JP2014159856A - Mixing device of cryogenic liquid in storage tank - Google Patents

Mixing device of cryogenic liquid in storage tank Download PDF

Info

Publication number
JP2014159856A
JP2014159856A JP2013031370A JP2013031370A JP2014159856A JP 2014159856 A JP2014159856 A JP 2014159856A JP 2013031370 A JP2013031370 A JP 2013031370A JP 2013031370 A JP2013031370 A JP 2013031370A JP 2014159856 A JP2014159856 A JP 2014159856A
Authority
JP
Japan
Prior art keywords
liquid
storage tank
low
fluid
cryogenic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013031370A
Other languages
Japanese (ja)
Inventor
Kanetoshi Hayashi
謙年 林
Mochimasa Yamaguchi
以昌 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP2013031370A priority Critical patent/JP2014159856A/en
Publication of JP2014159856A publication Critical patent/JP2014159856A/en
Pending legal-status Critical Current

Links

Landscapes

  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a mixing device of cryogenic liquid in a storage tank capable of agitating and mixing the cryogenic liquid in the storage tank while curbing required power that is heat input to the cryogenic liquid in the storage tank.SOLUTION: A mixing device of cryogenic liquid in a storage tank comprises: a boil-off gas extraction pipe 5 to extract boil-off gas generated in a storage tank 3; a cryogenic liquid extraction pipe 7 to extract the cryogenic liquid in the storage tank 3; a liquid pump 9 which is provided on the cryogenic liquid extraction pipe 7 and pumps the cryogenic liquid in the storage tank 3; a liquid jet pump section 11 which uses the cryogenic liquid pumped by the liquid pump 9 and the boil-off gas extracted through the boil-off gas extraction pipe 5 as working fluid and intake fluid respectively; and a fluid discharge pipe 13 which is connected to a discharge port of the liquid jet pump section 11 and discharges fluid discharged through the liquid jet pump section 11 into the storage tank 3.

Description

本発明は、液化天然ガス(以下、「LNG」と言う場合あり)をはじめとする低温液化ガス(以下、低温液体)が貯留された貯留槽内で発生する低温液体の層状化を防止・解消する技術に関し、特に、貯留槽内低温液体を攪拌混合することで前記層状化を防止・解消する貯留槽内低温液体の混合装置に関する。   The present invention prevents and eliminates stratification of low-temperature liquid generated in a storage tank in which low-temperature liquefied gas (hereinafter referred to as “LNG”) and other low-temperature liquefied gas (hereinafter referred to as “LNG”) are stored. In particular, the present invention relates to a mixing device for a cryogenic liquid in a storage tank that prevents and eliminates the layering by stirring and mixing the cryogenic liquid in the storage tank.

一般的に、低温液体は複数の成分が混合したものである。例えばLNGは、主成分であるメタンの他にエタン、プロパン、ブタン等のメタンより重質成分が含まれており、その比率はLNGの産地や精製プロセスに依存し一定ではない。そのため、同種の低温液体であっても、その組成の違いによって密度が異なるものとなる。
貯留槽中の低温液体に、成分の違いから密度が異なる低温液体を混入すると、密度の高い方の低温液体はタンクの下層に沈降し、一方、密度の低い方の低温液体は上層に遊離することになり、貯留槽内の低温液体が比重の軽い液(上層)と、比重の重い液(下層)とに層状化される。
Generally, a cryogenic liquid is a mixture of a plurality of components. For example, LNG contains heavier components than methane such as ethane, propane, and butane in addition to methane as a main component, and the ratio thereof is not constant depending on the production area of LNG and the refining process. Therefore, even if it is the same kind of low-temperature liquid, the density differs depending on the composition.
If cryogenic liquids with different densities are mixed into the cryogenic liquid in the storage tank, the denser cryogenic liquid will settle to the lower layer of the tank, while the lower density cryogenic liquid will be released to the upper layer. As a result, the low-temperature liquid in the storage tank is stratified into a liquid having a low specific gravity (upper layer) and a liquid having a high specific gravity (lower layer).

貯留槽内に貯留されている低温液体は、貯留槽周囲からの入熱により常に加熱される状態にあるが、低温液体の温度は、その自由液面からの蒸発作用によって、上昇することなくバランスしている。なお、この時の蒸発成分は、主として沸点の低い軽質成分である。
しかし、貯留槽内で低温液体に層状化が生じた場合、上層の液は自由液面から蒸発できるため温度上昇しないが、下層の液は蒸発できる自由液面を持たないため入熱分が層内に蓄積され温度が上昇していく。すなわち、上層は軽質成分が蒸発して密度が大きくなっていき、逆に下層は温度上昇により密度が小さくなっていく。この上層と下層の密度差がある限界値より小さくなった時、層状化が保てなくなり上層と下層の液が混合しつつ、下層の液が自由液面に達するようになる。下層の液が自由液面に達すると、それまで蓄積されていた入熱分のエネルギーが解放され、蒸発量が急増する。
The cryogenic liquid stored in the storage tank is constantly heated by heat input from the surroundings of the storage tank, but the temperature of the cryogenic liquid is balanced without increasing due to the evaporation from the free liquid surface. doing. The evaporation component at this time is mainly a light component having a low boiling point.
However, when stratification occurs in the low-temperature liquid in the storage tank, the temperature of the upper layer liquid can be evaporated from the free liquid level, so the temperature does not rise, but the lower layer liquid does not have a free liquid level that can be evaporated, so It accumulates inside and the temperature rises. That is, the density of light components increases in the upper layer and the density of the lower layer decreases as the temperature rises. When the density difference between the upper layer and the lower layer becomes smaller than a certain limit value, the stratification cannot be maintained and the upper layer and lower layer liquids are mixed while the lower layer liquid reaches the free liquid level. When the liquid in the lower layer reaches the free liquid level, the energy stored up to that point is released, and the amount of evaporation increases rapidly.

低温液体の貯留槽は、低温液体から蒸発する蒸発ガスを処理する設備を備えているが、蒸発ガス量がその処理能力を上回ると安全弁から放散することになる。低温液体がLNGの場合、その蒸発ガスは可燃性ガスであり、大量の放散は安全上避けるべきである。また、蒸発量が安全弁の処理能力をも上回るほど多くなると、貯留槽内圧が上昇し続け、最悪の場合、貯留槽の破壊にもつながりかねない。
このように、貯留槽内での低温液体の層状化は、蒸発量の急増という危険な現象を伴うため、層状化を確実に防止できる手段が求められている。その手段の一つとして、貯留槽内の低温液体を攪拌して均一に混合することが行われている。
The cryogenic liquid storage tank is equipped with a facility for treating evaporative gas evaporating from the cryogenic liquid. However, when the amount of evaporating gas exceeds its processing capacity, it is dissipated from the safety valve. If the cryogenic liquid is LNG, its evaporative gas is a flammable gas and large amounts of emissions should be avoided for safety. Moreover, if the amount of evaporation increases to exceed the processing capacity of the safety valve, the internal pressure of the storage tank continues to rise, and in the worst case, it may lead to destruction of the storage tank.
Thus, the stratification of the low-temperature liquid in the storage tank is accompanied by a dangerous phenomenon that the amount of evaporation rapidly increases, and therefore means for reliably preventing the stratification is required. As one of the means, the low temperature liquid in the storage tank is agitated and mixed uniformly.

このような、撹拌混合を行う技術としては、特許文献1には、以下に示すような低温液化ガスタンク内の層状化防止装置が提案されている。
「低温液化ガスタンクの内底面上方位置に、下端を液吸込口とし上端を液流出口とする液上昇管を直立状態に且つタンク内底面と液吸込口との間に空間部が形成されるようにして設置し、該液上昇管の下端部に、低温液化ガスタンクに備えられているBOG圧縮機の下流側より分岐させた圧縮BOG配管を連通させ、圧縮BOGを液上昇管内に下端部より噴出させて該液上昇管内に液を導搬させるようにした構成を有することを特徴とする低温液化ガスタンク内の層状化防止装置。」(特許文献1の請求項1参照)
As a technique for performing such stirring and mixing, Patent Document 1 proposes a layering prevention device in a low-temperature liquefied gas tank as shown below.
“In the upper position of the inner bottom of the low-temperature liquefied gas tank, the liquid riser pipe with the lower end as the liquid suction port and the upper end as the liquid outlet is in an upright state, and a space is formed between the tank bottom surface and the liquid suction port. The compressed BOG pipe branched from the downstream side of the BOG compressor provided in the low temperature liquefied gas tank is connected to the lower end of the liquid riser pipe, and the compressed BOG is ejected from the lower end into the liquid riser pipe. And a stratification preventing device in a low-temperature liquefied gas tank, characterized in that the liquid is introduced into the liquid riser pipe ”(see claim 1 of Patent Document 1).

また、特許文献2には、「受入れ液の物理的性状が変わることにより貯槽内に液の層状化を生じる貯槽に備えられる貯槽内液の層状化解消装置であって、側壁の貯槽底部に近い位置に貯槽内部上方に向けて液を噴出する下部ミキシングノズルを配設すると共に、側壁の上下方向中間位置に貯槽内部上方に向けて液を噴出する中間部ミキシングノズルを配設し、前記貯槽内の液を貯槽外部に取り出して前記下部ミキシングノズルと中間部ミキシングノズルに循環供給する循環ポンプを備えたことを特徴とする貯槽内液の層状化解消装置。」(特許文献2の請求項1参照)が提案されている。   Further, Patent Document 2 discloses a “stratification elimination device for liquid in a storage tank that is provided in a storage tank that causes liquid stratification in the storage tank due to a change in the physical properties of the receiving liquid, and is close to the bottom of the storage tank on the side wall. A lower mixing nozzle that ejects liquid upwards in the storage tank is disposed at a position, and an intermediate mixing nozzle that ejects liquid upward in the storage tank is disposed at an intermediate position in the vertical direction of the side wall. A device for removing the stratification of the liquid in the storage tank, comprising a circulation pump for taking out the liquid from the storage tank and circulatingly supplying the liquid to the lower mixing nozzle and the intermediate mixing nozzle ”(refer to claim 1 of Patent Document 2). ) Has been proposed.

特開2000-193196号公報JP 2000-193196 A 特開平9-203500号公報Japanese Patent Laid-Open No. 9-203500

特許文献1の層状化防止装置は、圧縮したBOGを低温液化ガスタンク内に設けた液上昇管内に下端部より噴出させているため、BOGを液ヘッドに相当する圧力以上に昇圧する必要がある。
しかし、気相であるBOGを昇圧するのは、液相を昇圧するのに比較して大幅に大きな動力が必要であり、その昇圧動力によって昇圧されたBOGをタンク内の低温液体に供給した場合、昇圧動力がそのままタンク内の低温液体にとって入熱となる。そして、この入熱はタンク内のBOG量を増大するという問題がある。
また、特許文献1においては、タンク内に戻すBOGの圧縮に既設のBOG圧縮機を用いているが、既設のBOG圧縮機は通常、BOGの再利用のための圧縮に用いられるため、その昇圧幅は液ヘッド分に対して大きすぎる。そのため、タンク内に戻るBOGについては、バルブなどで減圧して吹き込む必要があるが、それは一旦高圧にして減圧することを意味しており、動力の無駄となるとともに、入熱も大きくなる。
また、BOG再液化用に専用のBOG圧縮機を設置する場合でも、タンクが満液状態における液ヘッド以上に昇圧する能力の圧縮機が必要となり、タンク液位が低く液ヘッドが小さい状況ではやはり過昇圧となり、無駄に圧縮動力を費やしていることとなる。
In the stratification preventing device of Patent Document 1, compressed BOG is ejected from a lower end portion into a liquid rising pipe provided in a low-temperature liquefied gas tank, so that it is necessary to increase the pressure of the BOG to a pressure corresponding to the liquid head.
However, boosting the gas phase BOG requires much larger power than boosting the liquid phase, and the BOG boosted by the boosting power is supplied to the low-temperature liquid in the tank. The boosting power is directly input to the low temperature liquid in the tank. And this heat input has the problem that the amount of BOG in a tank increases.
In Patent Document 1, an existing BOG compressor is used for compressing the BOG returned into the tank. However, since the existing BOG compressor is usually used for compression for reusing the BOG, the boosting of the BOG compressor is performed. The width is too large for the liquid head. For this reason, the BOG that returns to the tank needs to be decompressed and blown with a valve or the like, but this means that the pressure is once reduced to a high pressure, which wastes power and increases heat input.
Also, even when a dedicated BOG compressor is installed for BOG reliquefaction, a compressor with the ability to pressurize more than the liquid head when the tank is full is necessary, and in the situation where the tank liquid level is low and the liquid head is small This is an excessive pressure increase, and the compression power is wasted.

特許文献2の層状化解消装置においては、貯槽内の液を循環ポンプによって下部ミキシングノズルと中間部ミキシングノズルに供給して貯槽内に噴射しているが、噴流は周囲の液体を巻き込んで拡散していくので、到達高さには限界がある。この到達高さは、噴流液密度(重)と周囲液密度(軽)との密度差にも影響を受け、密度差が大きくなるに従って低くなる。
貯槽内の液位が高い場合、噴流が到達しない領域の混合が不十分となるため、中間高さに他のノズルを設置している。
しかし、貯槽の高さが高い場合や密度差が大きい場合には、噴流の到達高さを確保するために循環ポンプの所要動力が大きくなると同時に、ノズルを2本設けても十分でない場合もあり得、また、液位や成層界面位置に応じてノズルを切り替える複雑な制御が必要となるという問題がある。
In the stratification elimination device of Patent Document 2, the liquid in the storage tank is supplied to the lower mixing nozzle and the intermediate mixing nozzle by a circulation pump and injected into the storage tank. However, the jet flows in the surrounding liquid and diffuses. Therefore, there is a limit to the reaching height. This reaching height is also affected by the density difference between the jet liquid density (heavy) and the ambient liquid density (light), and decreases as the density difference increases.
When the liquid level in the storage tank is high, mixing in the region where the jet does not reach becomes insufficient, so another nozzle is installed at an intermediate height.
However, when the height of the storage tank is high or the density difference is large, the required power of the circulation pump increases to ensure the arrival height of the jet, and at the same time, it may not be sufficient to provide two nozzles. In addition, there is a problem that complicated control for switching the nozzles according to the liquid level and the stratified interface position is required.

本発明は、かかる課題を解決するためになされたものであり、所要動力、すなわちタンク内の低温液体への入熱を抑制しつつ、貯槽内の低温液体を効果的に撹拌混合できる貯留槽内低温液体の混合装置を得ることを目的としている。   The present invention has been made to solve such a problem, and it is necessary to reduce the required power, that is, heat input to the cryogenic liquid in the tank, and effectively stir and mix the cryogenic liquid in the reservoir. The object is to obtain a cryogenic liquid mixing device.

(1)本発明に係る貯留槽内低温液体の混合装置は、貯留槽内に貯留された低温液体を混合するものであって、前記貯留槽で発生した蒸発ガスを抜き出す蒸発ガス抜出し管と、前記貯留槽の低温液体を抜き出す低温液体抜出し管と、該低温液体抜出し管に設けられて貯留槽内の低温液体を圧送する液ポンプと、該液ポンプによって圧送された低温液体を作動流体とし、前記蒸発ガス抜出し管によって抜き出された蒸発ガスを吸入流体とする液ジェットポンプ部と、液ジェットポンプ部の吐出口に接続されて前記液ジェットポンプ部から吐出される流体を前記貯留槽内に吐出する流体吐出管を備えてなり、
前記液ジェットポンプ部は、流路が縮径する縮径部と、該縮径部の下流側で流路が拡径する拡径部と、前記縮径部の上流側であって前記液ポンプによって圧送された低温液体が噴出する低温液体噴出部と、同じく前記縮径部の上流側であって前記蒸発ガス抜出し管によって抜き出された蒸発ガスが吸入される蒸発ガス吸入部とを有し、
前記液ポンプによって圧送された低温液体によって前記液ジェットポンプ部において液ジェットを形成し、形成された液ジェットによって、蒸発ガスを吸い込みつつ巻き込んで液中に気泡を有する気泡含有流体を生成して、該気泡含有流体を前記流体吐出管から吐出するようにしたことを特徴とするものである。
(1) The cryogenic liquid mixing device in the storage tank according to the present invention mixes the cryogenic liquid stored in the storage tank, and extracts an evaporating gas extraction pipe for extracting the evaporating gas generated in the storage tank; A cryogenic liquid extraction pipe for extracting the cryogenic liquid in the storage tank, a liquid pump provided in the cryogenic liquid extraction pipe for pumping the cryogenic liquid in the storage tank, and the cryogenic liquid pumped by the liquid pump as a working fluid, A liquid jet pump unit using the evaporated gas extracted by the evaporative gas extraction pipe as suction fluid, and a fluid discharged from the liquid jet pump unit connected to the discharge port of the liquid jet pump unit into the storage tank A fluid discharge pipe for discharging,
The liquid jet pump section includes a diameter-reduced portion where a flow path is reduced, a diameter-expanded portion where a flow path is enlarged downstream of the diameter-reduced portion, and an upstream side of the diameter-reduced portion, the liquid pump A low-temperature liquid jetting portion from which the low-temperature liquid pumped by the jetting jetting jets, and an evaporating gas suction portion that is also upstream of the reduced diameter portion and into which the evaporating gas extracted by the evaporating gas extraction pipe is sucked ,
A liquid jet is formed in the liquid jet pump unit by the low-temperature liquid pumped by the liquid pump, and a bubble-containing fluid having bubbles in the liquid is generated by sucking the evaporating gas by the formed liquid jet, The bubble-containing fluid is discharged from the fluid discharge pipe.

(2)また、上記(1)に記載のものにおいて、前記流体吐出管の下流端部に吐出口を上方に向けた吐出ノズルを設けたことを特徴とするものである。 (2) Further, in the above (1), a discharge nozzle having a discharge port directed upward is provided at the downstream end of the fluid discharge pipe.

(3)また、上記(1)に記載のものにおいて、管体を、その下端側を前記貯留槽底面近傍に配置し、かつ該下端側に液吸込み口が形成されるように前記貯留槽内に立設し、該管体の内部に前記流体吐出管の出口端部を設けたことを特徴とするものである。 (3) Further, in the above-described (1), the tubular body is disposed in the storage tank so that a lower end side thereof is disposed in the vicinity of the bottom surface of the storage tank and a liquid suction port is formed on the lower end side. The outlet end portion of the fluid discharge pipe is provided inside the pipe body.

本発明に係る貯留槽内低温液体の混合装置は、貯留槽内に貯留された低温液体を混合するものであって、前記貯留槽で発生した蒸発ガスを抜き出す蒸発ガス抜出し管と、前記貯留槽の低温液体を抜き出す低温液体抜出し管と、該低温液体抜出し管に設けられて貯留槽内の低温液体を圧送する液ポンプと、該液ポンプによって圧送された低温液体を作動流体とし、前記蒸発ガス抜出し管によって抜き出された蒸発ガスを吸入流体とする液ジェットポンプ部と、液ジェットポンプ部の吐出口に接続されて前記液ジェットポンプ部から吐出される流体を前記貯留槽内に吐出する流体吐出管を備え、前記液ポンプによって圧送された低温液体によって前記液ジェットポンプ部において液ジェットを形成し、形成された液ジェットによって、蒸発ガスを吸い込みつつ巻き込んで液中に気泡を有する気泡含有流体を生成して、該気泡含有流体を前記流体吐出管から吐出するようにしたので、流体吐出管から気液二相状態の気泡含有液体が貯留槽内の液中に噴流として吐出されるので、貯留槽内の低温液体の撹拌効果が高い。
また、気相である蒸発ガスを液ジェットポンプ部で吸い込みつつ巻き込むので、大きな外部動力を要する蒸発ガスの圧縮が不要であるため、動力による入熱に起因する蒸発ガスの増大を抑制することができる。
The mixing device for the cryogenic liquid in the storage tank according to the present invention mixes the cryogenic liquid stored in the storage tank, and extracts the evaporative gas generated in the storage tank, and the storage tank. A low-temperature liquid extraction pipe for extracting the low-temperature liquid, a liquid pump provided in the low-temperature liquid extraction pipe for pumping the low-temperature liquid in the storage tank, and the low-temperature liquid pumped by the liquid pump as a working fluid, A liquid jet pump section that uses the evaporated gas extracted by the extraction pipe as suction fluid, and a fluid that is connected to the discharge port of the liquid jet pump section and discharges the fluid discharged from the liquid jet pump section into the storage tank A liquid jet is formed in the liquid jet pump section by the low temperature liquid pumped by the liquid pump, and the evaporated gas is generated by the formed liquid jet. Since a bubble-containing fluid having bubbles in the liquid is generated while being entrained and the bubble-containing fluid is discharged from the fluid discharge tube, the gas-liquid two-phase bubble-containing liquid is discharged from the fluid discharge tube. Since it is discharged as a jet into the liquid in the storage tank, the stirring effect of the low-temperature liquid in the storage tank is high.
In addition, since the vapor-phase evaporation gas is sucked in by the liquid jet pump unit, it is not necessary to compress the evaporation gas that requires a large external power, so that the increase of the evaporation gas due to heat input by the power can be suppressed. it can.

本発明の一実施の形態における貯留槽内低温液体の混合装置の説明図である。It is explanatory drawing of the mixing apparatus of the cryogenic liquid in the storage tank in one embodiment of this invention. 図1の一部である液ジェットポンプ部を詳細に説明する説明図である。It is explanatory drawing explaining the liquid jet pump part which is a part of FIG. 1 in detail. 本発明の他の実施の形態における貯留槽内低温液体の混合装置の説明図である。It is explanatory drawing of the mixing apparatus of the cryogenic liquid in the storage tank in other embodiment of this invention.

[実施の形態1]
図1、図2に基づいて本発明の一実施の形態を説明する。
本発明の一実施の形態に係る貯留槽内低温液体の混合装置1(以下、単に「混合装置1」という)は、貯留槽3内に貯留された低温液体を混合するものであって、貯留槽3で発生した蒸発ガスを抜き出す蒸発ガス抜出し管5と、貯留槽3の低温液体を抜き出す低温液体抜出し管7と、低温液体抜出し管7に設けられて貯留槽3内の低温液体を圧送する液ポンプ9と、液ポンプ9によって圧送された低温液体を作動流体とし、蒸発ガス抜出し管5によって抜き出された蒸発ガスを吸入流体とする液ジェットポンプ部11と、液ジェットポンプ部11の吐出口に接続されて液ジェットポンプ部11から吐出される流体を貯留槽内に吐出する流体吐出管13を備えてなるものである。
以下、各構成を詳細に説明する。
[Embodiment 1]
An embodiment of the present invention will be described with reference to FIGS.
A storage tank cryogenic liquid mixing apparatus 1 according to an embodiment of the present invention (hereinafter simply referred to as “mixing apparatus 1”) mixes cryogenic liquid stored in a storage tank 3, The evaporative gas extraction pipe 5 for extracting the evaporative gas generated in the tank 3, the low temperature liquid extraction pipe 7 for extracting the low temperature liquid in the storage tank 3, and the low temperature liquid extraction pipe 7 are provided to pump the low temperature liquid in the storage tank 3. A liquid pump 9, a liquid jet pump unit 11 using the low-temperature liquid pumped by the liquid pump 9 as a working fluid, and an evaporating gas extracted by the evaporating gas extraction pipe 5 as an intake fluid, and a discharge from the liquid jet pump unit 11 A fluid discharge pipe 13 is connected to the outlet and discharges the fluid discharged from the liquid jet pump unit 11 into the storage tank.
Hereinafter, each configuration will be described in detail.

<貯留槽>
貯留槽3は、例えば液化天然ガス(LNG)等の低温液体を貯留するものである。
<Reservoir>
The storage tank 3 stores a low-temperature liquid such as liquefied natural gas (LNG).

<蒸発ガス抜出し管>
蒸発ガス抜出し管5は、貯留槽3で発生した蒸発ガスを抜き出す管であって、一端側が貯留槽3の低温液体の液面上方に配置され、他端が液ジェットポンプ部11の蒸発ガス吸入部21に連通している。
<Vapor extraction pipe>
The evaporative gas extraction pipe 5 is a pipe for extracting the evaporative gas generated in the storage tank 3, and one end side is disposed above the liquid surface of the low-temperature liquid in the storage tank 3, and the other end is the evaporative gas suction of the liquid jet pump unit 11. It communicates with the part 21.

<低温液体抜出し管>
低温液体抜出し管7は、貯留槽3の低温液体を抜き出す管である。低温液体抜出し管7には、液ジェットポンプ部11に低温液体を圧送するための液ポンプ9が設けられている。
<Cryogenic liquid extraction pipe>
The cryogenic liquid extraction tube 7 is a tube for extracting the cryogenic liquid from the storage tank 3. The cryogenic liquid extraction pipe 7 is provided with a liquid pump 9 for pumping the cryogenic liquid to the liquid jet pump unit 11.

<液ジェットポンプ部>
液ジェットポンプ部11は、液ポンプ9によって圧送された低温液体を作動流体とし、蒸発ガス抜出し管5によって抜き出された蒸発ガスを吸入流体として、液ジェットの作用で吸入した蒸発ガスを作動流体である低温液体に混合して気泡12を含有する気泡含有液体14が生成される(図2参照)。
液ジェットポンプ部11は、流路が縮径する縮径部15と、縮径部15の下流側で流路が拡径する拡径部17と、縮径部15の上流側であって低温液体抜出し管7によって抜き出された低温液体を噴出する低温液体噴出部19と、同じく縮径部15の上流側であって蒸発ガス抜出し管5によって抜き出された蒸発ガスを吸入する蒸発ガス吸入部21とを有している。
<Liquid jet pump part>
The liquid jet pump unit 11 uses the low temperature liquid pumped by the liquid pump 9 as the working fluid, uses the evaporated gas extracted by the evaporated gas extraction pipe 5 as the suction fluid, and uses the evaporated gas sucked by the action of the liquid jet as the working fluid. A bubble-containing liquid 14 containing bubbles 12 is mixed with the low-temperature liquid (see FIG. 2).
The liquid jet pump unit 11 includes a diameter-reduced part 15 whose diameter is reduced, a diameter-enlarged part 17 whose diameter is increased downstream of the diameter-reduced part 15, and an upstream side of the diameter-reduced part 15 at a low temperature. A low-temperature liquid ejection part 19 that ejects a low-temperature liquid extracted by the liquid extraction pipe 7 and an evaporative gas intake that sucks the evaporative gas extracted by the evaporative gas extraction pipe 5 that is also upstream of the reduced diameter part 15. Part 21.

図2に示す例では、縮径部15に連続して拡径部17を設けているが、縮径部15と拡径部17の間に直管部を設けてもよい。また、蒸発ガス吸入部21は縮径形状とすることにより、蒸発ガスの吸入流速を増大することができる。
なお、図2に示す例では、低温液体噴出部19の周囲に蒸発ガス吸入部21を設けてあるが、逆に蒸発ガス吸入部の周囲に低温液体噴出部を設ける構造としてもよい。
また、液ジェットポンプ部11は、貯留槽3の外部に設けてもよいし、貯留槽3の内部に設けてもよい。液ジェットポンプ部11を貯留槽3内に設けることにより、蒸発ガス抜出し管5の管長を短くすることができ、蒸発ガスの吸い込み圧損が小さくなり、液ジェットポンプ部11に必要な液流速(液ポンプ9の動力)を低減することができる。
In the example shown in FIG. 2, the enlarged diameter portion 17 is provided continuously to the reduced diameter portion 15, but a straight pipe portion may be provided between the reduced diameter portion 15 and the enlarged diameter portion 17. Moreover, the evaporative gas suction part 21 can be reduced in diameter to increase the evaporative gas suction flow rate.
In the example shown in FIG. 2, the evaporative gas suction part 21 is provided around the low temperature liquid jet part 19, but conversely, a low temperature liquid jet part may be provided around the evaporative gas suction part.
Further, the liquid jet pump unit 11 may be provided outside the storage tank 3 or may be provided inside the storage tank 3. By providing the liquid jet pump unit 11 in the storage tank 3, the length of the evaporative gas extraction pipe 5 can be shortened, the evaporative gas suction pressure loss is reduced, and the liquid flow rate (liquid level) required for the liquid jet pump unit 11 is reduced. The power of the pump 9) can be reduced.

液ジェットポンプ部11は、以下のような作用を有している。
液ポンプ9によって圧送された低温液体によって液ジェットポンプ部11の縮径部15に液ジェット流が形成され、形成された液ジェット流によって、蒸発ガス吸入部21から蒸発ガスを吸い込みつつ巻き込んで液中に気泡12を有する気泡含有液体14が生成される。生成された気泡含有液体14は、流体吐出管13から貯留槽3内に吐出する。
The liquid jet pump unit 11 has the following operation.
A liquid jet flow is formed in the reduced diameter portion 15 of the liquid jet pump unit 11 by the low-temperature liquid pumped by the liquid pump 9, and the formed liquid jet flow draws in evaporating gas from the evaporating gas suction unit 21 and entrains the liquid. A bubble-containing liquid 14 having bubbles 12 therein is generated. The generated bubble-containing liquid 14 is discharged from the fluid discharge pipe 13 into the storage tank 3.

<流体吐出管>
流体吐出管13は、液ジェットポンプ部11の吐出部に連通して設けられると共に液ジェットポンプ部11において生成された気泡含有液体14を貯留槽3内に吐出する。流体吐出管13から気泡含有液体14が吐出されると、後述する気泡含有液体14の作用により、貯留槽3内の低温液体が撹拌混合される。
流体吐出管13の端部には、図1に示すように、液面側に向く吐出口を有するノズル23を設けるのが好ましい。
<Fluid discharge pipe>
The fluid discharge pipe 13 is provided in communication with the discharge unit of the liquid jet pump unit 11 and discharges the bubble-containing liquid 14 generated in the liquid jet pump unit 11 into the storage tank 3. When the bubble-containing liquid 14 is discharged from the fluid discharge pipe 13, the low-temperature liquid in the storage tank 3 is stirred and mixed by the action of the bubble-containing liquid 14 described later.
As shown in FIG. 1, a nozzle 23 having a discharge port facing the liquid surface is preferably provided at the end of the fluid discharge pipe 13.

以上のように構成された混合装置1の動作について説明する。
液ポンプ9を起動して貯留槽3内の低温液体4を液ジェットポンプ部11に圧送する。圧送された低温液体は、液ジェットポンプ部11の低温液体噴出部19から縮径部15内に液ジェット流として噴出され、蒸発ガス吸入部21から蒸発ガスを吸い込みつつ巻き込んで液中に気泡12を有する気泡含有液体14が生成される。生成された気泡含有液体14は、流体吐出管13から貯留槽3内に吐出される。
The operation of the mixing apparatus 1 configured as described above will be described.
The liquid pump 9 is activated to pump the low temperature liquid 4 in the storage tank 3 to the liquid jet pump unit 11. The pumped cryogenic liquid is ejected as a liquid jet flow from the cryogenic liquid ejecting portion 19 of the liquid jet pump portion 11 into the reduced diameter portion 15, and sucked in while evaporating gas from the evaporating gas suction portion 21. A bubble-containing liquid 14 having is produced. The generated bubble-containing liquid 14 is discharged from the fluid discharge pipe 13 into the storage tank 3.

図1に示すように、貯留槽3内に吐出された気泡含有液体14は、気液二相状態で噴出され、噴流に含まれる気泡12の上昇効果によって、液相単相の噴流よりも到達高さが高くなり、撹拌混合効果が向上する。
また、噴流が拡散した後でも、気泡12の上昇流に随伴される液相の上昇流が形成され、攪拌混合効果が増大する。
As shown in FIG. 1, the bubble-containing liquid 14 discharged into the storage tank 3 is ejected in a gas-liquid two-phase state, and reaches more than the liquid-phase single-phase jet due to the rising effect of the bubbles 12 included in the jet. The height is increased, and the stirring and mixing effect is improved.
Further, even after the jet is diffused, a liquid-phase upflow accompanying the upflow of the bubbles 12 is formed, and the stirring and mixing effect is increased.

以上のように、本実施の形態によれば、ノズル23から気液二相状態の気泡含有液体14が貯留槽3内の液中に噴流として吐出されるので、貯留槽3内の低温液体の撹拌効果が高い。
また、気相である蒸発ガスを液ジェットポンプ部11で吸い込みつつ巻き込むので、大きな外部動力を要する蒸発ガスの圧縮が不要であるため、動力による入熱に起因する蒸発ガスの増大を回避することができる。
As described above, according to the present embodiment, the gas-liquid two-phase bubble-containing liquid 14 is discharged from the nozzle 23 into the liquid in the storage tank 3 as a jet, so that the low-temperature liquid in the storage tank 3 High stirring effect.
In addition, since the vapor-phase evaporation gas is drawn in while being sucked by the liquid jet pump unit 11, it is not necessary to compress the evaporation gas that requires a large external power, so that an increase in the evaporation gas due to heat input by the power is avoided. Can do.

[実施の形態2]
本実施の形態を、図3に基づいて説明する。なお、図3において実施の形態1と同一部分には同一の符号を付してある。
本実施の形態にかかる低温液体の混合装置24は、図3に示すように、貯留槽3内に管体25を立設し、この管体25内に流体吐出管13の出口端部13aを配置したものである。
管体25は、図3に示すように、その下端部を、貯留槽3の底部との間に液吸込み口27となる隙間ができるように立設されている。
なお、管体25の下端を貯留槽3の底面上に設置して、管体25の下部に液吸込み口となる開口を設けるようにしてもよい。
[Embodiment 2]
This embodiment will be described with reference to FIG. In FIG. 3, the same parts as those of the first embodiment are denoted by the same reference numerals.
As shown in FIG. 3, the cryogenic liquid mixing device 24 according to the present embodiment has a tube body 25 standing in the storage tank 3, and an outlet end 13 a of the fluid discharge tube 13 is provided in the tube body 25. It is arranged.
As shown in FIG. 3, the tubular body 25 is erected so that a gap serving as a liquid suction port 27 is formed between a lower end portion of the tubular body 25 and the bottom portion of the storage tank 3.
In addition, the lower end of the tube body 25 may be installed on the bottom surface of the storage tank 3, and an opening serving as a liquid suction port may be provided in the lower portion of the tube body 25.

本実施の形態の混合装置24においては、流体吐出管13から、管体25内に気泡含有液体14を吐出することで、管体25内の低温液体は気泡12や噴流によって上方へと導搬され、液面近傍で管体25の上端から吐出される。
管体25内の低温液体が上方に導搬されることで、液吸込み口27から貯留槽3内の下部にある低温液体4が吸い込まれて、上方に移動して貯留槽3内の上部で吐出される。
このように、貯留槽5の下部の低温液体4が上部側に移動するという循環が行われ、タンク内が撹拌混合される。
In the mixing device 24 according to the present embodiment, the bubble-containing liquid 14 is discharged from the fluid discharge pipe 13 into the tube body 25, so that the low-temperature liquid in the tube body 25 is guided upward by the bubbles 12 and the jet flow. Then, the liquid is discharged from the upper end of the tubular body 25 in the vicinity of the liquid surface.
When the low-temperature liquid in the pipe body 25 is guided upward, the low-temperature liquid 4 in the lower part of the storage tank 3 is sucked from the liquid suction port 27 and moves upward to reach the upper part of the storage tank 3. Discharged.
In this way, circulation is performed in which the cryogenic liquid 4 in the lower part of the storage tank 5 moves to the upper side, and the inside of the tank is stirred and mixed.

本実施の形態では、気泡12に加えて液の噴流を管体内に吐出するので、気泡ポンプとしての効果に加えて、噴流による管体内の低温液体の導搬作用があり、撹拌混合効果が高いという効果が得られる。   In the present embodiment, since a jet of liquid is discharged into the pipe body in addition to the bubbles 12, in addition to the effect as a bubble pump, there is a transporting action of the low-temperature liquid in the pipe body by the jet, and the stirring and mixing effect is high. The effect is obtained.

1 貯留槽内低温液体の混合装置(実施の形態1)
3 貯留槽
5 蒸発ガス抜出し管
7 低温液体抜出し管
9 液ポンプ
11 液ジェットポンプ部
12 気泡
13 流体吐出管
13a 出口端部
14 気泡含有液体
15 縮径部
17 拡径部
19 低温液体噴出部
21 蒸発ガス吸入部
23 ノズル
24 貯留槽内低温液体の混合装置(実施の形態2)
25 管体
27 液吸込み口
1 Mixing device for cryogenic liquid in storage tank (Embodiment 1)
DESCRIPTION OF SYMBOLS 3 Reservoir 5 Evaporative gas extraction pipe 7 Low temperature liquid extraction pipe 9 Liquid pump 11 Liquid jet pump part 12 Bubble 13 Fluid discharge pipe 13a Outlet end part 14 Bubble containing liquid 15 Reduced diameter part 17 Expanded part 19 Low temperature liquid ejection part 21 Evaporation Gas suction unit 23 Nozzle 24 Mixing device for cryogenic liquid in storage tank (Embodiment 2)
25 Tube 27 Liquid inlet

Claims (3)

貯留槽内に貯留された低温液体を混合する貯留槽内低温液体の混合装置であって、
前記貯留槽で発生した蒸発ガスを抜き出す蒸発ガス抜出し管と、前記貯留槽の低温液体を抜き出す低温液体抜出し管と、該低温液体抜出し管に設けられて貯留槽内の低温液体を圧送する液ポンプと、該液ポンプによって圧送された低温液体を作動流体とし、前記蒸発ガス抜出し管によって抜き出された蒸発ガスを吸入流体とする液ジェットポンプ部と、液ジェットポンプ部の吐出口に接続されて前記液ジェットポンプ部から吐出される流体を前記貯留槽内に吐出する流体吐出管を備えてなり、
前記液ジェットポンプ部は、流路が縮径する縮径部と、該縮径部の下流側で流路が拡径する拡径部と、前記縮径部の上流側であって前記液ポンプによって圧送された低温液体が噴出する低温液体噴出部と、同じく前記縮径部の上流側であって前記蒸発ガス抜出し管によって抜き出された蒸発ガスが吸入される蒸発ガス吸入部とを有し、
前記液ポンプによって圧送された低温液体によって前記液ジェットポンプ部において液ジェットを形成し、形成された液ジェットによって、蒸発ガスを吸い込みつつ巻き込んで液中に気泡を有する気泡含有流体を生成して、該気泡含有流体を前記流体吐出管から吐出するようにしたことを特徴とする貯留槽内低温液体の混合装置。
A device for mixing cryogenic liquid in a reservoir that mixes cryogenic liquid stored in a reservoir,
An evaporative gas extraction pipe for extracting evaporative gas generated in the storage tank, a low-temperature liquid extraction pipe for extracting low-temperature liquid from the storage tank, and a liquid pump that is provided in the low-temperature liquid extraction pipe and pumps the low-temperature liquid in the storage tank And a liquid jet pump section using the low-temperature liquid pumped by the liquid pump as a working fluid and the evaporating gas extracted by the evaporating gas extraction pipe as an intake fluid, and a discharge port of the liquid jet pump section. A fluid discharge pipe for discharging the fluid discharged from the liquid jet pump unit into the storage tank;
The liquid jet pump section includes a diameter-reduced portion where a flow path is reduced, a diameter-expanded portion where a flow path is enlarged downstream of the diameter-reduced portion, and an upstream side of the diameter-reduced portion, the liquid pump A low-temperature liquid jetting portion from which the low-temperature liquid pumped by the jetting jetting jets, and an evaporating gas suction portion that is also upstream of the reduced diameter portion and into which the evaporating gas extracted by the evaporating gas extraction pipe is sucked ,
A liquid jet is formed in the liquid jet pump unit by the low-temperature liquid pumped by the liquid pump, and a bubble-containing fluid having bubbles in the liquid is generated by sucking the evaporating gas by the formed liquid jet, A device for mixing a cryogenic liquid in a storage tank, wherein the bubble-containing fluid is discharged from the fluid discharge pipe.
前記流体吐出管の下流端部に吐出口を上方に向けた吐出ノズルを設けたことを特徴とする請求項1記載の貯留槽内低温液体の混合装置。   The apparatus for mixing cryogenic liquid in a storage tank according to claim 1, wherein a discharge nozzle having a discharge port facing upward is provided at a downstream end of the fluid discharge pipe. 管体を、その下端側を前記貯留槽底面近傍に配置し、かつ該下端側に液吸込み口が形成されるように前記貯留槽内に立設し、該管体の内部に前記流体吐出管の出口端部を設けたことを特徴とする請求項1記載の貯留槽内低温液体の混合装置。   A pipe body is disposed in the storage tank so that a lower end side thereof is disposed in the vicinity of the bottom surface of the storage tank and a liquid suction port is formed on the lower end side, and the fluid discharge pipe is disposed inside the pipe body. The mixing device for the cryogenic liquid in the storage tank according to claim 1, wherein an outlet end of the storage tank is provided.
JP2013031370A 2013-02-20 2013-02-20 Mixing device of cryogenic liquid in storage tank Pending JP2014159856A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013031370A JP2014159856A (en) 2013-02-20 2013-02-20 Mixing device of cryogenic liquid in storage tank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013031370A JP2014159856A (en) 2013-02-20 2013-02-20 Mixing device of cryogenic liquid in storage tank

Publications (1)

Publication Number Publication Date
JP2014159856A true JP2014159856A (en) 2014-09-04

Family

ID=51611676

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013031370A Pending JP2014159856A (en) 2013-02-20 2013-02-20 Mixing device of cryogenic liquid in storage tank

Country Status (1)

Country Link
JP (1) JP2014159856A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101642888B1 (en) * 2016-01-13 2016-07-27 (주)파워레인 Multipurpose watertank
KR20160116233A (en) * 2015-03-27 2016-10-07 현대중공업 주식회사 Liquefied gas storage tank and marine structure including the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160116233A (en) * 2015-03-27 2016-10-07 현대중공업 주식회사 Liquefied gas storage tank and marine structure including the same
KR102170032B1 (en) 2015-03-27 2020-10-27 한국조선해양 주식회사 Liquefied gas storage tank and marine structure including the same
KR101642888B1 (en) * 2016-01-13 2016-07-27 (주)파워레인 Multipurpose watertank
WO2017122878A1 (en) * 2016-01-13 2017-07-20 (주)파워레인 Multi-purpose water tank
CN107182207A (en) * 2016-01-13 2017-09-19 帕雷恩有限责任公司 Multipurpose water tank
US10094097B2 (en) 2016-01-13 2018-10-09 Powerrain Co., Ltd. Multi-purpose water tank
CN107182207B (en) * 2016-01-13 2019-06-14 帕雷恩有限责任公司 Multipurpose water tank

Similar Documents

Publication Publication Date Title
US10478753B1 (en) Apparatus and method for treatment of hydraulic fracturing fluid during hydraulic fracturing
KR101546996B1 (en) Water-spouting device
KR20150003473U (en) Generation apparatus for dissolving gas in liquid and fluid nozzle
WO1998018543A1 (en) Method and apparatus for dissolving/mixing gas in liquid
JP2014516314A (en) Method and apparatus for oxygen enrichment of a liquid
JP2014159856A (en) Mixing device of cryogenic liquid in storage tank
CN102803870B (en) Device and method for providing additional head to support a refrigeration liquid feed system
RU2008140641A (en) METHOD FOR PREPARING AND PUMPING HETEROGENEOUS MIXTURES INTO THE PLAST AND INSTALLATION FOR ITS IMPLEMENTATION
JP2015007470A (en) Mixing device for low-temperature liquid in storage tank
JPH10244138A (en) Method and device for mixing and dissolving gas and liquid
JP6303796B2 (en) Method and apparatus for mixing cryogenic liquid in storage tank
KR101434430B1 (en) System For Condensing Volatile Organic Compound
JP6136971B2 (en) Method and apparatus for mixing cryogenic liquid in storage tank
KR20120100580A (en) Oil loading and unloading system for oil tanker
JP2008212784A (en) Fine bubble generation apparatus
JP5081801B2 (en) Gas-liquid dissolution tank in microbubble generator
JP2000193196A (en) Stratification preventing device in low temperature liquefied gas tank
JP5001327B2 (en) Gas dissolving device
KR101399999B1 (en) System For Condensing Volatile Organic Compound
KR20170079791A (en) Cryogenic tank of cryogenic liquid and cooling apparatus and method
KR101348632B1 (en) System For Condensing Volatile Organic Compound
JP5975382B2 (en) Gas dissolution tank and gas dissolution apparatus equipped with the same
KR20230090384A (en) Ejector for improving condensation performance, and system for bunkering of liquefied gas using the same
JP2005263825A (en) Method and apparatus for producing gas hydrate
JPS59219599A (en) Suppression of gas in cryogenic liquidized gas tank