JP2014179176A - Electrode material and process of manufacturing the same - Google Patents

Electrode material and process of manufacturing the same Download PDF

Info

Publication number
JP2014179176A
JP2014179176A JP2013050792A JP2013050792A JP2014179176A JP 2014179176 A JP2014179176 A JP 2014179176A JP 2013050792 A JP2013050792 A JP 2013050792A JP 2013050792 A JP2013050792 A JP 2013050792A JP 2014179176 A JP2014179176 A JP 2014179176A
Authority
JP
Japan
Prior art keywords
electrode material
mass
lifepo
graphene oxide
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013050792A
Other languages
Japanese (ja)
Inventor
Kazuyoshi Joto
和良 上等
Yuki Takase
雄希 高瀬
Maiko Shinkai
妹井子 新開
Takuya Goto
拓也 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP2013050792A priority Critical patent/JP2014179176A/en
Publication of JP2014179176A publication Critical patent/JP2014179176A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide an electrode material excellent in safety and stability suitable for a positive electrode material for a lithium ion battery of high energy density and to provide a process of manufacturing the same.SOLUTION: Provided are the electrode material formed by disposing LiFePOof particle sizes of 5 to 50 nm on a thin film graphite particles obtained by reducing oxidized graphene having an average particle size of 100 nm or more and an average thickness of 0.4nm to 10nm, wherein the graphite particles are contained by 0.01 to 1 pts.mass with per 100 pts.mass of the LiFePO, and the process of manufacturing the same.

Description

本発明は、電極材料及びその製造方法に関し、特に、電池用の正極材料、とりわけリチウム電池の正極材料用の電極材料及びその製造方法に関する。   The present invention relates to an electrode material and a manufacturing method thereof, and more particularly to an electrode material for a positive electrode material for a battery, particularly a positive electrode material for a lithium battery, and a manufacturing method thereof.

リチウムイオン電池はエネルギー密度と出力密度に優れた蓄電デバイスであり、小型化、軽量化、高容量化が期待される二次電池として提案され、実用に供されている。近年、ノートブックコンピューター、携帯電話などのポータブル機器の多機能化・高性能化に伴い、機器の消費電力は高まりつつあり、その電源となるリチウムイオン電池に対して、より一層の高容量化が要求されている。一方で、リチウムイオン電池は引火性液体の電解液を用いていることから、使用方法を誤ると,最悪の場合電池自体の発火・破裂といった危険な状態に至ることがある。 Lithium ion batteries are energy storage devices with excellent energy density and output density, and have been proposed and put into practical use as secondary batteries that are expected to be smaller, lighter, and have higher capacities. In recent years, with the increase in functionality and performance of portable devices such as notebook computers and mobile phones, the power consumption of the devices has been increasing, and the capacity of lithium-ion batteries that serve as power sources has been further increased. It is requested. On the other hand, since a lithium ion battery uses a flammable liquid electrolyte, if it is used incorrectly, it may lead to a dangerous state such as ignition or rupture of the battery itself in the worst case.

現在、リチウム電池の正極材料としては、コバルト酸リチウム(LiCoO)、ニッケル酸リチウム(LiNiO)、マンガン酸リチウム(LiMn)などのリチウム(Li)化合物が提案され、実用化されているが、安全性、安定性、価格において必ずしも市場の要求を満足させるものではない At present, lithium (Li) compounds such as lithium cobaltate (LiCoO 2 ), lithium nickelate (LiNiO 2 ), and lithium manganate (LiMn 2 O 4 ) have been proposed and put into practical use as positive electrode materials for lithium batteries. But does not necessarily meet market demands in terms of safety, stability and price

LiCoOは、Coの埋蔵量が少ないために、価格が市況の影響を受け易く、正極材料が高価なものとなる、Co自体に毒性がある、180℃程度で多量の酸素を放出するため有機電解液を用いるリチウムイオン電池用正極としては発火する危険性がある等の課題がある。LiNiOは、優れた充放電特性を示すものの、Ni自体が決して安価ではないために、正極材料が高価なものとなる、高温における安定性が十分ではなく、定比からの組成ずれが生じた場合には急激な特性低下が生じる恐れがある等の課題がある。LiMnは、高温でMnが溶出する、Mn3+のヤーン・テラー歪によるサイクル劣化等の課題がある。 Since LiCoO 2 has a small amount of reserves of Co, its price is easily affected by market conditions, the cathode material is expensive, and it is toxic to Co itself and releases a large amount of oxygen at about 180 ° C. As a positive electrode for a lithium ion battery using an electrolytic solution, there are problems such as a risk of ignition. Although LiNiO 2 exhibits excellent charge / discharge characteristics, Ni itself is never cheap, so the cathode material becomes expensive, the stability at high temperature is not sufficient, and the composition deviation from the constant ratio has occurred. In some cases, there is a problem such as a risk of sudden characteristic deterioration. LiMn 2 O 4 has problems such as cycle degradation due to Mn3 + yarn-Teller strain, in which Mn elutes at high temperatures.

そこで、資源的に豊富かつ安価な金属であるFeを用い、かつ高温でも安定なオリビン形リン酸鉄リチウム(LiFePO)を正極活物質に用いたリチウム電池が提案されている(特許文献1、2参照)。リン酸鉄リチウムは400℃程度までほとんど酸素発生・発熱を示さないなど、熱的・化学的安定性に優れ、有害性等、廃棄の際の環境負荷も小さい。このLiFePOは、金属リチウム(Li)に対して3.4V程度の電位を示し、単位質量当たりの理論エネルギー密度が170mAh/gであることから、充放電可能で高容量な正極材料として用いることが可能である。 Therefore, a lithium battery using Fe, which is a resource-rich and inexpensive metal, and using olivine-type lithium iron phosphate (LiFePO 4 ), which is stable even at high temperatures, as a positive electrode active material has been proposed (Patent Document 1, 2). Lithium iron phosphate has excellent thermal and chemical stability such as almost no oxygen generation and heat generation up to about 400 ° C., and has a low environmental impact during disposal, such as toxicity. This LiFePO 4 exhibits a potential of about 3.4 V with respect to metallic lithium (Li) and has a theoretical energy density per unit mass of 170 mAh / g. Therefore, it should be used as a chargeable / dischargeable high capacity positive electrode material. Is possible.

しかしながら、LiFePOはLiCoO、LiNiO、及びLiMnと比較して、電子伝導度が低いため、充放電時に活物質内で電子の授受が行われても、活物質−活物質間、活物質−集電体間の導電パスが形成されにくく、理論値に近いエネルギー密度を得ることが困難であった。該導電パスを形成する方法として、カーボンブラックやアセチレンブラック等の導電助剤の添加量を増やすことが考えられるが、導電助剤を増やすことにより活物質の添加量が減少し、かえって電極全体のエネルギー密度が低下してしまう。 However, since LiFePO 4 has a lower electronic conductivity than LiCoO 2 , LiNiO 2 , and LiMn 2 O 4 , even if electrons are exchanged in the active material during charge and discharge, It is difficult to form a conductive path between the active material and the current collector, and it is difficult to obtain an energy density close to the theoretical value. As a method for forming the conductive path, it is conceivable to increase the amount of the conductive auxiliary agent such as carbon black or acetylene black. However, by increasing the conductive auxiliary agent, the additive amount of the active material is decreased, and the entire electrode is instead increased. Energy density will decrease.

電子伝導性を向上させる方法として、LiFePOを微粒子化することにより、活物質内の電子の移動距離を短くする方法が考えられる。LiFePOの合成法は、固相法と水熱法に大別されるが、以下の理由でLiFePOの微粒子化には水熱法が優れている。 As a method of improving the electron conductivity, a method of shortening the moving distance of electrons in the active material by making LiFePO 4 into fine particles can be considered. The synthesis method of LiFePO 4 is roughly divided into a solid phase method and a hydrothermal method, and the hydrothermal method is excellent for making LiFePO 4 fine particles for the following reasons.

固相法は、不活性ガス雰囲気下でLi源、Fe源、PO源から成る原料の焼成と粉砕を繰り返す方法である。粒子径を小さくするには、より低温かつ短時間で焼成するのが好ましいが、この場合、合成時の焼成温度が低いために合成時の結晶化度や粒径を制御することが難しく、得られるリチウム金属リン酸化合物は小さな結晶子が無秩序に並んだ構造を有するものとなる。従って、リチウム金属リン酸化合物の結晶相は十分に生成・発達せず、結晶性も低いものとなり、粒子内のイオンの拡散性や電子伝導性が悪くなる。また、粒子径を小さくする方法として焼成後に粉砕する方法もあるが、この方法では、十分小さな粒子径にまで粉砕することができず、また、粉砕中に粒子自体に過度の力が掛かるために、歪や割れが生じ、結晶性も低下する。 The solid phase method is a method in which firing and pulverization of a raw material composed of a Li source, an Fe source, and a PO 4 source are repeated in an inert gas atmosphere. In order to reduce the particle size, it is preferable to perform firing at a lower temperature and in a shorter time. In this case, since the firing temperature at the time of synthesis is low, it is difficult to control the crystallinity and particle size at the time of synthesis. The resulting lithium metal phosphate compound has a structure in which small crystallites are arranged in a disorderly manner. Therefore, the crystal phase of the lithium metal phosphate compound is not sufficiently generated / developed, the crystallinity is low, and the diffusibility of ions in the particles and the electron conductivity are deteriorated. In addition, there is a method of pulverizing after firing as a method of reducing the particle size, but this method cannot pulverize to a sufficiently small particle size, and excessive force is applied to the particles themselves during pulverization. , Distortion and cracking occur, and crystallinity also decreases.

水熱法は、水を主成分とする溶媒に、Li源、Fe源、PO源から成る原料溶液を耐圧容器内で加熱して反応させ、その後降温させて析出させることにより、リチウム金属リン酸化合物を得る方法であり、結晶化度や粒径の制御が容易という利点を有する(特許文献5参照)。 In the hydrothermal method, a raw material solution composed of a Li source, an Fe source, and a PO 4 source is reacted in a solvent containing water as a main component by heating in a pressure-resistant vessel, and then cooled to cause precipitation. This is a method for obtaining an acid compound, and has the advantage that the degree of crystallinity and particle size can be easily controlled (see Patent Document 5).

また、LiFePOの電子伝導性を向上させる方法として、特許文献3、4には、外見上の幾何学的形態が単位粒子である粒子(以下、1次粒子)を、複数個集合した粒子(以下、2次粒子)とし、かつ、これら1次粒子間に、電子伝導性物質として炭素を介在させることが開示されているが、LiFePO/C比は質量比で80/12と炭素量を高含有量とせざるを得ない。 In addition, as a method for improving the electronic conductivity of LiFePO 4 , Patent Documents 3 and 4 disclose particles in which a plurality of particles (hereinafter referred to as primary particles) whose appearance geometric shapes are unit particles (hereinafter referred to as primary particles) ( Hereinafter, it is disclosed that carbon is interposed as an electron conductive substance between the primary particles, and the LiFePO 4 / C ratio is 80/12 in terms of mass ratio and carbon content. It must be high content.

水熱法によりLiFePOの微粒子を合成し、かつ、1次粒子間に電子伝導性物質を介在させるためには、以下に示す課題がある。まず、水熱法により得られるリチウム金属リン酸化合物は二次凝集した状態で得られるため、LiFePOを合成した後に電子伝導性物質を介在させることは困難である。1次粒子間に炭素等の電子伝導性物質を介在させる方法として、例えば、特許文献3には、水を主成分とする溶媒に、Li源、Fe源、PO源からなる原料溶液に、炭素源としてポリエチレングリコールやショ糖などの水溶性の有機化合物を共存させ、これを噴霧熱乾燥させる方法が開示されているが、一次粒子径が0.05〜2μmと大きく、溶液を霧状にした後に加熱してサンプルを回収するため、生産性に劣る。 In order to synthesize LiFePO 4 fine particles by the hydrothermal method and to interpose an electron conductive substance between the primary particles, there are the following problems. First, since the lithium metal phosphate compound obtained by the hydrothermal method is obtained in a secondary aggregated state, it is difficult to interpose an electron conductive substance after synthesizing LiFePO 4 . As a method for interposing an electron conductive substance such as carbon between primary particles, for example, Patent Document 3 discloses that a solvent containing water as a main component, a raw material solution consisting of a Li source, an Fe source, and a PO 4 source, A method of coexisting a water-soluble organic compound such as polyethylene glycol or sucrose as a carbon source and spray-drying it is disclosed, but the primary particle size is as large as 0.05 to 2 μm, and the solution is atomized. Since the sample is recovered after heating, the productivity is inferior.

特開平9−134724号公報JP-A-9-134724 特開平9−171827号公報Japanese Patent Laid-Open No. 9-171827 特開2004−014340号公報JP 2004-014340 A 特開2004−014341号公報JP 2004-014341 A 特許4011442号公報Japanese Patent No. 4011142

本発明の目的は、高エネルギー密度のリチウムイオン電池用正極材料に好適な、安全性、安定性に優れた電極材料およびその製造法を提供することである。 An object of the present invention is to provide an electrode material excellent in safety and stability, suitable for a positive electrode material for a lithium ion battery having a high energy density, and a method for producing the electrode material.

本発明者等は、上記課題を解決するために鋭意研究を行った結果、電極高導電化のための炭素材料として薄膜状のナノ粒子である酸化グラフェンを用い、これを原料溶液に混合して、水熱法により電極活物質の合成と酸化グラフェンの還元を同時に行うと、極めて粒子径が小さく、同一の炭素量でも特異的に導電性の高い電極材料が得られることを見出し、本発明を完成するに至った。 As a result of intensive studies to solve the above problems, the present inventors used graphene oxide, which is a thin-film nanoparticle, as a carbon material for increasing the conductivity of an electrode, and mixed this into a raw material solution. In addition, when the synthesis of the electrode active material and the reduction of graphene oxide are simultaneously performed by the hydrothermal method, it has been found that an electrode material having a very small particle diameter and specifically high conductivity can be obtained even with the same amount of carbon. It came to be completed.

すなわち、本発明は、平均粒径100nm以上及び平均厚み0.4nm〜10nmの酸化グラフェンを還元して得られる薄膜状の黒鉛粒子上に、電極活物質として平均粒径5〜50nmのオリビン形リン酸鉄リチウム(LiFePO)が配した電極材料であり、LiFePOの100質量部に対して該黒鉛粒子が0.01〜1質量部 含まれることを特徴とする電極材料である。 That is, the present invention provides an olivine-type phosphor having an average particle diameter of 5 to 50 nm as an electrode active material on thin-film graphite particles obtained by reducing graphene oxide having an average particle diameter of 100 nm or more and an average thickness of 0.4 nm to 10 nm. It is an electrode material in which lithium iron oxide (LiFePO 4 ) is arranged. The electrode material is characterized in that 0.01 to 1 part by mass of the graphite particles is contained with respect to 100 parts by mass of LiFePO 4 .

また、本発明は、該電極材料の製造方法であり、水を50質量%以上含む溶媒に、Li源、Fe源、PO源から成るLiFePOの原料溶液、および炭素源として、LiFePOの100質量部に対して0.05〜1質量部の、酸化グラフェンを含む酸化グラフェン水分散液を混合し、耐圧容器内で温度150〜400℃、圧力22〜40MPaの条件で加熱することを特徴とする。反応条件は、反応溶媒の水が超臨界状態となる、温度374〜400℃、圧力22〜40MPaが特に好ましい。 The present invention is also a method for producing the electrode material, wherein a LiFePO 4 raw material solution comprising a Li source, an Fe source, and a PO 4 source in a solvent containing 50% by mass or more of water, and LiFePO 4 as a carbon source. A graphene oxide aqueous dispersion containing 0.05 to 1 part by mass of graphene oxide with respect to 100 parts by mass is mixed and heated in a pressure resistant container at a temperature of 150 to 400 ° C. and a pressure of 22 to 40 MPa. And The reaction conditions are particularly preferably a temperature of 374 to 400 ° C. and a pressure of 22 to 40 MPa, at which the reaction solvent water becomes a supercritical state.

本発明の電極材料は、酸化グラフェンを還元して得られる薄膜状の黒鉛粒子上に、電極活物質としてオリビン形リン酸鉄リチウム(LiFePO)の微粒子を配したものであり、他の一般的な炭素源を黒鉛粒子として用いた電極材料よりもLiFePOの一次粒子径が小さい物が得られるため、電子伝導性が向上し、高エネルギー密度のリチウムイオン電池用正極材料に好適で、安全性、安定性に優れた電極材料が得られる。 The electrode material of the present invention is obtained by arranging fine particles of olivine-type lithium iron phosphate (LiFePO 4 ) as an electrode active material on thin-film graphite particles obtained by reducing graphene oxide. As a result, a material having a smaller primary particle size than LiFePO 4 can be obtained as compared with an electrode material using a simple carbon source as graphite particles. Therefore, the electron conductivity is improved, and it is suitable for a positive electrode material for a lithium ion battery having high energy density and safety. An electrode material having excellent stability can be obtained.

実施例1で得られた電極材料を透過型電子顕微鏡(TEM)で観察して得られた像である。It is the image obtained by observing the electrode material obtained in Example 1 with the transmission electron microscope (TEM). 実施例2で得られた電極材料を透過型電子顕微鏡(TEM)で観察して得られた像である。It is the image obtained by observing the electrode material obtained in Example 2 with the transmission electron microscope (TEM). 比較例4で得られた電極材料を走査型電子顕微鏡(SEM)で観察して得られた像である。It is the image obtained by observing the electrode material obtained by the comparative example 4 with the scanning electron microscope (SEM).

以下、本発明について詳細に説明する。
本発明の一形態は、平均粒径100nm以上及び平均厚み0.4nm〜10nmの酸化グラフェンを還元して得られる薄膜状の黒鉛粒子上に、電極活物質として平均粒径5〜50nmのオリビン形リン酸鉄リチウム(LiFePO)が配した電極材料であり、LiFePOの100質量部に対して該黒鉛粒子が0.01〜1質量部 含まれることを特徴とする電極材料である。
Hereinafter, the present invention will be described in detail.
One embodiment of the present invention is an olivine type having an average particle diameter of 5 to 50 nm as an electrode active material on thin-film graphite particles obtained by reducing graphene oxide having an average particle diameter of 100 nm or more and an average thickness of 0.4 nm to 10 nm. It is an electrode material in which lithium iron phosphate (LiFePO 4 ) is arranged, and is an electrode material characterized in that the graphite particles are contained in an amount of 0.01 to 1 part by mass with respect to 100 parts by mass of LiFePO 4 .

なお、酸化黒鉛粒子の「平均粒径」とは、光学顕微鏡または電子顕微鏡を使って任意の5個の酸化黒鉛粒子を観察した場合に、酸化黒鉛粒子の平面方向の粒径の平均値を言うものとする。ここで、「粒径」とは、光学顕微鏡または電子顕微鏡を使って酸化黒鉛粒子を観察したときの酸化黒鉛粒子の最も長い対角線の長さを言うものとする。   The “average particle diameter” of the graphite oxide particles refers to the average value of the particle diameters in the plane direction of the graphite oxide particles when any five graphite oxide particles are observed using an optical microscope or an electron microscope. Shall. Here, “particle diameter” refers to the length of the longest diagonal line of graphite oxide particles when the graphite oxide particles are observed using an optical microscope or an electron microscope.

また、酸化黒鉛粒子の「平均厚さ」とは、原子間力顕微鏡を使って任意の5個の酸化黒鉛粒子について測定された厚さの平均値を言うものとする。   Further, the “average thickness” of the graphite oxide particles means an average value of thicknesses measured for any five graphite oxide particles using an atomic force microscope.

黒鉛粒子上に配する該LiFePOの平均粒径は5〜50nmであることが好ましい。さらに好ましくは10〜30nmである。LiFePO粒子の径が小さいほど、電極活物質粒子内部へのリチウムイオン拡散距離が短くなり、大電流の充放電が可能な高出力かつ高エネルギー密度のリチウムイオン電池を提供することができる。平均粒径が50nmを超えると、粒子内部への電子の供給量が不足し、リチウムイオン電池のエネルギー密度が低下する、もしくは、粒子内部へのリチウムイオン拡散距離が長くなり、出力特性が低下する恐れがある。ただし、平均粒径が5nm未満では、充放電による体積変化で結晶構造が破壊される恐れがある。 The average particle size of the LiFePO 4 disposed on the graphite particles is preferably 5 to 50 nm. More preferably, it is 10-30 nm. The smaller the diameter of the LiFePO 4 particles, the shorter the lithium ion diffusion distance into the electrode active material particles, thereby providing a high-power and high-energy density lithium-ion battery capable of charging and discharging a large current. If the average particle size exceeds 50 nm, the amount of electrons supplied to the inside of the particles will be insufficient, and the energy density of the lithium ion battery will decrease, or the lithium ion diffusion distance to the inside of the particles will become long and the output characteristics will deteriorate. There is a fear. However, if the average particle size is less than 5 nm, the crystal structure may be destroyed by volume change due to charge / discharge.

なお、該LiFePOの「平均粒径」とは、光学顕微鏡または電子顕微鏡を使って任意の5個のLiFePO粒子を観察した場合の粒径の平均値を言うものとする。 Incidentally, the "average particle diameter" of the LiFePO 4, and shall refer to mean particle size in the case of observing any five LiFePO 4 particles with an optical microscope or an electron microscope.

本発明の電極材料において、薄膜状の黒鉛粒子の平均粒径は100nm以上である。100nm以上であると、十分な導電性が得られる。また、平均粒径が100μm以下であると、前駆体の酸化グラフェンを還元することで薄膜状の黒鉛粒子が得られやすいため好ましい。LiFePOに対する薄膜状の黒鉛粒子の量は、LiFePOの100質量部に対して0.01〜1質量部であることが好ましい。黒鉛粒子の量が1質量部を超えると、電極を形成した際の内部抵抗は低下するものの、単位体積中に占めるLiFePOの量が低下するため、結果として電池容量の低下を招く、あるいは、電極材料の嵩密度が増加して電極作製時の作業性悪化を招く恐れがある。黒鉛粒子の量が0.01質量部未満であると、電極材料の電子伝導性が低下する。 In the electrode material of the present invention, the average particle diameter of the thin film-like graphite particles is 100 nm or more. When the thickness is 100 nm or more, sufficient conductivity can be obtained. Further, it is preferable that the average particle size is 100 μm or less because thin graphitic particles can be easily obtained by reducing the precursor graphene oxide. The amount of the thin-film-like graphite particles with respect to LiFePO 4 is preferably 0.01 to 1 part by mass with respect to 100 parts by mass of LiFePO 4 . If the amount of graphite particles exceeds 1 part by mass, the internal resistance when the electrode is formed decreases, but the amount of LiFePO 4 in the unit volume decreases, resulting in a decrease in battery capacity, or There is a possibility that the bulk density of the electrode material is increased and workability at the time of electrode preparation is deteriorated. When the amount of the graphite particles is less than 0.01 parts by mass, the electron conductivity of the electrode material is lowered.

本発明のもう一つの態様である電極材料を製造する方法について説明する。本発明の電極材料は、薄膜状の黒鉛粒子と電極活物質であるLiFePOを含有するが、薄膜状の黒鉛粒子の炭素源として酸化グラフェンを原料として用い、電極材料の製造中に還元して黒鉛粒子とする所に特徴がある。 A method for producing an electrode material according to another embodiment of the present invention will be described. The electrode material of the present invention contains thin-film-like graphite particles and LiFePO 4 that is an electrode active material. Graphene oxide is used as a carbon source for the thin-film-like graphite particles as a raw material and reduced during the production of the electrode material. Characterized by graphite particles.

炭素源である酸化グラフェンについて説明する。
酸化グラフェンは黒鉛を特定の方法で酸化することにより製造される黒鉛の層間化合物である。酸化グラフェンを得るための黒鉛の酸化法としては、公知のBrodie法(硝酸、塩素酸カリウムを使用)、Staudenmaier法(硝酸、硫酸、塩素酸カリウムを使用)、Hummers−Offeman法(硫酸、硝酸ナトリウム、過マンガン酸カリウムを使用)などが利用できる。これらのうち、特に酸化が進行するのはHummers−Offeman法(W.S.Hummers et al.,J.Am.Chem.Soc.,80,1339(1958);米国特許No.2798878(1957))であり、本発明でもこの酸化方法が特に推奨される。なお、層数が多い酸化グラフェンは通常酸化黒鉛と呼ばれるが、本発明では層数が多い場合も含めて酸化グラフェンと呼ぶことにする。
The graphene oxide which is a carbon source is demonstrated.
Graphene oxide is an intercalation compound of graphite produced by oxidizing graphite by a specific method. Graphite oxidation methods for obtaining graphene oxide include known Brodie methods (using nitric acid and potassium chlorate), Staudenmeier methods (using nitric acid, sulfuric acid and potassium chlorate), and Hummers-Offeman methods (sulfuric acid, sodium nitrate). , Using potassium permanganate). Of these, oxidation proceeds particularly in the Hummers-Offeman method (WS Hummers et al., J. Am. Chem. Soc., 80, 1339 (1958); US Pat. No. 2,798,878 (1957)). This oxidation method is particularly recommended in the present invention. Note that graphene oxide with a large number of layers is usually called graphite oxide, but in the present invention, it is called graphene oxide even when the number of layers is large.

酸化グラフェン含有溶液中の酸化グラフェンの酸素含有量としては、5質量%以上であることが好ましく10質量%以上であることがより好ましく、30質量%以上であることがさらに好ましい。酸素含有量が5質量%未満になると、酸化グラフェンからの層分離が困難になる。また、酸素含有量が30質量%以上であれば、酸化黒鉛からの層分離が容易になる。十分に酸化された状態として酸素含有量の上限は一般に50質量%程度までである。   The oxygen content of graphene oxide in the graphene oxide-containing solution is preferably 5% by mass or more, more preferably 10% by mass or more, and further preferably 30% by mass or more. When the oxygen content is less than 5% by mass, layer separation from graphene oxide becomes difficult. Moreover, if the oxygen content is 30% by mass or more, layer separation from graphite oxide becomes easy. The upper limit of the oxygen content is generally up to about 50% by mass in a sufficiently oxidized state.

酸化グラフェン含有溶液中の酸化グラフェン粒子の平均粒径は100nm以上であることが好ましい。100nm以下であると、還元後に十分な導電性が得られない恐れがある。一方、平均粒径が100μm以上であると、酸化グラフェンの薄層化が十分に進行しない恐れがある。酸化グラフェン粒子の平均厚みは10nm以下であることが好ましい。10nm以上である場合は、酸化黒鉛からの層分離が不十分であり、少量の添加量で電極内に電子伝導ネットワークを形成することが困難となる。単層グラフェンの厚さは理論上、炭素原子1個分(0.335nm)であるため、平均厚み0.4nm未満は現実的ではない。   The average particle diameter of the graphene oxide particles in the graphene oxide-containing solution is preferably 100 nm or more. If the thickness is 100 nm or less, sufficient conductivity may not be obtained after reduction. On the other hand, if the average particle size is 100 μm or more, the thinning of graphene oxide may not proceed sufficiently. The average thickness of the graphene oxide particles is preferably 10 nm or less. When the thickness is 10 nm or more, the layer separation from the graphite oxide is insufficient, and it becomes difficult to form an electron conduction network in the electrode with a small addition amount. Since the thickness of single-layer graphene is theoretically one carbon atom (0.335 nm), an average thickness of less than 0.4 nm is not realistic.

酸化グラフェンは加熱することにより酸素含有基が脱離し(還元)、部分的にグラフェン構造が復元され、導電性が飛躍的に向上することが一般的に知られている。酸化グラフェンの還元は、特許文献2010−123280号公報に記載されているように、140℃、約3時間で進行する。 It is generally known that when graphene oxide is heated, oxygen-containing groups are eliminated (reduction), the graphene structure is partially restored, and the conductivity is dramatically improved. The reduction of graphene oxide proceeds at 140 ° C. for about 3 hours as described in Japanese Patent Application Laid-Open No. 2010-123280.

上述の加熱還元処理を行うことで、酸化グラフェンは薄膜状の黒鉛粒子となって親水性を失い、同時に生成したLiFePOの1次粒子間に介在した黒鉛粒子は導電性を示すようになる。酸化グラフェンはアセチレンブラック、カーボンブラック、カーボンナノチューブ等の炭素材料と比較して、反応溶液中で均一に分散しているため、オリビン形LiFePOの1次粒子間により緻密な導電ネットワークを構築することが可能となる。 By performing the heat reduction treatment described above, the graphene oxide becomes thin film-like graphite particles and loses hydrophilicity, and the graphite particles interposed between the primary particles of LiFePO 4 produced at the same time become conductive. Compared with carbon materials such as acetylene black, carbon black, and carbon nanotubes, graphene oxide is more uniformly dispersed in the reaction solution, so that a denser conductive network is constructed between the primary particles of olivine-type LiFePO 4 Is possible.

また、砂糖を炭素源として使用する場合には、砂糖が水溶性のため電極活物質の1次粒子間に緻密な導電ネットワークを構築することが可能であるが、水洗により砂糖が溶出するのを防ぐため、水洗の前に噴霧乾燥等の操作により電極活物質粒子上の砂糖を乾燥させる工程が必要である。これに対し、酸化グラフェンは加熱することで疎水性となるため、反応後に反応容器から電極材料を取り出す際に、そのまま濾過水洗工程を行うことができ、噴霧乾燥は省略可能となる。 In addition, when sugar is used as a carbon source, it is possible to build a dense conductive network between the primary particles of the electrode active material because sugar is water-soluble. In order to prevent this, a step of drying the sugar on the electrode active material particles by an operation such as spray drying is required before washing with water. On the other hand, since graphene oxide becomes hydrophobic when heated, when the electrode material is taken out from the reaction vessel after the reaction, the filtered water washing step can be performed as it is, and spray drying can be omitted.

さらに、本発明者らは、酸化グラフェンの存在下でLiFePOを合成した場合は、アセチレンブラックやカーボンナノチューブを使用した場合と異なり、酸化グラフェンの表面の酸素含有基を起点としてLiFePOの結晶あるいは結晶前駆体が成長するため、LiFePOの粒子径を小さく制御することが可能となることを見出した。 Further, when the present inventors synthesized LiFePO 4 in the presence of graphene oxide, unlike the case of using acetylene black or carbon nanotubes, the LiFePO 4 crystals or the starting point of the oxygen-containing group on the surface of graphene oxide It has been found that since the crystal precursor grows, the particle size of LiFePO 4 can be controlled to be small.

次に電極活物質について説明する。リチウムイオン電池用電極材料の電極活物質として、本発明ではオリビン形LiFePOを採用する。これは例えば水を50質量%以上含む溶媒に、Li源、Fe源、PO源から成る原料溶液を混合し、耐圧容器内で加熱することにより得られる。 Next, the electrode active material will be described. In the present invention, olivine type LiFePO 4 is adopted as the electrode active material of the electrode material for lithium ion batteries. This can be obtained, for example, by mixing a raw material solution composed of a Li source, an Fe source, and a PO 4 source in a solvent containing 50% by mass or more of water and heating in a pressure vessel.

本発明の電極材料は炭素源としての酸化グラフェン及びLiFePOの原料を、水を含有する溶媒中に分散させた状態で、加圧加熱することで、酸化グラフェンの表面に電極活物質であるLiFePOを生成して配しながら酸化グラフェンを還元して薄膜状の炭素粒子とする所に特徴がある。 In the electrode material of the present invention, graphene oxide as a carbon source and LiFePO 4 raw materials are dispersed in a solvent containing water and heated under pressure, so that the surface of graphene oxide is LiFePO as an electrode active material. It is characterized in that graphene oxide is reduced to form thin film-like carbon particles while producing and arranging 4 .

オリビン形LiFePOと薄膜状の黒鉛粒子からなる電極材料の製造方法において、水を50質量%以上含む溶媒に、Li源、Fe源、PO源から成る原料溶液、および炭素源として酸化グラフェン水分散液を混合し、酸化グラフェンが原料溶液中に高度に分散した状態の混合液を耐圧容器内で加熱することにより、1次粒子を複数集合してなる2次粒子からなり、1次粒子間に酸化グラフェンを介在させることにより、電子の供給能力を高めて、充分な充放電レート性能を実現可能な電極材料を簡便な工程で製造することができる。 In a method for producing an electrode material comprising olivine-type LiFePO 4 and thin-film graphite particles, a solvent containing 50% by mass or more of water, a raw material solution comprising Li source, Fe source, PO 4 source, and graphene oxide water as a carbon source Mixing the dispersion liquid and heating the mixed liquid in a state in which graphene oxide is highly dispersed in the raw material solution in the pressure vessel, the secondary particles are formed by aggregating a plurality of primary particles. By interposing graphene oxide in the electrode material, an electrode material capable of increasing the electron supply capability and realizing sufficient charge / discharge rate performance can be manufactured in a simple process.

該オリビン形LiFePOを得るための反応条件は温度150〜400℃、圧力22〜40MPaであることが好ましく、温度374〜400℃、圧力22〜40MPa、すなわち反応溶媒である水が超臨界状態であることが結晶化度の向上と粒径制御の点から特に好ましい。また、この条件であれば酸化グラフェンが十分に還元されるので、LiFePOの生成と薄膜状の炭素粒子の生成が並行して起こる。温度374℃、圧力22MPa以下で水が超臨界状態とならない場合は、結晶化度向上のため、水熱反応後、600〜900℃で1時間程度、電極材料を焼成することが好ましい。温度400℃、圧力40MPaを超えると耐圧容器の材質が限られるため現実的ではない。 The reaction conditions for obtaining the olivine-type LiFePO 4 are preferably a temperature of 150 to 400 ° C. and a pressure of 22 to 40 MPa, and a temperature of 374 to 400 ° C. and a pressure of 22 to 40 MPa, that is, water as a reaction solvent is in a supercritical state. It is particularly preferable from the viewpoint of improvement in crystallinity and particle size control. In addition, since the graphene oxide is sufficiently reduced under these conditions, the production of LiFePO 4 and the production of thin-film carbon particles occur in parallel. When the temperature is 374 ° C. and the pressure is 22 MPa or less and the water does not enter a supercritical state, the electrode material is preferably fired at 600 to 900 ° C. for about 1 hour after the hydrothermal reaction in order to improve the crystallinity. If the temperature exceeds 400 ° C. and the pressure exceeds 40 MPa, the material of the pressure vessel is limited, which is not realistic.

以下に、水熱合成用のLiFePO原料溶液の調製方法について説明する。
Li(リチウム)源としては例えば、酢酸リチウム(LiCHCOO)、塩化リチウム(LiCl)などのリチウム塩、および、水酸化リチウム(LiOH)等のリチウムの金属塩が使用できる。Fe(鉄)源としては例えば、塩化鉄(II)(FeCl)、酢酸鉄(II)(Fe(CHCOO))等の2価の鉄塩が使用できる。PO(リン酸)源としては例えば、リン酸(HPO)、リン酸2アンモニウム(NHPO)、リン酸水素二アンモニウム((NH)2HPO)等のリン酸化合物が使用できる。
The following describes a process for the preparation of LiFePO 4 material solution for hydrothermal synthesis.
Examples of the Li (lithium) source include lithium salts such as lithium acetate (LiCH 3 COO) and lithium chloride (LiCl), and lithium metal salts such as lithium hydroxide (LiOH). As the Fe (iron) source, for example, a divalent iron salt such as iron chloride (II) (FeCl 2 ) or iron (II) acetate (Fe (CH 3 COO) 2 ) can be used. Examples of the PO 4 (phosphoric acid) source include phosphoric acids such as phosphoric acid (H 3 PO 4 ), diammonium phosphate (NH 4 H 2 PO 4 ), and diammonium hydrogen phosphate ((NH 4 ) 2 HPO 4 ). Compounds can be used.

前記の各種成分を加える「原料溶解用液体」としては、例えば水、アルコール類、エーテル類、アセトニトリル、テトラヒドロフラン、ジメチルスルホキシド等の極性有機溶媒、およびこれらを含む混合溶液、または液化ガス等を用いることができ、特に限定はされないが、中でも水を50質量%以上含む溶媒を用いることが好ましい。その理由は、水は安価、安全であり、かつ有機溶媒等のように揮発して環境中に有機物質を放出することのないクリーンな物質であり、また、水は臨界点付近で誘電率の大きな変化を示すことから、温度、圧力の操作により容易に各物質に対する溶解度等の溶媒物性をコントロールすることが可能だからである。 As the “raw material dissolving liquid” to which the above-mentioned various components are added, for example, water, alcohols, ethers, polar organic solvents such as acetonitrile, tetrahydrofuran, dimethyl sulfoxide, and mixed solutions containing these, or liquefied gases are used. Although there is no particular limitation, it is preferable to use a solvent containing 50% by mass or more of water. The reason for this is that water is cheap and safe, and is a clean substance that does not volatilize and release organic substances into the environment, such as organic solvents, and water has a dielectric constant near the critical point. This is because it shows a large change, so that it is possible to easily control the physical properties of the solvent such as solubility in each substance by the operation of temperature and pressure.

水熱合成用の原料溶液は、原料溶解用液体にLi(リチウム)源、Fe(鉄)源、PO(リン酸)源、を加えて調製する。Li(リチウム)源、Fe(鉄)源、PO(リン酸)源は前記液体に溶解することが好ましいが、この段階では溶解しなくても、加熱により液体の温度が上昇し、反応容器内の圧力が上昇した段階で溶解すればよい。従って、液体に前記各種成分を加えて調整した段階の出発原料の状態は、溶液状あるいはスラリー状、溶液と固体物質またはゾルまたはゲルとの混合物といった状態となっている。 The raw material solution for hydrothermal synthesis is prepared by adding a Li (lithium) source, an Fe (iron) source, and a PO 4 (phosphoric acid) source to a raw material dissolving liquid. The Li (lithium) source, Fe (iron) source, and PO 4 (phosphoric acid) source are preferably dissolved in the liquid. At this stage, even if not dissolved, the temperature of the liquid rises due to heating, and the reaction vessel What is necessary is just to melt | dissolve in the stage where the inside pressure rose. Therefore, the state of the starting material at the stage where the various components are added to the liquid is in the form of a solution or a slurry, or a mixture of a solution and a solid substance or a sol or gel.

続いて、LiFePOの原料となるLi源、Fe源、PO源に酸化グラフェンを混合した原料水溶液について説明する。
水熱合成反応に用いる原料水溶液に還元剤を添加することも好ましい。上述のFe源が水溶液中で酸化される、すなわち鉄の2価が3価に酸化されると、これが正極材料としての性能を下げる場合がある。このため、原料水溶液中にアスコルビン酸、蟻酸、シュウ酸、クエン酸、アミン類、ヒドラジンなどの還元剤を添加することが有効である。
Subsequently, a raw material aqueous solution in which graphene oxide is mixed with a Li source, a Fe source, and a PO 4 source as raw materials for LiFePO 4 will be described.
It is also preferable to add a reducing agent to the aqueous raw material solution used for the hydrothermal synthesis reaction. When the above-mentioned Fe source is oxidized in an aqueous solution, that is, when iron divalent is oxidized to trivalent, this may lower the performance as a positive electrode material. For this reason, it is effective to add a reducing agent such as ascorbic acid, formic acid, oxalic acid, citric acid, amines, hydrazine to the raw material aqueous solution.

原料溶液を加熱して反応させる際、反応系に、合成反応時に変性し変性の前後で反応溶液のpHを変化させる物質を加えると、原料物質と生成物質の安定なpH領域が異なる場合でも対応が可能となる。LiFePOの合成において、出発原料中では鉄の酸化数を2価にすることが望ましく、この場合はpHが低いことが必要とされ、pHは5以下が好ましく、さらには2以下が好ましい。
しかし、合成生成物のLiFePOは酸性溶液中では生成物の溶解やLiイオンの溶出が生じるため、合成生成物の回収時には溶液のpHは高い方が好ましく、pH7以上が好ましい。このため、合成反応中に変性し、反応前後のpHを変化させる物質、例えば尿素を、溶媒が水の場合、出発原料中に添加することにより、溶液の液性を合成反応前は低pH、合成反応後は高pHとすることが可能となる。この尿素(NHCONH)は、水溶液中での加熱により、式1のような反応をし、pH調整剤として機能し、合成反応終了時のpHを高くすることにより合成生成物の再溶解の抑制およびLiの溶媒中への溶出を防ぐことができる。このようなpH調整剤の例としては尿素、ヘキサメチレンテトラミン、アセトアミド等が挙げられるが、本発明は上述の物質例に限定されるものではない。
When reacting by heating the raw material solution, adding to the reaction system a substance that denatures during the synthesis reaction and changes the pH of the reaction solution before and after denaturation, even if the stable pH range of the raw material and the product is different Is possible. In the synthesis of LiFePO 4 , it is desirable to make the oxidation number of iron bivalent in the starting material. In this case, the pH needs to be low, and the pH is preferably 5 or less, and more preferably 2 or less.
However, since the product LiFePO 4 is dissolved in the acidic solution and Li ions are eluted in the acidic solution, the pH of the solution is preferably higher when the synthetic product is recovered, and is preferably 7 or more. For this reason, a substance that denatures during the synthesis reaction and changes the pH before and after the reaction, for example, urea, when the solvent is water, is added to the starting material so that the liquidity of the solution is low before the synthesis reaction, After the synthesis reaction, the pH can be increased. This urea (NH 2 CONH 2 ) reacts as shown in Formula 1 by heating in an aqueous solution, functions as a pH adjuster, and re-dissolves the synthesized product by increasing the pH at the end of the synthesis reaction. Inhibition of Li and elution of Li into the solvent can be prevented. Examples of such a pH adjuster include urea, hexamethylenetetramine, acetamide and the like, but the present invention is not limited to the above-mentioned substance examples.

式1
NHCONH + HO → 2NH + CO
Formula 1
NH 2 CONH 2 + H 2 O → 2NH 3 + CO 2

反応後、合成された生成物を吸引ろ過等によりろ別回収し、水洗後、乾燥を行なうことにより、粒径の制御されたLiFePOが得られ、かつ1次粒子間に薄膜状の黒鉛粒子が電子伝導性物質として介在した、体積抵抗率1〜1000Ω・cmである電極材料を得ることができる。 After the reaction, the synthesized product is collected by filtration by suction filtration or the like, washed with water, and dried to obtain LiFePO 4 having a controlled particle size, and thin graphite particles between the primary particles. Can be obtained as an electrode conductive material having a volume resistivity of 1 to 1000 Ω · cm.

以下、実施例及び比較例を挙げて本発明をさらに詳しく説明するが、本発明は以下の実施例に何ら限定されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example are given and this invention is demonstrated in more detail, this invention is not limited to a following example at all.

(酸化グラフェンの合成例)
天然黒鉛(純度99.97質量%以上)10gを、硝酸ナトリウム(純度99%)7.5g、硫酸(純度96%)621g、過マンガン酸カリウム(純度99%)45gからなる混合液中に入れ、約20℃で5日間、緩やかに撹拌しながら放置した。得られた高粘度の液を、5質量%硫酸水溶液1000cmに約1時間で撹拌しながら加えて、さらに2時間撹拌した。得られた液に過酸化水素(30質量%水溶液)30gを加えて、2時間撹拌した。
(Synthesis example of graphene oxide)
10 g of natural graphite (purity 99.97% by mass or more) is put in a mixed liquid consisting of 7.5 g of sodium nitrate (purity 99%), 621 g of sulfuric acid (purity 96%), and 45 g of potassium permanganate (purity 99%). And left at about 20 ° C. for 5 days with gentle stirring. The obtained high-viscosity liquid was added to 1000 cm 3 of a 5% by mass sulfuric acid aqueous solution with stirring for about 1 hour, and further stirred for 2 hours. Hydrogen peroxide (30 mass% aqueous solution) 30g was added to the obtained liquid, and it stirred for 2 hours.

この液を、水により十分精製することで、薄膜状の酸化グラフェンの水分散液を得た。液の一部を40℃で真空乾燥させ、乾燥前後の質量変化を測定した結果から、液中の酸化グラフェンの固形分濃度は1.3質量%と算出された。また、40℃で真空乾燥させた薄膜状粒子の元素分析で、酸素は42質量%、水素は2質量%であった。液の一部を水で希釈してからガラス板の上で乾燥させ、光学顕微鏡観察により薄膜状粒子の平面方向の粒径(平面内で最も長い対角線の長さ)を調べたところ、5個の粒子で確認された粒径は1μm、1μm、2μm、2μm、6μmであり、平均粒径は2.4μmであった。なお、光学顕微鏡観察で認められる各粒子の色は一部の例外を除いてはほぼ同様の色であり、大多数の粒子の厚みは同程度と判断された。一部の色の異なる粒子は他の粒子よりも色が濃いことから少量存在する厚みの厚い粒子である。さらに、原子間力顕微鏡を使って薄膜状粒子の厚みを評価したところ、5個の粒子で確認された厚みは3nm、3nm、5nm、6nm、9nmであり、平均厚みは5.2nmであった。   This liquid was sufficiently purified with water to obtain a thin-film graphene oxide aqueous dispersion. From the result of vacuum drying a part of the liquid at 40 ° C. and measuring the mass change before and after drying, the solid content concentration of graphene oxide in the liquid was calculated to be 1.3% by mass. Further, elemental analysis of the thin film-like particles vacuum-dried at 40 ° C. revealed that oxygen was 42% by mass and hydrogen was 2% by mass. A portion of the liquid was diluted with water, dried on a glass plate, and the particle size in the plane direction of the thin film-like particles (the length of the longest diagonal line in the plane) was examined by optical microscope observation. The particle diameters confirmed for these particles were 1 μm, 1 μm, 2 μm, 2 μm and 6 μm, and the average particle diameter was 2.4 μm. The color of each particle observed by optical microscope observation was almost the same with some exceptions, and the majority of the particles were judged to have the same thickness. Some of the particles having different colors are thicker than the other particles. Furthermore, when the thickness of the thin film-like particle was evaluated using an atomic force microscope, the thickness confirmed for the five particles was 3 nm, 3 nm, 5 nm, 6 nm, and 9 nm, and the average thickness was 5.2 nm. .

上記の1.3質量%酸化グラフェン水分散液を1.0質量%に濃度調整した分散液を以下、酸化グラフェン水分散液として用いた。 A dispersion obtained by adjusting the concentration of the 1.3 mass% graphene oxide aqueous dispersion to 1.0 mass% was used as a graphene oxide aqueous dispersion.

「実施例1」
(反応条件I)
酢酸リチウム(LiCHCOO)3.37g、硫酸鉄(II)(FeSO)七水和物6.95g、オルトリン酸(HPO)2.88g、クエン酸5.28g、上記合成例で得られた酸化グラフェン水分散液(固形分濃度1質量%)3.62gおよび純水を、総量が0.05リットル(L)となる様に混合し、均一な透明溶液を得た。得られた溶液を容量0.15Lの耐圧密閉容器に収納し、170℃にて3時間保持し、反応させた。その後、この耐圧密閉容器内の生成物を濾過により分離・回収し、水洗後乾燥し、得られた生成物を窒素雰囲気下、電気炉で700℃、1時間焼成した。得られたサンプルを透過型電子顕微鏡(TEM)にて観察したところ、図1に示すように、LiFePOからなる1次粒子が複数個集合して2次粒子となり、かつ、還元の進行した酸化グラフェンの表面とこれら1次粒子の表面とが接触しており、1次粒子間に炭素が介在していることが観察された。LiFePOの粒径について観察したところ、5個の粒子で確認された粒径は20nm、20nm、30nm、30nm、50nmであり、平均粒径は30nmであった。
"Example 1"
(Reaction condition I)
Lithium acetate (LiCH 3 COO) 3.37 g, iron (II) sulfate (FeSO 4 ) heptahydrate 6.95 g, orthophosphoric acid (H 3 PO 4 ) 2.88 g, citric acid 5.28 g, The obtained graphene oxide aqueous dispersion (solid content concentration: 1 mass%) 3.62 g and pure water were mixed so that the total amount was 0.05 liter (L) to obtain a uniform transparent solution. The obtained solution was accommodated in a pressure-resistant airtight container having a capacity of 0.15 L, and kept at 170 ° C. for 3 hours to be reacted. Thereafter, the product in the pressure tight container was separated and collected by filtration, washed with water and dried, and the obtained product was baked in an electric furnace at 700 ° C. for 1 hour in a nitrogen atmosphere. When the obtained sample was observed with a transmission electron microscope (TEM), as shown in FIG. 1, a plurality of primary particles made of LiFePO 4 were aggregated to form secondary particles, and oxidation proceeded with reduction. It was observed that the surface of the graphene and the surface of these primary particles were in contact, and carbon was interposed between the primary particles. When the particle diameter of LiFePO 4 was observed, the particle diameters confirmed for the five particles were 20 nm, 20 nm, 30 nm, 30 nm, and 50 nm, and the average particle diameter was 30 nm.

「実施例2」
(反応条件II)
塩化リチウム(LiCl)0.42g、塩化鉄(II)(FeCl)四水和物1.99g、リン酸(HPO)0.98g、尿素(NHCONH)1.80g、アスコルビン酸1.76gおよび純水を、総量が10ミリリットル(mL)となる様に混合した後、上記合成例で得られた酸化グラフェン水分散液(固形分濃度1質量%)83mgと混合して原料水溶液とした。内容積10mLの反応管内に上述の原料水溶液を3.66g封入した後、400℃の金属溶融塩内に3分間浸漬させ、反応を行なった後、反応管を取り出し、冷却水により急冷し、反応を停止させた。その後、この耐圧密閉容器内の生成物を遠心分離により分離・回収し、水洗後乾燥した。得られたサンプルを透過型電子顕微鏡(TEM)にて観察したところ、図2に示すように、LiFePOからなる1次粒子が複数個集合して2次粒子となり、かつ、還元の進行した酸化グラフェンの表面とこれら1次粒子の表面とが接触しており、1次粒子間に炭素が介在していることが観察された。LiFePOの粒径について観察したところ、5個の粒子で確認された粒径は5nm、10nm、11nm、12nm、12nmであり、平均粒径は10nmであった。
"Example 2"
(Reaction condition II)
Lithium chloride (LiCl) 0.42 g, iron (II) chloride (FeCl 2 ) tetrahydrate 1.99 g, phosphoric acid (H 3 PO 4 ) 0.98 g, urea (NH 2 CONH 2 ) 1.80 g, ascorbine 1.76 g of acid and pure water are mixed so that the total amount becomes 10 milliliters (mL), and then mixed with 83 mg of graphene oxide aqueous dispersion (solid content concentration 1 mass%) obtained in the above synthesis example. An aqueous solution was obtained. 3.66 g of the above raw material aqueous solution was sealed in a reaction tube having an internal volume of 10 mL, immersed in a metal molten salt at 400 ° C. for 3 minutes and reacted, and then the reaction tube was taken out and quenched with cooling water to react. Was stopped. Thereafter, the product in this pressure-resistant sealed container was separated and collected by centrifugation, washed with water and dried. When the obtained sample was observed with a transmission electron microscope (TEM), as shown in FIG. 2, a plurality of primary particles composed of LiFePO 4 were assembled to form secondary particles, and oxidation proceeded with reduction. It was observed that the surface of the graphene and the surface of these primary particles were in contact, and carbon was interposed between the primary particles. When the particle diameter of LiFePO 4 was observed, the particle diameters confirmed for the five particles were 5 nm, 10 nm, 11 nm, 12 nm, and 12 nm, and the average particle diameter was 10 nm.

「実施例3」
実施例2の反応条件IIで酸化グラフェン水分散液(固形分濃度1質量%)の添加量を42mgとした以外は同様の操作を行った。
"Example 3"
The same operation was performed except that the amount of graphene oxide aqueous dispersion (solid content concentration: 1% by mass) was changed to 42 mg under the reaction condition II in Example 2.

「比較例1」
実施例2の反応条件IIで酸化グラフェン水分散液の代わりにスクロースを5mg(3質量%)混合する以外は同様の操作を行った。
"Comparative Example 1"
The same operation was performed except that 5 mg (3% by mass) of sucrose was mixed in place of the graphene oxide aqueous dispersion under the reaction condition II of Example 2.

「比較例2」
実施例2の反応条件IIで酸化グラフェン水分散液の代わりにアセチレンブラック(電気化学工業(株)製「デンカブラック」)を1.7mg(1質量%)混合する以外は同様の操作を行った。生成物を遠心分離する前の耐圧密閉容器内にはアセチレンブラックが凝集したと思われる遊離炭素が確認された。
"Comparative Example 2"
The same operation was performed except that 1.7 mg (1% by mass) of acetylene black (“DENKA BLACK” manufactured by Denki Kagaku Kogyo Co., Ltd.) was mixed under the reaction condition II of Example 2 instead of the graphene oxide aqueous dispersion. . Free carbon in which acetylene black is considered to have aggregated was confirmed in the pressure-tight sealed container before the product was centrifuged.

「比較例3」
実施例2の反応条件IIで酸化グラフェン水分散液の代わりにナノカーボンテクノロジーズ株式会社(株)製MWCNT(多層カーボンナノチューブ)水分散液(固形分濃度5質量%)を33mg(固形分1質量%)混合する以外は同様の操作を行った。生成物を遠心分離する前の耐圧密閉容器内にはMWCNTが凝集したと思われる遊離炭素が確認された。
“Comparative Example 3”
In the reaction condition II of Example 2, 33 mg (solid content 1% by mass) of MWCNT (multi-walled carbon nanotube) aqueous dispersion (solid content concentration 5% by mass) manufactured by Nanocarbon Technologies Co., Ltd. was used instead of the graphene oxide aqueous dispersion. ) The same operation was performed except mixing. Free carbon in which MWCNTs seem to have aggregated was confirmed in the pressure-tight airtight container before the product was centrifuged.

「比較例4」
実施例2の反応条件IIで酸化グラフェン水分散液を添加しないこと以外は同様の操作を行った。得られたサンプルを走査型電子顕微鏡(SEM)にて観察したところ、図3に示すように、実施例1、2における酸化グラフェンを添加した場合と比較して著しく粒子径が増大した像が観察された。
“Comparative Example 4”
The same operation was performed except that the graphene oxide aqueous dispersion was not added under the reaction condition II of Example 2. When the obtained sample was observed with a scanning electron microscope (SEM), as shown in FIG. 3, an image in which the particle diameter was remarkably increased as compared with the case where graphene oxide in Examples 1 and 2 was added was observed. It was done.

「比較例5」
(反応条件III)
比較例4で得られたLiFePOの水スラリーと酸化グラフェン水分散液を、LiFePO:酸化グラフェン=100:0.5(質量比)となるように混合後、水を減圧留去して乾燥させ、得られた生成物を窒素雰囲気下、電気炉で700℃、1時間焼成した。
“Comparative Example 5”
(Reaction condition III)
The LiFePO 4 aqueous slurry obtained in Comparative Example 4 and the graphene oxide aqueous dispersion were mixed so that LiFePO 4 : graphene oxide = 100: 0.5 (mass ratio), and then the water was distilled off under reduced pressure and dried. The obtained product was baked in an electric furnace at 700 ° C. for 1 hour in a nitrogen atmosphere.

実施例1〜3および比較例1〜5で得られたLiFePOの炭素(C)源、反応条件、C源添加量、LiFePOの平均粒径、体積抵抗率を表1に示す。 Table 1 shows the carbon (C) source of LiFePO 4 obtained in Examples 1 to 3 and Comparative Examples 1 to 5, reaction conditions, addition amount of C source, average particle diameter of LiFePO 4 , and volume resistivity.

(電池充放電試験)
比較例5、実施例1、実施例2で得られたオリビン形LiFePOを電極活物質として用いて正極とし、次のようにしてリチウム二次電池を試作した。該電極活物質、カーボンブラック、ポリフッ化ビニリデン(PVDF)を質量比80:10:10で混合し、N−メチルピロリドン(NMP)を加え、充分混練した。前記混練物をアルミ箔上に塗工した後、直径16mmの円盤状に打ち抜き、正極とした。得られた正極を真空乾燥後、乾燥アルゴン雰囲気下で宝泉株式会社製、HS標準セルを用いて電池を作製した。負極にはリチウム箔を用い、円形に打ち抜いて用いた。電解液はエチレンカーボネートとジエチルカーボネートを質量比50:50で混合した溶媒にLiPFを濃度1mol/Lとなるように溶解したものを用いた。セパレーターは多孔質ポリプロピレン膜を用いた。この電池充放電試験においては、カットオフ電圧を2.5〜4.4Vとし、充放電の電流密度については、充放電共に電流量0.94mA(レート:0.2C)の定電流とした。比較例5、実施例1、実施例2で得られたオリビン形リン酸鉄リチウムを用いたリチウム二次電池を上記条件で充電した後の放電容量の測定結果を表2に示す。
(Battery charge / discharge test)
Using the olivine-type LiFePO 4 obtained in Comparative Example 5, Example 1 and Example 2 as an electrode active material as a positive electrode, a lithium secondary battery was prototyped as follows. The electrode active material, carbon black, and polyvinylidene fluoride (PVDF) were mixed at a mass ratio of 80:10:10, and N-methylpyrrolidone (NMP) was added and sufficiently kneaded. The kneaded material was coated on an aluminum foil, and then punched into a disk shape having a diameter of 16 mm to obtain a positive electrode. The obtained positive electrode was vacuum-dried, and then a battery was manufactured using an HS standard cell manufactured by Hosen Co., Ltd. under a dry argon atmosphere. Lithium foil was used for the negative electrode and punched into a circular shape. As the electrolytic solution, a solution obtained by dissolving LiPF 6 in a solvent obtained by mixing ethylene carbonate and diethyl carbonate at a mass ratio of 50:50 so as to have a concentration of 1 mol / L was used. The separator used was a porous polypropylene membrane. In this battery charge / discharge test, the cut-off voltage was 2.5 to 4.4 V, and the charge / discharge current density was a constant current of 0.94 mA (rate: 0.2 C) for both charge and discharge. Table 2 shows the measurement results of the discharge capacity after charging the lithium secondary batteries using the olivine type lithium iron phosphate obtained in Comparative Example 5, Example 1 and Example 2 under the above conditions.

本発明は、酸化グラフェンを還元して得られる薄膜状の黒鉛粒子上に、電極活物質の微粒子を配することにより、電子伝導性が向上し、高エネルギー密度のリチウムイオン電池用正極材料に好適で、安全性、安定性に優れた電極材料およびその製造法を提供する。   The present invention improves the electron conductivity by arranging fine particles of an electrode active material on thin-film graphite particles obtained by reducing graphene oxide, and is suitable for a positive electrode material for a high energy density lithium ion battery. Therefore, an electrode material excellent in safety and stability and a method for producing the electrode material are provided.

Claims (7)

平均粒径100nm以上及び平均厚み0.4nm〜10nmの酸化グラフェンを還元して得られる薄膜状の黒鉛粒子上に、平均粒径5〜50nmのオリビン形LiFePOが配した電極材料であり、LiFePO100質量部に対して該黒鉛粒子が0.01〜1質量部 含有されることを特徴とする電極材料。 An electrode material in which olivine-type LiFePO 4 having an average particle diameter of 5 to 50 nm is arranged on thin graphite particles obtained by reducing graphene oxide having an average particle diameter of 100 nm or more and an average thickness of 0.4 nm to 10 nm. 4 An electrode material comprising 0.01 to 1 part by mass of the graphite particles with respect to 100 parts by mass. 請求項1に記載の電極材料を製造する方法であって、水を50質量%以上含む溶媒に、Li源、Fe源、PO源からなるLiFePOの原料溶液、および炭素源として酸化グラフェン水分散液を混合した反応溶液を、耐圧容器内で温度150〜400℃、圧力22〜40MPaの条件で加熱して水熱反応させることを特徴とする、電極材料の製造方法。 It is a method of manufacturing the electrode material according to claim 1, wherein a raw material solution of LiFePO 4 composed of a Li source, a Fe source, and a PO 4 source in a solvent containing 50% by mass or more of water, and graphene oxide water as a carbon source A method for producing an electrode material, characterized in that a reaction solution mixed with a dispersion is heated in a pressure vessel at a temperature of 150 to 400 ° C. and a pressure of 22 to 40 MPa to cause a hydrothermal reaction. 前記酸化グラフェンの酸素含有量が5質量%以上であることを特徴とする請求項2に記載の電極材料の製造方法 The method for producing an electrode material according to claim 2, wherein the oxygen content of the graphene oxide is 5 mass% or more. 前記反応溶液にさらに還元剤を含有させることを特徴とする請求項2又は3に記載の電極材料の製造方法。 The method for producing an electrode material according to claim 2, wherein the reaction solution further contains a reducing agent. 前記反応溶液にさらに尿素、ヘキサメチレンテトラミン又はアセトアミドを含有させることを特徴とする請求項2〜4のいずれかに記載の電極材料の製造方法。 The method for producing an electrode material according to claim 2, wherein urea, hexamethylenetetramine, or acetamide is further contained in the reaction solution. 前記水熱反応の加熱温度を374〜400℃とし、反応溶液中の水を超臨界状態とすることを特徴とする請求項2〜5のいずれかに記載の電極材料の製造方法。 The method for producing an electrode material according to any one of claims 2 to 5, wherein a heating temperature of the hydrothermal reaction is set to 374 to 400 ° C, and water in the reaction solution is brought into a supercritical state. 前記水熱反応後、さらに600〜900℃で焼成することを特徴とする請求項2〜6のいずれかに記載の電極材料の製造方法。 The method for producing an electrode material according to any one of claims 2 to 6, further comprising firing at 600 to 900 ° C after the hydrothermal reaction.
JP2013050792A 2013-03-13 2013-03-13 Electrode material and process of manufacturing the same Pending JP2014179176A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013050792A JP2014179176A (en) 2013-03-13 2013-03-13 Electrode material and process of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013050792A JP2014179176A (en) 2013-03-13 2013-03-13 Electrode material and process of manufacturing the same

Publications (1)

Publication Number Publication Date
JP2014179176A true JP2014179176A (en) 2014-09-25

Family

ID=51698940

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013050792A Pending JP2014179176A (en) 2013-03-13 2013-03-13 Electrode material and process of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2014179176A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105047874A (en) * 2015-06-25 2015-11-11 中国航空工业集团公司北京航空材料研究院 Preparation method of lithium iron phosphate battery cathode material
CN107204484A (en) * 2017-05-25 2017-09-26 全球能源互联网研究院 A kind of lithium-ion capacitor battery
JP2017212208A (en) * 2016-05-18 2017-11-30 株式会社半導体エネルギー研究所 Method for producing positive electrode active material, and lithium ion battery
US10270099B2 (en) 2015-03-04 2019-04-23 Kabushiki Kaisha Toyota Jidoshokki Positive electrode for lithium-ion secondary battery, production process for the same, and lithium-ion secondary battery
JP2020004738A (en) * 2015-01-09 2020-01-09 株式会社半導体エネルギー研究所 Method for manufacturing active material
JP2020017437A (en) * 2018-07-26 2020-01-30 株式会社Abri Sheet-shaped positive electrode composite material for lithium ion secondary battery, manufacturing method thereof, and lithium ion secondary battery
WO2020065832A1 (en) * 2018-09-27 2020-04-02 株式会社村田製作所 Electrically conductive substance, positive electrode, and secondary battery

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11881578B2 (en) 2015-01-09 2024-01-23 Semiconductor Energy Laboratory Co., Ltd. Storage battery electrode, manufacturing method thereof, storage battery, and electronic device
US11545655B2 (en) 2015-01-09 2023-01-03 Semiconductor Energy Laboratory Co., Ltd. Storage battery electrode, manufacturing method thereof, storage battery, and electronic device
JP2020004738A (en) * 2015-01-09 2020-01-09 株式会社半導体エネルギー研究所 Method for manufacturing active material
US10270099B2 (en) 2015-03-04 2019-04-23 Kabushiki Kaisha Toyota Jidoshokki Positive electrode for lithium-ion secondary battery, production process for the same, and lithium-ion secondary battery
CN105047874A (en) * 2015-06-25 2015-11-11 中国航空工业集团公司北京航空材料研究院 Preparation method of lithium iron phosphate battery cathode material
JP2021192371A (en) * 2016-05-18 2021-12-16 株式会社半導体エネルギー研究所 Manufacturing method of positive electrode active material, and lithium ion battery
US10985369B2 (en) 2016-05-18 2021-04-20 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing positive electrode active material, and lithium ion battery
JP2017212208A (en) * 2016-05-18 2017-11-30 株式会社半導体エネルギー研究所 Method for producing positive electrode active material, and lithium ion battery
JP7224406B2 (en) 2016-05-18 2023-02-17 株式会社半導体エネルギー研究所 Method for producing positive electrode active material, and lithium ion battery
US11936043B2 (en) 2016-05-18 2024-03-19 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing positive electrode active material, and lithium ion battery
CN107204484A (en) * 2017-05-25 2017-09-26 全球能源互联网研究院 A kind of lithium-ion capacitor battery
JP2020017437A (en) * 2018-07-26 2020-01-30 株式会社Abri Sheet-shaped positive electrode composite material for lithium ion secondary battery, manufacturing method thereof, and lithium ion secondary battery
JP7073605B2 (en) 2018-07-26 2022-05-24 株式会社Abri Sheet-shaped positive electrode composite material for lithium-ion secondary battery, its manufacturing method, and lithium-ion secondary battery
WO2020065832A1 (en) * 2018-09-27 2020-04-02 株式会社村田製作所 Electrically conductive substance, positive electrode, and secondary battery
JPWO2020065832A1 (en) * 2018-09-27 2021-08-30 株式会社村田製作所 Conductive material, positive electrode and secondary battery

Similar Documents

Publication Publication Date Title
Cai et al. Graphene and graphene-based composites as Li-ion battery electrode materials and their application in full cells
Wang et al. All-manganese-based Li-ion batteries with high rate capability and ultralong cycle life
Zhang et al. Facile fabrication of MnO/C core–shell nanowires as an advanced anode material for lithium-ion batteries
JP5314258B2 (en) Olivine-type lithium iron phosphate compound and method for producing the same, and positive electrode active material and non-aqueous electrolyte battery using olivine-type lithium iron phosphate compound
Pan et al. Hydrothermal synthesis of well-dispersed LiMnPO4 plates for lithium ion batteries cathode
TWI614211B (en) Highly dispersible graphene composition, the preparation method thereof, and electrode for lithium ion secondary battery containing the highly dispersible graphene composition
EP2383820B1 (en) Positive electrode active material for lithium secondary battery, and lithium secondary battery
KR101900424B1 (en) Method for manufacturing positive electrode active material for power storage device
WO2013176067A1 (en) Positive electrode active material for non-aqueous secondary batteries
Fan et al. Nonaqueous synthesis of nano-sized LiMnPO4@ C as a cathode material for high performance lithium ion batteries
JP2014179176A (en) Electrode material and process of manufacturing the same
KR20040082876A (en) Preparation method for porous silicon and nano-sized silicon powder, and application for anode material in lithium secondary batteries
JP2020504433A (en) Method for preparing graphene / ternary material composites for use in lithium ion batteries and products thereof
Selinis et al. A review on the anode and cathode materials for lithium-ion batteries with improved subzero temperature performance
JP2012523075A (en) Method for producing carbon composite material
Fu et al. Low-temperature synthesis of LiMnPO4/RGO cathode material with excellent voltage platform and cycle performance
JP2013201120A (en) Method of preparing carbon nanotube-olivine type lithium manganese phosphate composites and lithium secondary battery using the same
JP2013080709A (en) Positive electrode active material for lithium secondary battery, and lithium secondary battery
CN105470516B (en) Electrode material, electrode and lithium ion battery
JP2014049258A (en) Positive electrode active material for nonaqueous electrolyte secondary battery, method for producing the same, and nonaqueous electrolyte secondary battery
TW201817065A (en) Negative electrode active substance, mixed negative electrode active substance material and method for producing negative electrode active substance
Hu et al. Scalable synthesis of Fe3O4/C composites with enhanced electrochemical performance as anode materials for lithium-ion batteries
JP5385616B2 (en) COMPOUND HAVING ORIBIN STRUCTURE, PROCESS FOR PRODUCING THE SAME, POSITIVE ACTIVE MATERIAL USING COMPOUND HAVING ORIBIN STRUCTURE AND NON-AQUEOUS ELECTROLYTE BATTERY
Na et al. Hybrid dual conductor on Ni‐rich NCM for superior electrochemical performance in Lithium‐ion batteries
WO2013146207A1 (en) Electrode active material, lithium-ion battery, electrode active material discharge state detection method, and electrode active material manufacturing method