JP2014180221A - Cultivation method using illumination apparatus for plant cultivation, and illumination apparatus for plant cultivation - Google Patents

Cultivation method using illumination apparatus for plant cultivation, and illumination apparatus for plant cultivation Download PDF

Info

Publication number
JP2014180221A
JP2014180221A JP2013054959A JP2013054959A JP2014180221A JP 2014180221 A JP2014180221 A JP 2014180221A JP 2013054959 A JP2013054959 A JP 2013054959A JP 2013054959 A JP2013054959 A JP 2013054959A JP 2014180221 A JP2014180221 A JP 2014180221A
Authority
JP
Japan
Prior art keywords
light
plant
light source
blue
green
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013054959A
Other languages
Japanese (ja)
Other versions
JP6325771B2 (en
Inventor
Sumihisa Koto
澄久 古藤
Wakayoshi Uki
若慶 雨木
Makoto Onishi
誠 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stanley Electric Co Ltd
Original Assignee
Stanley Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stanley Electric Co Ltd filed Critical Stanley Electric Co Ltd
Priority to JP2013054959A priority Critical patent/JP6325771B2/en
Publication of JP2014180221A publication Critical patent/JP2014180221A/en
Application granted granted Critical
Publication of JP6325771B2 publication Critical patent/JP6325771B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/25Greenhouse technology, e.g. cooling systems therefor

Landscapes

  • Cultivation Of Plants (AREA)
  • Greenhouses (AREA)

Abstract

PROBLEM TO BE SOLVED: To promote rooting, enhance root-taking, and shorten a growing period in plant cultivation in which plants are multiplied by cuttage.SOLUTION: An illumination apparatus for plant cultivation comprises a light source section 24 which irradiates plants 12 with light. Nighttime supplementary lighting is performed to the plants immediately after cuttage is executed. In the irradiation by the light source section 24, nighttime irradiation is performed until a delivery stage by using light-emitting diodes whose emission dominant wavelength emits green light. Further, in a period from a cuttage process until pinching is executed, nighttime irradiation is performed by using light-emitting diodes whose emission dominant wavelength emits blue light or bluish green light. Therefore, rooting of the plants is promoted, and plant cultivation in which the entire plants is well balanced and has small variation can be performed.

Description

本発明は、人工光によって植物の育成を促進する植物育成方法に関するものであり、詳しくは、人工光の光源にLED(発光ダイオード)を使用した挿し木栽培による育苗方法に関する。   The present invention relates to a plant growing method that promotes the growth of plants by artificial light, and more particularly, to a seedling growing method by cutting cutting using an LED (light emitting diode) as a light source of artificial light.

従来、植物育成の促進のための光環境は太陽光(自然光)によって行われてきた。しかしながら、太陽光の照射は季節(夏は日照時間が長く、冬は短い)、気象(エルニーニョ現象の時は日照時間が短い)、天候、地域(太平洋側は年間の日照時間が長く、日本海側は短い)、場所(日向と日陰、地上と地下)、時間(昼と夜)等の条件によって大きく異なるものである。したがって、このような自然条件や人為的条件に影響されない安定した環境下で植物の生育を促進させるためには、太陽光に代わる光あるいは太陽光を補完する光が求められ、例えば、白熱電球、蛍光灯、水銀灯、ナトリウムランプ等が人工光の光源として用いられてきた。   Conventionally, the light environment for promoting plant growth has been performed by sunlight (natural light). However, sunlight is exposed to the season (long summer hours in summer and short winters), weather (short hours during El Niño), weather, and regions (the Pacific side has long annual sunlight hours, the Sea of Japan The side is short), the place (the sun and shade, the ground and the basement), the time (day and night), and so on. Therefore, in order to promote the growth of plants in a stable environment that is not affected by such natural conditions or artificial conditions, light in place of sunlight or light that supplements sunlight is required, such as incandescent light bulbs, Fluorescent lamps, mercury lamps, sodium lamps, and the like have been used as artificial light sources.

近年注目されてきたのがLEDを光源とする植物育成方法である。LEDを植物育成の光源として使用することで照明に使う電力消費を節約できる。   In recent years, a plant growing method using an LED as a light source has attracted attention. By using the LED as a light source for plant growth, it is possible to save power consumption for lighting.

例えば、特許文献1のLEDを光源とする植物育成方法は、鉢植えの植物において、植物12の略上方から青緑色LED9の光と白色LED10の光を混合した光を照射し、略横方向から赤色LED8の光を照射するようにしている。夫々の光は植物12の生長を促進する特定の波長を含んでおり、これらの光のエネルギーを様々な方向から植物12に供給することによって植物12をバランスよく育成するようにしている。なお、植物はトレニアを用いている。   For example, in the plant growing method using the LED of Patent Document 1 as a light source, in a potted plant, light that is a mixture of light from the blue-green LED 9 and light from the white LED 10 is irradiated from substantially above the plant 12, and red from approximately the lateral direction. The light from the LED 8 is irradiated. Each light includes a specific wavelength that promotes the growth of the plant 12, and the energy of the light is supplied to the plant 12 from various directions so that the plant 12 is grown in a balanced manner. The plant uses Torenia.

特開2012−114013号公報JP 2012-1114013 A

LED光源を用いた植物育成は、特許文献1に限らず様々な植物の育成に応用されてきている。製品作物の育成や、花弁類の開花期間の促進に関する生育に適したLED植物育成装置育成について開示するものが多い。しかしながら挿し木による育成に関する育成方法および育成装置については知られていなかった。   Plant growth using an LED light source is not limited to Patent Document 1, and has been applied to the growth of various plants. There are a lot of disclosures about LED plant growing apparatus suitable for growing product crops and growing related to promotion of flowering period of petals. However, a growing method and a growing apparatus related to growing by cuttings have not been known.

本発明は、上記従来の問題を解決するためになされたものであり、挿し木苗の育成、特に発根を促して活着に優れた栽培方法を提供することを目的とする。また、他の目的は、挿し木苗の育成に適した補光を行う植物育成用照明装置を提供することを目的とする。   The present invention has been made to solve the above-described conventional problems, and an object of the present invention is to provide a cultivation method excellent in engraftment by promoting the growth of cuttings, especially rooting. Another object is to provide a plant-growing lighting device that performs supplementary light suitable for growing cuttings.

上記目的を達成するために請求項1の発明は、植物の伸張した芽(シュート)から挿し穂をとる工程と、セルトレーに挿し穂をする挿し木工程と、太陽光が照射される時間帯に、所定環境下にて前記セルトレーの挿し穂に太陽光の照射を行う太陽光照射工程と、太陽光が照射されない時間帯において、所定環境下にて前記セルトレーの挿し穂に植物育成用照明装置による照明を照射する補光工程と、を有し、
前記補光工程は、発光主波長が緑色光を発する発光ダイオードを用いて出荷段階まで夜間照射を行う工程および/または挿し木工程から摘心を実施するまでの時期において発光主波長が青色光もしくは青緑色光を発する発光ダイオードを用いて夜間照射を行う工程であることを特徴とする植物の栽培方法、とするものである。
In order to achieve the above object, the invention of claim 1 includes a step of cutting an ear from an elongated shoot (shoot) of a plant, an cutting step of cutting an ear on a cell tray, and a time zone in which sunlight is irradiated. A sunlight irradiation step of irradiating sunlight on the cutting head of the cell tray under a predetermined environment, and illumination by a plant growth lighting device on the cutting head of the cell tray under a predetermined environment in a time zone when sunlight is not irradiated A supplementary light process for irradiating
In the supplementary light process, the light emission main wavelength is blue light or blue-green at the time from the cutting process to the time of carrying out pinching from the process of performing night illumination until the shipping stage using a light emitting diode whose light emission main wavelength emits green light. A plant cultivation method characterized by being a step of performing night-time irradiation using a light emitting diode emitting light.

請求項2の発明は、請求項1に記載の栽培方法において、前記植物がバラ目バラ科バラ属の低木の種であり、前記夜間照射を光合成光量子束密度が100μmol・m−2・s−1PPFDより低い弱光にて行うことを特徴とする。 The invention according to claim 2 is the cultivation method according to claim 1, wherein the plant is a species of a shrub belonging to the family Rosaceae, and the nighttime irradiation is performed with a photosynthetic photon flux density of 100 μmol · m −2 · s −. 1 It is characterized by performing in weak light lower than PPFD.

請求項3の発明は、請求項2に記載の栽培方法において、前記緑色光を発する発光ダイオードの発光主波長が500nmよりも長い波長であることを特徴とする。   Invention of Claim 3 is a cultivation method of Claim 2, The light emission main wavelength of the light emitting diode which emits the green light is a wavelength longer than 500 nm, It is characterized by the above-mentioned.

請求項4の発明は、請求項2に記載の栽培方法において、前記青色光もしくは青緑色光を発する発光ダイオード緑色の発光主波長が520nmよりも短い波長であることを特徴とする。   The invention of claim 4 is characterized in that, in the cultivation method according to claim 2, the emission main wavelength of the light emitting diode green emitting blue light or blue green light is shorter than 520 nm.

請求項5の発明は、挿し木を実施したセルトレーの複数を収容する施設と、前記施設内を施設外の気温に比べて変化させる温度調整装置と、を備えた植物育成施設に用いる植物育成用照明装置であって、発光主波長が500nmよりも長い緑色光を発する発光ダイオードと、発光主波長が520nmよりも短い波長の青色光もしくは青緑色光を発する発光ダイオードとを用いた光源と、太陽光が照射されない夜間に、前記セルトレーに対して前記光源の照射光を、光合成光量子束密度が100μmol・m−2・s−1PPFDより低い弱光にて連続照射するように前記光源を点灯制御する制御装置とを備えた、植物育成用照明装置、である。
The invention of claim 5 is a plant-growing illumination used in a plant-growing facility comprising a facility that accommodates a plurality of cell trays in which cuttings have been performed, and a temperature adjustment device that changes the inside of the facility as compared to the temperature outside the facility. A light source using a light-emitting diode that emits green light whose emission main wavelength is longer than 500 nm, and a light-emitting diode that emits blue light or blue-green light whose emission main wavelength is shorter than 520 nm; Control for lighting control of the light source so that the light emitted from the light source is continuously irradiated to the cell tray with weak light whose photosynthetic photon flux density is lower than 100 μmol · m−2 · s−1PPFD at night when no light is irradiated A plant-growing lighting device comprising the device.

請求項1の発明によれば、挿し木栽培において、発根を促して活着が良く成長を早めた植物育成を行うことができる。   According to the first aspect of the present invention, in cutting cutting, it is possible to nurture a plant that promotes rooting and is well-established to accelerate its growth.

請求項2の発明によれば、バラの成長を早めた挿し木栽培による植物育成を行うことができる。   According to the invention of claim 2, it is possible to carry out plant growth by cutting plant cultivation in which rose growth is accelerated.

請求項3の発明によれば、全体のバランスに優れ、高い発蕾率のバラの挿し木栽培による植物育成を行うことができる。   According to invention of Claim 3, it is excellent in the whole balance and can perform the plant breeding by cutting cutting cultivation of the rose with a high germination rate.

請求項4の発明によれば、発根を早め、個体差のバラツキの少ない挿し木栽培による植物育成を行うことができる。   According to the invention of claim 4, it is possible to grow a plant by cutting cultivation with quick rooting and less variation among individuals.

請求項5の発明の植物育成用照明装置を用いることで、挿し木栽培において、発根を促して活着の良い植物育成を、育成時間を短縮することができ得る。
By using the plant growth lighting device according to the fifth aspect of the present invention, in cutting cutting cultivation, rooting is promoted, and plant growth with good survival can be shortened.

図1は、本実施形態に係る植物育成用照明装置の構成を示す概念図である。FIG. 1 is a conceptual diagram illustrating a configuration of a plant-growing lighting device according to the present embodiment. 図2は、図1の光源部に用いる光源ユニットの構成を一部を切欠いて示す斜視図である。FIG. 2 is a perspective view showing a configuration of a light source unit used in the light source unit of FIG. 図3は、挿し木工程から摘心工程を実施するまでの期間における植物の育成状態を示す概念図で、(A)が挿し木直後の状態、(B)が活着した状態、(C)摘心を示す。FIG. 3 is a conceptual diagram showing the plant growth state during the period from the cutting process to the plucking process, where (A) shows the state immediately after cutting, (B) shows the state of survival, and (C) plucking. 図4は、摘心工程を終えた後の生育から出荷段階までの期間における植物の育成状態を示す概念図で、(A)が挿し木直後の状態、(B)が活着した状態、(C)摘心を示す。FIG. 4 is a conceptual diagram showing the state of plant growth in the period from the growth after completion of the pinching process to the shipping stage, where (A) is the state immediately after cutting, (B) is the state of being settled, and (C) pinching. Indicates. 図5は、従来の植物育成用照明装置を示す概略構成図である。FIG. 5 is a schematic configuration diagram showing a conventional plant-growing lighting device.

以下、本発明の一実施形態について図面を参照しながら説明する。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

なお、本明細書において、「活着段階」とは、増殖された多芽体から採取した挿し穂を培養土に挿し木した後、発根を誘導して苗木を栽培する段階である。具体的には、挿し木から摘心を行うまでの段階をいう。「摘心」とは、挿し木した茎の先端の芽(頂芽)を摘むことをいい、必要以上に伸びるのを止め、わき芽の発生や促すために行う作業をいう。「生育段階」とは、育苗した苗木を生育して出荷段階に至るまで栽培する段階をいう。具体的には「摘心」を行った後の段階からが該当する。「出荷段階」とは、苗木が生育して蕾が形成され、一部開花に至った段階である。
「太陽光が照射される時間帯」とは、太陽光が現実に直接照射される時間だけでなく直射光がない曇り状態も含む日中、すなわち日の出から日没までの時間帯を意味する、「太陽光が照射されない時間帯」とは、太陽光が照射される時間帯以外の時間帯、すなわち、日没から日の出までの時間帯を意味する。太陽光が照射される時間帯も、太陽光が照射されない時間帯も季節、緯度によって変化する。
In the present specification, the “establishment stage” is a stage of cultivating a seedling by inducing rooting after cutting cuttings that have been collected from the proliferated polybud into the culture soil. Specifically, it refers to the stage from cutting to pinching. “Tiping” refers to picking a bud (top bud) at the tip of a cut stem, and is an operation that is performed to prevent the shoot from growing more than necessary and to promote the generation and promotion of axillary buds. “Growth stage” refers to a stage in which a seedling that has been nurtured is grown and cultivated up to the shipping stage. Specifically, it corresponds to the stage after “pinching”. The “shipment stage” refers to a stage where seedlings have grown and cocoons have been formed, resulting in partial flowering.
"Sunlight-irradiated time zone" means not only the time when sunlight is actually radiated directly but also the daytime including the cloudy state without direct light, that is, the time zone from sunrise to sunset, The “time zone in which sunlight is not irradiated” means a time zone other than the time zone in which sunlight is irradiated, that is, a time zone from sunset to sunrise. The time zone in which sunlight is irradiated and the time zone in which sunlight is not irradiated vary depending on the season and latitude.

図1は、本実施形態に係る植物育成用照明装置20の構成を示す概念図である。図2は光源ユニット31、32をレンズカバーの一部を切書いて示す概略斜視図である。本装置は、育成する植物群21を配置する複数の栽培ベッド23と、栽培ベッド23が載置される植物載置台22と、この植物載置台22上に載置された植物群21の生育を制御するため、植物群21に対して光を照射する光源部24と、植物育成用照明装置20をユーザにより操作する制御装置25と、を備える。光源部24は、植物載置台22上に植物群21が載置されたときにその植物群21の上方となる位置に設けられる。   FIG. 1 is a conceptual diagram showing a configuration of a plant-growing lighting device 20 according to the present embodiment. FIG. 2 is a schematic perspective view showing the light source units 31 and 32 by partially cutting a lens cover. This apparatus is configured to grow a plurality of cultivation beds 23 on which plant groups 21 to be cultivated, a plant placement table 22 on which the cultivation beds 23 are placed, and a plant group 21 placed on the plant placement table 22. In order to control, the light source part 24 which irradiates light with respect to the plant group 21, and the control apparatus 25 which operates the illuminating device 20 for plant cultivation by a user are provided. The light source unit 24 is provided at a position above the plant group 21 when the plant group 21 is mounted on the plant mounting table 22.

栽培ベッド23には、セルトレー11に植栽した植物12の複数が配置され、植物群21を構成している。セルトレー23の中には植栽する植物12に応じた培地1が設けられている。なお、処理区は制御する光源部24に対応して区分される。   A plurality of plants 12 planted on the cell tray 11 are arranged on the cultivation bed 23 and constitute a plant group 21. In the cell tray 23, the culture medium 1 according to the plant 12 to plant is provided. The processing section is divided corresponding to the light source unit 24 to be controlled.

光源部24は、所定の発光波長の複数のLEDを設けた第1光源ユニット31および第2光源ユニット32の複数個からなる。図2は、光源ユニット31(32)の構成を一部を切欠いて示す斜視図である。同図に示される光源ユニット31(32)は、光源支持台33と、この光源支持台33の表面側に取り付けられた複数個のLED(発光ダイオード)5および透光性のレンズカバー34と、光源支持台33の背面側に取り付けられた放熱機構35を備える。各LED5のレンズカバー32側の面には図示しない凸レンズが配設され、各LED5から放射される光が所定の配光となるように配光制御されている。   The light source unit 24 includes a plurality of first light source units 31 and second light source units 32 provided with a plurality of LEDs having a predetermined emission wavelength. FIG. 2 is a perspective view showing a configuration of the light source unit 31 (32) with a part cut away. The light source unit 31 (32) shown in the figure includes a light source support 33, a plurality of LEDs (light emitting diodes) 5 and a translucent lens cover 34 attached to the surface side of the light source support 33, A heat dissipation mechanism 35 attached to the back side of the light source support 33 is provided. A convex lens (not shown) is disposed on the surface of each LED 5 on the lens cover 32 side, and light distribution is controlled so that light emitted from each LED 5 has a predetermined light distribution.

第1光源ユニット31で使用するLED5は、青色もしくは青緑色発光するLEDが設けられる。青色発光のLEDは、例えば発光主波長(ピーク波長)が465nmの青色発光のLEDを用いる。青緑色発光のLEDは、例えば発光主波長(ピーク波長)が500nmの青緑色発光のLEDを用いる。   The LED 5 used in the first light source unit 31 is provided with a blue or blue-green LED. As the blue light emitting LED, for example, a blue light emitting LED having an emission main wavelength (peak wavelength) of 465 nm is used. As the blue-green LED, for example, a blue-green LED having an emission main wavelength (peak wavelength) of 500 nm is used.

第1光源ユニット31は、後に詳述する挿し木工程から摘心を実施するまでの時期において夜間照射を行う補光を担う光源ユニットである。挿し木工程から摘心を実施するまでの時期においては活着に優れることが望まれる。よって補光を行わない場合に比べて明らかに発根を早めることができた青色光もしくは青緑色光を発する発光ダイオードを用いる。具体的には青色光もしくは青緑色光を発する発光ダイオードの発光主波長が、520nmよりも短い波長であることが好ましい。   The 1st light source unit 31 is a light source unit which bears the supplementary light which performs nighttime illumination in the period from the cutting process mentioned later to the implementation of pinching. In the period from cutting process to plucking, it is desirable to have excellent survival. Therefore, a light emitting diode that emits blue light or blue green light, which has been able to be clearly rooted compared to the case where supplementary light is not used, is used. Specifically, the emission main wavelength of the light emitting diode emitting blue light or blue green light is preferably shorter than 520 nm.

第2光源ユニット32で使用するLED5は、緑色発光するLEDが設けられる。緑色発光のLEDは、例えば発光主波長(ピーク波長)が520nmの緑色発光のLEDを用いる。なお、第1光源ユニット31および第2光源ユニット32におけるLED5の配置や個数は図2では4個×2列としているが、上記に限られない。   The LED 5 used in the second light source unit 32 is provided with an LED that emits green light. As the green light emitting LED, for example, a green light emitting LED having an emission main wavelength (peak wavelength) of 520 nm is used. In addition, although arrangement | positioning and the number of LED5 in the 1st light source unit 31 and the 2nd light source unit 32 are 4 pieces x 2 rows in FIG. 2, it is not restricted above.

第2光源ユニット32は、後に詳述する挿し木工程から出荷段階までの時期において夜間照射を行う補光を担う光源ユニットである。挿し木工程から出荷段階までの時期においては花蕾が多く、発蕾率が高いことが望まれる。よって補光を行わない場合に比べて明らかに花蕾量および発蕾率に優れた緑色光を発する発光ダイオードを用いる。具体的には緑色光を発する発光ダイオードの発光主波長が、500nmよりも長い波長であることが好ましい。   The 2nd light source unit 32 is a light source unit which bears the supplementary light which irradiates at night in the time from the cutting process mentioned later in detail to a shipment stage. In the period from the cutting process to the shipping stage, there are many flower buds and it is desirable that the germination rate is high. Therefore, a light emitting diode that emits green light, which is clearly superior in the amount of florets and the rate of light emission compared with the case where supplementary light is not used, is used. Specifically, the emission main wavelength of the light emitting diode that emits green light is preferably longer than 500 nm.

制御装置25は、光源部の発光を制御する。制御装置25には、モードを切り替えるためにユーザが操作する操作部と、時刻を計測するタイマと、光源部24を調光点灯制御する調光点灯部と、操作部およびタイマの信号に応じて調光点灯部に制御信号を送信する制御部を備える。   The control device 25 controls light emission of the light source unit. The control device 25 includes an operation unit that is operated by a user to switch modes, a timer that measures time, a dimming lighting unit that performs dimming lighting control on the light source unit 24, and a signal from the operation unit and the timer. The control part which transmits a control signal to a light control lighting part is provided.

調光点灯部は、調光点灯回路から成り、この調光点灯回路により光源ユニット31,32のLED5の発光量を増減して制御すると共に、これらの光源の点灯/消灯制御を行なう。   The dimming / lighting unit is composed of a dimming / lighting circuit. The dimming / lighting circuit controls the light emission amount of the LEDs 5 of the light source units 31 and 32 by increasing / decreasing the light source, and controls turning on / off the light sources.

制御部は、CPUを含むマイクロコンピュータから成り、光源部24の各種制御を調光点灯部を用いて行なう。各種制御には、例えば温度調整装置や植物の育成に必要な栄養分の補給の制御を行う補給制御装置等の他の装置との信号を用いた処理を行う場合における制御を含んでも良い。   The control unit is composed of a microcomputer including a CPU, and performs various controls of the light source unit 24 using the dimming / lighting unit. Various controls may include, for example, control in the case of performing processing using a signal with another device such as a temperature control device or a supply control device that controls supply of nutrients necessary for plant growth.

例えば、制御部は、ユーザが本装置のモードを発根促進モードと出荷モードに切り替えるために操作部を操作したとき、操作部からの信号に基づいて、第1光源ユニットによる照射光、第2光源ユニットによる照射光のそれぞれの照射光量を個別に制御する。例えば、発根促進モードにおいては第1光源ユニットによる発光のみとすれば、第2光源ユニットを点灯させることによる消費電力の上昇を抑制することができる。   For example, when the user operates the operation unit to switch the mode of the apparatus between the rooting promotion mode and the shipping mode, the control unit, based on a signal from the operation unit, emits light emitted from the first light source unit, second The amount of light emitted from the light source unit is individually controlled. For example, if only light emission by the first light source unit is performed in the rooting promotion mode, an increase in power consumption due to lighting of the second light source unit can be suppressed.

さらに、制御部が行なう各種制御には点灯/消灯制御が含まれる。この点灯/消灯制御は、タイマから送信される時刻情報に基づいて行なわれる。例えば、制御部は予め記憶させておいた季節に応じた夜間の連続点灯時間や、操作部で任意に設定した時間に合せて点灯および消灯を制御する。本実施の形態では、日没後から日の出までの時間において、ほぼ連続して照射する連続補光を実施する。   Further, various controls performed by the control unit include lighting / extinguishing control. This on / off control is performed based on time information transmitted from the timer. For example, the control unit controls the lighting and extinguishing according to the nightly continuous lighting time corresponding to the season stored in advance or the time arbitrarily set by the operation unit. In the present embodiment, continuous supplementary light that is irradiated almost continuously in the time from sunset to sunrise is implemented.

なお、点灯/消灯制御としては、太陽光が照射されない時間帯の中でも、日没の後の数時間後である深夜にのみ補光を実施する深夜補光(例えば22:00〜02:00)、日没の頃から補光を実施して明期を延長する夕刻補光(例えば17:00〜22:00)、日の出を早める補光を実施して明期を延長する早朝補光(例えば02:00〜09:00)、夜間に点灯/消灯を所定時間毎に繰り返して行うサイクル照射補光などを行うものとしても良い。また、日中における曇天の時に補光をように照度センサの信号とタイマの組み合わせにより制御しても良い。   In addition, as lighting / extinguishing control, late-night supplementary light that performs supplementary light only in the middle of the night several hours after sunset, even during a time period when sunlight is not irradiated (for example, 22:00 to 02:00) Supplied in the evening to enhance the light period from sunset (for example, 17:00 to 22:00), early morning supplement to extend the light period by performing the supplement to accelerate the sunrise (for example, 02: 00 to 09: 00), it is also possible to perform cycle irradiation supplementary light that is repeatedly turned on / off at predetermined time intervals at night. Further, it may be controlled by a combination of a signal from an illuminance sensor and a timer so that supplementary light is provided during cloudy days.

光源部24から出射される光の光量は光補償点を超える光強度の光とする。緑葉をもつ植物の光合成量は光の量に応じて変化する。植物に照射する光強度を下げていくと光合成による二酸化炭素の吸収量と呼吸による放出量が同速度となる光強度があり、それを光補償点という。光補償点を超える光強度による補光を行えば植物の消耗を抑制することができる。照射光量を多くすれば、光合成が活発に働くが、所費電力が増大しコスト的に好ましいものではない。また、光飽和点、すなわち光強度をさらに高めても光合成速度が変わらなくなる光強度を超える強い光を与えるとかえって植物に対するストレスとなる。したがって、コスト上昇を抑制した商業的利用に適した光量としては、弱光の光を照射することが好ましい。弱光とは、具体的には、光合成光量子束密度が100μmol・m−2・s−1PPFDより低い光をいう。 The amount of light emitted from the light source unit 24 is light having a light intensity exceeding the light compensation point. The amount of photosynthesis in plants with green leaves varies with the amount of light. When the light intensity applied to a plant is lowered, there is a light intensity at which the absorbed amount of carbon dioxide by photosynthesis and the released amount by respiration become the same speed, which is called a light compensation point. Plant supplementation can be suppressed by supplementing with light intensity exceeding the light compensation point. If the amount of irradiation light is increased, photosynthesis works actively, but the power consumption increases, which is not preferable in terms of cost. Moreover, if the light saturation point, that is, strong light exceeding the light intensity at which the photosynthesis rate does not change even if the light intensity is further increased, it gives a stress on the plant. Therefore, it is preferable to irradiate weak light as a light amount suitable for commercial use with suppressed cost increase. The weak light specifically refers to light having a photosynthetic photon flux density lower than 100 μmol · m −2 · s −1 PPFD.

上記構成により、太陽光が照射されない時間帯である夜間に補光を行うことができる。植物12は、光補償点を超える光強度の光を浴びることができ、有効な光合成が行われる。   With the above configuration, supplementary light can be performed at night, which is a time zone in which sunlight is not irradiated. The plant 12 can be exposed to light having a light intensity exceeding the light compensation point, and effective photosynthesis is performed.

次に、発明者により実施された実験の結果を参照して説明する。
る。
Next, a description will be given with reference to the results of experiments conducted by the inventors.
The

なお、後述する実験においては、各処理区内において第1光源ユニット31および第2光源ユニット32の2種類の光源ユニットを設ける実施形態とは異なり、同一種類の光源ユニットを設け、処理区に応じて異なる種類の光源ユニットを設けて実験を実施した。、   Note that, in the experiment described later, unlike the embodiment in which two types of light source units, the first light source unit 31 and the second light source unit 32, are provided in each processing section, the same type of light source unit is provided, and according to the processing section. Experiments were conducted with different types of light source units. ,

図3および図4は、この実験の際に用いられた植物12の育成状態を示す模式図である。図3は、挿し木工程から摘心工程を実施するまでの期間における植物の育成状態を示すもので、(A)が挿し木直後の状態、(B)が活着した状態、(C)摘心を示す。図4は、摘心工程を終えた後の生育から出荷段階までの植物の育成状態を示すもので、(A)が分茎状態、(B)が発蕾状態、(C)開花状態を示す。   3 and 4 are schematic diagrams showing the growing state of the plant 12 used in this experiment. FIG. 3 shows the state of plant growth in the period from the cutting process to the plucking process, where (A) shows the state immediately after cutting, (B) shows the state of survival, and (C) plucking. FIG. 4 shows the growth state of the plant from the growth after finishing the pinching process to the shipping stage, where (A) shows a splitting state, (B) shows a germination state, and (C) shows a flowering state.

本実験では、植物としてミニバラであるニューヨーク・フォーエバー(作出:デンマーク Forever Rose社)を用いた。ニューヨーク・フォーエバーはミニバラ苗の商品形態にて出荷されており、樹高:20〜25cm、花径:3.5〜5cmである。バラは、バラバラ目バラ科バラ属の種の低木であり、シュラブロ-ズ(半蔓性)、ブッシュタイプ、ブッシュロ-ズ(株立性、四季咲き品種)、ハイブリッドティー系(HT)の4系統に分けた園芸品種におけるブッシュタイプのミニチュア系に属する。   In this experiment, New Rose Forever (produced by Forever Rose, Denmark), a mini rose, was used as a plant. New York Forever is shipped in the form of mini rose seedlings and has a tree height of 20 to 25 cm and a flower diameter of 3.5 to 5 cm. Roses are shrubs of the genus Rousaceae, and fall into four lines: shrubrose (semi-generic), bush type, bushrose (stock establishment, four-season varieties), and hybrid tea (HT). It belongs to the bush type miniature system in the divided horticultural variety.

(挿し木工程)
植物の伸張した芽(シュート)から挿し穂をとって、セルトレー11に挿し穂を行う挿し木工程を実施した。セルトレーとしては、無菌の培地1を充填した5号プラ鉢に4本挿し穂を挿した。なお、図3および図4においては、判りやすくするためににセルトレー11内に1本挿し穂をした場合における概念図を示している。実験に供したサンプルは後述する処理区の各区に15鉢を供試した。
(Cutting process)
An cutting process was carried out in which cuttings were taken from the shoots (shoots) of the plant and inserted into the cell tray 11 for cuttings. As the cell tray, four spikelets were inserted into a No. 5 plastic pot filled with sterile medium 1. 3 and 4 show conceptual diagrams in the case where one is inserted into the cell tray 11 for easy understanding. Samples used for the experiment were 15 bowls in each of the treatment zones described later.

(太陽光照射工程)
温度調整設備を設けたガラス温室内において、太陽があたるようにして挿し木工程を実施した試験サンプルを育成した。ガラス温室内は、15℃〜30℃の間の所定室温となるように温度調整を施した。挿し木工程を実施した後、出荷段階に至る期間の間、毎日、所定室温下で全ての試験サンプルの鉢を育成した。
(Sunlight irradiation process)
In a glass greenhouse provided with temperature control equipment, a test sample in which the cutting process was carried out so as to be exposed to the sun was grown. The temperature inside the glass greenhouse was adjusted to a predetermined room temperature between 15 ° C and 30 ° C. After performing the cutting process, all test sample pots were grown daily at a predetermined room temperature during the period leading to the shipping stage.

(補光工程)
挿し木工程を実施した直後から、太陽光が照射されない時間帯においては、植物育成用照明装置20の光源部24(植物育成用照明光源)下で補光を行って育成した。
補光は、17:30〜07:00の13.5時間/日の連続照射により行った。光源部24としては、LEDチップを発光源とするスタンレー電気株式会社製の屋外用LEDユニットLLM0200Aシリーズ、15Wを使用し、3×5穴トレー(310mm×530mm)からなる1処理区に対し2個の光源ユニット30を光源部24として使用した。光源部24とトレー(栽培ベッド)との距離は、各光源ユニットに設けた凸レンズ素子により栽培ベッド全体にわたり略等照度の光が照射される配光特性となる距離を隔てた。
(Light supplement process)
Immediately after performing the cutting process, in the time zone when sunlight was not irradiated, it was grown by performing supplementary light under the light source part 24 (illuminating light source for plant growth) of the plant growing lighting device 20.
Supplementary light was performed by continuous irradiation from 17:30 to 07:00 for 13.5 hours / day. As the light source unit 24, an outdoor LED unit LLM0200A series made by Stanley Electric Co., Ltd., which uses an LED chip as a light source, 15W is used, two for one processing section composed of a 3 × 5 hole tray (310 mm × 530 mm). The light source unit 30 was used as the light source unit 24. The distance between the light source unit 24 and the tray (cultivation bed) was separated by a convex lens element provided in each light source unit so as to have a light distribution characteristic that light with substantially equal illuminance was irradiated over the entire cultivation bed.

(処理区)
処理区として次の7つの処理区を設けて実験を行った。なお、隣接する処理区の間には距離を隔てて、他の処理区の補光による照射光が入射しないようにした。
第2処理区は、青色発光のLED(ピーク波長465nm)5を設けた光源ユニット30を使用した。第3処理区は、青緑色発光のLED(ピーク波長500nm)5を設けた光源ユニット30を使用した。第4処理区は、緑色発光のLED(ピーク波長520nm)5を設けた光源ユニット30を使用した。第5処理区は、橙色発光のLED(ピーク波長600nm)5を設けた光源ユニット30を使用した。第6処理区は、赤色発光のLED(ピーク波長635nm)5を設けた光源ユニット30を使用した。第2処理区〜第6処理区の各光源ユニット30に用いたLEDは、LEDの半導体発光層から単色光が出射するLEDを用いた。第1処理区は、白色発光のLED(ピーク波長445nm+550nm)5を設けた光源ユニット30を使用した。ピーク波長が2つあるのは青色発光するLED(ピーク波長445nm)と蛍光体材料(ピーク波長550nm)による発光の混色により白色としているLEDを用いたからである。
第7処理区は、比較例として、光源ユニット30を設けない無補光の処理区とした。なお、第1処理区〜第6処理区の各光源ユニット30で照射する補光の光強度は光合成光量子束密度(photosynthetic photon flux density)が50μmol・m−2・s−1PPFDとした。
(Processing area)
Experiments were performed by setting the following seven treatment zones as treatment zones. In addition, the irradiation light by the supplementary light of another process area did not incline by spacing between adjacent process areas.
In the second treatment section, the light source unit 30 provided with the blue light emitting LED (peak wavelength 465 nm) 5 was used. In the third treatment section, a light source unit 30 provided with blue-green light emitting LEDs (peak wavelength 500 nm) 5 was used. In the fourth treatment section, a light source unit 30 provided with a green light emitting LED (peak wavelength 520 nm) 5 was used. In the fifth treatment section, the light source unit 30 provided with the orange light emitting LED (peak wavelength 600 nm) 5 was used. In the sixth treatment section, a light source unit 30 provided with a red light emitting LED (peak wavelength 635 nm) 5 was used. The LED used for each light source unit 30 in the second processing section to the sixth processing section is an LED that emits monochromatic light from the semiconductor light emitting layer of the LED. In the first treatment section, a light source unit 30 provided with a white light emitting LED (peak wavelength 445 nm + 550 nm) 5 was used. The reason why there are two peak wavelengths is that an LED that emits blue light (peak wavelength: 445 nm) and an LED that is white due to color mixture of light emitted by the phosphor material (peak wavelength: 550 nm) are used.
The seventh treatment section is a non-complementary light treatment section in which the light source unit 30 is not provided as a comparative example. The light intensity of the supplementary light irradiated by each light source unit 30 in the first processing section to the sixth processing section was set to 50 μmol · m −2 · s −1 PPFD in terms of photosynthetic photon flux density.

(挿し木〜摘心までの期間の育成実験結果)
挿し木直後から2週間目(14日)における発根について調査した。図3(B)は発根し活着が良くなっている状態を示す概念図である。挿し木をした植物12を培地1から引き抜きを行い、引き抜く際の応力および発根の成長度合いを観察した。発根は第2処理区(青色光LED)が最も促進的であった。次いで第3処理区(青緑色光LED)であり、第7処理区(無補光)が最も劣っていた。第1処理区〜第6処理区の何れの処理区においても、第7処理区に比べて明らかに発根が促進されていた。すなわち、補光を実施しない場合に比べて、可視光LEDによる照射を行った場合には使用した光源の光質(発光波長)にかかわらず発根が早まった。このことから、可視光LEDを用いた夜間補光は、光合成を促して発根を早めていることが判明した。
(Results of breeding experiments in the period from cuttings to pinching)
The rooting in the second week (14th day) immediately after cutting was investigated. FIG. 3 (B) is a conceptual diagram showing a state in which rooting is achieved and the wearing is improved. The cutting plant 12 was extracted from the medium 1, and the stress at the time of extraction and the degree of root growth were observed. The rooting was most accelerated in the second treatment zone (blue light LED). Next, it was the third treatment zone (blue-green light LED), and the seventh treatment zone (non-complementary light) was the worst. In any of the first treatment zone to the sixth treatment zone, rooting was clearly promoted compared to the seventh treatment zone. That is, compared with the case where supplementary light is not implemented, rooting was accelerated when irradiation with visible light LEDs was performed regardless of the light quality (emission wavelength) of the light source used. From this, it was found that nighttime supplementation using visible light LEDs promotes photosynthesis and accelerates rooting.

(摘心)
図3(C)は摘心を示す概念図である。摘心は、第1試験区〜第6試験区の可視光LEDによる夜間補光を行った試験区においては、全体を挿し木から31日後に実施した。成長が遅れていた第7試験区(無補光)はさらに5日遅れた36日後に実施した。このことから、可視光LEDを用いた夜間補光は、光合成を促して発根を早め、活着に優れていることが判明した。また発根を早めることができたので、挿し木から摘心に適した時期に至るまでの生育期間期間を無補光の場合に比べて短縮することができることが判明した。
(Pinching)
FIG. 3C is a conceptual diagram showing pinching. The pinching was performed 31 days after cutting in the test section where the night light supplementation with visible light LEDs in the first test section to the sixth test section was performed. The seventh test zone (non-complementary light), whose growth was delayed, was carried out 36 days after another 5 days. From this, it was found that nighttime supplementation using visible light LEDs promotes photosynthesis, accelerates rooting, and is excellent in survival. Moreover, since rooting was able to be accelerated, it turned out that the growth period period from cutting to the time suitable for pinching can be shortened compared with the case of non-complementary light.

(摘心〜摘心後14日目までの期間の育成実験結果)
図4(A)は摘心後に第1シュート(芽)および第2シュート(芽)が生育した状態を示す概念図である。摘心後14日目に各試験区における試験サンプルの一部を抜き取り、シュートの伸長状況を解体調査した。解体調査の調査結果を第1表に示す。表1のデータは、各試験区における植物について、第2シュートを切り離し、第1シュートの長さとその重さ、第2シュートの長さと重さを測定した。また、第2シュートの形成率を%で示した。夫々の試験区における解体調査した試験サンプル数は8サンプルである。
(Results of breeding experiments during the period from pinching to the 14th day after pinching)
FIG. 4A is a conceptual diagram showing a state in which the first shoot (bud) and the second shoot (bud) have grown after pinching. On the 14th day after pinching, a part of the test sample in each test section was extracted, and the elongation of the shoot was disassembled. Table 1 shows the results of the demolition survey. The data in Table 1 were obtained by cutting the second shoot and measuring the length and weight of the first shoot and the length and weight of the second shoot for the plants in each test section. In addition, the formation rate of the second chute is shown in%. The number of test samples that were dismantled in each test area was 8 samples.

Figure 2014180221
Figure 2014180221

表1から判るように、この時点のシュートの成長は第5試験区(橙色光LED)が旺盛で、第2シュート形成率が69.2%だった。可視光LEDを用いた夜間補光を実施した第1処理区〜第6処理区の何れの処理区においても、第2シュートの形成が45%以上の高い確率で形成されていた。それに対し夜間補光を実施していない第7処理区では、第2シュートが形成されていなかった。また、第1シュートの長さおよび重量も、第1処理区〜第6処理区の何れの処理区の試験サンプルと比べても、大幅に育成が遅れていた。このことから、可視光LEDを用いた夜間補光は、光合成を促して成長を早めていることが判明した。   As can be seen from Table 1, the growth of shoots at this time was strong in the fifth test section (orange light LED) and the second shoot formation rate was 69.2%. The formation of the second chute was formed with a high probability of 45% or more in any of the first to sixth treatment zones in which nighttime supplementation using visible light LEDs was performed. On the other hand, the 2nd chute | shoot was not formed in the 7th process area which is not implementing night supplementary light. Further, the length and weight of the first chute were greatly delayed in comparison with the test samples in any of the first to sixth treatment zones. From this, it was found that nighttime supplementation using visible light LEDs promotes photosynthesis and accelerates growth.

(出荷段階までの育成実験結果)
図4(B)は出荷段階に至る直前の蕾が形成された状態、図4(C)は出荷段階の植物の状態を示す概念図である。図4(C)では一部のシュートで蕾が存在し、他のシュートにおいて開花している状態を示している。出荷段階において各試験区における試験サンプルの一部を抜き取り育成した植物の解体調査を実施した。解体調査の調査結果を第2表に示す。
(Results of growth experiments up to the shipping stage)
FIG. 4B is a conceptual diagram showing a state in which a cocoon just before reaching the shipping stage is formed, and FIG. 4C is a conceptual diagram showing a state of the plant in the shipping stage. FIG. 4C shows a state where buds are present on some shoots and flowering on other shoots. At the shipping stage, a dismantling survey was conducted on plants that had been extracted from some of the test samples in each test plot. Table 2 shows the results of the dismantling survey.

Figure 2014180221
Figure 2014180221

表2から判るように、出荷段階に達した時点でもっとも旺盛な成長・開花を示したのは第4試験区(緑色光LED)であり、発蕾率は100%だった。次いで、挿し木時に発根が早かった第2試験区(青色光LED)が旺盛な成長および高い発蕾率を示した。挿し木14日後ではもっとも生育が旺盛だった第5試験区(橙色光LED)は、シュートによる生育のバラツキが大きく、発蕾率がやや低い値となった。第6試験区(赤色光LED)は可視光LEDを用いた夜間補光を実施した第1処理区〜第6処理区の中でもっとも成長が劣った。   As can be seen from Table 2, it was the fourth test zone (green light LED) that showed the most vigorous growth and flowering when it reached the shipping stage, and the germination rate was 100%. Next, the second test section (blue light LED), which had early rooting at the time of cutting, showed vigorous growth and a high ripening rate. In the fifth test section (orange light LED) where growth was most vigorous after 14 days from cutting, the variation in growth due to shoots was large, and the rate of germination was slightly low. The sixth test section (red light LED) showed the worst growth among the first to sixth treatment sections in which nighttime supplementation using visible light LEDs was performed.

第7試験区(無補光)は全体的な成長は劣ったものの高い発蕾率を示している。今回の試験期間において、太陽光照射工程、すなわち日中の天候が非常に良く、十分な日照を日中に受けたためと考えられる。日中の天候が非常に良い場合においては、前述した挿し木から摘心までの5日間の遅れの成長差を大幅に縮めることができている。   The seventh test area (non-complementary light) showed a high rate of eruption although overall growth was inferior. It is considered that the sunlight irradiation process, that is, the daytime weather was very good during this test period, and that sufficient sunlight was received during the daytime. When the daytime weather is very good, the five-day delay growth difference from cuttings to pinching can be significantly reduced.

出荷段階の発蕾率や全体的なボリューム感などから判断すると、少なくとも挿し木後に萌芽してからの夜間補光では第4試験区(緑色光)が最も有効な光質であった。すなわち、摘心する前の挿し穂から萌芽してからの期間における夜間補光としては、緑色光のLEDによる連続照射が効果的である。   Judging from the rate of occurrence at the shipping stage and overall volume feeling, the fourth test zone (green light) was the most effective light quality at night after supplementing at least after cutting. That is, continuous illumination with a green light LED is effective as nighttime supplementary light in the period after budding from the cutting head before pinching.

また、挿し木直後からの補光は、栽培期間の短縮と品質向上に非常に効果的なことが明らかになった。特に、青色光もしくは青緑色光を用いたLEDによる夜間補光が効果的である。更に好ましくは青緑色光よりも青色光を用いることが好ましい。青色光の方が栽培期間の短縮に優れるからである。   Moreover, it became clear that supplementary light immediately after cuttings is very effective in shortening the cultivation period and improving quality. In particular, nighttime supplementary light with LEDs using blue light or blue-green light is effective. More preferably, blue light is used rather than blue-green light. This is because blue light is superior in shortening the cultivation period.

上記試験結果を考察すると、挿し木を終えた植物に対して、挿し木直後から夜間においても光合成を行うために必要な最低光量よりも多い弱光の光を連続照射することで、栽培期間の短縮と品質向上に効果的であることが判明した。特に活着を促進させるために発根を促す期間においては、青色光もしくは青緑色光を用いたLEDによる夜間補光が効果的である。したがって、前述した実施形態のように第1の光源ユニット31として、発光主波長が520nmよりも短い波長の光を発光する青色光もしくは青緑色光を発光するLEDを用いた光源ユニットを植物育成用照明装置に用いることが好ましい。   Considering the above test results, for plants that have finished cuttings, shortening the cultivation period by continuously irradiating light that is weaker than the minimum amount of light necessary to perform photosynthesis immediately after cuttings at night It turned out to be effective for quality improvement. In particular, during the period in which rooting is promoted in order to promote survival, nighttime light supplementation using LEDs using blue light or blue-green light is effective. Therefore, as the first light source unit 31 as in the above-described embodiment, a light source unit using a blue light emitting blue light or a blue green light emitting light having a light emission main wavelength shorter than 520 nm is used for plant growth. It is preferable to use it for a lighting device.

また、上記試験結果を考察すると、挿し木を終えた植物に対して、萌芽してからの夜間補光として緑色光が最も有効な光質であった。すなわち、摘心する前の挿し穂から萌芽してから出荷段階までの期間における夜間補光としては、緑色光のLEDによる連続照射が効果的である。従って、前述した実施形態のように第2の光源ユニット32として、発光主波長が500nmよりも長い波長の光を発光する緑色発光のLEDを用いた光源ユニットを植物育成用照明装置に用いることが好ましい。   Further, considering the above test results, green light was the most effective light quality as nighttime supplement after germination for plants that had finished cuttings. That is, continuous illumination with a green light LED is effective as nighttime supplementary light during the period from the emergence of the cutting head before pinching to the shipment stage. Therefore, as the second light source unit 32 as in the above-described embodiment, a light source unit using a green light emitting LED that emits light having a light emission main wavelength longer than 500 nm is used in the plant growth lighting device. preferable.

これらのことから、植物育成用照明装置20に第1光源ユニット31と第2光源ユニットを設け、挿し木を終えた後の成長段階に合せて、発根を促す時期においては第1光源ユニット31にて照射を実施し、萌芽してから出荷段階までの期間の植物全体のバランスの良い成長を行う促す期間においては第2光源ユニット32にて照射を行うことが好ましいであろう。   For these reasons, the first light source unit 31 and the second light source unit are provided in the plant-growing lighting device 20, and the first light source unit 31 is used at the time of promoting rooting in accordance with the growth stage after cutting has been completed. It is preferable to irradiate with the second light source unit 32 during a period of promoting the well-balanced growth of the whole plant during the period from the germination to the shipping stage.

植物育成用照明装置を商業的に利用する場合には、消費電力コストを低減することが望まれる。また、発根が促しても萌芽する時期は個々の植物でバラツキが生じる。それゆえ、現実的には、挿し木を実施した後から摘心を実施するまでの期間においては、第1光源ユニット31、すなわち、発光主波長が青色光もしくは青緑色光を発する発光ダイオードを用いて弱光にて夜間照射を行い、摘心を実施してから出荷段階までの期間においては第1光源ユニット31による照射に代えて第2光源ユニット32、すなわち、発光主波長が緑色光を発する発光ダイオードを用いた弱光での夜間照射に切り替えて補光を行いのが、管理上およびコスト的に考えて最も好適であろう。   When the plant growing lighting device is used commercially, it is desired to reduce the power consumption cost. In addition, even when rooting is promoted, variation occurs in individual plants during the germination period. Therefore, in reality, during the period from cutting cutting to pinching, the first light source unit 31, that is, the light emitting dominant wavelength is weak using a light emitting diode emitting blue light or blue green light. Instead of irradiation by the first light source unit 31, the second light source unit 32, that is, a light emitting diode whose main emission wavelength emits green light, is irradiated with light at night and after the pinching is performed until the shipment stage. It is most preferable to perform supplementary light by switching to the low-light irradiation used for nighttime in terms of management and cost.

上記実施形態はあらゆる点で単なる例示にすぎない。これらの記載によって本発明は限定的に解釈されるものではない。例えば、本実施の形態において植物育成用照明装置には、第1光源ユニットと、第2光源ユニットの2種類の光源ユニットを同じ照射区域に設ける実施例にて説明しているが、第1光源ユニットにて照射する第1の照射区域と第2光源ユニットにて照射する第2の照射区域に区画し、挿し木直後から出荷段階に至るまでの期間の半分の時間においては第1照射区域にて育成し、後半の半分の期間においては第2照射区域にて育成するなどとしても良い。また、ミニバラであるニューヨーク・フォーエバーを用いて試験を実施したが、他のブッシュタイプの系統のバラにも適用できよう。   The above embodiment is merely an example in all respects. The present invention is not construed as being limited to these descriptions. For example, in the present embodiment, the plant growth lighting device is described in an embodiment in which two types of light source units, a first light source unit and a second light source unit, are provided in the same irradiation area. It divides into the 1st irradiation area irradiated with a unit, and the 2nd irradiation area irradiated with a 2nd light source unit, and it is in the 1st irradiation area in the time of half of the period from cutting immediately to the shipping stage. It is good also as raising in the 2nd irradiation area in the half period of the latter half. In addition, the test was conducted using New York Forever, a mini rose, but it could be applied to other bush type roses.

本発明によれば、挿し木にて植物の個体数を増やす園芸、農業の分野、特に鑑賞用に栽培される園芸植物の分野において植物育成用照明装置を用いて行う栽培に適用できる。
INDUSTRIAL APPLICABILITY According to the present invention, the present invention can be applied to cultivation performed using a plant-growing lighting device in the fields of horticulture and agriculture that increase the number of plants with cuttings, especially in the field of horticultural plants that are cultivated for viewing.

1 鉢
5 LED
8 赤色LED
9 青緑色LED
10 白色LED
11 セルトレー
12 植物
20 植物育成用照明装置
21 植物群
22 植物載置台
23 栽培ベッド
24 光源部
25 制御装置
30 光源ユニット
31 第1光源ユニット
32 第2光源ユニット
33 光源支持台
34 レンズカバー
35 放熱機構
1 bowl 5 LED
8 Red LED
9 Blue-green LED
10 White LED
DESCRIPTION OF SYMBOLS 11 Cell tray 12 Plant 20 Plant growth lighting device 21 Plant group 22 Plant mounting table 23 Cultivation bed 24 Light source unit 25 Control device 30 Light source unit 31 First light source unit 32 Second light source unit 33 Light source support base 34 Lens cover 35 Heat dissipation mechanism

Claims (5)

植物の伸張した芽(シュート)から挿し穂をとる工程と、
セルトレーに挿し穂をする挿し木工程と、
太陽光が照射される時間帯に、所定環境下にて前記セルトレーの挿し穂に太陽光の照射を行う太陽光照射工程と、
太陽光が照射されない時間帯において、所定環境下にて前記セルトレーの挿し穂に植物育成用照明装置による照明を照射する補光工程と、を有し、
前記補光工程は、発光主波長が緑色光を発する発光ダイオードを用いて出荷段階まで夜間照射を行う工程および/または挿し木工程から摘心を実施するまでの時期において発光主波長が青色光もしくは青緑色光を発する発光ダイオードを用いて夜間照射を行う工程であることを特徴とする植物の栽培方法。
A process of taking an ear from an elongated shoot (shoot) of a plant;
Cutting process for cutting the cell tray;
A sunlight irradiation step of irradiating sunlight on the insertion tips of the cell tray in a predetermined environment in a time zone in which sunlight is irradiated; and
In a time zone in which sunlight is not irradiated, it has a light supplementing step of irradiating illumination with an illuminating device for plant growth on the cuttings of the cell tray under a predetermined environment,
In the supplementary light process, the light emission main wavelength is blue light or blue-green at the time from the cutting process to the time of carrying out pinching from the process of performing night illumination until the shipping stage using a light emitting diode whose light emission main wavelength emits green light. A method for cultivating a plant, which is a step of performing night-time irradiation using a light-emitting diode that emits light.
前記植物がバラ目バラ科バラ属の低木の種であり、前記夜間照射を光合成光量子束密度が100μmol・m−2・s−1PPFDより低い弱光にて行うことを特徴とする請求項1に記載の栽培方法。 2. The plant according to claim 1, wherein the plant is a shrub species belonging to the family Rosaceae, and the nighttime irradiation is performed with low light whose photosynthetic photon flux density is lower than 100 μmol · m −2 · s −1 PPFD. The cultivation method as described in. 前記緑色光を発する発光ダイオードの発光主波長が500nmよりも長い波長であることを特徴とする請求項2に記載の栽培方法。   The cultivation method according to claim 2, wherein a light emission main wavelength of the light emitting diode emitting green light is longer than 500 nm. 前記青色光もしくは青緑色光を発する発光ダイオード緑色の発光主波長が520nmよりも短い波長であることを特徴とする請求項2に記載の栽培方法。   The cultivation method according to claim 2, wherein a light emission main wavelength of the light emitting diode green emitting blue light or blue green light is shorter than 520 nm. 挿し木を実施したセルトレーの複数を収容する施設と、
前記施設内を施設外の気温に比べて変化させる温度調整装置と、を備えた植物育成施設に用いる植物育成用照明装置であって、
発光主波長が500nmよりも長い緑色光を発する発光ダイオードと、
発光主波長が520nmよりも短い波長の青色光もしくは青緑色光を発する発光ダイオードとを用いた光源と、
太陽光が照射されない夜間に、前記セルトレーに対して前記光源の照射光を、光合成光量子束密度が100μmol・m−2・s−1PPFDより低い弱光にて連続照射するように前記光源を点灯制御する制御装置とを備えた、植物育成用照明装置。
A facility that houses multiple cell trays with cuttings;
A plant growth lighting device for use in a plant growth facility comprising a temperature adjustment device that changes the inside of the facility as compared to the temperature outside the facility,
A light emitting diode that emits green light having an emission dominant wavelength longer than 500 nm;
A light source using a light emitting diode that emits blue or blue-green light having a wavelength shorter than 520 nm.
The light source is turned on so that the light emitted from the light source is continuously irradiated to the cell tray with a weak light whose photosynthetic photon flux density is lower than 100 μmol · m −2 · s −1 PPFD at night when sunlight is not irradiated. An illuminating device for plant growth comprising a control device for controlling.
JP2013054959A 2013-03-18 2013-03-18 Cultivation method using plant growing lighting device and plant growing lighting device Active JP6325771B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013054959A JP6325771B2 (en) 2013-03-18 2013-03-18 Cultivation method using plant growing lighting device and plant growing lighting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013054959A JP6325771B2 (en) 2013-03-18 2013-03-18 Cultivation method using plant growing lighting device and plant growing lighting device

Publications (2)

Publication Number Publication Date
JP2014180221A true JP2014180221A (en) 2014-09-29
JP6325771B2 JP6325771B2 (en) 2018-05-16

Family

ID=51699540

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013054959A Active JP6325771B2 (en) 2013-03-18 2013-03-18 Cultivation method using plant growing lighting device and plant growing lighting device

Country Status (1)

Country Link
JP (1) JP6325771B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105284396A (en) * 2015-11-24 2016-02-03 广西壮族自治区农业科学院经济作物研究所 Cuttage seedling device and method for beautiful millettia roots
CN105830693A (en) * 2016-03-29 2016-08-10 赵洋 High stubble flower cutting technology for cold region roses
CN105830887A (en) * 2016-03-31 2016-08-10 德清绿色阳光农业生态有限公司 Eurya emarginata cuttage breeding method
CN106034927A (en) * 2016-06-15 2016-10-26 安徽菲扬农业科技有限公司 Technique for planting rose in greenhouse
CN106106146A (en) * 2015-06-04 2016-11-16 陆培玉 Group training system and planar emission apparatus, LED lamplight incubator
KR20170020956A (en) 2015-08-17 2017-02-27 라이트산업 주식회사 Apparatus for raising seeding
CN107926315A (en) * 2017-12-19 2018-04-20 安徽泓森高科林业股份有限公司 Chinese catalpa bud cutting method for culturing seedlings
CN106717975B (en) * 2017-01-05 2018-06-29 任泽楷 A kind of cuttage breeding method of Dunnia sinensis
CN108605536A (en) * 2018-04-11 2018-10-02 中国科学院武汉植物园 The side illumination cottage method of Vanilla plant rose valve vanilla
JP2020054287A (en) * 2018-10-02 2020-04-09 一般財団法人電力中央研究所 Method for inhibiting plant growth and illumination device for inhibiting plant growth
CN111133936A (en) * 2018-11-05 2020-05-12 浙江省农业科学院 Cultivation method for reducing acidity of waxberry fruits by using colored greenhouse film
CN111802098A (en) * 2020-07-22 2020-10-23 夏文进 Large-area cutting cultivation pretreatment method for nursery stocks
JP2021520046A (en) * 2018-05-31 2021-08-12 シグニファイ ホールディング ビー ヴィSignify Holding B.V. Gardening lighting devices for maintaining indoor plant growth, as well as corresponding gardening lighting systems and methods

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005046072A (en) * 2003-07-29 2005-02-24 Hamamatsu Photonics Kk Method for cultivating orchid
JP2006280313A (en) * 2005-04-01 2006-10-19 Chiba Univ Cultivation method and apparatus for flower seedling
JP2008061602A (en) * 2006-09-08 2008-03-21 Osaka Prefecture Univ Method for raising plant cutting seedling
JP2011125274A (en) * 2009-12-18 2011-06-30 Howa Kasei Co Ltd Plant raising system
JP2011182790A (en) * 2010-02-09 2011-09-22 Univ Of Miyazaki Cultivation method for blueberry

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005046072A (en) * 2003-07-29 2005-02-24 Hamamatsu Photonics Kk Method for cultivating orchid
JP2006280313A (en) * 2005-04-01 2006-10-19 Chiba Univ Cultivation method and apparatus for flower seedling
JP2008061602A (en) * 2006-09-08 2008-03-21 Osaka Prefecture Univ Method for raising plant cutting seedling
JP2011125274A (en) * 2009-12-18 2011-06-30 Howa Kasei Co Ltd Plant raising system
JP2011182790A (en) * 2010-02-09 2011-09-22 Univ Of Miyazaki Cultivation method for blueberry

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106106146A (en) * 2015-06-04 2016-11-16 陆培玉 Group training system and planar emission apparatus, LED lamplight incubator
KR20170020956A (en) 2015-08-17 2017-02-27 라이트산업 주식회사 Apparatus for raising seeding
CN105284396A (en) * 2015-11-24 2016-02-03 广西壮族自治区农业科学院经济作物研究所 Cuttage seedling device and method for beautiful millettia roots
CN105830693A (en) * 2016-03-29 2016-08-10 赵洋 High stubble flower cutting technology for cold region roses
CN105830887A (en) * 2016-03-31 2016-08-10 德清绿色阳光农业生态有限公司 Eurya emarginata cuttage breeding method
CN106034927A (en) * 2016-06-15 2016-10-26 安徽菲扬农业科技有限公司 Technique for planting rose in greenhouse
CN106717975B (en) * 2017-01-05 2018-06-29 任泽楷 A kind of cuttage breeding method of Dunnia sinensis
CN107926315A (en) * 2017-12-19 2018-04-20 安徽泓森高科林业股份有限公司 Chinese catalpa bud cutting method for culturing seedlings
CN108605536A (en) * 2018-04-11 2018-10-02 中国科学院武汉植物园 The side illumination cottage method of Vanilla plant rose valve vanilla
JP2021520046A (en) * 2018-05-31 2021-08-12 シグニファイ ホールディング ビー ヴィSignify Holding B.V. Gardening lighting devices for maintaining indoor plant growth, as well as corresponding gardening lighting systems and methods
JP2020054287A (en) * 2018-10-02 2020-04-09 一般財団法人電力中央研究所 Method for inhibiting plant growth and illumination device for inhibiting plant growth
JP7245595B2 (en) 2018-10-02 2023-03-24 一般財団法人電力中央研究所 plant growth control method
CN111133936A (en) * 2018-11-05 2020-05-12 浙江省农业科学院 Cultivation method for reducing acidity of waxberry fruits by using colored greenhouse film
CN111133936B (en) * 2018-11-05 2022-03-25 浙江省农业科学院 Cultivation method for reducing acidity of waxberry fruits by using colored greenhouse film
CN111802098A (en) * 2020-07-22 2020-10-23 夏文进 Large-area cutting cultivation pretreatment method for nursery stocks

Also Published As

Publication number Publication date
JP6325771B2 (en) 2018-05-16

Similar Documents

Publication Publication Date Title
JP6325771B2 (en) Cultivation method using plant growing lighting device and plant growing lighting device
JP5723898B2 (en) Fruit and vegetable cultivation method
JP5102190B2 (en) Plant cultivation method
ES2960319T3 (en) Control of premature flowering using a high level of far red
JP2010094109A (en) Lighting system for preventing plant disease damage
WO2018143407A1 (en) Method for cultivating plant seedling by artificial light
KR102285707B1 (en) Plant cultivation apparatus and plant cultivation method using light source for plant cultivation
JP2020500027A (en) Segmented addressable light engine for horticulture
JP6444611B2 (en) Plant cultivation method
Lalge et al. The effects of red, blue and white light on the growth and development of Cannabis sativa L
Ouzounis et al. LED or HPS in ornamentals? A case study in roses and campanulas
JP2005192517A (en) Method for growing plant
KR101414473B1 (en) Plant cultivation system and cultivation method using upper and lower growth lamp
JP2018153128A (en) Proliferation method of larix plant
JP2011109934A (en) Method for cultivating plant
JP2017077203A (en) Plant cultivation method and plant cultivation device
JP6005787B2 (en) Fruit and vegetable cultivation method
JP2021145605A (en) Method for high-density cultivation of plants
JP2014176374A (en) Lighting cultivation device
WO2022102328A1 (en) Tomato plant, tomato fruit, and method for cultivating tomato plant
JP2001258389A (en) Method for cultivating plant
JP2018143203A (en) Method for controlling form of matricaria recutita l
JP2019106955A (en) Plant cultivation method
JP4159485B2 (en) Method for inducing flower buds of cruciferous plants
JP5376667B2 (en) Flower seedling raising method and seedling system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170613

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180403

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180413

R150 Certificate of patent or registration of utility model

Ref document number: 6325771

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250