JP2014188424A - Coating liquid-coating method, coating film-manufacturing method, and coating liquid-coating device - Google Patents

Coating liquid-coating method, coating film-manufacturing method, and coating liquid-coating device Download PDF

Info

Publication number
JP2014188424A
JP2014188424A JP2013065488A JP2013065488A JP2014188424A JP 2014188424 A JP2014188424 A JP 2014188424A JP 2013065488 A JP2013065488 A JP 2013065488A JP 2013065488 A JP2013065488 A JP 2013065488A JP 2014188424 A JP2014188424 A JP 2014188424A
Authority
JP
Japan
Prior art keywords
coating
region
film
area
coating liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013065488A
Other languages
Japanese (ja)
Inventor
Naoki Nomoto
直希 野本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2013065488A priority Critical patent/JP2014188424A/en
Publication of JP2014188424A publication Critical patent/JP2014188424A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method and a coating device to obtain a coating film in which coating defects like coating omission, coating stripe, etc. are very few, and good appearance is obtained even in a large area.SOLUTION: A coating film-manufacturing method uses a measuring bar which measures or smooths liquid applied to a surface of a running film and in which grooves are formed in the order of an area C, an area B, an area A, the area B and the area C. There are provided the coating film-manufacturing method and a coating device, in which the measuring bar satisfies following (expression 1), and the device and the method satisfy following conditions (a) and (b). HnC<HnB<HnA (expression 1) where HnC, HnB and HnA are depths of the groove in the areas C, B and A, respectively. (a) Coating liquid shall be injected only into the whole area of the area A and a part of the area B of the measuring bar. (b) An edge part of the coating liquid carried by the measuring bar shall be in the area C.

Description

本発明は、塗液塗布方法、塗布フィルムの製造方法および塗液塗布装置に関する。さらに詳しくは塗布層の塗布欠陥が非常に少ない塗液塗布方法に関し、特に製品の外観の観点から塗布層の膜厚均一性に特に厳しい管理が必要であるタッチパネルや表面保護フィルム、表面加飾フィルム等に用いられるハードコート層積層フィルムにおいて、ハードコート層との易接着層を基材フィルム上に積層するために好適な塗液塗布方法、塗布フィルムの製造方法および塗液塗布装置に関する。   The present invention relates to a coating liquid coating method, a coating film manufacturing method, and a coating liquid coating apparatus. More specifically, it relates to a coating solution coating method with very few coating defects in the coating layer, and in particular, from the viewpoint of product appearance, touch panels, surface protective films, and surface decorative films that require particularly strict management of the coating layer thickness uniformity. The present invention relates to a coating liquid coating method, a coating film manufacturing method, and a coating liquid coating apparatus suitable for laminating an easy-adhesion layer with a hard coat layer on a substrate film.

基材である樹脂フィルムに塗布層を設けた塗布フィルムは、その優れた物理的性能や生産性に加えて、密着性や帯電防止性、フィルムの易滑化、光学特性の改善等の様々な機能が塗布層により付与にされる事で、非常に幅広い用途に展開されている。特に近年はIT分野の伸びに従いLCDやPDP等のフラットパネルディスプレイ用途やタッチパネル用途などの表示材料や表面保護・加飾フィルムなどの基材として使用量が増加している。しかしながら、ディスプレイの高精細化や大画面化に伴い、機能性に加えて外観上の欠点やムラが無いことが強く求められており、特に上記ディスプレイやタッチパネル用途に広く使用されているハードコート層を積層した場合は、塗布層の膜厚のムラにより、干渉ムラ(ある角度から見た時に視認される部分的な虹彩状反射)が発生するため厳密な膜厚管理が必要となるのに加えて、塗布層中への気泡等が混入する事により発生する微細な欠陥による外観不良についても品質管理面および生産性の観点から防止する事が要求されている。   In addition to its excellent physical performance and productivity, the coated film with a coating layer on the resin film that is the base material has various properties such as adhesion, antistatic properties, easy slipping of the film, and improved optical properties. Since the function is imparted by the coating layer, it has been developed for a very wide range of applications. Particularly in recent years, the amount of use as a display material for flat panel displays such as LCDs and PDPs and touch panel applications, and as a base material for surface protection / decorative films, etc. has increased in accordance with the growth in the IT field. However, along with the increase in the definition and display size of displays, there is a strong demand not to have defects or unevenness in appearance in addition to functionality, and in particular, a hard coat layer widely used for the above-mentioned display and touch panel applications. In the case of layering, the film thickness unevenness of the coating layer causes interference unevenness (partial iris-like reflection that is visible when viewed from a certain angle). Therefore, it is required to prevent appearance defects due to fine defects generated when bubbles or the like are mixed into the coating layer from the viewpoint of quality control and productivity.

塗液の塗布方法としては、薄い塗布層を常に均一な膜厚で塗布するという観点において、ダイコートやスプレーコート、グラビアコート、バーコート法等が代表例として挙げられる。特に薄い膜厚の塗布層を設けるために選択されるグラビアコート法では、塗液をグラビアロールから転写させる事によりフィルム上に塗布するが、グラビアロールの微小な回転ムラやロールの偏芯、ドクターブレードの当たり方、グラビア版の目詰まりなどにより膜厚が変動しやすいため、調整が難しかった。   As a coating method of the coating liquid, a die coating, a spray coating, a gravure coating, a bar coating method, and the like are given as representative examples from the viewpoint of always applying a thin coating layer with a uniform film thickness. In particular, in the gravure coating method selected to provide a thin coating layer, the coating liquid is applied onto the film by transferring it from the gravure roll. Adjustment was difficult because the film thickness was likely to fluctuate due to blade contact and gravure clogging.

一方、計量バーを用いたバーコート法は計量バーが直接フィルムに接触し、余剰な塗液をかき取り計量する方法であり、回転ムラやフィルムの走行状態の影響を受けにくく、均一な膜を形成するのに有利である。ただし、バーコート方式においては、計量バーの上流側と下流側にメニスカスと呼ばれる塗液の液溜り部が形成される。塗液を塗工時、塗布端部の脈動などにより、メニスカスに塗布端部から空気が入り込み、気泡が発生することによる塗布抜けの発生やメニスカス形状の変形による塗布スジと呼ばれる欠点を引き起こすことがあった。   On the other hand, the bar coating method using a measuring bar is a method in which the measuring bar directly contacts the film and scrapes off and measures the excess coating liquid. It is advantageous to form. However, in the bar coating method, a liquid reservoir portion of a coating liquid called meniscus is formed on the upstream side and the downstream side of the measuring bar. When applying the coating liquid, air enters the meniscus from the application end due to pulsation at the application end, etc., which can cause defects in coating due to generation of bubbles and deformation of the meniscus shape. there were.

これらの問題に対して、特許文献1では塗布端部からの気泡の噛み込みを抑制する方法としてはフィルム幅方向の塗液塗布領域の端部近傍に裏面側からフィルムをローラーなどで計量バーを押し込む方法が提案されている(特許文献1)。しかし、フィルムの厚みによってはフィルムを押さえ込むことが困難となり、気泡の噛み込みを防止できなかったり、またローラーなどで押さえ込むことにより、フィルムの破れや計量バーにキズが生じたりするという問題があった。   With respect to these problems, in Patent Document 1, as a method of suppressing the entrapment of bubbles from the coating end, a measuring bar is attached with a roller or the like from the back side near the end of the coating liquid coating region in the film width direction. A method of pushing is proposed (Patent Document 1). However, depending on the thickness of the film, it may be difficult to hold down the film, and it may not be possible to prevent air bubbles from entering, or the film may be broken or scratched on the measuring bar when pressed with a roller. .

また、特許文献2では計量バー幅方向の溝部両端より内側部分に溝深さの浅い溝を設け、塗布端部で発生した気泡を捕集することにより、気泡の噛み込みを抑制する方法が提案されている(特許文献2)。しかし、塗布端部の脈動によって発生した気泡が塗液の表面張力・粘度によっては浅溝部を超えて気泡が内側へ噛み込み、塗布欠点になるといった問題点があった。   Further, Patent Document 2 proposes a method for suppressing the entrapment of bubbles by providing a groove having a shallow groove depth inside the both ends of the groove in the measuring bar width direction and collecting bubbles generated at the application end. (Patent Document 2). However, there is a problem in that bubbles generated by pulsation at the coating end part exceed the shallow groove part depending on the surface tension / viscosity of the coating liquid, and the bubbles bite inward, resulting in a coating defect.

特開2003−181357号公報JP 2003-181357 A 特開2007―083199号公報JP 2007-083199 A

そこで本発明の課題はかかる従来技術の問題点に鑑み、計量バーと塗布装置の設計により塗布端部での発泡を抑制することで塗布抜けや塗布スジなどの塗布欠陥が極めて少ない、大面積においても良好な外観を有する塗布フィルムを得る事ができる製造方法および塗布装置を提供することである。 Therefore, in view of the problems of the prior art, the problem of the present invention is that in a large area, there are very few coating defects such as coating omission and coating stripes by suppressing foaming at the coating end by designing a measuring bar and a coating device. Another object of the present invention is to provide a production method and a coating apparatus that can obtain a coated film having a good appearance.

(1)走行するフィルムの表面に塗布された塗液を計量またはスムージングする、
C領域、B領域、A領域、B領域、C領域の順で溝が形成された計量バーを用いた塗布フィルムの製造方法であって、該計量バーの溝部は下記(式1)を満たし、さらに下記条件(a)および(b)を満たすことを特徴とする塗布装置および塗布フィルムの製造方法。
(1) Weigh or smooth the coating solution applied to the surface of the traveling film.
C region, B region, A region, B region, a method for producing a coated film using a weighing bar in which grooves are formed in the order of the region, the groove portion of the weighing bar satisfies the following (formula 1), Furthermore, the coating apparatus characterized by satisfy | filling the following conditions (a) and (b), and the manufacturing method of a coating film.

HnC<HnB<HnA・・・(式1)
ただし、HnC、HnB、HnAは、各領域における溝の深さである。
HnC <HnB <HnA (Formula 1)
However, HnC, HnB, and HnA are the depths of the grooves in the respective regions.

(a)計量バーのA領域の全領域と一部のB領域の一部にのみ塗液を注入すること。   (A) Injecting the coating liquid only in the entire area A and part of the area B of the measuring bar.

(b)計量バーによって塗工された塗液の端部がC領域にあること。
(2)前記HnC、HnB、HnAが下記式を満足することを特徴とする計量バーを用いた(1)に記載の塗布フィルムの製造方法。
HnC=0・・・(式2)
0.1*HnA<HnB<0.5*HnA・・・(式3)
(3)前記HnAが下記式を満足することを特徴とする(1)または(2)に記載の塗布フィルムの製造方法。
(B) The end portion of the coating liquid applied by the measuring bar is in the C region.
(2) The method for producing a coated film according to (1), wherein a weighing bar is used, wherein the HnC, HnB, and HnA satisfy the following formula.
HnC = 0 (Formula 2)
0.1 * HnA <HnB <0.5 * HnA (Formula 3)
(3) The method for producing a coated film according to (1) or (2), wherein the HnA satisfies the following formula.

10μm<HnA<40μm・・・(式4)
(4)前記B領域の幅が10mm〜30mmを満足することを特徴とする(1)〜(3)のいずれかに記載の塗布フィルムの製造方法。
(5)塗液注入領域の端部が計量バーのB領域とC領域の境界から5mm以上離れたB領域にあることを特徴とする(1)〜(4)のいずれかに記載の塗布フィルムの製造方法。
(6)供給される塗液供給量が1〜30L/min・mであり、フィルムの走行速度が10〜100m/minであることを特徴とする(1)〜(5)のいずれかに記載の塗布フィルムの製造方法。
10 μm <HnA <40 μm (Formula 4)
(4) The method for producing a coated film according to any one of (1) to (3), wherein a width of the region B satisfies 10 mm to 30 mm.
(5) The coating film according to any one of (1) to (4), wherein an end portion of the coating liquid injection region is in a B region separated by 5 mm or more from a boundary between the B region and the C region of the measuring bar Manufacturing method.
(6) The coating liquid supply amount to be supplied is 1 to 30 L / min · m, and the traveling speed of the film is 10 to 100 m / min. Method for producing coated film.

本発明に係る塗布方法および塗布装置によれば、塗布端部から空気の入り込みを抑制し塗布抜けや塗布スジなどの塗布欠陥が極めて少ない、大面積においても良好な外観を有する塗布フィルムの製造方法を提供できる。   According to the coating method and the coating apparatus according to the present invention, a method for producing a coated film having a good appearance even in a large area, which suppresses the entry of air from the coating end and has very few coating defects such as coating omission and coating stripes. Can provide.

本発明の一実施態様に係る計量バーの平面図である。It is a top view of the measurement bar concerning one embodiment of the present invention. 本発明の一実施態様に係る計量バーによる塗布装置の断面概略図である。It is a section schematic diagram of a coating device by a measuring bar concerning one embodiment of the present invention. 本発明の一実施態様に係る計量バーによる塗布装置の俯瞰概略図である。It is a bird's-eye schematic view of the application device by the measurement bar concerning one embodiment of the present invention. 本発明の一実施態様に係る計量バーによる塗布装置の断面概略図である。It is a section schematic diagram of a coating device by a measuring bar concerning one embodiment of the present invention. 本発明の一実施態様に係る計量バーによる塗布装置の俯瞰概略図である。It is a bird's-eye schematic view of the application device by the measurement bar concerning one embodiment of the present invention. 計量バーの溝深さの測定方法を示す概略図である。It is the schematic which shows the measuring method of the groove depth of a measurement bar.

以下に本発明の望ましい実施形態について図面を参照して詳細に説明する。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings.

本発明に係る計量バーは走行するフィルムの表面に塗布された塗液を計量またはスムージングする計量バーであって、塗液中の気泡をフィルム上で幅方向における一部分に集めながら塗液を計量またはスムージングするものである。具体的には軸方向中央部に所定の溝深さHnAの溝部Aが形成されたA領域を有し、該A領域の少なくとも一方の側部に溝深さHnBの溝部Bを有するB領域、さらにB領域のA領域と反対側の側部に溝深さHnCの溝部Cを有するC領域を備えた計量バーである。そして、それら溝深さHnA、HnB、HnCは下記(式1)を満たす必要がある。   The measuring bar according to the present invention is a measuring bar that measures or smoothes the coating liquid applied to the surface of the traveling film, and measures or smoothes the coating liquid while collecting bubbles in the coating liquid in a part in the width direction on the film. Smoothing. Specifically, a B region having an A region in which a groove portion A having a predetermined groove depth HnA is formed in the central portion in the axial direction, and having a groove portion B having a groove depth HnB on at least one side portion of the A region, Furthermore, it is a measuring bar provided with C area | region which has the groove part C of groove depth HnC in the side part on the opposite side to A area | region of B area | region. The groove depths HnA, HnB, and HnC must satisfy the following (formula 1).

HnC<HnB<HnA・・・(式1)
このような計量バーとしては、例えば図1に示すような構成の計量バーがある。すなわち、図1に示す計量バー(1)では、バー軸方向における中央部の所定範囲にわたって表面に溝が形成された溝形成部を有しており、この溝形成部の中央部を含む溝深さHnAである溝部Aを有するA領域(2)が形成され、その端部側に溝深さHnBがHnA未満である溝部Bを有するB領域(3)が形成されており、さらにB領域の端部側に溝深さHnCがHnB未満である溝部Cを有するC領域(4)が形成されている。
HnC <HnB <HnA (Formula 1)
An example of such a weighing bar is a weighing bar configured as shown in FIG. That is, the measuring bar (1) shown in FIG. 1 has a groove forming portion having a groove formed on the surface over a predetermined range of the central portion in the bar axis direction, and the groove depth including the central portion of the groove forming portion. A region (2) having a groove portion A having a height of HnA is formed, and a B region (3) having a groove portion B having a groove depth HnB of less than HnA is formed on the end side thereof. A C region (4) having a groove C having a groove depth HnC less than HnB is formed on the end side.

上記要件を満たすことにより、計量バー上の塗布端部からの気泡の噛み込みを抑制することが出来る。溝深さHnCを有するC領域が無い場合はB領域上で塗液の脈動が発生し、塗布端部からの発泡を助長したり、また溝深さHnBを有するB領域が無い場合は掻き落とされた余剰液が多くなり、塗布端部の拡がりが大きくなる。   By satisfying the above requirements, it is possible to suppress the entrapment of bubbles from the coating end on the weighing bar. When there is no C region having the groove depth HnC, the pulsation of the coating liquid occurs on the B region, promoting foaming from the coating end, and scraping off when there is no B region having the groove depth HnB. The excess liquid that has been applied increases, and the spread of the coating end increases.

本発明において、中央部への気泡の噛み込みをさらに抑制するためには溝部Bの溝深さHnBは0.1*HnA<HnB<0.5*HnAである事が好ましい。HnBが0.1*HnAよりも大きい溝深さの計量バーを使用することにより、塗布端部の拡がりを抑制することができ、またHnBが0.5*HnA以下の計量バーを使用することにより、計量バー上の塗液の脈動による塗工部への気泡の噛み込みを抑制できる点で上記の範囲とする事が好ましい。より好ましくは0.2*HnA<HnB<0.4*HnAである計量バーを用いることで、塗工部への気泡の噛み込み抑制に効果的である。また、溝部Cの溝深さHnCはHnC<HnBであるが、塗布端部での発泡を抑制するためにはより好ましくはHnC=0である。   In the present invention, the groove depth HnB of the groove part B is preferably 0.1 * HnA <HnB <0.5 * HnA in order to further suppress the entrapment of bubbles in the central part. By using a weighing bar with a groove depth of HnB greater than 0.1 * HnA, spreading of the coating end can be suppressed, and a weighing bar with HnB of 0.5 * HnA or less should be used. Therefore, the above range is preferable in that it is possible to suppress the entrainment of bubbles in the coating portion due to the pulsation of the coating liquid on the measuring bar. More preferably, the use of a weighing bar satisfying 0.2 * HnA <HnB <0.4 * HnA is effective in suppressing the entrapment of bubbles in the coating part. Further, the groove depth HnC of the groove C is HnC <HnB, but HnC = 0 is more preferable in order to suppress foaming at the coating end.

また、B領域の計量バー軸方向の幅については気泡の噛み込み抑制と生産性を考慮すると10〜30mmである事が好ましい。幅が狭い場合は製造条件によっては塗液注入端の変動等によって定常的に狙った領域に塗液を注入できないことがあることから本発明の効果を確実に得るためにはB領域の幅は10mm以上設けることが好ましい。一方、B領域の幅が広すぎる場合、効果としては特に問題はないがB領域では塗布厚みが薄くなるため、通常製品にならないので特に高価な材料を使用する場合は製品ロスを考慮し30mm以下とすることが好ましい。   In addition, the width of the B region in the measuring bar axis direction is preferably 10 to 30 mm in consideration of the suppression of bubble entrapment and productivity. If the width is narrow, depending on the manufacturing conditions, it may not be possible to inject the coating liquid constantly into the target area due to fluctuations in the coating liquid injection end, etc. In order to reliably obtain the effects of the present invention, the width of the B area is It is preferable to provide 10 mm or more. On the other hand, if the width of the B region is too wide, there is no particular problem as an effect. However, since the coating thickness is thin in the B region, the product does not become a normal product. It is preferable that

本発明においては、溝部A(2)の溝深さHnAが10μm<HnA<40μmで有ることが好ましい。溝深さHnAが40μm未満にすることにより、塗工液の乾燥工程において乾燥に要する時間を短縮でき、生産効率の観点で好ましい。また溝深さHnAを10μmを超える深さにすることにより塗液を低固形分濃度で塗布することができ、塗液の粘性を低減できるため、塗布層の膜厚均一性の観点で好ましい。   In the present invention, the groove depth HnA of the groove part A (2) is preferably 10 μm <HnA <40 μm. By setting the groove depth HnA to less than 40 μm, the time required for drying in the drying step of the coating liquid can be shortened, which is preferable from the viewpoint of production efficiency. Further, by setting the groove depth HnA to a depth exceeding 10 μm, the coating liquid can be applied at a low solid content concentration, and the viscosity of the coating liquid can be reduced, which is preferable from the viewpoint of film thickness uniformity of the coating layer.

なお、上記のような本発明に係る計量バーは例えば、1本のバーに溝深さの異なるダイスで複数回転造したものや、径の異なるワイヤーをバーに巻いたワイヤーバーのものの他、レーザーでパターン加工したり、溝を樹脂等の充填剤で埋めることにより、製造することができる。   In addition, the measuring bar according to the present invention as described above is, for example, one that is formed by rotating a plurality of dies with dice having different groove depths on one bar, a wire bar in which wires having different diameters are wound around a bar, a laser. Can be manufactured by patterning or filling the groove with a filler such as resin.

一方、本発明において塗布端部からの気泡の噛み込みを抑制するために上記計量バーと下記条件(a)および(b)を満たすことのできる製造方法が必要である。
(a)計量バーのA領域の全領域と一部のB領域の一部にのみ塗液を注入すること。
(b)走行するフィルムに計量バーによって塗工された塗液の端部がC領域にあること。
On the other hand, in the present invention, in order to suppress the entrapment of bubbles from the coating end portion, a manufacturing method capable of satisfying the above-mentioned measuring bar and the following conditions (a) and (b) is required.
(A) Injecting the coating liquid only in the entire area A and part of the area B of the measuring bar.
(B) The end of the coating liquid applied to the traveling film by the measuring bar is in the C region.

上記計量バーと併せて条件(a)および(b)を満たすことのできる製造方法を用いることにより、塗工部において計量バーの溝部上での塗液の脈動による発泡を抑制し、塗布端部からの気泡の噛み込みを防止することで塗布抜けや塗布スジなどの塗布欠点の発生を低減できる。   By using a manufacturing method that can satisfy the conditions (a) and (b) in combination with the above-mentioned measuring bar, foaming due to pulsation of the coating liquid on the groove part of the measuring bar is suppressed in the coating part, and the coating end part The occurrence of coating defects such as missing coating and coating streaks can be reduced by preventing air bubbles from being caught.

塗液の注入領域としてA領域の一部に注入されない場合、またはB領域に全く塗液が注入されない場合は塗工部において計量バー溝部上での塗液の脈動により、気泡の噛み込みが助長され、塗布欠点の発生が誘発される。一方、C領域の一部に塗液が注入された場合は、計量バー上で塗布端部の拡がりが大きくなりすぎ、希望の塗布幅よりも塗布幅が広くなり、後工程汚染の原因となりうる。   When the coating liquid is not injected into a part of the area A as the injection area of the coating liquid, or when no coating liquid is injected into the area B, the pulsation of the coating liquid on the measuring bar groove portion in the coating section promotes the entrapment of bubbles. And the occurrence of coating defects is induced. On the other hand, when the coating liquid is injected into a part of the region C, the spread of the coating end portion on the measuring bar becomes too large, and the coating width becomes wider than the desired coating width, which may cause contamination of the post process. .

また、計量バーによって塗工された塗液の端部がC領域にない場合は、塗工部において計量バー溝部上での塗布端部の脈動が起こるため、塗布端部から気泡を噛み込み塗布欠点の発生が誘発される。   Also, if the end of the coating liquid applied by the measuring bar is not in the C region, the coating end pulsates on the measuring bar groove in the coating section, so that air bubbles can be applied from the application end. The occurrence of defects is triggered.

上記のような製造方法を実施するための塗布装置は特には限定されないが、例えば図2および3に示されるような装置が好適な例として挙げられる。図2は走行するフィルム(5)に対し、塗液供給部(7)から塗液(12)がフィルム上に注入され、計量バー(1)により塗布される装置である。本装置においては、塗布幅規制板(8)の計量バー軸方向の位置を調整する事で、A領域(2)の全領域と一部のB領域(3)に塗液を注入する事ができる。ただし、この時塗液注入端の変動等によっては定常的に狙った領域に塗液を注入できないことがあることから、B領域(3)とC領域(4)の境界よりも5mm以上内側のB領域(3)に塗液注入端を調整することが好ましい。   A coating apparatus for carrying out the manufacturing method as described above is not particularly limited. For example, apparatuses as shown in FIGS. 2 and 3 are preferable examples. FIG. 2 shows an apparatus in which a coating liquid (12) is injected from a coating liquid supply section (7) onto a film and applied by a measuring bar (1) to a traveling film (5). In this apparatus, by adjusting the position of the coating width regulating plate (8) in the measuring bar axis direction, the coating liquid may be injected into the entire area A and a part of the area B (3). it can. However, at this time, depending on fluctuations in the coating liquid injection end or the like, the coating liquid may not be constantly injected into the target area, so that it is at least 5 mm inside the boundary between the B area (3) and the C area (4). It is preferable to adjust the coating liquid injection end in the B region (3).

また図4および5に示されるような上流側カバー(10)、下流側カバー(11)、両端部カバー(14)、底部カバー(15)に覆われた空間内に塗液を供給し、計量バー(1)自身の回転により計量バー下部の塗液を持ち上げてフィルムに供給する装置も好適である。本方法においても、前記方法と同様に両端部カバー(14)の計量バー軸方向の位置を調整することより、塗液注入端を調整することで上記条件(a)を満たすことができる。   Also, the coating liquid is supplied into the space covered by the upstream cover (10), the downstream cover (11), the both end covers (14), and the bottom cover (15) as shown in FIGS. A device that lifts the coating liquid below the measuring bar by the rotation of the bar (1) itself and supplies it to the film is also suitable. Also in this method, the above condition (a) can be satisfied by adjusting the coating liquid injection end by adjusting the position of the end cover (14) in the measuring bar axial direction as in the above method.

条件(b)を達成する手段としては上述した計量バーを用い、さらに供給される塗液供給量を1〜30L/min・mの範囲で調整することにより達成される。より好ましくは塗液供給量を1〜15L/min・mの範囲で調整することにより掻き落とされた塗液の液受けパン等での液はねを抑制することが出来る。   As a means for achieving the condition (b), the above-described measuring bar is used, and the supply amount of the supplied coating liquid is further adjusted in the range of 1 to 30 L / min · m. More preferably, by adjusting the coating liquid supply amount in the range of 1 to 15 L / min · m, the splashing of the coating liquid scraped off in the liquid receiving pan or the like can be suppressed.

本発明においてはフィルムの走行速度が10〜100m/minであることが好ましい。フィルムの走行速度が10m/min以上であることにより、生産効率の観点で好ましい。一方、フィルムの走行速度を100m/min以下にすることにより、計量バーの回転による塗液の随伴を抑制し、掻き落とされる液量を少なくすることによって、塗布端部の拡がりを抑制できるため、フィルムの走行速度は100m/min以下が好ましい。   In the present invention, the running speed of the film is preferably 10 to 100 m / min. A film traveling speed of 10 m / min or more is preferable from the viewpoint of production efficiency. On the other hand, by setting the traveling speed of the film to 100 m / min or less, it is possible to suppress the entrainment of the coating liquid due to the rotation of the measuring bar, and to reduce the amount of liquid scraped off, thereby suppressing the spread of the coating end, The traveling speed of the film is preferably 100 m / min or less.

[物性の測定法]
以下、実施例により本発明の構成、効果をさらに具体的に説明する。なお、本発明は下記実施例に限定されるものではない。各実施例の記述に先立ち、各種物性の測定方法を記載する。
(1)溝深さ
本発明において溝深さは図6に示すような方法で測定するものとする。溝深さは接触式の変位計やレーザー光などを用いた非接触式の変位計(15)を計量バーの幅方向に移動させながらバー表面に形成された凹凸を測定する。溝形成部の一端から順次、ピークとボトムの差H1、H2・・・Hnを算出し、近接5点の平均を溝深さとする。すなわち、i番目の溝深さは図6におけるHiー2、Hiー1、Hi、Hi+1、Hi+2の平均値である。
(2)塗布抜け
ポリエステルフィルムロールのスリット工程において、中間ロール巻き出し後の走行フィルム面に対して、距離150mmに設置したLED光源から入射角15°にてフィルム位置での照度30,000lxにて塗布層側から照射し、その正反射光(反射角15°の反射光)をフィルムからの距離200mmに設置し、フィルム流れ方向速度が50m/分での分解能が幅方向0.16mm、長手方向0.12mm、画素サイズ10μm、検出光0.31lx・sを1024階調に分解する感度を有したCCDカメラにて検出した。検出した信号を長手方向に微分処理を実施し、幅方向3ピクセル・長手方向1ピクセル以上のサイズであり、微分後の信号閾値が100階調以上の欠陥個数を1000mに渡ってカウントし、フィルムの面積10m当たりの欠陥数に換算し、平均欠陥個数とした。また、塗布欠陥個数は塗布が十分安定した後(開始から2時間後)ついてカウントした。なお、小数点以下2桁目は四捨五入した。結果の判定は以下基準で実施し、◎,○,△が合格範囲、×が不合格である。
[Measurement method of physical properties]
Hereinafter, the configuration and effects of the present invention will be described more specifically with reference to examples. In addition, this invention is not limited to the following Example. Prior to describing each example, a method for measuring various physical properties will be described.
(1) Groove depth In the present invention, the groove depth is measured by the method shown in FIG. The groove depth is measured by measuring the unevenness formed on the bar surface while moving a non-contact displacement meter (15) using a contact displacement meter or laser light in the width direction of the measuring bar. The difference H1, H2,... Hn between peaks and bottoms is calculated sequentially from one end of the groove forming portion, and the average of five adjacent points is defined as the groove depth. That is, the i-th groove depth is an average value of Hi-2, Hi-1, Hi, Hi + 1, and Hi + 2 in FIG.
(2) Omission of coating In the slit process of the polyester film roll, with respect to the running film surface after unwinding the intermediate roll, the illumination intensity at the film position is 30,000 lx at an incident angle of 15 ° from an LED light source installed at a distance of 150 mm. Irradiated from the coating layer side, the specularly reflected light (reflected light having a reflection angle of 15 °) is set at a distance of 200 mm from the film, the resolution in the film flow direction speed is 50 m / min, the width direction is 0.16 mm, and the longitudinal direction The detection was performed by a CCD camera having a sensitivity of decomposing 0.12 mm, a pixel size of 10 μm, and detection light of 0.31 lx · s into 1024 gradations. The detected signal is differentiated in the longitudinal direction, and the number of defects having a size of 3 pixels in the width direction and 1 pixel in the longitudinal direction and a signal threshold after differentiation of 100 gradations or more is counted over 1000 m 2 . The average number of defects was converted to the number of defects per 10 m 2 area of the film. The number of coating defects was counted after the coating was sufficiently stabilized (2 hours after the start). The second decimal place is rounded off. Judgment of the results is carried out based on the following criteria: ◎, ○, Δ are acceptable ranges, and x are unacceptable.

◎:1.0ヶ/10m以下
○:1.0ヶ/10mを越えて2.0ヶ/10m以下
△:2.0ヶ/10mを越えて3.0ヶ/10m以下
×:3.0ヶ/10mを越える。
(3)塗布スジ
ポリエステルフィルムロールのスリット工程後において、製品ロールを1m切り出したフィルムのフィルム面に対して、距離40cmから32Wの三波長蛍光灯光源を入射角45°にて照射し、正面から観察して見える塗布スジの本数を塗布スジの本数を1m当たりに換算し、カウントした。結果の判定は以下基準で実施し、○が合格、×が不合格である。
◎: 1.0 piece / 10 m 2 or less ○: Exceed 1.0 piece / 10 m 2 to 2.0 piece / 10 m 2 or less △: Over 2.0 piece / 10 m 2 to 3.0 piece / 10 m 2 or less X: Over 3.0 pieces / 10 m 2
(3) Coating stripes After the slitting process of the polyester film roll, the film surface of the film obtained by cutting 1 m of the product roll was irradiated with a three-wavelength fluorescent light source having a distance of 40 cm to 32 W at an incident angle of 45 °, and from the front. The number of coating stripes that can be observed was counted by converting the number of coating stripes per 1 m 2 . Judgment of the result is carried out based on the following criteria, where ○ is acceptable and × is unacceptable.

○:0本/m
×:1本/m以上
(4)塗布端部の拡がり量
塗液の注入領域端部と塗液を塗布後、走行フィルム上の塗布端部の差を塗布拡がり量として測定した。結果の判定は以下基準で実施し、○、△が合格範囲、×が不合格である。
○: 0 / m 2
×: 1 line / m 2 or more (4) Spreading amount of coating end After coating the coating liquid injection region end and coating solution, the difference between the coating end on the running film was measured as the coating spreading amount. Judgment of the results is carried out on the basis of the following, where ◯ and Δ are acceptable ranges and x is unacceptable.

○:片側で30mm以内
△:片側で50mm以内
×:片側で70mm以上
各実施例・比較例で用いる樹脂等の調整法を参考例として示す。
[参考例1] ポリエステル樹脂(A)の調製
窒素ガス雰囲気下でジカルボン酸成分として2,6−ナフタレンジカルボン酸40モル部、テレフタル酸45モル部、5−スルホイソフタル酸ナトリウム5モル部、グリコール成分としてエチレングリコール95モル部、ジエチレングリコール5モル部をエステル交換反応器に仕込み、これにテトラブチルチタネート(触媒)を全ジカルボン酸成分100万重量部に対して100重量部添加して、160〜240℃で5時間エステル化反応を行った後、溜出液を取り除いた。
○: 30 mm or less on one side Δ: 50 mm or less on one side ×: 70 mm or more on one side The adjustment method for resins and the like used in each Example and Comparative Example is shown as a reference example.
[Reference Example 1] Preparation of polyester resin (A) As a dicarboxylic acid component in a nitrogen gas atmosphere, 40 mol parts of 2,6-naphthalenedicarboxylic acid, 45 mol parts of terephthalic acid, 5 mol parts of sodium 5-sulfoisophthalate, glycol component As a mixture, 95 mol parts of ethylene glycol and 5 mol parts of diethylene glycol were charged into a transesterification reactor, and 100 parts by weight of tetrabutyl titanate (catalyst) was added to 1 million parts by weight of all dicarboxylic acid components. The esterification reaction was carried out for 5 hours, and the distillate was removed.

その後、3価以上の多価カルボン酸成分であるトリメリット酸10モル部と、テトラブチルチタネートを更に全ジカルボン酸100万重量部に対して100重量部添加して、240℃で、反応物が透明になるまで溜出液を除いたのち、220〜280℃の減圧下において、重縮合反応を行い、ポリエステル樹脂(A)を得た。該ポリエステル樹脂のTgは80℃であった。
<ポリエステル樹脂(A)の組成>
(ジカルボン酸成分および多価カルボン酸成分)
・2,6−ナフタレンジカルボン酸 40モル部
・テレフタル酸 45モル部
・5−スルホイソフタル酸ナトリウム 5モル部
・トリメリット酸 10モル部
(グリコール成分)
・エチレングリコール 95モル部
・ジエチレングリコール 5モル部
[実施例1]
実質的に外部添加粒子を含有しないPETペレット(極限粘度0.63dl/g)を真空中160℃で4時間乾燥した後、押出機に供給し285℃で溶融押出を行った。ステンレス鋼繊維を焼結圧縮した平均目開き5μmのフィルターで、次いで平均目開き14μmのステンレス鋼粉体を焼結したフィルターで濾過した後、T字型口金よりシート状に押し出し、静電印加キャスト法を用いて表面温度20℃の鏡面キャスティングドラムに巻き付けて冷却固化せしめた。この未延伸フィルムを予熱ロールにて70℃に予熱後、上下方向からラジエーションヒーターを用いて90℃まで加熱しつつロール間の周速差を利用して長手方向に3.1倍延伸し、引き続き冷却ロールにて25℃まで冷却し、一軸配向(一軸延伸)フィルムとした。このフィルムの両面に空気中でコロナ放電処理を施し、フィルムの表面張力を55mN/mとした。
Thereafter, 10 parts by weight of trimellitic acid, which is a trivalent or higher polyvalent carboxylic acid component, and 100 parts by weight of tetrabutyl titanate with respect to 1 million parts by weight of all dicarboxylic acids were added. After removing the distillate until it became transparent, a polycondensation reaction was performed under reduced pressure at 220 to 280 ° C. to obtain a polyester resin (A). The Tg of the polyester resin was 80 ° C.
<Composition of polyester resin (A)>
(Dicarboxylic acid component and polycarboxylic acid component)
・ 40 mol part of 2,6-naphthalenedicarboxylic acid ・ 45 mol part of terephthalic acid ・ 5 mol part of sodium 5-sulfoisophthalate ・ 10 mol part of trimellitic acid (glycol component)
-Ethylene glycol 95 mol part-Diethylene glycol 5 mol part [Example 1]
PET pellets (extreme viscosity 0.63 dl / g) substantially free from externally added particles were dried in a vacuum at 160 ° C. for 4 hours, then supplied to an extruder and melt-extruded at 285 ° C. A stainless steel fiber is sintered and compressed with a filter having an average opening of 5 μm, and then a stainless steel powder with an average opening of 14 μm is filtered through a sintered filter, and then extruded into a sheet form from a T-shaped die and cast by applying electrostatic force. Using a method, it was wound around a mirror casting drum having a surface temperature of 20 ° C. and solidified by cooling. This unstretched film is preheated to 70 ° C. with a preheating roll, and then stretched 3.1 times in the longitudinal direction using the difference in peripheral speed between the rolls while heating up to 90 ° C. using a radiation heater from the top and bottom. It cooled to 25 degreeC with the cooling roll, and was set as the uniaxially oriented (uniaxial stretching) film. Both surfaces of the film were subjected to corona discharge treatment in air, and the surface tension of the film was 55 mN / m.

次いで、上記一軸延伸フィルムに図2もしくは図3に示した塗布装置を用いて片面に塗布した後、ローラによりフィルムを反転させ、図2もしくは図3に示した塗布装置と同じ仕様の装置を用いて同様に逆面に塗布することにより両面塗布をした。なお、計量バーは直径13mmでかつ、A領域、B領域およびC領域における溝部A、溝部Bおよび溝部Cのピッチが200μmのものを用い、中央部を幅方向にピッチ400mmで設置された回転可能な支持体で、さらに両端部はスムーズな回転が可能となるようベアリングで支持され、フィルムと接触する事でフィルムの走行により回転する方式とした。
<塗液>
ポリエステル樹脂固形分を100重量部とした時に以下成分を含有する、ポリエステル樹脂固形分換算の濃度が5.0%である水溶液。また、本塗液を加熱乾燥して得た樹脂固形物のぬれ張力は42mN/m、屈折率は1.58であった。
Next, after coating the uniaxially stretched film on one side using the coating apparatus shown in FIG. 2 or FIG. 3, the film is reversed by a roller, and the apparatus having the same specifications as the coating apparatus shown in FIG. 2 or 3 is used. Similarly, double-sided coating was carried out by coating on the opposite side. Note that the measuring bar has a diameter of 13 mm, and the groove A, the groove B, and the groove C in the A region, the B region, and the C region have a pitch of 200 μm, and the center portion can be rotated with a pitch of 400 mm in the width direction. Further, both ends are supported by bearings so that smooth rotation is possible, and the system rotates by running the film by contacting the film.
<Coating liquid>
An aqueous solution containing the following components when the polyester resin solid content is 100 parts by weight, and having a concentration in terms of polyester resin solid content of 5.0%. Moreover, the wetting tension of the resin solid obtained by heating and drying this coating liquid was 42 mN / m, and the refractive index was 1.58.

ポリエステル樹脂(A):100重量部
メラミン系架橋剤(三和ケミカル社(株)製“ニカラック”MW12LF):50重量部(固形分換算)
粒径140nmのコロイダルシリカ:1.5重量部
フッ素系界面活性剤(互応化学(株)社製“プラスコート”RY2):1.5重量部(固形分換算)
水系塗液を塗布した1軸延伸フィルムをクリップで把持してオーブン中にて雰囲気温度120℃で乾燥・予熱した。引き続き連続的に120℃の延伸ゾーンで幅方向に3.7倍延伸した。得られた二軸配向(二軸延伸)フィルムを引き続き230℃の加熱ゾーンで10秒間熱処理を実施後、230℃から120℃まで冷却しながら5%の弛緩処理を施し、続けて50℃まで冷却した。引き続き幅方向両端部を除去した後に巻き取った。なお、この時の巻き取り速度は50m/分であった。上記の様にして基材ポリエステルフィルムに、塗布層が積層された厚さ125μm、ヘイズ0.7%(JIS K7105(1981))の塗布フィルムを得た。
[実施例2〜12]
塗布装置および計量バー構成を表1の通りにした以外は実施例1と同様にして塗布フィルムを得た。また、得られたフィルムの特性について表1に示す。
[比較例1〜7]
塗布装置および計量バー構成を表1の通りにした以外は実施例1と同様にして塗布フィルムを得た。また、得られたフィルムの特性について表1に示す。
[まとめ]
実施例、比較例のまとめを、表1の記載をもとに以下に示す。塗液の注入・排出位置および計量バーの構成による影響を順に示す。
(塗液注入領域および塗布端部位置)
実施例1、比較例1〜4を比較することにより塗液注入・排出方法による差異を確認できる。塗液の注入領域および塗布端部位置が下の条件を満たした実施例1では塗布欠点、塗布スジ、塗布端拡がり量が良好なフィルムが得られた。
(a)計量バーのA領域の全領域と一部のB領域の一部にのみ塗液を注入すること。
(b)計量バーによって塗工された塗液の端部がC領域にあること。
Polyester resin (A): 100 parts by weight Melamine-based crosslinking agent (“Nikarak” MW12LF manufactured by Sanwa Chemical Co., Ltd.): 50 parts by weight (in terms of solid content)
Colloidal silica having a particle size of 140 nm: 1.5 parts by weight Fluorosurfactant (“Plus Coat” RY2 manufactured by Kyoyo Chemical Co., Ltd.): 1.5 parts by weight (in terms of solid content)
The uniaxially stretched film coated with the aqueous coating liquid was held with a clip and dried and preheated in an oven at an ambient temperature of 120 ° C. Subsequently, the film was continuously stretched 3.7 times in the width direction in a 120 ° C. stretching zone. The resulting biaxially oriented (biaxially stretched) film was subsequently heat treated for 10 seconds in a 230 ° C heating zone, then 5% relaxation treatment was applied while cooling from 230 ° C to 120 ° C, followed by cooling to 50 ° C. did. Subsequently, the film was wound up after removing both ends in the width direction. The winding speed at this time was 50 m / min. As described above, a coated film having a thickness of 125 μm and a haze of 0.7% (JIS K7105 (1981)) in which the coated layer was laminated on the base polyester film was obtained.
[Examples 2 to 12]
A coated film was obtained in the same manner as in Example 1 except that the coating apparatus and the measuring bar configuration were as shown in Table 1. The properties of the film obtained are shown in Table 1.
[Comparative Examples 1 to 7]
A coated film was obtained in the same manner as in Example 1 except that the coating apparatus and the measuring bar configuration were as shown in Table 1. The properties of the film obtained are shown in Table 1.
[Summary]
A summary of Examples and Comparative Examples is shown below based on the description in Table 1. The effects of the coating liquid injection / discharge position and the configuration of the measuring bar are shown in order.
(Coating solution injection area and coating end position)
By comparing Example 1 and Comparative Examples 1 to 4, the difference due to the coating liquid injection / discharge method can be confirmed. In Example 1 in which the coating liquid injection region and the coating end position satisfied the following conditions, a film having good coating defects, coating streaks, and coating end spread amount was obtained.
(A) Injecting the coating liquid only in the entire area A and part of the area B of the measuring bar.
(B) The end portion of the coating liquid applied by the measuring bar is in the C region.

一方、A領域に塗液を注入し、塗布端部がAもしくはB領域であった場合は塗布欠点および塗布スジが悪化する結果であった(比較例1および2)。これは塗布端部に計量バーの溝があったため、塗液端部で気泡を噛みこんだためと考えられる。また、A、BおよびC領域に塗液を注入し、C領域において塗布端が存在した比較例3および4では塗布欠点は満足な塗布フィルムが得られたが、塗液の拡がり量が大きくなりすぎ、後工程の汚染やフィルムが破れる等の問題があった。
(計量バーの構成)
計量バーの構成による差異は実施例10〜12と比較例5〜7を比較することにより、差異を確認できる。B領域の溝深さを浅くした場合、塗布拡がりが大きくなる傾向であったが(実施例11)、溝を設けない場合は塗液の拡がり量が大きくなりすぎ、後工程の汚染した(比較例5)。また、B領域の溝深さを深くした場合、塗布欠点・塗布スジは発生しやすい傾向であったが(実施例12)、深くしすぎた場合は塗布欠点が多くなり、不合格レベルであった(比較例6)。さらにC領域には溝を形成しても、塗布欠点、塗布スジは合格レベルであったが(実施例10)、C領域の溝を深くしすぎた場合は塗布欠点、塗布スジは不合格レベルであった(比較例7)。
On the other hand, when the coating liquid was injected into the A region and the coating end portion was the A or B region, the coating defect and the coating stripe were deteriorated (Comparative Examples 1 and 2). This is thought to be because bubbles were caught at the coating liquid end because there was a measuring bar groove at the coating end. In addition, in Comparative Examples 3 and 4 in which the coating solution was injected into the A, B, and C regions and the coating edge was present in the C region, a coating film with satisfactory coating defects was obtained, but the amount of spreading of the coating solution increased. However, there were problems such as contamination of the subsequent process and tearing of the film.
(Configuration of weighing bar)
The difference due to the configuration of the weighing bar can be confirmed by comparing Examples 10 to 12 and Comparative Examples 5 to 7. When the groove depth in the region B was reduced, the coating spread tended to increase (Example 11). However, when the groove was not provided, the amount of coating liquid spread was too large and contamination in the subsequent process (comparison) Example 5). Further, when the groove depth in the region B was increased, coating defects and coating stripes tended to occur (Example 12). However, when the depth was excessively deep, the coating defects increased, which was at a reject level. (Comparative Example 6). Further, even when grooves were formed in the C region, the coating defects and coating stripes were acceptable levels (Example 10), but when the grooves in the C region were too deep, the coating defects and coating stripes were unacceptable levels. (Comparative Example 7).

本発明に係る塗布フィルムの製造方法および塗布装置によれば、塗布層の欠陥が抑制された外観に優れた塗布フィルムを供給することが可能となる。本発明の係る塗布方法および塗布装置は、各種用途の塗布フィルムの製造に使用することが出来るが、LCD等のフラットパネルディスプレイ用途やタッチパネル用途などの表示材料や表面保護・加飾フィルムなどに使用されるハードコート積層用途に用いられる塗布フィルムの製造方法として、特に好適に使用することができる。   According to the coating film manufacturing method and the coating apparatus according to the present invention, it is possible to supply a coating film excellent in appearance in which defects in the coating layer are suppressed. The coating method and the coating apparatus according to the present invention can be used for the production of coating films for various uses, but are used for display materials, surface protection / decorative films, etc. for flat panel display applications such as LCDs and touch panel applications. It can be particularly preferably used as a method for producing a coated film used for a hard coat laminate application.

1 計量バー
2 溝深さHnAである溝部Aを有するA領域
3 溝深さHnBである溝部Bを有するB領域
4 溝深さHnCである溝部Cを有するC領域
5 基材フィルム
6 基材フィルムの進行方向
7 塗液供給部
8 塗布端規制板
9a 計量バー支持のためのコロ(上流側)
9b 計量バー支持のためのコロ(下流側)
10 計量バー上流側のカバー
11 計量バー下流側のカバー
12 塗液
13 塗液受けパン
14 両端部カバー
15 計量バー底部のカバー
16 変位計
DESCRIPTION OF SYMBOLS 1 Weighing bar 2 A area | region which has groove part A which is groove depth HnA 3 B area | region which has groove part B which is groove depth HnB 4 C area | region which has groove part C which is groove depth HnC 5 Base film 6 Base film Traveling direction 7 Coating liquid supply part 8 Coating end regulating plate 9a Roller for supporting the measuring bar (upstream side)
9b Roller for measuring bar support (downstream side)
10 Cover on the upstream side of the measuring bar 11 Cover on the downstream side of the measuring bar 12 Coating liquid 13 Coating liquid receiving pan 14 Covers on both ends 15 Cover on the bottom of the measuring bar 16 Displacement meter

Claims (6)

走行するフィルムの表面に塗布された塗液を計量またはスムージングするC領域、B領域、A領域、B領域、C領域の順で形成された計量バーを用いた塗布フィルムの製造方法であって、該計量バーの溝部は下記(式1)を満たし、さらに下記条件(a)および(b)を満たすことを特徴とする塗布フィルムの製造方法。
HnC<HnB<HnA・・・(式1)
ただし、HnC、HnB、HnAは、各領域における溝の深さである。
(a)計量バーのA領域の全領域とB領域の一部にのみ塗液を注入すること。
(b)計量バーによって塗工された塗液の端部がC領域にあること。
A method for producing a coated film using a weighing bar formed in the order of C region, B region, A region, B region, and C region for measuring or smoothing a coating liquid applied to the surface of a traveling film, The method for producing a coated film, wherein the groove portion of the measuring bar satisfies the following (formula 1) and further satisfies the following conditions (a) and (b).
HnC <HnB <HnA (Formula 1)
However, HnC, HnB, and HnA are the depths of the grooves in the respective regions.
(A) Injecting the coating liquid only to the entire area A and part of the area B of the measuring bar.
(B) The end portion of the coating liquid applied by the measuring bar is in the C region.
前記HnC、HnB、HnAが下記式を満足することを特徴とする計量バーを用いた請求項1に記載の塗布フィルムの製造方法。
HnC=0・・・(式2)
0.1*HnA<HnB<0.5*HnA・・・(式3)
The method for producing a coated film according to claim 1, wherein a weighing bar is used, wherein the HnC, HnB, and HnA satisfy the following formula.
HnC = 0 (Formula 2)
0.1 * HnA <HnB <0.5 * HnA (Formula 3)
前記HnAが下記式を満足することを特徴とする請求項1または2に記載の塗布フィルムの製造方法。
10μm<HnA<40μm・・・(式4)
The method for producing a coated film according to claim 1, wherein the HnA satisfies the following formula.
10 μm <HnA <40 μm (Formula 4)
前記B領域の幅が10mm〜30mmを満足することを特徴とする請求項1〜3のいずれかに記載の塗布フィルムの製造方法。   The width | variety of the said B area | region satisfies 10 mm-30 mm, The manufacturing method of the coating film in any one of Claims 1-3 characterized by the above-mentioned. 塗液注入領域の端部が計量バーのB領域とC領域の境界から5mm以上離れたB領域にあることを特徴とする1〜4のいずれかに記載の塗布フィルムの製造方法。   5. The method for producing a coated film according to any one of 1 to 4, wherein an end portion of the coating liquid injection region is in a B region that is 5 mm or more away from a boundary between the B region and the C region of the measuring bar. 供給される塗液供給量が1〜30L/min・mであり、フィルムの走行速度が10〜100m/minであることを特徴とする請求項1〜5のいずれかに記載の塗布フィルムの製造方法。   The coating film supply amount to be supplied is 1 to 30 L / min · m, and the traveling speed of the film is 10 to 100 m / min. The production of the coated film according to claim 1, Method.
JP2013065488A 2013-03-27 2013-03-27 Coating liquid-coating method, coating film-manufacturing method, and coating liquid-coating device Pending JP2014188424A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013065488A JP2014188424A (en) 2013-03-27 2013-03-27 Coating liquid-coating method, coating film-manufacturing method, and coating liquid-coating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013065488A JP2014188424A (en) 2013-03-27 2013-03-27 Coating liquid-coating method, coating film-manufacturing method, and coating liquid-coating device

Publications (1)

Publication Number Publication Date
JP2014188424A true JP2014188424A (en) 2014-10-06

Family

ID=51835321

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013065488A Pending JP2014188424A (en) 2013-03-27 2013-03-27 Coating liquid-coating method, coating film-manufacturing method, and coating liquid-coating device

Country Status (1)

Country Link
JP (1) JP2014188424A (en)

Similar Documents

Publication Publication Date Title
JP4491733B2 (en) Hard coat film
KR20110135930A (en) Slot die coating process
KR102205075B1 (en) Method for manufacturing optical film
TWI605879B (en) Roll coating process and apparatus
JP4955298B2 (en) Manufacturing method and apparatus for sheet-like material
JP5824931B2 (en) Coating liquid coating method and coating film manufacturing method
JP5522544B2 (en) Resin film roll and method for producing the same
JP2014188424A (en) Coating liquid-coating method, coating film-manufacturing method, and coating liquid-coating device
JP2014083796A (en) Method for producing polyester film
JP2006281531A (en) Auxiliary cooling device, manufacturing method of oriented polyester film using it and oriented polyester film roll
JP5364964B2 (en) Coating film drying method
JP6911336B2 (en) Film manufacturing method
JP2015145086A (en) polyester film roll
JP4835378B2 (en) Polyethylene terephthalate resin film roll and method for producing the same
JP2013071099A (en) Method of applying coating liquid, method of manufacturing coating film, and device for applying coating liquid
JP4117571B2 (en) Antireflection film
JP4229077B2 (en) Laminated thermoplastic resin film and method for producing the same
JP5155621B2 (en) Photocatalyst layer transfer carrier film
JP2022112003A (en) Coating apparatus and method for manufacturing film
JP7230571B2 (en) film roll
JP7338359B2 (en) Optical polyester film roll
CN110027153A (en) The manufacturing method of supporting mass, the manufacturing method of supporting mass and optical film
JP2006297829A (en) Laminated thermoplastic resin film and its manufacturing method
JP2012091496A (en) Laminated polyester film roll and method of manufacturing the same
WO2019123979A1 (en) Biaxially oriented multilayer film