプ3では、低圧吸収器缶胴217に接続された低圧希溶液管52の他端が、高圧溶液散布ノズル112ではなく、低圧再生器缶胴237の底部又は下部に接続されている。また、低圧溶液散布ノズル212には、低圧再生器230で濃縮された低圧濃溶液Sa2を低圧吸収器210に導く低圧濃溶液管253が接続されている。したがって、低圧溶液散布ノズル212から散布されるのは低圧濃溶液Sa2となり、吸収ヒートポンプ3では低圧濃溶液Sa2が第2の吸収液に相当する。低圧希溶液管52及び低圧濃溶液管253には、低圧希溶液Sw2と低圧濃溶液Sa2との間で熱交換を行わせる低圧溶液熱交換器281が配設されている。   In the absorption heat pump 3, the other end of the low-pressure dilute solution pipe 52 connected to the low-pressure absorber can body 217 is connected to the bottom or lower portion of the low-pressure regenerator can body 237 instead of the high-pressure solution spray nozzle 112. . The low pressure solution spray nozzle 212 is connected to a low pressure concentrated solution pipe 253 that guides the low pressure concentrated solution Sa2 concentrated by the low pressure regenerator 230 to the low pressure absorber 210. Therefore, the low-pressure concentrated solution Sa2 is sprayed from the low-pressure solution spraying nozzle 212. In the absorption heat pump 3, the low-pressure concentrated solution Sa2 corresponds to the second absorbent. The low-pressure dilute solution tube 52 and the low-pressure dilute solution tube 253 are provided with a low-pressure solution heat exchanger 281 that performs heat exchange between the low-pressure dilute solution Sw2 and the low-pressure concentrated solution Sa2.

また、吸収ヒートポンプ3では、高圧蒸発器缶胴127に接続されている凝縮冷媒液管54の他端が、高圧凝縮器缶胴147の底部又は下部に接続されている。低圧凝縮器缶胴247の底部又は下部と低圧蒸発器缶胴227とは、低圧凝縮冷媒液管254で接続されており、低圧凝縮器缶胴247内の冷媒液Vfを位置ヘッドで低圧蒸発器缶胴227内に導くことができるように構成されている。低圧蒸発器缶胴227に接続された被蒸発冷媒液管56の他端は、分岐せずに低圧冷媒液散布ノズル222に接続されている。したがって、低圧蒸発器缶胴227内の冷媒液Vfは、低圧冷媒液散布ノズル222にのみ供給されることとなる。高圧蒸発器缶胴127の底部又は下部と高圧冷媒液散布ノズル122とは、高圧蒸発器缶胴127内の冷媒液Vfを高圧冷媒液散布ノズル122に導く高圧被蒸発冷媒液管155で接続されている。高圧被蒸発冷媒液管155には、高圧冷媒液ポンプ155pが配設されている。したがって、高圧蒸発器缶胴127内の冷媒液Vfは、高圧冷媒液散布ノズル122にのみ供給されることとなる。   In the absorption heat pump 3, the other end of the condensed refrigerant liquid pipe 54 connected to the high-pressure evaporator can body 127 is connected to the bottom or lower portion of the high-pressure condenser can body 147. The bottom or lower portion of the low-pressure condenser can body 247 and the low-pressure evaporator can body 227 are connected by a low-pressure condensing refrigerant liquid pipe 254, and the refrigerant liquid Vf in the low-pressure condenser can body 247 is connected to the low-pressure evaporator by a position head. The can body 227 is configured to be guided. The other end of the evaporative refrigerant liquid pipe 56 connected to the low-pressure evaporator can body 227 is connected to the low-pressure refrigerant liquid spray nozzle 222 without branching. Accordingly, the refrigerant liquid Vf in the low-pressure evaporator can body 227 is supplied only to the low-pressure refrigerant liquid spray nozzle 222. The bottom or lower portion of the high-pressure evaporator can body 127 and the high-pressure refrigerant liquid spray nozzle 122 are connected by a high-pressure evaporated refrigerant liquid pipe 155 that guides the refrigerant liquid Vf in the high-pressure evaporator can body 127 to the high-pressure refrigerant liquid spray nozzle 122. ing. The high-pressure evaporative refrigerant liquid pipe 155 is provided with a high-pressure refrigerant liquid pump 155p. Therefore, the refrigerant liquid Vf in the high-pressure evaporator can body 127 is supplied only to the high-pressure refrigerant liquid spray nozzle 122.

また、吸収ヒートポンプ3では、高圧吸収器110の高圧加熱管111に接続された高圧被加熱媒体連絡管62Aと、低圧吸収器210の低圧加熱管211に接続された低圧被加熱媒体連絡管62Bとの他端同士が合流していない。高圧被加熱媒体連絡管62Aの他端は、高圧凝縮器140の高圧凝縮器加熱管141の一端に接続されている。高圧凝縮器加熱管141の他端には、高圧被加熱媒体導出管63Aの一端が接続されている。低圧被加熱媒体連絡管62Bの他端は、低圧凝縮器240の低圧凝縮器加熱管241の一端に接続されている。低圧凝縮器加熱管241の他端には、低圧被加熱媒体導出管63Bの一端が接続されている。高圧被加熱媒体導出管63A及び低圧被加熱媒体導出管63Bは、他端同士で合流して被加熱媒体導出管63に接続されている。これまでに述べたもの以外の吸収ヒートポンプ3の構成は、吸収ヒートポンプ1(図1参照)と同じである。   In the absorption heat pump 3, the high-pressure heated medium communication pipe 62 </ b> A connected to the high-pressure heating pipe 111 of the high-pressure absorber 110, and the low-pressure heated medium communication pipe 62 </ b> B connected to the low-pressure heating pipe 211 of the low-pressure absorber 210. The other ends of are not joined. The other end of the high-pressure heated medium communication tube 62A is connected to one end of the high-pressure condenser heating tube 141 of the high-pressure condenser 140. One end of a high-pressure heated medium outlet pipe 63A is connected to the other end of the high-pressure condenser heating pipe 141. The other end of the low-pressure heated medium communication pipe 62B is connected to one end of the low-pressure condenser heating pipe 241 of the low-pressure condenser 240. One end of a low-pressure heated medium outlet pipe 63B is connected to the other end of the low-pressure condenser heating pipe 241. The high-pressure heated medium outlet pipe 63A and the low-pressure heated medium outlet pipe 63B merge at the other ends and are connected to the heated medium outlet pipe 63. The configuration of the absorption heat pump 3 other than those described so far is the same as that of the absorption heat pump 1 (see FIG. 1).

上述のように構成された吸収ヒートポンプ3は、冷媒V及び溶液Sのサイクルが、高圧側と低圧側とでそれぞれ独立している。高圧側では、冷媒Vは、高圧再生器冷媒蒸気Vg1として高圧再生器130から高圧凝縮器140に流入し、高圧凝縮器140で凝縮して冷媒液Vfとなって高圧蒸発器120に導かれ、高圧蒸発器120で蒸発して高圧冷媒蒸気Ve1となって高圧吸収器110に導かれ、溶液Sに吸収される。溶液Sは、高圧吸収器110で高圧冷媒蒸気Ve1を吸収して濃度が低下し、高圧希溶液Sw1として高圧再生器130に導かれ、高圧再生器130で濃縮されて高圧濃溶液Sa1となって高圧吸収器110に導かれ、高圧冷媒蒸気Ve1を吸収する。   In the absorption heat pump 3 configured as described above, the refrigerant V and solution S cycles are independent on the high-pressure side and the low-pressure side, respectively. On the high pressure side, the refrigerant V flows from the high pressure regenerator 130 into the high pressure condenser 140 as the high pressure regenerator refrigerant vapor Vg1, condenses in the high pressure condenser 140 and becomes the refrigerant liquid Vf, and is led to the high pressure evaporator 120. It evaporates in the high-pressure evaporator 120 and becomes high-pressure refrigerant vapor Ve1, is guided to the high-pressure absorber 110, and is absorbed by the solution S. The solution S absorbs the high-pressure refrigerant vapor Ve1 by the high-pressure absorber 110 and decreases in concentration. The solution S is led to the high-pressure regenerator 130 as the high-pressure dilute solution Sw1, and is concentrated by the high-pressure regenerator 130 to become the high-pressure concentrated solution Sa1. It is led to the high-pressure absorber 110 and absorbs the high-pressure refrigerant vapor Ve1.

他方、低圧側では、冷媒Vは、低圧再生器冷媒蒸気Vg2として低圧再生器230から低圧凝縮器240に流入し、低圧凝縮器240で凝縮して冷媒液Vfとなって低圧蒸発器220に導かれ、低圧蒸発器220で蒸発して低圧冷媒蒸気Ve2となって低圧吸収器210に導かれ、溶液Sに吸収される。溶液Sは、低圧吸収器210で低圧冷媒蒸気Ve2を吸収して濃度が低下し、低圧希溶液Sw2として低圧再生器230に導かれ、低圧再生器230で濃縮されて低圧濃溶液Sa2となって低圧吸収器210に導かれ、低圧冷媒蒸気Ve2を吸収する。   On the other hand, on the low pressure side, the refrigerant V flows from the low pressure regenerator 230 into the low pressure condenser 240 as the low pressure regenerator refrigerant vapor Vg2, condenses in the low pressure condenser 240 and becomes the refrigerant liquid Vf and is led to the low pressure evaporator 220. Then, it evaporates in the low-pressure evaporator 220 to become a low-pressure refrigerant vapor Ve2 and is guided to the low-pressure absorber 210 and absorbed in the solution S. The solution S absorbs the low-pressure refrigerant vapor Ve2 in the low-pressure absorber 210 and decreases in concentration. The solution S is led to the low-pressure regenerator 230 as the low-pressure dilute solution Sw2, and is concentrated in the low-pressure regenerator 230 to become the low-pressure concentrated solution Sa2. It is led to the low-pressure absorber 210 and absorbs the low-pressure refrigerant vapor Ve2.

上述した吸収ヒートポンプ3によれば、吸収ヒートポンプ1(図1参照)と同様に、被加熱媒体Wが高圧吸収器110と低圧吸収器210とに並列に供給されるので、高圧吸収器110の負荷と低圧吸収器210の負荷とを概ね平準化することができる。また、被加熱媒体Wが高圧吸収器110と低圧吸収器210とに並列に供給されるので、高圧被加熱媒体導出管63A及び低圧被加熱媒体導出管63B等にバルブ等の流量調節手段を設けることで、高圧吸収器110及び低圧吸収器210へ供給される被加熱媒体Wの分配比率を容易に変えることができる。また、再生器130、230及び凝縮器140、240が、高圧側と低圧側とに分けて設けられているので、冷媒V及び溶液Sのサイクルを高圧側と低圧側とでそれぞれ独立させることができ、高圧吸収器110の内圧と低圧吸収器210の内圧との差を適切に維持することができる。また、吸収ヒートポンプ1(図1参照)と同様に、高圧蒸発器缶胴127及び低圧蒸発器缶胴227が、高圧吸収器缶胴117及び低圧吸収器缶胴217よりも鉛直上方に配置されているので、高圧吸収器缶胴117内の液滴の高圧蒸発器缶胴127への飛散、及び低圧吸収器缶胴217内の液滴の低圧蒸発器缶胴227への飛散を回避することができ、高圧吸収器110及び低圧吸収器210には、それぞれ、エリミネータを設けなくて済む。   According to the absorption heat pump 3 described above, the heated medium W is supplied in parallel to the high-pressure absorber 110 and the low-pressure absorber 210 in the same manner as the absorption heat pump 1 (see FIG. 1). And the load of the low-pressure absorber 210 can be generally leveled. Further, since the medium to be heated W is supplied in parallel to the high-pressure absorber 110 and the low-pressure absorber 210, the high-pressure heated medium outlet pipe 63A, the low-pressure heated medium outlet pipe 63B, and the like are provided with a flow rate adjusting means such as a valve. Thus, the distribution ratio of the heated medium W supplied to the high-pressure absorber 110 and the low-pressure absorber 210 can be easily changed. In addition, since the regenerators 130 and 230 and the condensers 140 and 240 are separately provided on the high-pressure side and the low-pressure side, the refrigerant V and solution S cycles can be made independent on the high-pressure side and the low-pressure side, respectively. In addition, the difference between the internal pressure of the high-pressure absorber 110 and the internal pressure of the low-pressure absorber 210 can be appropriately maintained. Similarly to the absorption heat pump 1 (see FIG. 1), the high-pressure evaporator can body 127 and the low-pressure evaporator can body 227 are arranged vertically above the high-pressure absorber can body 117 and the low-pressure absorber can body 217. Therefore, it is possible to avoid the scattering of the droplets in the high pressure absorber can body 117 to the high pressure evaporator can body 127 and the scattering of the droplets in the low pressure absorber can body 217 to the low pressure evaporator can body 227. In addition, the high pressure absorber 110 and the low pressure absorber 210 do not need to be provided with an eliminator.

以上の説明では、被冷却媒体が冷水cであるとしたが、冷水cに代えて熱源媒体としての熱源温水あるいは蒸気であってもよい。熱源温水としては、例えば、工場排温水、温泉水、井水、河川水、下水処理水等を用いることができる。   In the above description, the medium to be cooled is the cold water c, but heat source hot water or steam as a heat source medium may be used instead of the cold water c. As the heat source hot water, for example, factory waste water, hot spring water, well water, river water, sewage treated water, or the like can be used.

1 吸収ヒートポンプ
40 凝縮器
110 高圧吸収器
111 高圧加熱管
117 高圧吸収器缶胴
120 高圧蒸発器
121 高圧冷水管
125 高圧エリミネータ
127 高圧蒸発器缶胴
140 高圧凝縮器
210 低圧吸収器
211 低圧加熱管
217 低圧吸収器缶胴
220 低圧蒸発器
221 低圧冷水管
225 低圧エリミネータ
227 低圧蒸発器缶胴
240 低圧凝縮器
c 冷水
Sa1 高圧濃溶液
Sa2 低圧濃溶液
Sw1 高圧希溶液
Sw2 低圧希溶液
Ve1 高圧冷媒蒸気
Ve2 低圧冷媒蒸気
Vf 冷媒液
Vg 再生器冷媒蒸気
Vg1 高圧再生器冷媒蒸気
Vg2 低圧再生器冷媒蒸気
W 被加熱媒体
DESCRIPTION OF SYMBOLS 1 Absorption heat pump 40 Condenser 110 High pressure absorber 111 High pressure heating pipe 117 High pressure absorber can body 120 High pressure evaporator 121 High pressure cold water pipe 125 High pressure eliminator 127 High pressure evaporator can body 140 High pressure condenser 210 Low pressure absorber 211 Low pressure heating pipe 217 Low pressure absorber can body 220 Low pressure evaporator 221 Low pressure cold water pipe 225 Low pressure eliminator 227 Low pressure evaporator can body 240 Low pressure condenser c Cold water Sa1 High pressure concentrated solution Sa2 Low pressure concentrated solution Sw1 High pressure diluted solution Sw2 Low pressure diluted solution Ve1 High pressure refrigerant vapor Ve2 Low pressure Refrigerant vapor Vf Refrigerant liquid Vg Regenerator refrigerant vapor Vg1 High-pressure regenerator refrigerant vapor Vg2 Low-pressure regenerator refrigerant vapor W Heated medium

Claims (3)

第1の吸収液に第1の冷媒蒸気を吸収させ、前記第1の吸収液が前記第1の冷媒蒸気を吸収する際に生じる吸収熱を被加熱媒体に奪わせる第1の吸収器と;
第2の吸収液に第2の冷媒蒸気を吸収させ、前記第2の吸収液が前記第2の冷媒蒸気を吸収する際に生じる吸収熱を被加熱媒体に奪わせる第2の吸収器であって、前記第1の吸収器よりも作動圧力が低い第2の吸収器と;
前記第1の吸収器で前記第1の吸収液が前記第1の冷媒蒸気を吸収して生じた第1の希溶液から離脱された冷媒蒸気、及び前記第2の吸収器で前記第2の吸収液が前記第2の冷媒蒸気を吸収して生じた第2の希溶液から離脱された冷媒蒸気の少なくとも一方を導入し、導入した前記冷媒蒸気が保有する熱を被加熱媒体に奪わせて導入した前記冷媒蒸気を凝縮させる凝縮器とを備え;
前記被加熱媒体が前記第1の吸収器及び前記第2の吸収器に分配され、前記第1の吸収器から導出された前記被加熱媒体及び前記第2の吸収器から導出された前記被加熱媒体が前記凝縮器に供給されるように構成された;
吸収ヒートポンプ。
A first absorber that causes the first absorbing liquid to absorb the first refrigerant vapor and causes the heated medium to take away the heat of absorption generated when the first absorbing liquid absorbs the first refrigerant vapor;
The second absorber absorbs the second refrigerant vapor, and the second absorber absorbs the heat generated when the second absorbent absorbs the second refrigerant vapor to the heated medium. A second absorber having a lower operating pressure than the first absorber;
The first absorbent absorbs the first refrigerant vapor in the first absorber and the refrigerant vapor separated from the first dilute solution, and the second absorber in the second absorber. The absorbing liquid absorbs the second refrigerant vapor and introduces at least one of the refrigerant vapors separated from the second dilute solution and causes the heated medium to deprive the heated medium of the introduced refrigerant vapor. A condenser for condensing the introduced refrigerant vapor;
The heated medium is distributed to the first absorber and the second absorber, and the heated medium derived from the first absorber and the heated medium derived from the second absorber Configured to supply media to the condenser;
Absorption heat pump.
前記凝縮器が、
前記第1の希溶液から離脱された冷媒蒸気を導入し、導入した前記冷媒蒸気が保有する熱を被加熱媒体に奪わせて導入した前記冷媒蒸気を凝縮させる第1の凝縮器と、
前記第2の希溶液から離脱された冷媒蒸気を導入し、導入した前記冷媒蒸気が保有する熱を被加熱媒体に奪わせて導入した前記冷媒蒸気を凝縮させる第2の凝縮器と、を含んで構成され;
前記第1の吸収器から導出された前記被加熱媒体が前記第1の凝縮器に供給され;
前記第2の吸収器から導出された前記被加熱媒体が前記第2の凝縮器に供給されるように構成された;
請求項1に記載の吸収ヒートポンプ。
The condenser is
A first condenser that introduces the refrigerant vapor released from the first dilute solution, condenses the refrigerant vapor introduced by causing the heated medium to deprive the heat held by the introduced refrigerant vapor;
A second condenser for introducing the refrigerant vapor released from the second dilute solution and condensing the refrigerant vapor introduced by causing the heated medium to take away the heat held by the introduced refrigerant vapor. Consisting of:
The heated medium derived from the first absorber is supplied to the first condenser;
The heated medium derived from the second absorber is configured to be supplied to the second condenser;
The absorption heat pump according to claim 1.
被冷却媒体の熱で冷媒液を蒸発させて前記第1の冷媒蒸気を生成する第1の蒸発器であって、前記冷媒液及び前記第1の冷媒蒸気を収容する第1の蒸発器缶胴と、前記第1の蒸発器缶胴内の液滴の前記第1の吸収器への飛散を防ぐ第1のエリミネータと、前記被冷却媒体の流路を形成する第1の被冷却媒体流路形成部材と、を有する第1の蒸発器と;
被冷却媒体の熱で冷媒液を蒸発させて前記第2の冷媒蒸気を生成する第2の蒸発器であって、前記冷媒液及び前記第2の冷媒蒸気を収容する第2の蒸発器缶胴と、前記第2の蒸発器缶胴内の液滴の前記第2の吸収器への飛散を防ぐ第2のエリミネータと、前記被冷却媒体の流路を形成する第2の被冷却媒体流路形成部材と、を有する第2の蒸発器とを備え;
前記被冷却媒体が、前記第1の蒸発器に供給され、前記第1の蒸発器から導出された前記被冷却媒体が前記第2の蒸発器に供給されるように構成され;
前記第1の吸収器が、前記被加熱媒体の流路を形成する第1の被加熱媒体流路形成部材及び前記第1の希溶液を収容する第1の吸収器缶胴を有し;
前記第2の吸収器が、前記被加熱媒体の流路を形成する第2の被加熱媒体流路形成部材及び前記第2の希溶液を収容する第2の吸収器缶胴を有し;
前記第1の蒸発器缶胴及び前記第2の蒸発器缶胴が、前記第1の吸収器缶胴及び前記第2の吸収器缶胴よりも上方に配置された;
請求項1又は請求項2に記載の吸収ヒートポンプ。
A first evaporator for evaporating a refrigerant liquid with heat of a medium to be cooled to generate the first refrigerant vapor, wherein the first evaporator can body accommodates the refrigerant liquid and the first refrigerant vapor. A first eliminator for preventing droplets in the first evaporator can body from scattering to the first absorber, and a first cooled medium flow path that forms the flow path of the cooled medium A first evaporator having a forming member;
A second evaporator that evaporates the refrigerant liquid with the heat of the medium to be cooled to generate the second refrigerant vapor, the second evaporator can body containing the refrigerant liquid and the second refrigerant vapor. A second eliminator for preventing droplets in the second evaporator can body from scattering to the second absorber, and a second cooled medium flow path for forming a flow path for the cooled medium A second evaporator having a forming member;
The cooled medium is supplied to the first evaporator, and the cooled medium derived from the first evaporator is supplied to the second evaporator;
The first absorber has a first heated medium flow path forming member that forms a flow path of the heated medium and a first absorber can body that houses the first dilute solution;
The second absorber has a second heated medium flow path forming member that forms a flow path of the heated medium, and a second absorber can body containing the second dilute solution;
The first evaporator can body and the second evaporator can body are disposed above the first absorber can body and the second absorber can body;
The absorption heat pump according to claim 1 or 2.
JP2013069439A 2013-03-28 2013-03-28 Absorption heat pump Pending JP2014190680A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013069439A JP2014190680A (en) 2013-03-28 2013-03-28 Absorption heat pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013069439A JP2014190680A (en) 2013-03-28 2013-03-28 Absorption heat pump

Publications (1)

Publication Number Publication Date
JP2014190680A true JP2014190680A (en) 2014-10-06

Family

ID=51837097

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013069439A Pending JP2014190680A (en) 2013-03-28 2013-03-28 Absorption heat pump

Country Status (1)

Country Link
JP (1) JP2014190680A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106403354A (en) * 2016-11-19 2017-02-15 双良节能***股份有限公司 Cascading type solution parallel connection double-effect lithium bromide absorption refrigeration heat pump unit
CN106440478A (en) * 2016-11-19 2017-02-22 双良节能***股份有限公司 Cascade-type solution series single-effect lithium bromide absorption refrigeration heat pump unit
CN106440476A (en) * 2016-11-19 2017-02-22 双良节能***股份有限公司 Two-stage independent cascade double-effect lithium bromide absorption type refrigerating heat pump unit
CN106440477A (en) * 2016-11-19 2017-02-22 双良节能***股份有限公司 Overlapping type solution serial-parallel double-effect lithium bromide absorption type refrigerating heat pump unit
CN106482383A (en) * 2016-11-19 2017-03-08 双良节能***股份有限公司 Two-stage nitration superposition type double-effect lithium bromide absorption type refrigerating heat pump unit
CN106482384A (en) * 2016-11-19 2017-03-08 双良节能***股份有限公司 Superposition type solution serial double-effect lithium bromide absorption type refrigeration heat pump unit
CN106642795A (en) * 2016-11-19 2017-05-10 双良节能***股份有限公司 Overlapped solution parallel single-effect lithium bromide absorption refrigeration heat pump unit
CN106679224A (en) * 2016-11-19 2017-05-17 双良节能***股份有限公司 Overlapping type solution serial double-effect lithium bromide absorption refrigeration heat pump unit

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60144061U (en) * 1984-03-05 1985-09-25 大阪瓦斯株式会社 absorption refrigerator
JPH03199861A (en) * 1989-12-27 1991-08-30 Ebara Corp Absorption refrigerator
JPH04158173A (en) * 1990-10-22 1992-06-01 Sanyo Electric Co Ltd Absorption type freezer
JPH0552439A (en) * 1991-08-21 1993-03-02 Tokyo Gas Co Ltd Absorption heat pump
JP2000266422A (en) * 1999-01-12 2000-09-29 Kawasaki Thermal Engineering Co Ltd Absorption refrigerating machine
JP2005042944A (en) * 2003-07-23 2005-02-17 Ebara Refrigeration Equipment & Systems Co Ltd Multi-stage absorption refrigerating machine
CN102914081A (en) * 2012-10-27 2013-02-06 双良节能***股份有限公司 Two-section flue gas hot-water single/double-effect composite lithium bromide absorption type refrigerating unit

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60144061U (en) * 1984-03-05 1985-09-25 大阪瓦斯株式会社 absorption refrigerator
JPH03199861A (en) * 1989-12-27 1991-08-30 Ebara Corp Absorption refrigerator
JPH04158173A (en) * 1990-10-22 1992-06-01 Sanyo Electric Co Ltd Absorption type freezer
JPH0552439A (en) * 1991-08-21 1993-03-02 Tokyo Gas Co Ltd Absorption heat pump
JP2000266422A (en) * 1999-01-12 2000-09-29 Kawasaki Thermal Engineering Co Ltd Absorption refrigerating machine
JP2005042944A (en) * 2003-07-23 2005-02-17 Ebara Refrigeration Equipment & Systems Co Ltd Multi-stage absorption refrigerating machine
CN102914081A (en) * 2012-10-27 2013-02-06 双良节能***股份有限公司 Two-section flue gas hot-water single/double-effect composite lithium bromide absorption type refrigerating unit

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106403354A (en) * 2016-11-19 2017-02-15 双良节能***股份有限公司 Cascading type solution parallel connection double-effect lithium bromide absorption refrigeration heat pump unit
CN106440478A (en) * 2016-11-19 2017-02-22 双良节能***股份有限公司 Cascade-type solution series single-effect lithium bromide absorption refrigeration heat pump unit
CN106440476A (en) * 2016-11-19 2017-02-22 双良节能***股份有限公司 Two-stage independent cascade double-effect lithium bromide absorption type refrigerating heat pump unit
CN106440477A (en) * 2016-11-19 2017-02-22 双良节能***股份有限公司 Overlapping type solution serial-parallel double-effect lithium bromide absorption type refrigerating heat pump unit
CN106482383A (en) * 2016-11-19 2017-03-08 双良节能***股份有限公司 Two-stage nitration superposition type double-effect lithium bromide absorption type refrigerating heat pump unit
CN106482384A (en) * 2016-11-19 2017-03-08 双良节能***股份有限公司 Superposition type solution serial double-effect lithium bromide absorption type refrigeration heat pump unit
CN106642795A (en) * 2016-11-19 2017-05-10 双良节能***股份有限公司 Overlapped solution parallel single-effect lithium bromide absorption refrigeration heat pump unit
CN106679224A (en) * 2016-11-19 2017-05-17 双良节能***股份有限公司 Overlapping type solution serial double-effect lithium bromide absorption refrigeration heat pump unit
CN106440476B (en) * 2016-11-19 2019-07-19 双良节能***股份有限公司 Two sections of independent superposition type double-effect lithium bromide absorption type refrigerating heat pump units
CN106403354B (en) * 2016-11-19 2019-07-19 双良节能***股份有限公司 Superposition type solution parallel double-effect lithium bromide absorption type refrigeration heat pump unit
CN106482383B (en) * 2016-11-19 2019-07-19 双良节能***股份有限公司 Two sections of superposition type double-effect lithium bromide absorption type refrigerating heat pump units
CN106440477B (en) * 2016-11-19 2019-07-19 双良节能***股份有限公司 The series-parallel double-effect lithium bromide absorption type refrigerating heat pump unit of superposition type solution
CN106482384B (en) * 2016-11-19 2019-07-19 双良节能***股份有限公司 Superposition type solution and serial double-effect lithium bromide absorption type refrigeration heat pump unit
CN106679224B (en) * 2016-11-19 2019-07-19 双良节能***股份有限公司 Superposition type solution series double-effect lithium bromide absorption type refrigerating heat pump unit
CN106440478B (en) * 2016-11-19 2019-07-19 双良节能***股份有限公司 Superposition type solution series mono-potency lithium bromide absorption type refrigeration heat pump unit
CN106642795B (en) * 2016-11-19 2019-07-19 双良节能***股份有限公司 Superposition type solution parallel connection mono-potency lithium bromide absorption type refrigeration heat pump unit

Similar Documents

Publication Publication Date Title
JP2014190680A (en) Absorption heat pump
JP5210896B2 (en) Single double-effect absorption chiller / heater
JP2010276304A (en) Steam generation system
JP6397747B2 (en) Absorption heat pump
JP2006177570A (en) Absorption heat pump
JP5395502B2 (en) Absorption heat pump
CN108180670B (en) Absorption heat exchange system
JP7015671B2 (en) Absorption heat exchange system
JP5261111B2 (en) Absorption refrigerator
JP6138642B2 (en) Absorption refrigerator
KR102165443B1 (en) Absoption chiller
JP6896968B2 (en) Absorption heat exchange system
JP6903852B2 (en) Absorption heat exchange system
JP6614873B2 (en) Absorption refrigerator
JP2019020111A (en) Absorption heat pump
JP6111094B2 (en) Absorption heat pump
JP5570969B2 (en) Exhaust gas heat recovery device and absorption refrigerator
JP6364238B2 (en) Absorption type water heater
JP6907438B2 (en) Absorption heat exchange system
JP6570965B2 (en) Absorption heat pump
WO2018150516A1 (en) Absorption refrigerator
JP4260095B2 (en) Single double effect absorption refrigerator
JP5528912B2 (en) Hybrid heat pump
CA3053654C (en) An absorption chiller
JP2017040387A (en) Absorption heat pump

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150924

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160802

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170228