JP2014183056A - Magnetic material, process of manufacturing the same, and coating liquid used for manufacturing - Google Patents

Magnetic material, process of manufacturing the same, and coating liquid used for manufacturing Download PDF

Info

Publication number
JP2014183056A
JP2014183056A JP2013054481A JP2013054481A JP2014183056A JP 2014183056 A JP2014183056 A JP 2014183056A JP 2013054481 A JP2013054481 A JP 2013054481A JP 2013054481 A JP2013054481 A JP 2013054481A JP 2014183056 A JP2014183056 A JP 2014183056A
Authority
JP
Japan
Prior art keywords
magnetic material
magnetic
coercive force
magnetization
silicon oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013054481A
Other languages
Japanese (ja)
Other versions
JP6225440B2 (en
Inventor
Matahiro Komuro
又洋 小室
Yuichi Satsu
祐一 佐通
Tetsushi Maruyama
鋼志 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2013054481A priority Critical patent/JP6225440B2/en
Priority to PCT/JP2014/057377 priority patent/WO2014148502A1/en
Publication of JP2014183056A publication Critical patent/JP2014183056A/en
Application granted granted Critical
Publication of JP6225440B2 publication Critical patent/JP6225440B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/12Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/16Metallic particles coated with a non-metal
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/14Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silica
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/624Sol-gel processing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/74Ceramic products containing macroscopic reinforcing agents containing shaped metallic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/44Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of magnetic liquids, e.g. ferrofluids
    • H01F1/445Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of magnetic liquids, e.g. ferrofluids the magnetic component being a compound, e.g. Fe3O4
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3272Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3275Cobalt oxides, cobaltates or cobaltites or oxide forming salts thereof, e.g. bismuth cobaltate, zinc cobaltite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/405Iron group metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/441Alkoxides, e.g. methoxide, tert-butoxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/443Nitrates or nitrites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/48Organic compounds becoming part of a ceramic after heat treatment, e.g. carbonising phenol resins
    • C04B2235/483Si-containing organic compounds, e.g. silicone resins, (poly)silanes, (poly)siloxanes or (poly)silazanes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5454Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6565Cooling rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase

Abstract

PROBLEM TO BE SOLVED: To provide a magnetic material whose inflection point of a demagnetization curve is eliminated without reducing coercive force by using a material that contains no rare earth element.SOLUTION: The magnetic material includes: Fe- based particles 3 containing α-Fe or α-(Fe, Co); a ε phase 2 containing ε-FeOor ε-(Fe, Co)O; and aluminum-containing silicon oxide 1. The Fe- based particles 3 have an interface that is in contact with the ε phase 2, aluminum-containing silicon oxide 1, and such.

Description

本発明は、ε−Fe含有結晶を非磁性酸化物で結着した磁性材料及びその製造方法及びその製造に用いるコーティング液に関する。 The present invention relates to a magnetic material obtained by binding an ε-Fe 2 O 3 -containing crystal with a nonmagnetic oxide, a method for producing the magnetic material, and a coating liquid used for the production.

磁性材料には、軟磁性材料と硬磁性材料とがあり、磁石材料は硬磁性材料に分類される。特に、焼結磁石は、その高磁気特性のため、種々の磁気回路に適用されている。中でも、NdFeB系焼結磁石は、NdFe14B系結晶を主相とする高性能磁石であり、自動車、産業、発電機器、家電、医療、電子機器など広範囲の製品で使用され、その使用量が増加している。NdFeB系焼結磁石には、希土類元素であるNd以外に耐熱性確保のためにDyやTbなどの高価な重希土類元素が使用されている。この希土類元素は、希少であり、かつ、資源の偏在、資源保護等のため高騰しており、希土類元素使用量の削減に対する要求が高まっている。 Magnetic materials include soft magnetic materials and hard magnetic materials, and magnet materials are classified as hard magnetic materials. In particular, sintered magnets are applied to various magnetic circuits because of their high magnetic properties. Among them, NdFeB-based sintered magnets are high-performance magnets mainly composed of Nd 2 Fe 14 B-based crystals, and are used in a wide range of products such as automobiles, industry, power generation equipment, home appliances, medical equipment, and electronic equipment. The amount is increasing. In addition to Nd, which is a rare earth element, expensive heavy rare earth elements such as Dy and Tb are used for the NdFeB-based sintered magnet in order to ensure heat resistance. This rare earth element is scarce and has soared due to the uneven distribution of resources, protection of resources, and the like, and there is an increasing demand for reducing the amount of rare earth elements used.

上記のようなNdFeB系磁石に対し、希土類元素を使用せずに高保磁力が得られるε−Feが硬質磁性材として注目されている。 In contrast to the NdFeB magnets described above, ε-Fe 2 O 3 that can obtain a high coercive force without using rare earth elements has attracted attention as a hard magnetic material.

例えば、特許文献1には、ε−Fe結晶のFeサイトの一部がAlで置換された構造、及び、シリカ(SiO)がコートされた構造が開示されている。 For example, Patent Document 1 discloses a structure in which a part of the Fe site of the ε-Fe 2 O 3 crystal is substituted with Al and a structure in which silica (SiO 2 ) is coated.

ε−Feの飽和磁化及び残留磁化は小さいため、磁化を必要とする材料として用いるためには、高磁化を有するFe系磁性相との複合化が必要であり、Feを含む軟磁性相のコア部と、ε−Feで被覆した磁性材料の例が特許文献2に開示されている。 Since the saturation magnetization and residual magnetization of ε-Fe 2 O 3 are small, in order to use it as a material that requires magnetization, it must be combined with an Fe-based magnetic phase having high magnetization, and soft magnetism containing Fe An example of a magnetic material coated with a phase core and ε-Fe 2 O 3 is disclosed in Patent Document 2.

また、キュリー点を上昇させるためにFe以外の元素をε−Feに添加した材料の組成が特許文献3に開示されている。 Further, Patent Document 3 discloses a composition of a material in which an element other than Fe is added to ε-Fe 2 O 3 in order to raise the Curie point.

特開2008−060293号公報JP 2008-060293 A 特開2011−035006号公報JP 2011-035006 A 国際公開第2008/149785号International Publication No. 2008/149785

特許文献1においては、水酸化鉄沈殿の粒子表面にシランの加水分解によって生成したシリカがコーティングされ、その後の熱処理(950〜1150℃)によりシリカコーティング内の酸化反応が起こり、ε−Feが生成することが開示されている。 In Patent Document 1, silica produced by hydrolysis of silane is coated on the surface of iron hydroxide precipitated particles, and an oxidation reaction within the silica coating occurs by subsequent heat treatment (950 to 1150 ° C.), and ε-Fe 2 O 3 is produced.

ε−Feの減磁曲線(磁化曲線)は、特許文献1の図4に示されているように、保磁力が20kOeとなるが、磁場(H)ゼロ付近の曲線には変曲点がみられ、エネルギー積が低下する。 The demagnetization curve (magnetization curve) of ε-Fe 2 O 3 has a coercive force of 20 kOe as shown in FIG. 4 of Patent Document 1, but the curve near the magnetic field (H) zero is inflection. A dot is seen and the energy product decreases.

また、特許文献1においては、ε−FeのFeのサイトを一部Alで置換しているが、特許文献1の図3の結果から明らかなように、FeサイトへのAl置換は保磁力が低下する。 In Patent Document 1, the Fe site of ε-Fe 2 O 3 is partially substituted with Al. As is clear from the results of FIG. 3 of Patent Document 1, Al substitution to the Fe site is The coercive force decreases.

さらに、磁石性能の向上のためには、残留磁化を増加させることが必須である。   Furthermore, in order to improve the magnet performance, it is essential to increase the residual magnetization.

本発明の目的は、希土類元素を含まない材料を用いて、保磁力を低下させずに減磁曲線の変曲点を消失させた磁性材料を得ることにある。   An object of the present invention is to obtain a magnetic material in which the inflection point of the demagnetization curve is eliminated without reducing the coercive force, using a material that does not contain a rare earth element.

本発明の磁性材料は、α相を形成するFe系材料と、ε相を形成するFe系酸化物と、酸化ケイ素と、を含み、酸化ケイ素は、その結晶中にケイ素及び酸素以外の金属元素又は半金属元素を含み、α相は、ε相及び酸化ケイ素に接する界面を有することを特徴とする。   The magnetic material of the present invention includes an Fe-based material that forms an α phase, an Fe-based oxide that forms an ε phase, and silicon oxide, and the silicon oxide is a metal element other than silicon and oxygen in the crystal. Alternatively, it includes a metalloid element, and the α phase has an interface in contact with the ε phase and silicon oxide.

本発明によれば、希土類元素を使用しない高性能の磁石又は半硬質磁性材料が作製できる。これにより、資源セキュリティ向上及び低コスト化が図れ、応用製品の低コスト化が実現できる。   According to the present invention, a high-performance magnet or semi-hard magnetic material that does not use rare earth elements can be produced. Thereby, resource security improvement and cost reduction can be achieved, and cost reduction of applied products can be realized.

磁性材料の微細構造の例を示す模式図である。It is a schematic diagram which shows the example of the fine structure of a magnetic material. 磁性材料の微細構造の例を示す模式図である。It is a schematic diagram which shows the example of the fine structure of a magnetic material. 実施例1の磁性材料の製造工程を示すフローチャートである。3 is a flowchart showing a manufacturing process of a magnetic material of Example 1. 磁性材料の磁化と温度との関係を示すグラフである。It is a graph which shows the relationship between magnetization of a magnetic material, and temperature.

磁石としてフェライト磁石を超える性能を確保するためには、以下の条件が必要となる。   In order to ensure the performance exceeding the ferrite magnet as a magnet, the following conditions are required.

1)希土類元素を使用せず、磁化の値が大きいFe系材料とε−Feを複合化させること。 1) A rare earth element is not used and a Fe-based material having a large magnetization value and ε-Fe 2 O 3 are combined.

2)ε−Feの減磁曲線において保磁力の1/2以下の磁界範囲で変曲点がある軟磁性成分を形成しないこと。 2) Do not form a soft magnetic component having an inflection point in a magnetic field range of ½ or less of the coercive force in the demagnetization curve of ε-Fe 2 O 3 .

3)ε−Feのキュリー点が200℃以上であること。 3) The Curie point of ε-Fe 2 O 3 is 200 ° C. or higher.

本発明は、上記の課題を解決するものであり、主に次の手段を用いる。   The present invention solves the above problems, and mainly uses the following means.

1)Fe系材料とε−Feとの磁気的な結合を生じさせ、ε−Feの安定性を高める。そのために、磁化が100emu/gよりも大きいFe系材料とε−Feの磁化を部分的に結合させる。 1) A magnetic coupling between the Fe-based material and ε-Fe 2 O 3 is generated to enhance the stability of ε-Fe 2 O 3 . For this purpose, the magnetization of ε-Fe 2 O 3 is partially coupled to the Fe-based material having a magnetization larger than 100 emu / g.

2)軟磁性を示すFe系材料について、ε−Fe及び酸化ケイ素と界面を有するものとする。特に、酸化ケイ素(SiO)におけるケイ素のサイトの一部を、ケイ素よりも酸化物形成自由エネルギーの小さい元素であるAl、Ti、Mg、Ca及びZrで置換する。このような元素置換により、酸化ケイ素には酸素濃度の不均一性が導入され、酸素欠乏あるいは酸素濃化部から成長するε−Feの構造安定性が増し、ε−Feの減磁曲線において保磁力の1/2以下の磁界範囲で変曲点がある軟磁性成分が減少する。 2) An Fe-based material exhibiting soft magnetism has an interface with ε-Fe 2 O 3 and silicon oxide. In particular, a part of silicon sites in silicon oxide (SiO 2 ) is substituted with Al, Ti, Mg, Ca, and Zr, which are elements having a lower oxide formation free energy than silicon. Such element substitution introduces non-uniformity of oxygen concentration into silicon oxide, increases the structural stability of ε-Fe 2 O 3 grown from oxygen deficient or oxygen-enriched portions, and ε-Fe 2 O 3 In the demagnetization curve, a soft magnetic component having an inflection point decreases in a magnetic field range of ½ or less of the coercive force.

本発明の具体的な手法は実施例に記載するが、磁気特性が向上した代表的なFe/SiO系磁石の特徴を以下に示す。 Specific methods of the present invention will be described in Examples, but the characteristics of typical Fe / SiO 2 magnets with improved magnetic characteristics are shown below.

1)SiOのSiサイトの一部がAl、Ti、Mg、Ca及びZrのうち少なくとも一種の元素で置換されていること。 1) Part of the Si site of SiO 2 is substituted with at least one element of Al, Ti, Mg, Ca, and Zr.

2)上記SiOとε−Feとが界面を介して接触していること。 2) The SiO 2 and ε-Fe 2 O 3 are in contact via an interface.

3)ε−Feの磁化よりも大きな磁化をもったFe系材料がε−Feと磁気的に結合していること。 3) ε-Fe 2 O Fe-based material ε-Fe 2 O 3 having a large magnetization than the magnetization of 3 and magnetically that bind to.

上記の特徴について更に詳しく説明する。   The above features will be described in more detail.

SiOのSiサイトの一部がAlなどの酸素と結合し易い元素で置換されると、SiOの中に酸素欠乏部が導入され、ε相(ε−Fe)の核発生サイトとなり、Fe粒子の表面をε相で被覆することが可能となる。 When a part of the Si site of SiO 2 is replaced with an element that easily binds to oxygen, such as Al, an oxygen-deficient part is introduced into SiO 2 and the nucleation site of the ε phase (ε-Fe 2 O 3 ) Thus, it becomes possible to coat the surface of the Fe particles with the ε phase.

Si以外の半金属元素や金属元素も、添加してSiの一部のサイトを置換可能であれば有効である。これらの元素のうち特に酸化鉄への拡散防止のために有効なものは、酸化物形成自由エネルギーが小さいAl、Ti、Mg、Ca及びZrである。   It is effective if metalloid elements and metal elements other than Si can be added to replace some sites of Si. Among these elements, those that are particularly effective for preventing diffusion into iron oxide are Al, Ti, Mg, Ca, and Zr, which have a low free energy for oxide formation.

これらの元素(Si置換元素)の添加量は、0.1〜20重量%が望ましい。添加量が0.1重量%未満の場合、その効果が表れない。一方、添加量が20重量%を超えると、ε相以外の鉄酸化物が成長し、減磁曲線の制御が困難となる。また、添加量が20重量%を超えると、一部の添加元素が酸化鉄にも含まれるようになり、保磁力や残留磁化が減少する。   The addition amount of these elements (Si-substituted elements) is preferably 0.1 to 20% by weight. When the addition amount is less than 0.1% by weight, the effect does not appear. On the other hand, when the addition amount exceeds 20% by weight, iron oxides other than the ε phase grow, and it becomes difficult to control the demagnetization curve. On the other hand, when the added amount exceeds 20% by weight, some of the added elements are included in the iron oxide, and the coercive force and the residual magnetization are reduced.

Fe系材料としては、bcc構造のα−FeやFe−Co合金の他、Fe−Ni、Fe−Cr、Fe−Al、Fe−Mg、Fe−Zr合金など、20℃で50〜250emu/gの飽和磁化を示す強磁性又はフェリ磁性を有する合金を使用することができる。50emu/g未満の飽和磁化では、磁化増加のために必要な体積が増加し、磁気的結合による保磁力制御が困難となる。   Fe-based materials include α-Fe and Fe—Co alloys having a bcc structure, Fe—Ni, Fe—Cr, Fe—Al, Fe—Mg, Fe—Zr alloys, etc., and 50 to 250 emu / g at 20 ° C. It is possible to use an alloy having a ferromagnetic or ferrimagnetic property that exhibits a saturation magnetization of. When the saturation magnetization is less than 50 emu / g, the volume necessary for increasing the magnetization increases, and it becomes difficult to control the coercive force by magnetic coupling.

以下、本発明の特徴をまとめて記載する。   Hereinafter, the features of the present invention will be described together.

本発明の磁性材料は、α−Fe又はα−(Fe,Co)と、ε−Fe又はε−(Fe,Co)と、酸化ケイ素と、を含み、酸化ケイ素は、その結晶中にケイ素及び酸素以外の金属元素又は半金属元素を含み、α−Fe又はα−(Fe,Co)は、ε−Fe又はε−(Fe,Co)、及び酸化ケイ素に接する界面を有することを特徴とする。 The magnetic material of the present invention includes α-Fe or α- (Fe, Co), ε-Fe 2 O 3 or ε- (Fe, Co) 2 O 3 and silicon oxide. The crystal contains a metal element or metalloid element other than silicon and oxygen, α-Fe or α- (Fe, Co) is ε-Fe 2 O 3 or ε- (Fe, Co) 2 O 3 , and It has an interface in contact with silicon oxide.

上記の金属元素又は半金属元素は、Al、Mg、Zr、Ti、Ca及びBaからなる群から選択されることが望ましい。   The metal element or metalloid element is preferably selected from the group consisting of Al, Mg, Zr, Ti, Ca, and Ba.

上記の金属元素又は半金属元素の濃度は、0.1〜20重量%であることが望ましい。   The concentration of the metal element or metalloid element is preferably 0.1 to 20% by weight.

α−Fe又はα−(Fe,Co)は、粒子状であり、形状異方性を有していることが望ましい。   α-Fe or α- (Fe, Co) is preferably in the form of particles and has shape anisotropy.

上記の界面のうちα−Fe又はα−(Fe,Co)とε−Fe又はε−(Fe,Co)とが接する部分の割合は、30〜98%であることが望ましい。 The ratio of the portion where α-Fe or α- (Fe, Co) and ε-Fe 2 O 3 or ε- (Fe, Co) 2 O 3 are in contact with each other is 30 to 98%. desirable.

本発明の磁性材料の製造方法は、ε−Fe又はε−(Fe,Co)の原料である鉄を含む塩と、酸化ケイ素の原料である有機金属化合物と、金属元素又は半金属元素の原料と、を混合した溶液(コーティング液)を用い、α−Fe又はα−(Fe,Co)の表面を上記の溶液で被覆し、加熱することを特徴とする。 The method for producing a magnetic material of the present invention includes a salt containing iron that is a raw material of ε-Fe 2 O 3 or ε- (Fe, Co) 2 O 3 , an organometallic compound that is a raw material of silicon oxide, and a metal element Alternatively, using a solution (coating solution) mixed with a raw material of a metalloid element, the surface of α-Fe or α- (Fe, Co) is coated with the above solution and heated.

本発明の磁性材料の製造方法は、ε−Fe又はε−(Fe,Co)の原料である鉄を含む塩と、酸化ケイ素の原料である有機金属化合物と、を混合した溶液を用い、ゲル化し、加熱することによりε−Fe又はε−(Fe,Co)を形成し、これを金属元素又は半金属元素の原料であるフッ化物溶液で被覆し、加熱することによりε−Fe又はε−(Fe,Co)の一部を脱酸し、α−Fe又はα−(Fe,Co)を形成してもよい。 In the method for producing a magnetic material of the present invention, a salt containing iron which is a raw material of ε-Fe 2 O 3 or ε- (Fe, Co) 2 O 3 and an organometallic compound which is a raw material of silicon oxide are mixed. The solution is gelled and heated to form ε-Fe 2 O 3 or ε- (Fe, Co) 2 O 3 and coated with a fluoride solution that is a raw material of a metal element or a metalloid element Then, by heating, a part of ε-Fe 2 O 3 or ε- (Fe, Co) 2 O 3 may be deoxidized to form α-Fe or α- (Fe, Co).

以下、実施例を用いて詳細に説明する。なお、本発明は、ここで取り上げた実施例に限定されることはなく、発明の技術的思想を逸脱しない範囲で適宜組み合わせや改良が可能である。   Hereinafter, it demonstrates in detail using an Example. It should be noted that the present invention is not limited to the embodiments taken up here, and can be appropriately combined and improved without departing from the technical idea of the invention.

図2は、本実施例の磁性材料の製造工程を示すフローチャートである。   FIG. 2 is a flowchart showing the manufacturing process of the magnetic material of this example.

硝酸鉄とテトラエチルオルトシランと水とを混合する(S101)。硝酸鉄の割合は、最終生成物であるFeが重量基準でSiOに対して80%となるようにする。テトラエチルオルトシランと水との混合比は1:1である。 Iron nitrate, tetraethylorthosilane, and water are mixed (S101). The proportion of iron nitrate is such that the final product Fe 2 O 3 is 80% based on weight with respect to SiO 2 . The mixing ratio of tetraethylorthosilane and water is 1: 1.

これに、エチルアルコールを均質な溶液になるように適当量加える(S102)。   An appropriate amount of ethyl alcohol is added to this so as to form a homogeneous solution (S102).

この溶液にアルミニウムエトキシドを10%、粒径50nmのFeナノ粒子を10wt%添加する(S103)。その後、ゲル化し、乾燥した後(S104)、1200℃で3時間加熱し、その温度を保持する(S105)。その後、2℃/分の冷却速度で冷却する。   10% aluminum ethoxide and 10 wt% Fe nanoparticles with a particle size of 50 nm are added to this solution (S103). Then, after gelatinizing and drying (S104), it heats at 1200 degreeC for 3 hours, and hold | maintains the temperature (S105). Thereafter, it is cooled at a cooling rate of 2 ° C./min.

S105の加熱処理により、Feナノ粒子の表面にε−Feが成長する。Feナノ粒子の中心部は、bcc(体心立方晶)構造のFeで構成され、Feナノ粒子の表面に形成されたε−Feは、斜方晶構造を有する。(Si,Al)Oは、一部非晶質で複数の結晶構造を有する。 By the heat treatment in S105, ε-Fe 2 O 3 grows on the surface of the Fe nanoparticles. The central part of the Fe nanoparticle is composed of Fe having a bcc (body-centered cubic) structure, and ε-Fe 2 O 3 formed on the surface of the Fe nanoparticle has an orthorhombic structure. (Si, Al) O 2 is partially amorphous and has a plurality of crystal structures.

図1Aは、作製した磁性材料の微細構造を模式的に示したものである。   FIG. 1A schematically shows the microstructure of the produced magnetic material.

本図において、Fe系粒子3(Feナノ粒子(α−Fe))の表面には、酸化鉄(III)のε相2(ε−Fe)が成長する。Fe系粒子3は、ε相2と接する界面を有している。これらの外側には、含アルミニウム酸化ケイ素1((Si,Al)O)が形成されている。 In this figure, the ε phase 2 (ε-Fe 2 O 3 ) of iron (III) oxide grows on the surface of Fe-based particles 3 (Fe nanoparticles (α-Fe)). The Fe-based particle 3 has an interface in contact with the ε phase 2. Aluminum-containing silicon oxide 1 ((Si, Al) O 2 ) is formed outside these.

本図の場合、Fe系粒子3の大部分がε相2で覆われている。   In the case of this figure, most of the Fe-based particles 3 are covered with the ε phase 2.

アルミニウムエトキシドを添加することにより作製した上記の磁性材料は、α−Feの成長が抑制され、α−Fe(bcc構造のFe)とε−Feとが磁気的に結合する。そして、20℃で測定した減磁曲線には、保磁力の1/2以下の磁界範囲で変曲点がみられない。これに対して、アルミニウムエトキシドを添加しない場合には、ε相(ε−Fe)以外の酸化鉄が成長し、Fe及びε−Fe以外のα−Fe/α−Feなどの界面が形成され、α−Feの磁化反転が容易に起こるようになる。 In the above magnetic material prepared by adding aluminum ethoxide, the growth of α-Fe 2 O 3 is suppressed, and α-Fe (Fe of bcc structure) and ε-Fe 2 O 3 are magnetically coupled. To do. And in the demagnetization curve measured at 20 degreeC, an inflexion point is not seen in the magnetic field range below 1/2 of a coercive force. In contrast, when aluminum ethoxide is not added, iron oxide other than the ε phase (ε-Fe 2 O 3 ) grows, and α-Fe / α-Fe other than Fe and ε-Fe 2 O 3. An interface such as 2 O 3 is formed, and α-Fe magnetization reversal occurs easily.

図3は、アルミニウムエトキシドを添加した場合及び添加していない場合のフェリ磁性部(ε−Fe)の磁化の温度依存性について測定した結果を示したものである。 FIG. 3 shows the measurement results of the temperature dependence of the magnetization of the ferrimagnetic part (ε-Fe 2 O 3 ) with and without the addition of aluminum ethoxide.

図中、曲線(1)がアルミニウムを添加していない場合であり、曲線(2)が10%添加した場合である。   In the figure, curve (1) is a case where aluminum is not added, and curve (2) is a case where 10% is added.

本図から、以下のことがわかる。   From this figure, the following can be understood.

アルミニウムを添加しても、キュリー点は大きく変わらない。一方、添加したことにより、ε−Fe以外の酸化鉄の成長が抑制されるため、キュリー点よりも30℃高温側において、アルミニウムを添加した磁性材料の磁化は、キュリー点よりも30℃低温側の磁化の1/10以下となる。これに対して、アルミニウムを添加していない場合(1)、250℃においても磁化が認められる。 Even if aluminum is added, the Curie point does not change significantly. On the other hand, since the addition suppresses the growth of iron oxides other than ε-Fe 2 O 3 , the magnetization of the magnetic material to which aluminum is added is 30 ° higher than the Curie point on the 30 ° C. higher temperature side than the Curie point. 1/10 or less of the magnetization on the low temperature side. On the other hand, when aluminum is not added (1), magnetization is observed even at 250 ° C.

また、減磁曲線には、0.5kOe未満の負磁界側において磁界変曲点として測定される。これは、軟磁性酸化物が形成されるためと考える。   The demagnetization curve is measured as a magnetic field inflection point on the negative magnetic field side of less than 0.5 kOe. This is considered because a soft magnetic oxide is formed.

上記条件で作製した(Si,Al)OがFeとε−Feとの複合粒子を結着した材料は、残留磁化60emu/g、保磁力17kOe、ε−Feにおけるキュリー点が205℃であり、レアメタルを使用しない磁石として各種家電・産業機器に適用できる。 The material in which (Si, Al) O 2 produced under the above conditions binds composite particles of Fe and ε-Fe 2 O 3 is a residual magnetization of 60 emu / g, a coercive force of 17 kOe, and a Curie in ε-Fe 2 O 3 . A point is 205 degreeC and it can apply to various household appliances and industrial equipment as a magnet which does not use a rare metal.

図1Bは、本実施例においてアルミニウムエトキシドを10%から1%に変えた場合の組織を示したものである。   FIG. 1B shows the structure when the aluminum ethoxide is changed from 10% to 1% in this example.

本図において、含アルミニウム酸化ケイ素1の相の内部にもε相2が形成される。ε相2は、Fe系粒子3と含アルミニウム酸化ケイ素1との間にも成長する。ε相2によるFe系粒子3の被覆率は50〜90%であるが、保磁力は16kOeとなる。   In this figure, the ε phase 2 is also formed inside the aluminum-containing silicon oxide 1 phase. The ε phase 2 also grows between the Fe-based particles 3 and the aluminum-containing silicon oxide 1. The coverage of the Fe-based particles 3 by the ε phase 2 is 50 to 90%, but the coercive force is 16 kOe.

なお、本図に示すように、Fe系粒子3を覆うε相2の形状は、滑らかなドーム形状、滑らかな楕円形状、粗く凹凸を有する形状、先端部が尖った針状等の場合がある。   As shown in the figure, the shape of the ε phase 2 covering the Fe-based particles 3 may be a smooth dome shape, a smooth ellipse shape, a rough and uneven shape, a needle shape with a sharp tip, or the like. .

フェライト磁石を超える性能を有する材料とするためには、Feナノ粒子の粒径を50〜100nmとし、粒子中心付近のFeの体積率を20〜70%の範囲で形成することが必要となる。   In order to obtain a material having performance exceeding that of the ferrite magnet, it is necessary that the Fe nanoparticle has a particle size of 50 to 100 nm and the volume ratio of Fe near the particle center is in the range of 20 to 70%.

実施例1と同様に、硝酸鉄とテトラエチルオルトシランと水とを混合する。硝酸鉄の割合は、最終生成物であるFeが重量基準でSiOに対して80%となるようにする。 As in Example 1, iron nitrate, tetraethylorthosilane, and water are mixed. The proportion of iron nitrate is such that the final product Fe 2 O 3 is 80% based on weight with respect to SiO 2 .

これに、硫酸カリウムアルミニウムを10%、粒径50nmのFe−10wt%Coナノ粒子を20wt%添加する。その後、1kOeの磁場中でゲル化し、水洗した後、乾燥する。その後、1200℃で3時間加熱し、その温度を保持する。その後、2℃/分の冷却速度で冷却する。   To this, 10% potassium aluminum sulfate and 20 wt% Fe-10 wt% Co nanoparticles with a particle size of 50 nm are added. Thereafter, it is gelled in a magnetic field of 1 kOe, washed with water, and dried. Then, it heats at 1200 degreeC for 3 hours, and maintains the temperature. Thereafter, it is cooled at a cooling rate of 2 ° C./min.

加熱処理により、Fe−10wt%Coナノ粒子の表面にε−Feが成長する。Fe−10wt%Co粒子の中心部は、bcc(体心立方晶)構造のFe−10wt%Coで構成され、当該ナノ粒子の表面に形成されたε−Feは、斜方晶構造を有する。(Si,Al)Oは、一部非晶質で複数の結晶構造を有する。 By the heat treatment, ε-Fe 2 O 3 grows on the surface of Fe-10 wt% Co nanoparticles. The central part of Fe-10 wt% Co particles is composed of b -10 (body centered cubic) Fe-10 wt% Co, and ε-Fe 2 O 3 formed on the surface of the nanoparticles has an orthorhombic structure. Have (Si, Al) O 2 is partially amorphous and has a plurality of crystal structures.

硫酸カリウムアルミニウムを添加することにより作製した上記の磁性材料は、α−Feの成長が抑制され、Coを含有するα−Feとε−Feとが磁気的に結合する。そして、20℃で測定した減磁曲線には、保磁力の1/2以下の磁界範囲で変曲点がみられない。これに対して、硫酸カリウムアルミニウムを添加しない場合には、ε相(ε−Fe)以外の酸化鉄が成長し、Fe及びε−Fe以外のα−Fe/α−Feなどの界面が形成され、α−Feの磁化反転が容易に起こるようになる。 In the above-mentioned magnetic material produced by adding potassium aluminum sulfate, the growth of α-Fe 2 O 3 is suppressed, and α-Fe containing Co and ε-Fe 2 O 3 are magnetically coupled. And in the demagnetization curve measured at 20 degreeC, an inflexion point is not seen in the magnetic field range below 1/2 of a coercive force. In contrast, when potassium aluminum sulfate is not added, iron oxide other than the ε phase (ε-Fe 2 O 3 ) grows, and α-Fe / α-Fe other than Fe and ε-Fe 2 O 3. An interface such as 2 O 3 is formed, and α-Fe magnetization reversal occurs easily.

上記条件で作製した(Si,Al)Oがα−Feとε−Feとの複合粒子を結着した材料は、残留磁化80emu/g、保磁力18kOe、ε−Feのキュリー点が225℃であり、レアメタルを使用しない磁石として各種家電・産業機器に適用できる。 The material in which (Si, Al) O 2 produced under the above conditions binds composite particles of α-Fe and ε-Fe 2 O 3 has a residual magnetization of 80 emu / g, a coercive force of 18 kOe, and ε-Fe 2 O 3. The Curie point is 225 ° C. and can be applied to various home appliances and industrial equipment as a magnet not using rare metals.

本実施例において、(Si,Al)O及びε−Feのα−Feを含有しない部分のキュリー温度は、上記のように225℃となるが、Alを添加していない場合、キュリー点の30℃高温側でも磁化が検出される。このキュリー点より高温側の磁化は、軟磁性酸化物が残留していることを示している。軟磁性酸化物は、α−Fe表面にも形成されるため、保磁力低下の要因となる。したがって、ε−Fe以外の酸化鉄の成長を抑制させることが必要である。 In this example, the Curie temperature of (Si, Al) O 2 and ε-Fe 2 O 3 not containing α-Fe is 225 ° C. as described above, but when Al is not added, Magnetization is detected even at the 30 ° C. high temperature side of the Curie point. The magnetization on the higher temperature side than the Curie point indicates that the soft magnetic oxide remains. Since the soft magnetic oxide is also formed on the α-Fe surface, it causes a reduction in coercive force. Therefore, it is necessary to suppress the growth of iron oxides other than ε-Fe 2 O 3 .

Alの添加により、ε−Fe以外の酸化鉄の成長は抑制され、ε−Fe以外の酸化鉄(α−Feなど)の磁化を20℃で1/10未満にすることができる。ε−Fe以外の酸化鉄(α−Feなど)の磁化が20℃で1/10以上の場合には、減磁曲線に軟磁性成分が重なった変曲点が認められ、磁石特性である最大エネルギー積が低下する。 By adding Al, the growth of iron oxides other than ε-Fe 2 O 3 is suppressed, and the magnetization of iron oxides other than ε-Fe 2 O 3 (α-Fe 2 O 3 etc.) is less than 1/10 at 20 ° C. Can be. When the magnetization of iron oxide other than ε-Fe 2 O 3 (such as α-Fe 2 O 3 ) is 1/10 or more at 20 ° C., an inflection point where soft magnetic components overlap on the demagnetization curve is observed. As a result, the maximum energy product, which is a magnet characteristic, is reduced.

テトラエチルオルトシラン、水及びエチルアルコールを1:6:6のモル比で混合する。その後、硝酸鉄をFeの重量が30重量%となるように混合する。 Tetraethylorthosilane, water and ethyl alcohol are mixed in a molar ratio of 1: 6: 6. Thereafter, iron nitrate is mixed so that the weight of Fe 2 O 3 is 30% by weight.

これに、アルミニウムエトキシドを1重量%、粒径1μmのFe粒子を10wt%添加する。その後、ゲル化し、80℃で乾燥した後、大気中、1300℃で10時間加熱し、その温度を保持する。その後、2℃/分の冷却速度で冷却する。   To this, 1 wt% of aluminum ethoxide and 10 wt% of Fe particles having a particle diameter of 1 μm are added. Then, after gelatinizing and drying at 80 degreeC, it heats at 1300 degreeC in air | atmosphere for 10 hours, and maintains the temperature. Thereafter, it is cooled at a cooling rate of 2 ° C./min.

得られた試料を60kOeで着磁した後、磁気特性を評価した結果、残留磁束密度0.6T、保磁力11kOeの等方性磁石が得られた。20℃で測定した減磁曲線には、保磁力の1/2以下の磁界において変曲点が認められない。交流消磁などの消磁により、減磁曲線の低磁界(1kOe以下)に変曲点を伴って軟磁性成分が認められるようになる。   The obtained sample was magnetized at 60 kOe, and the magnetic characteristics were evaluated. As a result, an isotropic magnet having a residual magnetic flux density of 0.6 T and a coercive force of 11 kOe was obtained. In the demagnetization curve measured at 20 ° C., no inflection point is observed in a magnetic field of ½ or less of the coercive force. Due to demagnetization such as AC demagnetization, a soft magnetic component is recognized with an inflection point in a low magnetic field (1 kOe or less) of a demagnetization curve.

本実施例のような残留磁束密度0.6T以上、保磁力10kOe以上の磁気特性を満足する磁石を得るためには、以下の条件が必要となる。   In order to obtain a magnet that satisfies the magnetic characteristics of a residual magnetic flux density of 0.6 T or more and a coercive force of 10 kOe or more as in this embodiment, the following conditions are required.

1)テトラエチルオルトシラン、水、エチルアルコール、硝酸鉄及びSi以外の元素を含有する有機金属を添加した溶液を使用したゲル化プロセスを採用する。   1) A gelling process using a solution to which an organic metal containing an element other than tetraethylorthosilane, water, ethyl alcohol, iron nitrate and Si is added is employed.

2)ゲル化前に100emu/g以上の飽和磁化を有する強磁性粒子を混合・分散させる。   2) Mix and disperse ferromagnetic particles having a saturation magnetization of 100 emu / g or more before gelation.

3)強磁性粒子の表面に高保磁力の酸化鉄を成長させ、表面から強磁性粒子の内部にかけて成長させる。   3) Iron oxide having a high coercive force is grown on the surface of the ferromagnetic particle and grown from the surface to the inside of the ferromagnetic particle.

4)磁石を構成する主な相は、(Si,Al)O、ε−Fe及びα−Feであり、添加されたAlは、他の鉄酸化物(α−Fe、γ−Feなど)の成長を抑制し、保磁力及び残留磁束密度の増加に寄与する。このような石英のSi位置を置換するAlの添加効果は、添加量0.1重量%で認められるが、添加量が30重量%より多い場合、Alを含有する低保磁力鉄酸化物の成長を促し、磁気特性が低下する。 4) The main phases constituting the magnet are (Si, Al) O 2 , ε-Fe 2 O 3 and α-Fe, and the added Al is another iron oxide (α-Fe 2 O 3 , Γ-Fe 2 O 3, etc.), and contributes to an increase in coercive force and residual magnetic flux density. The effect of adding Al to replace the Si position of quartz is observed at an addition amount of 0.1% by weight, but when the addition amount is more than 30% by weight, the growth of low coercivity iron oxide containing Al is achieved. And the magnetic properties are reduced.

本実施例のようなSiO中のSiサイトの一部を他の元素で置換して磁気特性の向上が認められた添加元素は、Al、Mg、Zr、Ti、Ca及びBaである。また、SiO/ε−Fe界面近傍(界面中心から10nm以内の領域)には、Fe、Si及びO以外の元素が偏在し、ε−Feの磁化反転を抑制する効果がある。 Additive elements whose magnetic properties have been improved by substituting a part of the Si site in SiO 2 as in this embodiment are Al, Mg, Zr, Ti, Ca and Ba. Further, in the vicinity of the SiO 2 / ε-Fe 2 O 3 interface (region within 10 nm from the interface center), elements other than Fe, Si and O are unevenly distributed, and the effect of suppressing magnetization reversal of ε-Fe 2 O 3 There is.

ゲル化前の溶液中の硝酸鉄濃度が小さい場合、酸化鉄の核発生サイト数が減少し、混合したFe粒子表面を酸化鉄で十分に被覆することが困難である。残留磁束密度0.6T以上とするためには、酸化鉄の表面被覆率を30%以上とすることが望ましい。   When the concentration of iron nitrate in the solution before gelation is small, the number of iron oxide nucleation sites decreases, and it is difficult to sufficiently coat the mixed Fe particle surface with iron oxide. In order to obtain a residual magnetic flux density of 0.6 T or more, it is desirable that the surface coverage of iron oxide be 30% or more.

酸化鉄の核発生サイトをFe粒子の表面近傍に集中させるためには、α−Fe粒子のキュリー点以下の温度で磁場印加することが有効である。これにより、Fe粒子の磁場配向と酸化鉄の被覆率向上が実現でき、被覆率は最高で98%とすることが可能である。したがって、本工程では、α−Fe粒子表面のε−Fe被覆率は、30〜98%であることが望ましい。 In order to concentrate the iron oxide nucleation sites near the surface of the Fe particles, it is effective to apply a magnetic field at a temperature below the Curie point of the α-Fe particles. Thereby, the magnetic field orientation of the Fe particles and the iron oxide coverage can be improved, and the coverage can be set to 98% at the maximum. Therefore, in this step, the ε-Fe 2 O 3 coverage on the surface of the α-Fe particles is desirably 30 to 98%.

扁平形状のFe粉を金型に挿入し、10kOeの磁場中で扁平粉の長軸方向を磁場方向に平行になるように成形する。圧縮応力は、5t/cmである。これにより、密度6g/cmの圧粉成形体が形成される。 A flat Fe powder is inserted into a mold and shaped so that the major axis direction of the flat powder is parallel to the magnetic field direction in a magnetic field of 10 kOe. The compressive stress is 5 t / cm 2 . Thereby, a compacting body with a density of 6 g / cm 3 is formed.

圧粉成形体には、扁平形状のFe粉の長軸方向が磁場方向にほぼ平行になるように揃い、形状磁気異方性が認められる。この圧粉成形体には、連続気泡が形成されているため、液体を含浸することができる。含浸する液体は、テトラエチルオルトシラン、水及びエチルアルコールを1:6:6のモル比で混合した後、硝酸鉄をFeの重量が30重量%となるように混合したものである。この液体を真空含浸した後、乾燥する。その後、大気中で1300℃、10時間加熱し、その温度を保持した後、2℃/分の冷却速度で冷却する。 In the green compact, the long axis direction of the flat Fe powder is aligned so as to be substantially parallel to the magnetic field direction, and shape magnetic anisotropy is recognized. The green compact is formed with open cells, so that it can be impregnated with liquid. The liquid to be impregnated is a mixture of tetraethylorthosilane, water and ethyl alcohol mixed at a molar ratio of 1: 6: 6, and then mixed with iron nitrate so that the weight of Fe 2 O 3 is 30% by weight. The liquid is vacuum impregnated and then dried. Then, it heats at 1300 degreeC for 10 hours in air | atmosphere, After cooling the temperature, it cools with the cooling rate of 2 degreeC / min.

これを60kOeの磁界で圧粉成形体の作製の際に印加した磁場方向と同じ方向に着磁した結果、保磁力8kOe、残留磁束密度0.9Tの磁石が得られた。磁石には、α−Fe、Fe及びSiOが認められ、SiOとα−Feとの間にFeが成長する。SiOは、磁石の表面から反対側の表面まで連続して形成され、Feも連続して成長する。Feとα−Feとは、交換結合及び静磁結合によって互いの磁化がその動きを抑制するため、減磁曲線は単調であり、5〜20kOeの保磁力が発現する。 As a result of magnetizing this with the magnetic field of 60 kOe in the same direction as the magnetic field applied when the green compact was produced, a magnet with a coercive force of 8 kOe and a residual magnetic flux density of 0.9 T was obtained. Α-Fe, Fe 2 O 3 and SiO 2 are recognized in the magnet, and Fe 2 O 3 grows between SiO 2 and α-Fe. SiO 2 is formed continuously from the surface of the magnet to the opposite surface, and Fe 2 O 3 also grows continuously. Fe 2 O 3 and α-Fe have their demagnetization curves monotonous and exhibit a coercive force of 5 to 20 kOe because their mutual magnetization suppresses their movement by exchange coupling and magnetostatic coupling.

上記SiOにAlを1重量%添加し、Siと置換することにより、保磁力が0.5kOe増加する。 By adding 1% by weight of Al to the SiO 2 and replacing it with Si, the coercive force is increased by 0.5 kOe.

このような0.2〜2kOeの保磁力増大は、Al以外にP、K、Ca、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ga、Ge、As、Se、Sr、Y、Zr、Nb、Mo、Ag、In、Sn、Sb、Cs、Ba、La、Ce、Hf、Ta、W又はBiを0.2〜2%の範囲でSiOに添加することにより実現できる。添加剤には、有機金属を使用した。これらの添加元素の中で、残留磁束密度を0.05〜0.1T増加させ、かつ、保磁力を0.2〜2kOe増加できる添加元素は、Al、Ti、Mg、Ca及びZrである。 Such a coercive force increase of 0.2 to 2 kOe is not limited to Al but includes P, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, As, Se, and Sr. , Y, Zr, Nb, Mo, Ag, In, Sn, Sb, Cs, Ba, La, Ce, Hf, Ta, W or Bi added to SiO 2 in the range of 0.2-2% it can. An organic metal was used as the additive. Among these additive elements, additive elements that can increase the residual magnetic flux density by 0.05 to 0.1 T and increase the coercive force by 0.2 to 2 kOe are Al, Ti, Mg, Ca, and Zr.

粒径20nmのα−Fe粒子の表面に溶液による表面処理を使用してε−Feを成長させる。 Ε-Fe 2 O 3 is grown on the surface of α-Fe particles having a particle size of 20 nm using surface treatment with a solution.

溶液は、テトラエチルオルトシラン、水及びエチルアルコールを1:6:6のモル比で混合した後、硝酸鉄をFeの重量が20重量%となるように混合し、アルミニウムエトキシドを1重量%添加したものである。 The solution was prepared by mixing tetraethylorthosilane, water, and ethyl alcohol in a molar ratio of 1: 6: 6, then mixing iron nitrate so that the weight of Fe 2 O 3 was 20 wt%, and adding aluminum ethoxide to 1 Added by weight%.

上記α−Fe粒子の表面に当該溶液を塗布した後、80℃で乾燥し、Arガス雰囲気で1200℃、1時間加熱し、その温度を保持する。その後、1℃/分の冷却速度で冷却した。   After apply | coating the said solution to the surface of the said (alpha) -Fe particle | grain, it dries at 80 degreeC, heats at 1200 degreeC and 1 hour in Ar gas atmosphere, and maintains the temperature. Then, it cooled at the cooling rate of 1 degree-C / min.

α−Fe粒子の表面には、粒径約5nmのε−Feが成長する。ε−Feは、磁場10kOe未満では残留磁化が磁場とともに増加し、交流磁場によって消磁可能である。したがって、分散性が要求される場合は、ε−Feの保磁力及び残留磁化を小さくし、磁気捕集の際には、磁場印加により残留磁化及び保磁力を発現させる。 On the surface of the α-Fe particles, ε-Fe 2 O 3 having a particle size of about 5 nm grows. In ε-Fe 2 O 3 , the remanent magnetization increases with the magnetic field when the magnetic field is less than 10 kOe, and can be demagnetized by the alternating magnetic field. Therefore, when dispersibility is required, the coercive force and the remanent magnetization of ε-Fe 2 O 3 are reduced, and the remanent magnetization and the coercive force are expressed by applying a magnetic field during magnetic collection.

1kOeの磁場印加により、α−Fe/ε−Fe粒子の保磁力は、10Oeから2kOeに増加する。また、5kOeから交流減衰磁場を印加して保磁力を10Oeに戻すことが可能である。このような酸化鉄の保磁力制御により、粒子の分散性と磁気捕集性を両立することが可能であり、ライフサイエンス分野において、細胞、蛋白質、核酸またはその他の生体物質の定量分析、定性分析、分離および精製などの種々の用途に用いることができる。また、α−Fe/ε−Fe粒子は、標的物質(目的とする生体物質)を検出するためのマーカーとして用いることもできる。 By applying a magnetic field of 1 kOe, the coercivity of the α-Fe / ε-Fe 2 O 3 particles increases from 10 Oe to 2 kOe. Moreover, it is possible to return the coercive force to 10 Oe by applying an AC attenuation magnetic field from 5 kOe. By controlling the coercive force of iron oxide, it is possible to achieve both particle dispersibility and magnetic scavenging. In the life science field, quantitative analysis and qualitative analysis of cells, proteins, nucleic acids or other biological substances It can be used for various applications such as separation and purification. The α-Fe / ε-Fe 2 O 3 particles can also be used as a marker for detecting a target substance (target biological substance).

硝酸鉄とテトラエチルオルトシランと水とを混合する。硝酸鉄の割合は、最終生成物であるFeが重量基準でSiOに対して80%となるようにする。これに、硫酸カリウムマグネシウムを10%、粒径50nmのFe−10wt%Coナノ粒子を20wt%添加する。その後、1kOeの磁場中でゲル化し、水洗した後、乾燥する。その後、1200℃で3時間加熱し、その温度を保持する。その後、1℃/分の冷却速度で冷却する。 Mix iron nitrate, tetraethylorthosilane and water. The proportion of iron nitrate is such that the final product Fe 2 O 3 is 80% based on weight with respect to SiO 2 . To this, 10% potassium magnesium sulfate and 20 wt% Fe-10 wt% Co nanoparticles with a particle size of 50 nm are added. Thereafter, it is gelled in a magnetic field of 1 kOe, washed with water, and dried. Then, it heats at 1200 degreeC for 3 hours, and maintains the temperature. Then, it cools with the cooling rate of 1 degree-C / min.

加熱処理により、Fe−10wt%Coナノ粒子の表面にε−Feが成長し、Fe−10wt%Co粒子の中心部は、bcc(体心立方晶)構造のFe−10wt%Coで構成され、当該ナノ粒子の表面に形成されたε−Feは、斜方晶構造を有する。硫酸カリウムマグネシウム由来のマグネシウムを含む(Si,Mg)Oは、一部非晶質で複数の結晶構造を有する。 By heat treatment, ε-Fe 2 O 3 grows on the surface of Fe-10 wt% Co nanoparticles, and the central part of Fe-10 wt% Co particles is Fe-10 wt% Co having a bcc (body-centered cubic) structure. Ε-Fe 2 O 3 that is configured and formed on the surface of the nanoparticle has an orthorhombic structure. (Si, Mg) O 2 containing magnesium derived from potassium magnesium sulfate is partially amorphous and has a plurality of crystal structures.

硫酸カリウムマグネシウムを添加することにより、α−Feの成長が抑制され、Coを含有するα−Feとε−Feとが磁気的に結合する。そして、20℃で測定した減磁曲線には、保磁力の1/2以下の磁界範囲で変曲点がみられない。これに対して、硫酸カリウムマグネシウムを添加しない場合には、ε相(ε−Fe)以外の酸化鉄が成長し、Fe及びε−Fe以外のα−Fe/α−Feなどの界面が形成され、α−Feの磁化反転が容易に起こるようになる。 By adding potassium magnesium sulfate, the growth of α-Fe 2 O 3 is suppressed, and α-Fe containing Co and ε-Fe 2 O 3 are magnetically coupled. And in the demagnetization curve measured at 20 degreeC, an inflexion point is not seen in the magnetic field range below 1/2 of a coercive force. In contrast, when potassium magnesium sulfate is not added, iron oxide other than the ε phase (ε-Fe 2 O 3 ) grows, and α-Fe / α-Fe other than Fe and ε-Fe 2 O 3. An interface such as 2 O 3 is formed, and α-Fe magnetization reversal occurs easily.

上記条件で作製した(Si,Mg)Oがα−Feとε−Feとの複合粒子を結着した材料は、残留磁化80emu/g、保磁力18kOe、ε−Feにおけるキュリー点が225℃であり、レアメタルを使用しない磁石として各種家電・産業機器に適用できる。 The material in which (Si, Mg) O 2 produced under the above conditions binds composite particles of α-Fe and ε-Fe 2 O 3 has a residual magnetization of 80 emu / g, a coercive force of 18 kOe, and ε-Fe 2 O 3. The Curie point at 225 ° C. is applicable to various home appliances and industrial equipment as a magnet that does not use rare metals.

本実施例において、(Si,Mg)O及びε−Feのα−Feを含有しない粉末のキュリー温度は、上記のように225℃となる。一方、Mgを添加していない材料の場合、キュリー点の30℃高温側でも磁化が検出される。このキュリー点より高温側の磁化は、軟磁性酸化物が残留していることを示している。軟磁性酸化物は、α−Feの表面にも形成されるため、保磁力低下の要因となる。したがって、ε−Fe以外の酸化鉄の成長を抑制させることが必要である。 In this example, the Curie temperature of the powder not containing α-Fe of (Si, Mg) O 2 and ε-Fe 2 O 3 is 225 ° C. as described above. On the other hand, in the case of a material to which no Mg is added, magnetization is detected even at the 30 ° C. high temperature side of the Curie point. The magnetization on the higher temperature side than the Curie point indicates that the soft magnetic oxide remains. Since the soft magnetic oxide is also formed on the surface of α-Fe, it causes a reduction in coercive force. Therefore, it is necessary to suppress the growth of iron oxides other than ε-Fe 2 O 3 .

Mgの添加により、ε−Fe以外の酸化鉄の成長は抑制され、ε−Fe以外の酸化鉄(α−Fe、γ−Feなど)の磁化を20℃で1/10未満にすることができる。ε−Fe以外の酸化鉄(α−Fe、γ−Feなど)の磁化が20℃で1/10以上の場合には、減磁曲線に軟磁性成分が重なった変曲点が認められ、磁石特性である最大エネルギー積が低下する。 By adding Mg, the growth of iron oxides other than ε-Fe 2 O 3 is suppressed, and the magnetization of iron oxides other than ε-Fe 2 O 3 (α-Fe 2 O 3 , γ-Fe 3 O 4, etc.) is reduced. It can be less than 1/10 at 20 ° C. When the magnetization of iron oxide other than ε-Fe 2 O 3 (α-Fe 2 O 3 , γ-Fe 3 O 4, etc.) is 1/10 or more at 20 ° C., the soft magnetic component overlaps the demagnetization curve. Inflection points are recognized, and the maximum energy product, which is a magnet characteristic, decreases.

本実施例においては、硫酸カリウムマグネシウムを添加しているが、硫酸カリウムマグネシウム以外に、チタン酸カリウム、硫酸カルシウム又は硫酸ジルコニウムを使用することができる。これにより、それぞれ、Ti、Ca又はZrを含有する材料、すなわち、(Si,Ti)O、(Si,Ca)O又は(Si,Zr)Oを含有する材料を作製することができる。これにより、本実施例と同様に、ε−Fe以外の酸化鉄の成長を抑制することができる。 In this embodiment, potassium magnesium sulfate is added, but potassium titanate, calcium sulfate or zirconium sulfate can be used in addition to potassium magnesium sulfate. Thereby, a material containing Ti, Ca or Zr, that is, a material containing (Si, Ti) O 2 , (Si, Ca) O 2 or (Si, Zr) O 2 , respectively, can be produced. . Thus, as in the present embodiment, it is possible to suppress the growth of iron oxide other than ε-Fe 2 O 3.

菱面体構造を有するε−Feをゾルゲル法により作製する。 Ε-Fe 2 O 3 having a rhombohedral structure is prepared by a sol-gel method.

オルトケイ酸テトラエチル(TEOS、Si(OC)とHOとエチルアルコールとを混合する。硝酸鉄の割合は、最終生成物であるFeが重量基準でSiOに対して40%となるようにする。これを200℃に加熱した後、ゲル化する。これを大気中で1100℃に加熱し、1時間保持する。その後、1000℃まで1℃/minの冷却速度で徐冷した後、700℃まで最大冷却速度100℃/minで急冷する。 Tetraethyl orthosilicate (TEOS, Si (OC 2 H 5 ) 4 ), H 2 O and ethyl alcohol are mixed. The ratio of iron nitrate is such that the final product Fe 2 O 3 is 40% based on weight with respect to SiO 2 . This is heated to 200 ° C. and then gelled. This is heated to 1100 ° C. in the atmosphere and held for 1 hour. Then, after slow cooling to 1000 ° C. at a cooling rate of 1 ° C./min, rapid cooling to 700 ° C. at a maximum cooling rate of 100 ° C./min.

急冷して作製したε−Feの保磁力は、27℃で21〜28kOeとなる。ε−Feの表面にMgFを溶液処理により形成する。その後、加熱することにより、ε−Feの一部が脱酸され、α−Feが成長する。 The coercive force of ε-Fe 2 O 3 produced by quenching is 21 to 28 kOe at 27 ° C. MgF 2 is formed on the surface of ε-Fe 2 O 3 by solution treatment. Thereafter, by heating, a part of ε-Fe 2 O 3 is deoxidized and α-Fe grows.

bcc構造を安定化させるためには、100重量部のε−Feに対して0.1〜10重量部のCoを添加しておくことにより、ε−(Fe,Co)からbcc−FeCo系粒子が成長し、構造安定化及び磁化増加を両立することができる。Coが0.1重量部未満の場合、構造安定化は可能であるが、磁化を増加することができない。Coが10重量部を超えると、高価なCoを使用することによる原料費上昇のため、適用製品が限定される。50重量部を超えると、ε−Feの保磁力が20kOe未満に低下する。 In order to stabilize the bcc structure, 0.1 to 10 parts by weight of Co is added to 100 parts by weight of ε-Fe 2 O 3 , so that ε- (Fe, Co) 2 O 3 is added. From this, bcc-FeCo-based particles grow and can achieve both structural stabilization and increased magnetization. When Co is less than 0.1 parts by weight, the structure can be stabilized, but the magnetization cannot be increased. If Co exceeds 10 parts by weight, the applied product is limited due to an increase in raw material costs due to the use of expensive Co. If it exceeds 50 parts by weight, the coercive force of ε-Fe 2 O 3 is reduced to less than 20 kOe.

脱酸されて成長したFeCo系粒子は、飽和磁化が150〜240emu/gであり、ε−Feの値の7〜15倍に達する。この高磁化FeCo系粒子がε−Feに対して1〜70体積%の範囲で形成されることにより、残留磁束密度が20〜160emu/gに増加する。 FeCo-based particles grown by deoxidation have a saturation magnetization of 150 to 240 emu / g, reaching 7 to 15 times the value of ε-Fe 2 O 3 . By forming the highly magnetized FeCo-based particles in the range of 1 to 70% by volume with respect to ε-Fe 2 O 3 , the residual magnetic flux density is increased to 20 to 160 emu / g.

α−Feの体積が1%未満の場合は、残留磁束密度の増加が2emu/g未満で小さい。一方、α−Feの体積が70%を超えると、保磁力が5kOe以下に減少する。よって、上記1〜70体積%であることが望ましい。   When the volume of α-Fe is less than 1%, the increase in residual magnetic flux density is small at less than 2 emu / g. On the other hand, when the volume of α-Fe exceeds 70%, the coercive force decreases to 5 kOe or less. Therefore, it is desirable that it is the said 1-70 volume%.

最外表面には酸フッ化物あるいはフッ化物が認められ、耐食性が向上する。すなわち、フッ化物の塗布及び脱酸熱処理を行うことにより、ε−(Fe,Co)/α−(Fe,Co)を形成した上に、その外側にMg(O,F)が成長するため、α−(Fe,Co)の酸化を抑制する。さらに、フッ素の一部は、ε−Feと反応し、ε−Fe(O,F)を形成する。ε−Fe(O,F)/α−Fe、又はε−(Fe,Co)(O,F)/α−(Fe,Co)も認められ、残留磁束密度50〜170emu/g、保磁力(27℃)10〜28kOeが実現できる。 On the outermost surface, oxyfluoride or fluoride is observed, and the corrosion resistance is improved. That is, ε- (Fe, Co) 2 O 3 / α- (Fe, Co) is formed by applying fluoride and performing deoxidation heat treatment, and Mg (O, F) grows on the outside thereof. Therefore, the oxidation of α- (Fe, Co) is suppressed. Further, some of fluorine will react with ε-Fe 2 O 3, to form the ε-Fe 2 (O, F ) 3. ε-Fe 2 (O, F) 3 / α-Fe or ε- (Fe, Co) 2 (O, F) 3 / α- (Fe, Co) is also observed, and the residual magnetic flux density is 50 to 170 emu / g. A coercive force (27 ° C.) of 10 to 28 kOe can be realized.

上記Co含有酸化鉄にフッ化物を塗布した後、熱処理を施した磁粉のみを用いて、Znを焼結助材とし、加熱焼結することにより、焼結磁石を作製することができる。この焼結磁石(焼結体)は、密度が5.5〜6.5g/cmであり、最大エネルギー積(BHmax)が5〜20MGOeの特性が得られる。 After applying a fluoride to the Co-containing iron oxide, a sintered magnet can be produced by using only the magnetic powder that has been heat-treated and using Zn as a sintering aid and heat-sintering. This sintered magnet (sintered body) has a density of 5.5 to 6.5 g / cm 3 and a maximum energy product (BHmax) of 5 to 20 MGOe.

本実施例で作製したFe−Co−O−F系磁石は、磁性相が強磁性及びフェリ磁性を示し、以下の特徴を有している。   The Fe—Co—O—F magnet produced in this example has a magnetic phase that is ferromagnetic and ferrimagnetic and has the following characteristics.

1)強磁性相のキュリー点がフェリ磁性相のネール点よりも高い。   1) The Curie point of the ferromagnetic phase is higher than the Neel point of the ferrimagnetic phase.

2)強磁性及びフェリ磁性相にはCoが含有している。また、磁気構造を保持したまま炭素や窒素ならびに硼素を10原子%未満で含有してよい。これらの元素含有量が10原子%を超えると、保磁力が急激に減少する。   2) Co is contained in the ferromagnetic and ferrimagnetic phases. Further, carbon, nitrogen and boron may be contained in less than 10 atomic% while maintaining the magnetic structure. When the content of these elements exceeds 10 atomic%, the coercive force decreases rapidly.

3)酸化物の一部にフッ素が入り込み、酸フッ化物が形成されている。   3) Fluoride enters part of the oxide to form an oxyfluoride.

4)フェリ磁性相は、菱面体晶である。   4) The ferrimagnetic phase is rhombohedral.

5)菱面体晶の{00n}と強磁性相の容易磁化方向が磁気的に結合している。ここで、nは整数である。   5) The rhombohedral {00n} and the easy magnetization direction of the ferromagnetic phase are magnetically coupled. Here, n is an integer.

菱面体構造を有するε−Feをゾルゲル法により作製する。 Ε-Fe 2 O 3 having a rhombohedral structure is prepared by a sol-gel method.

オルトケイ酸テトラエチル(TEOS,Si(OC)とHOとエチルアルコールとを混合し、硝酸鉄を40重量%加えて150℃に加熱した後、ゲル化する。ゲル化の際に5kOeの磁界を印加する。これを大気中で1100℃に加熱し、1時間保持した後、1000℃まで1℃/minの冷却速度で徐冷する。その後、700℃まで最大冷却速度100℃/minで急冷する。急冷して作製したε−Feの保磁力は、27℃で25〜30kOeとなる。ε−Feの表面にAlFを溶液処理により形成し、900℃に加熱することにより、ε−Feの一部が脱酸され、α−Fe、Al及びAl(O,F)が成長する。 Tetraethyl orthosilicate (TEOS, Si (OC 2 H 5 ) 4 ), H 2 O and ethyl alcohol are mixed, and 40 wt% iron nitrate is added and heated to 150 ° C., followed by gelation. A magnetic field of 5 kOe is applied during gelation. This is heated to 1100 ° C. in the atmosphere, held for 1 hour, and then gradually cooled to 1000 ° C. at a cooling rate of 1 ° C./min. Thereafter, it is rapidly cooled to 700 ° C. at a maximum cooling rate of 100 ° C./min. The coercive force of ε-Fe 2 O 3 produced by quenching is 25 to 30 kOe at 27 ° C. By forming AlF 3 on the surface of ε-Fe 2 O 3 by solution treatment and heating to 900 ° C., a part of ε-Fe 2 O 3 is deoxidized, and α-Fe, Al 2 O 3 and Al 2 (O, F) 3 grows.

ゲル化の際に磁界を印加することにより、<00n>が磁界方向に成長した板状粉を作製することができる。この板状粉を脱酸することにより、ε−Fe/α−Feの界面が形成される。 By applying a magnetic field during gelation, it is possible to produce a plate-like powder in which <00n> has grown in the magnetic field direction. By deoxidizing this plate-like powder, an interface of ε-Fe 2 O 3 / α-Fe is formed.

板状粉のため、前記界面は特定面で最も面積を広くすることができ、磁場印加方向において保磁力が最大となる。特に、ε−Feの<n00>//α−Fe<n00>の関係が磁場方向に平行である場合に保磁力が最大となる。ここで、nは正数である。 Due to the plate-like powder, the interface can have the largest area on a specific surface, and the coercive force is maximized in the magnetic field application direction. In particular, the coercive force is maximized when the <n00> // α-Fe <n00> relationship of ε-Fe 2 O 3 is parallel to the magnetic field direction. Here, n is a positive number.

ゲル化の際、又はゲル化の後の熱処理工程における磁界印加は、フェリ磁性相又はフェリ磁性相と強磁性相との混相粉に対して、核発生方位の優先成長を誘導し、又は磁気的な結合を有する方位関係を生みだすために有効であり、いずれも保磁力増加又は残留磁束密度の増加に繋がる。ゲル化の際の磁界強度は、印加する磁界が1kOe以上であれば特定の結晶方位が成長し易くなり、形状磁気異方性や磁気異方性が増加する。1kOe未満では特定結晶方位の優先成長は困難である。   Magnetic field application during gelation or in the heat treatment step after gelation induces preferential growth in the nucleation direction with respect to the ferrimagnetic phase or the mixed powder of the ferrimagnetic phase and the ferromagnetic phase, or magnetically. This is effective for producing an azimuth relationship having a strong coupling, which leads to an increase in coercive force or an increase in residual magnetic flux density. As for the magnetic field strength during gelation, if the applied magnetic field is 1 kOe or more, a specific crystal orientation is likely to grow, and the shape magnetic anisotropy and magnetic anisotropy increase. If it is less than 1 kOe, preferential growth in a specific crystal orientation is difficult.

本実施例においては、AlF膜を塗布形成し、加熱することにより、ε−Fe/Fe/Al(OF)やε−(Fe,Al)/Fe−Al/(Al,Fe)(OF)の界面構成が得られる。このような酸化鉄の脱酸により、飽和磁化の高い鉄基合金が酸化鉄と酸フッ化物との間に形成され、鉄基合金の酸化が抑制され、酸化鉄と鉄基合金との磁気的な結合により保磁力を維持し、残留磁化を増加させることが可能である。 In this example, an AlF 3 film is applied, formed, and heated, so that ε-Fe 2 O 3 / Fe / Al 2 (OF) 3 or ε- (Fe, Al) 2 O 3 / Fe—Al / An interface configuration of (Al, Fe) 2 (OF) 3 is obtained. By such deoxidation of iron oxide, an iron-base alloy with high saturation magnetization is formed between iron oxide and oxyfluoride, and the oxidation of the iron-base alloy is suppressed, and the magnetic interaction between iron oxide and iron-base alloy is reduced. It is possible to maintain the coercive force and to increase the remanent magnetization by proper coupling.

このような界面構成を有するため、鉄基合金が10〜70体積%で保磁力10kOe及び残留磁束磁化30emu/gを超える磁気特性が得られる。特に、鉄基合金が50〜70体積%の場合は、残留磁化が100〜140emu/gとなる。   Since it has such an interface configuration, the magnetic characteristics exceeding 10 coOg and coercive force of 10 kOe and residual magnetic flux magnetization of 30 emu / g can be obtained when the iron-based alloy is 10 to 70% by volume. In particular, when the iron-based alloy is 50 to 70% by volume, the residual magnetization is 100 to 140 emu / g.

上述のように、鉄基合金を50〜70体積%含有するε−(Fe,Al)/Fe−Al/(Al,Fe)(OF)の界面構成を有する粉末を磁界中圧縮成形することにより、バインダーが有機材料である異方性ボンド磁石、又は低融点金属をバインダーとする焼結磁石を作製することができる。有機材料をバインダーとするボンド磁石の場合は、残留磁束密度が0.8〜1.2Tであり、保磁力が10kOeであるものが得られる。 As described above, a powder having an interface configuration of ε- (Fe, Al) 2 O 3 / Fe—Al / (Al, Fe) 2 (OF) 3 containing 50 to 70% by volume of an iron-based alloy in a magnetic field. By compression molding, an anisotropic bonded magnet whose binder is an organic material or a sintered magnet having a low melting point metal as a binder can be produced. In the case of a bonded magnet using an organic material as a binder, a magnet having a residual magnetic flux density of 0.8 to 1.2 T and a coercive force of 10 kOe is obtained.

このようにして得られた磁石は、モータなどの回転機、MRIなどの医療機器、ハードディスクなど情報機器、発電機、自動車用各種電装品などに使用可能である。   The magnets thus obtained can be used for rotating machines such as motors, medical equipment such as MRI, information equipment such as hard disks, generators, and various electrical equipment for automobiles.

本実施例の酸化鉄には、ε−Fe以外にα−Fe、γ−Fe又はβ−Feが10wt%未満の量で混在していても良い。α−Fe、γ−Fe又はβ−Feが30wt%を超えると、保磁力が著しく低下し、20℃で5kOeとなる。また、α−Fe、γ−Fe又はβ−Feが20wt%を超えると、減磁曲線の低磁界側に変曲点が認められる。また、菱面体晶、正方晶、斜方晶、六方晶などの立方晶よりも対称性が低い結晶構造を有する鉄含有酸化物、酸フッ化物又はフッ化物が、一部の粒子又は粉末に成長していても良い。特に、ε−(Fe,Al)/ε−(Fe,Al)(O,F)/Fe−Al/(Al,Fe)(OF)のようにフェリ磁性相にフッ素が配置した場合、菱面体晶の結晶が歪み、結晶磁気異方性が増大するため、保磁力が増加する。フェリ磁性相中のフッ素濃度は、1原子%〜50原子%の範囲である。当該フッ素濃度が1原子%未満の場合、結晶磁気異方性の増加は認められない。一方、当該フッ素濃度が50原子%を超える場合、菱面体晶又は歪んだ菱面体晶とは別の結晶が安定となり、強磁性相とフェリ磁性相との磁気的結合を維持することが困難となる。 In the iron oxide of this example, α-Fe 2 O 3 , γ-Fe 2 O 3 or β-Fe 2 O 3 may be mixed in an amount of less than 10 wt% in addition to ε-Fe 2 O 3. . When α-Fe 2 O 3 , γ-Fe 2 O 3 or β-Fe 2 O 3 exceeds 30 wt%, the coercive force is remarkably lowered and becomes 5 kOe at 20 ° C. When α-Fe 2 O 3 , γ-Fe 2 O 3 or β-Fe 2 O 3 exceeds 20 wt%, an inflection point is recognized on the low magnetic field side of the demagnetization curve. In addition, iron-containing oxides, oxyfluorides, or fluorides having a crystal structure with lower symmetry than cubic crystals such as rhombohedral, tetragonal, orthorhombic, and hexagonal crystals grow into some particles or powders. You may do it. In particular, fluorine in the ferrimagnetic phase such as ε- (Fe, Al) 2 O 3 / ε- (Fe, Al) 2 (O, F) 3 / Fe—Al / (Al, Fe) 2 (OF) 3 When rhombohedral is arranged, the rhombohedral crystal is distorted and the magnetocrystalline anisotropy is increased, so that the coercive force is increased. The fluorine concentration in the ferrimagnetic phase is in the range of 1 atomic% to 50 atomic%. When the fluorine concentration is less than 1 atomic%, no increase in magnetocrystalline anisotropy is observed. On the other hand, when the fluorine concentration exceeds 50 atomic%, a crystal different from the rhombohedral crystal or the distorted rhombohedral crystal becomes stable, and it is difficult to maintain the magnetic coupling between the ferromagnetic phase and the ferrimagnetic phase. Become.

本実施例においては、AlFを使用したが、同様な効果は、他の室温で強磁性を示さない金属元素を含有するフッ化物または酸フッ化物を塗布することにより、酸化鉄/フッ素含有酸化鉄/鉄基合金/酸フッ化物のような界面構成又は層構成を得ることができ、これらの一部に前記金属元素が含有することにより、AlFと同等の高残留磁化及び高保磁力を実現可能である。 In this example, AlF 3 was used, but the same effect can be obtained by applying an iron oxide / fluorine-containing oxide by applying a fluoride or oxyfluoride containing a metal element that does not exhibit ferromagnetism at room temperature. Interfacial structure or layer structure such as iron / iron-based alloy / oxyfluoride can be obtained, and the high remanent magnetization and high coercive force equivalent to those of AlF 3 are realized by including the metal element in a part of them. Is possible.

1:含アルミニウム酸化ケイ素、2:ε相、3:Fe系粒子。   1: Aluminum-containing silicon oxide, 2: ε phase, 3: Fe-based particles.

Claims (9)

α−Fe又はα−(Fe,Co)と、ε−Fe又はε−(Fe,Co)と、酸化ケイ素と、を含み、前記酸化ケイ素は、その結晶中にケイ素及び酸素以外の金属元素又は半金属元素を含み、前記α−Fe又は前記α−(Fe,Co)は、前記ε−Fe又は前記ε−(Fe,Co)、及び前記酸化ケイ素に接する界面を有することを特徴とする磁性材料。 α-Fe or α- (Fe, Co), ε-Fe 2 O 3 or ε- (Fe, Co) 2 O 3 and silicon oxide, and the silicon oxide contains silicon and A metal element or metalloid element other than oxygen, wherein the α-Fe or α- (Fe, Co) is the ε-Fe 2 O 3 or the ε- (Fe, Co) 2 O 3 , and the oxidation A magnetic material having an interface in contact with silicon. 前記金属元素又は前記半金属元素は、Al、Mg、Zr、Ti、Ca及びBaからなる群から選択されることを特徴とする請求項1記載の磁性材料。   2. The magnetic material according to claim 1, wherein the metal element or the metalloid element is selected from the group consisting of Al, Mg, Zr, Ti, Ca, and Ba. 前記金属元素又は前記半金属元素の濃度は、0.1〜20重量%であることを特徴とする請求項1記載の磁性材料。   The magnetic material according to claim 1, wherein a concentration of the metal element or the metalloid element is 0.1 to 20% by weight. 前記α−Fe又は前記α−(Fe,Co)は、粒子状であり、形状異方性を有していることを特徴とする請求項1記載の磁性材料。   The magnetic material according to claim 1, wherein the α-Fe or the α- (Fe, Co) is in the form of particles and has shape anisotropy. 前記界面のうち前記α−Fe又は前記α−(Fe,Co)と前記ε−Fe又は前記ε−(Fe,Co)とが接する部分の割合は、30〜98%であることを特徴とする請求項1記載の磁性材料。 The ratio of the portion where the α-Fe or the α- (Fe, Co) and the ε-Fe 2 O 3 or the ε- (Fe, Co) 2 O 3 are in contact with each other is 30 to 98%. The magnetic material according to claim 1, wherein the magnetic material is a magnetic material. 請求項1記載の磁性材料の製造方法であって、前記ε−Fe又は前記ε−(Fe,Co)の原料である鉄を含む塩と、前記酸化ケイ素の原料である有機金属化合物と、前記金属元素又は前記半金属元素の原料と、を混合した溶液を用い、前記α−Fe又は前記α−(Fe,Co)の表面を前記溶液で被覆し、加熱することを特徴とする磁性材料の製造方法。 A manufacturing method of a magnetic material according to claim 1, wherein the ε-Fe 2 O 3 or the .epsilon. (Fe, Co) salt containing iron as a raw material of the 2 O 3, a raw material of the silicon oxide Using a solution in which an organometallic compound and a raw material of the metal element or the metalloid element are mixed, the surface of the α-Fe or the α- (Fe, Co) is coated with the solution and heated. A method for producing a magnetic material. 請求項1記載の磁性材料の製造方法であって、前記ε−Fe又は前記ε−(Fe,Co)の原料である鉄を含む塩と、前記酸化ケイ素の原料である有機金属化合物と、を混合した溶液を用い、ゲル化し、加熱することにより前記ε−Fe又は前記ε−(Fe,Co)を形成し、これを前記金属元素又は前記半金属元素の原料であるフッ化物溶液で被覆し、加熱することにより前記ε−Fe又は前記ε−(Fe,Co)の一部を脱酸し、前記α−Fe又は前記α−(Fe,Co)を形成することを特徴とする磁性材料の製造方法。 A manufacturing method of a magnetic material according to claim 1, wherein the ε-Fe 2 O 3 or the .epsilon. (Fe, Co) salt containing iron as a raw material of the 2 O 3, a raw material of the silicon oxide The solution is mixed with an organometallic compound, gelled, and heated to form the ε-Fe 2 O 3 or the ε- (Fe, Co) 2 O 3 , which is converted into the metal element or the half The ε-Fe 2 O 3 or a part of the ε- (Fe, Co) 2 O 3 is deoxidized by coating with a fluoride solution that is a raw material of the metal element and heating, and the α-Fe or the A method for producing a magnetic material, comprising forming α- (Fe, Co). α−Fe又はα−(Fe,Co)と、ε−Fe又はε−(Fe,Co)と、酸化ケイ素と、を含み、前記酸化ケイ素は、その結晶中にケイ素及び酸素以外の金属元素又は半金属元素を含み、前記α−Fe又は前記α−(Fe,Co)は、前記ε−Fe又は前記ε−(Fe,Co)、及び前記酸化ケイ素に接する界面を有する磁性材料を作製するための原料である液であって、前記ε−Fe又は前記ε−(Fe,Co)の原料である鉄を含む塩と、前記酸化ケイ素の原料である有機金属化合物と、前記金属元素又は前記半金属元素の原料と、を混合したものであることを特徴とするコーティング液。 α-Fe or α- (Fe, Co), ε-Fe 2 O 3 or ε- (Fe, Co) 2 O 3 and silicon oxide, and the silicon oxide contains silicon and A metal element or metalloid element other than oxygen, wherein the α-Fe or α- (Fe, Co) is the ε-Fe 2 O 3 or the ε- (Fe, Co) 2 O 3 , and the oxidation A liquid which is a raw material for producing a magnetic material having an interface in contact with silicon, and a salt containing iron which is a raw material of the ε-Fe 2 O 3 or the ε- (Fe, Co) 2 O 3 ; A coating liquid comprising a mixture of an organometallic compound that is a raw material of the silicon oxide and a raw material of the metal element or the metalloid element. 前記金属元素又は前記半金属元素は、Al、Mg、Zr、Ti、Ca及びBaからなる群から選択されることを特徴とする請求項8記載のコーティング液。   9. The coating liquid according to claim 8, wherein the metal element or the metalloid element is selected from the group consisting of Al, Mg, Zr, Ti, Ca, and Ba.
JP2013054481A 2013-03-18 2013-03-18 Magnetic material, method for producing the same, and coating liquid used for the production Expired - Fee Related JP6225440B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013054481A JP6225440B2 (en) 2013-03-18 2013-03-18 Magnetic material, method for producing the same, and coating liquid used for the production
PCT/JP2014/057377 WO2014148502A1 (en) 2013-03-18 2014-03-18 Magnetic material, method for producing same, and coating liquid used to produce magnetic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013054481A JP6225440B2 (en) 2013-03-18 2013-03-18 Magnetic material, method for producing the same, and coating liquid used for the production

Publications (2)

Publication Number Publication Date
JP2014183056A true JP2014183056A (en) 2014-09-29
JP6225440B2 JP6225440B2 (en) 2017-11-08

Family

ID=51580179

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013054481A Expired - Fee Related JP6225440B2 (en) 2013-03-18 2013-03-18 Magnetic material, method for producing the same, and coating liquid used for the production

Country Status (2)

Country Link
JP (1) JP6225440B2 (en)
WO (1) WO2014148502A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6106303B2 (en) * 2015-03-13 2017-03-29 Dowaエレクトロニクス株式会社 Surface-modified iron-based oxide magnetic particle powder and method for producing the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002151313A (en) * 2000-11-13 2002-05-24 Fuji Photo Film Co Ltd Ferromagnetic metal powder and magnetic recording medium containing the same
JP2006089308A (en) * 2004-09-21 2006-04-06 Toyota Central Res & Dev Lab Inc Composite iron oxide particle and its production method
JP2008100871A (en) * 2006-10-19 2008-05-01 Univ Of Tokyo METHOD OF PRODUCING epsi-IRON OXIDE
JP2011032496A (en) * 2009-07-29 2011-02-17 Tdk Corp Magnetic material, magnet and method for producing the magnetic material

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012101752A1 (en) * 2011-01-25 2012-08-02 Tdk株式会社 Magnetic material, magnet and method of producing magnetic material
JP2012209376A (en) * 2011-03-29 2012-10-25 Tdk Corp Iron oxide particle dispersion liquid and nanocomposite magnet

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002151313A (en) * 2000-11-13 2002-05-24 Fuji Photo Film Co Ltd Ferromagnetic metal powder and magnetic recording medium containing the same
JP2006089308A (en) * 2004-09-21 2006-04-06 Toyota Central Res & Dev Lab Inc Composite iron oxide particle and its production method
JP2008100871A (en) * 2006-10-19 2008-05-01 Univ Of Tokyo METHOD OF PRODUCING epsi-IRON OXIDE
JP2011032496A (en) * 2009-07-29 2011-02-17 Tdk Corp Magnetic material, magnet and method for producing the magnetic material

Also Published As

Publication number Publication date
JP6225440B2 (en) 2017-11-08
WO2014148502A1 (en) 2014-09-25

Similar Documents

Publication Publication Date Title
JP5710427B2 (en) Magnetic material, method for manufacturing magnetic material, and inductor element using magnetic material
JP5708454B2 (en) Alcohol solution and sintered magnet
JP4900121B2 (en) Fluoride coat film forming treatment liquid and fluoride coat film forming method
US20180114614A1 (en) Rare Earth-Free Permanent Magnetic Material
JP5948033B2 (en) Sintered magnet
JP6255783B2 (en) COMPOSITE MAGNETIC MATERIAL, ITS MANUFACTURING METHOD, AND COMPOSITE MAGNETIC MATERIAL MATERIAL SET
JP5501828B2 (en) R-T-B rare earth permanent magnet
WO2012176655A1 (en) Sintered magnet
JP2013135542A (en) Sintered magnet motor
JP2012099523A (en) Anisotropic rare earth sintered magnet and method for manufacturing the same
JP2011032496A (en) Magnetic material, magnet and method for producing the magnetic material
JP2012124189A (en) Sintered magnet
WO2021103466A1 (en) Method for preparing soft magnetic composite material with high magnetic conductivity and low loss, and magnet ring thereof
JP2013254756A (en) Sintered magnet
JP4700578B2 (en) Method for producing high resistance rare earth permanent magnet
JP6485066B2 (en) Iron nitride magnet
Jasrotia et al. Hard ferrites for permanent magnets
JPWO2019151245A1 (en) RTB series rare earth permanent magnet
JP2019080055A (en) Composite magnetic material, magnet, motor, and method of producing composite magnetic material
JP4900804B2 (en) Dust core
JP6225440B2 (en) Magnetic material, method for producing the same, and coating liquid used for the production
JP2004018932A (en) Particle for permanent magnet and its manufacturing method, and permanent magnet and magnetic particulate
JP4725682B2 (en) Rare earth-iron-manganese-nitrogen magnet powder
KR20090033524A (en) Magnetism powder core coating insulation layer of nano alumina powder and method for manufacturing the same
JP6500470B2 (en) Iron nitride magnet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170314

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170411

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170912

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170925

R151 Written notification of patent or utility model registration

Ref document number: 6225440

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees