JP2014155959A - Method and apparatus for producing mold material - Google Patents

Method and apparatus for producing mold material Download PDF

Info

Publication number
JP2014155959A
JP2014155959A JP2013029480A JP2013029480A JP2014155959A JP 2014155959 A JP2014155959 A JP 2014155959A JP 2013029480 A JP2013029480 A JP 2013029480A JP 2013029480 A JP2013029480 A JP 2013029480A JP 2014155959 A JP2014155959 A JP 2014155959A
Authority
JP
Japan
Prior art keywords
welding
mold material
mold
build
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013029480A
Other languages
Japanese (ja)
Inventor
Koji Ikemura
浩司 池邨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2013029480A priority Critical patent/JP2014155959A/en
Publication of JP2014155959A publication Critical patent/JP2014155959A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To produce a new mold material by building-up welding of a discarded mold.SOLUTION: A method of producing a molding material for a welding apparatus including a welding portion and a welding control portion comprises: a step of determining differences in outer shape data between a discarded mold (work) W and a mold material 20 in the welding control portion; a step of forming, on a discarded mold, a welding pass for filling in differences with bead shapes of building-up welding, on the basis of the differences in the outer shape data and bead shapes of the building-up welding; and a step of carrying out building-up welding in the formed welding pass P in the welding portion to form a molding material 20.

Description

本発明は金型素材の製造方法及び同製造装置に関する。   The present invention relates to a mold material manufacturing method and a manufacturing apparatus thereof.

従来から、金型素材、例えばタイヤ成形用金型素材は鋳造又は鍛造で製造されており、製造の都度鋳型や鍛造型を形成している。しかし、鋳型や鍛造型の手配からタイヤ成形用金型素材の納入まで一品一様のため、成形の都度鋳型や鍛造型が必要であり、そのリードタイムが長い(通常5日間が必要であった)。また、加工コストが高い、廃棄材料が有効に活用されていないなどの問題がある。   Conventionally, a die material, for example, a tire molding die material is manufactured by casting or forging, and a mold or a forging die is formed every time it is manufactured. However, since one product is uniform from arranging molds and forging dies to delivering mold materials for tire molding, molds and forging dies are required each time molding is performed, and the lead time is long (usually 5 days were required) ). In addition, there are problems such as high processing costs and waste materials not being used effectively.

ここで、リードタイムが長い問題に関しては、鋳型や鍛造型を用いない金型素材の製造方法が既に提案されている。
例えば、特許文献1には、NC加工機に溶接トーチを取り付け、溶加ワイヤを溶融してテーブル上に溶着ビード層を形成することで、鋳造を経ずに型素材を製作することが開示されている。
Here, regarding the problem of a long lead time, a method of manufacturing a die material without using a mold or a forging die has already been proposed.
For example, Patent Document 1 discloses that a mold material is manufactured without casting by attaching a welding torch to an NC processing machine and melting a filler wire to form a weld bead layer on a table. ing.

また、特許文献2には、型素材のプロフィール加工と肉盛りと肉盛りした部分の仕上げ加工とを、同じ装置で行うようにしたプレス型の加工方法が開示されている。この発明は、先ず、加工ヘッドに加工工具を取付けた状態で型素材にプロフィール加工を施し、次に、加工ヘッドに肉盛り器具を付け換えて所要の材料を肉盛りする。次いで、加工ヘッドに再び加工工具を付け換えて肉盛り部を所定の形状に仕上加工を施すものである。   Further, Patent Document 2 discloses a press die processing method in which the profile processing of the mold material and the build-up and finishing of the portion that has been built-up are performed by the same apparatus. In the present invention, first, profile processing is performed on a mold material in a state where a processing tool is attached to a processing head, and then, a necessary material is built up by changing a build-up tool to the processing head. Next, the machining tool is again attached to the machining head to finish the built-up portion into a predetermined shape.

特許文献3には、ダイブロックを形成したのち、これに肉盛り溶接を施すことで金型を製造する方法が記載されている。
以上の各方法は、鋳型や鍛造型を要しないためリードタイムが短縮される点では改善がみられる。しかし、いずれも廃棄材料についてはとくに考慮されておらず、この問題の解決はなされていない。
Patent Document 3 describes a method of manufacturing a die by forming a die block and performing overlay welding on the die block.
Each of the above methods is improved in that the lead time is shortened because no mold or forging die is required. However, none of the waste materials are specifically considered, and this problem has not been solved.

この廃棄材料の問題に対しては、廃棄されるタイヤ成形用金型を再利用することが考えられる。しかし、廃棄されるタイヤ成形用金型の再利用は、タイヤ成形用金型は円筒形をなしているため、溶接による変形が起こりやすく、変形を低減させないと余分な肉盛りが必要になるなどの問題がある。そのため、これまで実用されていない。   To deal with this problem of waste materials, it is conceivable to reuse a tire molding die that is discarded. However, the reuse of tire molds that are discarded is because the tire molds have a cylindrical shape, so that deformation due to welding is likely to occur. There is a problem. Therefore, it has not been practically used so far.

特開2000−15363号公報JP 2000-15363 A 特開平8−57559号公報JP-A-8-57559 特開平1−162571号公報JP-A-1-162571

そこで、本発明は、従来は廃棄されていた使用済み金型(廃棄金型)を溶接によるビード形状を利用して、廃棄金型の上に必要な箇所のみ自動で溶接パスを生成し、当該必要な箇所のみに断続的に肉盛り溶接を施すことにより金型素材を得ることで、廃棄物利用による省エネルギ環境対策、およびコスト削減を可能にする外、従来に比べてタクトタイムを短縮することを目的とする。   Therefore, the present invention uses a bead shape by welding a previously used mold (discard mold) that has been discarded, and automatically generates a welding path only at a necessary location on the discard mold. In addition to enabling energy-saving environmental measures and cost reduction by using waste, the tact time can be shortened compared to conventional methods by obtaining mold material by intermittently performing overlay welding only at necessary locations. For the purpose.

本願発明は、溶接部と溶接制御部とを有する溶接装置における金型素材の製造方法であって、前記溶接制御部における、破棄金型と金型素材との外形データの差分を求める工程と、前記外形データ差分と肉盛り溶接のビード形状に基づき、肉盛り溶接のビード形状で前記差分を埋めるための溶接パスを前記破棄金型上に生成する工程と、前記溶接部における、生成された溶接パスに肉盛り溶接を行い金型素材を形成する工程と、を有することを特徴とする。
本願の他の発明は溶接部と溶接制御部とを有する溶接装置における金型素材の製造装置であって、破棄金型と金型素材との外形データの差分を求める演算部と、前記外形データ差分と肉盛り溶接のビード形状に基づき、肉盛り溶接のビード形状で前記差分を埋めるための溶接パスを前記破棄金型上に生成する溶接パス生成部とを備えた前記溶接制御部と、生成された溶接パスに肉盛り溶接を行い金型素材を形成する溶接手段を備えた前記溶接部と、を有することを特徴とする。
The present invention is a method of manufacturing a mold material in a welding apparatus having a welded portion and a welding control unit, and in the welding control unit, a step of obtaining a difference in outer shape data between a discarded mold and a mold material; Based on the difference in outer shape data and the bead shape of build-up welding, a step of generating a welding pass for filling the difference in the bead shape of build-up welding on the discard mold, and the generated weld in the weld And forming a mold material by performing build-up welding on the path.
Another invention of the present application is an apparatus for manufacturing a mold material in a welding apparatus having a welded portion and a welding control unit, and a calculation unit for obtaining a difference between the outer shape data of the discarded mold and the mold material, and the outer shape data Based on the difference and the bead shape of the build-up welding, the welding control unit including the welding path generation unit that generates a weld path on the discard mold for filling the difference with the bead shape of the build-up welding, and generation And a welding portion provided with welding means for performing build-up welding on the welded path to form a mold material.

本発明によれば、廃棄物利用による省エネ環境対策、及びコスト削減が可能である外、従来に比べてそのタクトタイムを短縮することができる。   According to the present invention, it is possible to save energy and save energy by using waste, and to reduce the cost.

本実施形態に係る金型素材の製造方法を実行する金型製造装置を概略的に示す図である。It is a figure which shows roughly the metal mold | die manufacturing apparatus which performs the manufacturing method of the metal mold | die material which concerns on this embodiment. 金型素材と廃棄金型との形状データの差分値を説明するための図であって、破線は素材としてのワークの輪郭を、また実線は金型素材の輪郭を示す断面図である。It is a figure for demonstrating the difference value of the shape data of a metal mold | die material and a waste metal mold | die, Comprising: The broken line is a sectional view which shows the outline of the workpiece | work as a raw material, and a continuous line shows the outline of a metal mold | die material. 作成された溶接パスによる第1層(1層目)の溶接層を示す断面図である。It is sectional drawing which shows the welding layer of the 1st layer (1st layer) by the created welding path. ワークについて作成した溶接パスを示すワークの断面図である。It is sectional drawing of the workpiece | work which shows the welding path produced about the workpiece | work. 金型素材の製造の手順を説明するフロー図である。It is a flowchart explaining the procedure of manufacture of a metal mold | die raw material. ワークの肉盛り溶接時に発生する反りを説明するワークの断面図である。It is sectional drawing of the workpiece | work explaining the curvature which generate | occur | produces at the time of build-up welding of a workpiece | work. 同一のテストワークを用いて行った、溶接パスにおける一回の溶接長さを変化させたときのテストワークの反りの検証結果を示すグラフである。It is a graph which shows the verification result of the curvature of a test work when changing the welding length of one time in a welding pass performed using the same test work. 反りを防止するための溶接手順を説明するためのワークの斜視図であり、図8Aは同一溶接パスにおける最初の4箇所の溶接位置を示す斜視図であり、図8Bは同一溶接パスを全て溶接したときの溶接順序を示す図である。FIG. 8A is a perspective view of a workpiece for explaining a welding procedure for preventing warpage, FIG. 8A is a perspective view showing first four welding positions in the same welding pass, and FIG. It is a figure which shows the welding order when it did. 異なる溶接パス間における肉盛り溶接の順序を説明するワークの断面図である。It is sectional drawing of the workpiece | work explaining the order of the build-up welding between different welding passes. ワークの異なる部分毎に溶接パスを連続して肉盛り溶接を行う場合における溶接順序を説明するワークの断面図である。It is sectional drawing of the workpiece | work explaining the welding order in the case of performing build-up welding continuously for every different part of a workpiece | work. 溶接時に発生したワークの反りを軽減又は相殺する方法を説明するワークの断面図であって、図11Aは肉盛り溶接を行った状態を示し、図11Bは図11Aで示す肉盛り溶接により発生した反りを相殺するために行った裏面の肉盛り溶接を行った状態を示す。FIG. 11A is a cross-sectional view of a workpiece for explaining a method for reducing or canceling the warpage of the workpiece generated during welding, in which FIG. 11A shows a state in which build-up welding is performed, and FIG. 11B is generated by build-up welding shown in FIG. The state which performed the build-up welding of the back surface performed in order to offset curvature is shown.

図1は、本実施形態に係る金型素材の製造方法を実行する金型製造装置を概略的に示す図である。
本実施形態で用いる金型製造装置は任意であるが、ここでは、溶接部である溶接ロボット10と、溶接ロボット10の動作及びワークWの動作を制御する溶接制御部12であるCPU、RAM、ROMから成るコンピュータと、表示部14であるディスプレイと、入力部16であるキーボード、マウスなどを備えている。
FIG. 1 is a diagram schematically showing a mold manufacturing apparatus for executing a mold material manufacturing method according to the present embodiment.
The mold manufacturing apparatus used in the present embodiment is arbitrary, but here, the welding robot 10 which is a welding part, and the CPU, RAM, which are the welding control part 12 which controls the operation of the welding robot 10 and the operation of the workpiece W, The computer includes a ROM, a display as the display unit 14, a keyboard and a mouse as the input unit 16.

ここで、溶接制御部12自体は従来公知又は周知のものであるが、プログラムによって実現される機能実現手段として、ここでは演算部12aと、溶接パス生成部12cとを有している。
前記演算部12aは、例えば入力部16を用いるなどして適宜入力された、製造する円筒状の金型素材20の形状データと、円筒状の廃棄金型(以下、ワークという)Wの形状データから、その差分値を求め、その差分値を溶接制御部12の記憶部12bに記憶する。
Here, although welding control part 12 itself is publicly known or well-known, it has here operation part 12a and welding pass generation part 12c as a function realization means realized by a program.
The arithmetic unit 12a, for example, the shape data of the cylindrical mold material 20 to be manufactured and the shape data of the cylindrical waste mold (hereinafter referred to as a workpiece) W, which are appropriately input using the input unit 16, for example. Then, the difference value is obtained, and the difference value is stored in the storage unit 12b of the welding control unit 12.

図2は、その差分値を説明するための図であって、破線は素材としてのワークWの輪郭を、また実線は金型素材20の輪郭を示す断面図である。
ワークW及び金型素材20は、いずれも円筒状で断面形状は全周にわたり同一である。したがって、前記差分値は、図2に示すそれぞれの断面の断面形状の輪郭線の高さの差として表される。
即ち、図2において、縦方向にY軸、横方向にX軸をとったX−Y平面におけるX軸を円筒状の金型の幅(径)方向、Y軸を高さ方向にとり、差分はそのY方向における高さの差、つまり実線と破線のY軸方向の差として表される。
FIG. 2 is a diagram for explaining the difference value, in which a broken line is a cross-sectional view showing the outline of the workpiece W as a material, and a solid line is an outline of the mold material 20.
The workpiece W and the mold material 20 are both cylindrical and have the same cross-sectional shape over the entire circumference. Therefore, the difference value is represented as a difference in height between contour lines of cross-sectional shapes of the respective cross sections shown in FIG.
That is, in FIG. 2, the X axis in the XY plane with the Y axis in the vertical direction and the X axis in the horizontal direction is taken as the width (diameter) direction of the cylindrical mold, and the Y axis is taken as the height direction. This is expressed as a difference in height in the Y direction, that is, a difference between the solid line and the broken line in the Y-axis direction.

ここでは、溶接制御部12の溶接パス生成部12cはその差分値をビードBで埋めるに必要な溶接パスPをワーク上に生成する。即ち、溶接パス生成部12cは、記憶部12bに記憶された製造する金型素材とワークWとの差分値と、溶接条件(溶接電圧、溶接電流、溶接速度等)に基づき決定した肉盛りできるビードBの形状により溶接パスPを生成する。
溶接パス生成部12cにおける溶接パスPの生成自体は従来の手法により行う。例えば、各溶接パスPに設定された溶接条件に基づいて溶接部位に積層される溶着金属部の断面形状を算出し、次の溶接パスPの位置を生成する(特開2001−105137号公報)、或いは各溶接部の全体断面積を予め設定された基準断面積で除算して溶接パス数を求めるとともに、この溶接パス数に基づき溶接層数およびこれら各溶接層における溶接パス数を決定する方法(特開2003−334659号公報)等の、任意の方法で行うことができる。生成した溶接パスPは、図2の差分値に基づくものであるが、差分値が0又は負の部分には溶接パスPは生成されない。
Here, the welding path generation unit 12c of the welding control unit 12 generates a welding path P necessary for filling the difference value with the bead B on the workpiece. That is, the welding path generation unit 12c can build up the thickness determined based on the difference value between the mold material to be manufactured and the workpiece W stored in the storage unit 12b and the welding conditions (welding voltage, welding current, welding speed, etc.). A welding pass P is generated according to the shape of the bead B.
The generation of the welding path P itself in the welding path generation unit 12c is performed by a conventional method. For example, the cross-sectional shape of the weld metal part laminated on the welding site is calculated based on the welding conditions set for each welding path P, and the position of the next welding path P is generated (Japanese Patent Laid-Open No. 2001-105137). Alternatively, the total cross-sectional area of each welded portion is divided by a preset reference cross-sectional area to obtain the number of weld passes, and the number of weld layers and the number of weld passes in each weld layer are determined based on the number of weld passes. (Japanese Unexamined Patent Publication No. 2003-334659) can be used for any method. The generated welding path P is based on the difference value in FIG. 2, but the welding path P is not generated in a portion where the difference value is 0 or negative.

溶接パスPが生成されると、次に、溶接制御部12は、溶接パスPに沿ってロボットアーム10aに取り付けた溶接トーチ10bを移動させる移動経路と、溶接トーチ10bによる肉盛り溶接のタイミングを決定し、移動経路に沿って溶接トーチ10bの肉盛り溶接制御を行う。
ここでは、ワークWを回転台(図示せず)に固定した冶具18に固定して一定速度で回転させ、ワークW上に生成された円形の溶接パスPに、静止させた溶接トーチ10bで肉盛り溶接を行う手法を採る。
When the welding path P is generated, the welding control unit 12 next determines the movement path for moving the welding torch 10b attached to the robot arm 10a along the welding path P and the timing of overlay welding by the welding torch 10b. It determines and build-up welding control of the welding torch 10b is performed along a movement path | route.
Here, the workpiece W is fixed to a jig 18 fixed to a turntable (not shown) and rotated at a constant speed, and a circular welding path P generated on the workpiece W is fixed with a stationary welding torch 10b. Use a technique of prime welding.

この場合、溶接ロボット10のロボットアーム10aを駆動して、その先端に取り付けた溶接トーチ10bを、溶接制御部12が設定した移動経路に沿って、溶接制御部12が生成した溶接パスPまで移動させて、1回転するワークWに対して、ワイヤ10cで第1層目の最初の溶接パスPの肉盛り溶接を行う。続いて、溶接制御部12は、ロボットアーム10aを駆動して溶接トーチ10bを生成された次の溶接パスPまで移動させて、その溶接パスPの肉盛り溶接を行う。
以上の動作を、繰り返し、図3に示すようにワークW上に第1層の溶接層を形成し、第1層の溶接層の形成が終了したときは、続いて、第2層の溶接パスPの肉盛り溶接を行うという手順により順次肉盛り溶接を行っていく。
In this case, the robot arm 10a of the welding robot 10 is driven, and the welding torch 10b attached to the tip of the welding robot 10 is moved to the welding path P generated by the welding control unit 12 along the movement path set by the welding control unit 12. Then, build-up welding of the first welding pass P of the first layer is performed on the work W that rotates once by the wire 10c. Subsequently, the welding control unit 12 drives the robot arm 10a to move the welding torch 10b to the next generated welding path P, and performs overlay welding of the welding path P.
The above operation is repeated to form the first weld layer on the workpiece W as shown in FIG. 3, and when the formation of the first weld layer is completed, the second layer weld pass is subsequently performed. The build-up welding is sequentially performed according to the procedure of P build-up welding.

図4は、ワークW上に作成した溶接パスPとワークWの断面図である。
肉盛り溶接は、具体的には、溶加材を供給して、溶接トーチ10bが最初の溶接パスPの肉盛り溶接を行うと、続いて、溶接制御部12はロボットアーム10aを移動させて溶接トーチ10bを所定距離だけX−Y平面内で移動させて、次の溶接パスPの溶接を行う。ここで、溶接パスPが生成されていない領域では、ロボットアーム10aにより溶接トーチ10bを次の溶接パスPまで移動させる。
このようにして第1層の溶接層が溶着ビードBで形成されと、続いて、溶接トーチ10bを第1層の溶接層に重ねた移動経路に沿って移動し、溶加材を第1層の溶接層(ビードB)の上に重ねていく。この上重ねによって上下のビードBが一体化されて最終的には求める金型素材20の形状が得られる。
FIG. 4 is a cross-sectional view of the welding path P and the workpiece W created on the workpiece W.
Specifically, in the build-up welding, when the filler metal is supplied and the welding torch 10b performs build-up welding of the first welding pass P, the welding control unit 12 then moves the robot arm 10a. The welding torch 10b is moved within the XY plane by a predetermined distance, and the next welding pass P is welded. Here, in a region where the welding pass P is not generated, the welding torch 10b is moved to the next welding pass P by the robot arm 10a.
When the weld layer of the first layer is formed of the weld bead B in this manner, the welding torch 10b is moved along the movement path superimposed on the weld layer of the first layer, and the filler material is moved to the first layer. Is overlaid on the weld layer (bead B). By this superposition, the upper and lower beads B are integrated to finally obtain the desired shape of the mold material 20.

図5は、本実施形態に係る金型素材20の製造の手順を説明するフロー図である。
本実施形態では、金型素材20の製造方法は以下の手順による。
即ち、まず、ワークWには、タイヤ成形時(加硫時)におけるエア抜き用のベントホールやタップ穴、パネル溝などが形成されているので、これらの孔等を塞ぐ事前処理を行う(S101)。次に、溶接制御部12は、入力された金型素材の形状データと、ワークWの形状データとの差分値を演算してその記憶部12bに記憶する(S102)。続いて、記憶された前記差分値に基づき溶接範囲を設定し(S103)、かつ入力された一層毎の肉盛りできるビードB形状(即ち、ビードB幅、ビードB高さ、R(ビードB径))及び、溶接条件(溶接電圧、溶接電流、溶接速度等)に基づき、ワークの溶接範囲つまり必要な部分に溶接パスPを自動生成する(S104)。続いて、溶接制御部12は、ワークWを回転させると共に溶接トーチ10bを溶接パスP上に移動させ、回転するワークW上に生成された溶接パスPを自動で肉盛り溶接し(S105)、これにより目的とする金型素材20を製造する。
FIG. 5 is a flowchart for explaining a procedure for manufacturing the mold material 20 according to the present embodiment.
In the present embodiment, the manufacturing method of the mold material 20 is according to the following procedure.
That is, first, since the work W is formed with vent holes, tap holes, panel grooves and the like for releasing air at the time of tire molding (vulcanization), pre-processing for closing these holes is performed (S101). ). Next, the welding control unit 12 calculates a difference value between the input shape material shape data and the shape data of the workpiece W and stores the difference value in the storage unit 12b (S102). Subsequently, a welding range is set based on the stored difference value (S103), and a bead B shape (that is, bead B width, bead B height, R (bead B diameter) that can be built up for each layer that is input. )) And welding conditions (welding voltage, welding current, welding speed, etc.), a welding path P is automatically generated in the welding range of the workpiece, that is, a necessary portion (S104). Subsequently, the welding control unit 12 rotates the workpiece W and moves the welding torch 10b onto the welding path P, and automatically builds up the welding path P generated on the rotating workpiece W (S105). Thus, the target mold material 20 is manufactured.

以上は、ワークWから金型素材20を製造する方法の概要であるが、既に述べたように、金型素材20に使用するワークWは円筒状を成しており、ワークW周上で肉盛りを行った場合、溶接箇所が熱を持ち膨張し、その冷却時の収縮により反りが生じる。即ち、図6は、ワークWの肉盛り溶接時に発生する反りを説明するワークWの断面図である。
図示のように、ワークWの表面に形成した溶接パスPを複数層重畳して肉盛り溶接すると、肉盛り部分の表面が冷却に伴い収縮する結果、全体としては図中矢印で示す方向に引っ張り力が作用して溶接面が収縮して反った形状になる。そのため、前記方法で金型素材20を製造する際には、前記反りが生じないように溶接手順を考慮する必要がある。
The above is the outline of the method of manufacturing the mold material 20 from the workpiece W. As already described, the workpiece W used for the mold material 20 has a cylindrical shape, and the meat on the circumference of the workpiece W is meat. When filling is performed, the welded portion expands with heat, and warpage occurs due to shrinkage during cooling. That is, FIG. 6 is a cross-sectional view of the workpiece W for explaining warpage that occurs during build-up welding of the workpiece W.
As shown in the figure, when the welding passes P formed on the surface of the workpiece W are overlapped and welded on top of each other, the surface of the built-up portion contracts as it cools, and as a result, it is pulled in the direction indicated by the arrow in the figure as a whole. The force acts and the weld surface shrinks and becomes warped. Therefore, when manufacturing the mold material 20 by the above method, it is necessary to consider a welding procedure so as not to cause the warp.

そこで、次に、本実施形態の自動溶接時に生じる金型素材20の変形防止方法について説明するが、その説明に当たり、まず、本出願人が行った検証及びその結果について説明する。
即ち、本出願人は、同一のテストワークを用いて、自動溶接でテストワークの溶接パスを肉盛りし、その際、溶接パスにおける溶接長さを変化させてそれぞれの反りを調べ、反りに対する溶接長さの影響について検証を行った。
Then, next, although the deformation | transformation prevention method of the metal mold | die material 20 produced at the time of the automatic welding of this embodiment is demonstrated, in the description, first, the verification which this applicant performed and the result are demonstrated.
That is, the present applicant uses the same test work and builds up the welding pass of the test work by automatic welding, and at that time, changes the welding length in the welding pass to examine each warp, and welds against the warp. The effect of length was verified.

テストワークWは、実際のワークWと同じ材料、即ちSS400で形成された外径φ200mm、内径φ73mm、厚さ25mmの中実円筒状とし、その反り量は3次元測定器(端部4箇所の反り量を3次元測定器で測定)で測定し検証を行った。
図7は、その検証結果を示すグラフである。
図7のグラフにおいて、横軸は前記テストワークWにおける溶接長さ(mm)、縦軸は反り量(mm)を示したものである。このグラフでは溶接長さ6mm、30mm、60mmの三つのケースについてワークWの反り量が示されている。このグラフに示すように、溶接長さ6mmでは、反り量は0〜0.025mmの範囲であるが、溶接長さ30mmでの反り量は0.05〜0.19mm、溶接長さ60mmでは、0.2〜0.31mmであった。
The test workpiece W is the same material as the actual workpiece W, that is, a solid cylindrical shape formed of SS400 with an outer diameter of φ200 mm, an inner diameter of φ73 mm, and a thickness of 25 mm. The amount of warpage was measured with a three-dimensional measuring instrument) and verified.
FIG. 7 is a graph showing the verification result.
In the graph of FIG. 7, the horizontal axis represents the weld length (mm) in the test work W, and the vertical axis represents the amount of warpage (mm). In this graph, the amount of warp of the workpiece W is shown for three cases with a weld length of 6 mm, 30 mm, and 60 mm. As shown in this graph, when the weld length is 6 mm, the warpage amount is in the range of 0 to 0.025 mm, but when the weld length is 30 mm, the warpage amount is 0.05 to 0.19 mm and the weld length is 60 mm. It was 0.2 to 0.31 mm.

その検証の結果から、溶接長さにより溶接箇所の温度が変化し、それに伴う反り量が異なることが分かった。つまり、溶接パスPの肉盛り溶接を行う場合、その溶接パスPの長さに比して短い一定の溶接長さ(ここでは、例えば溶接パスPの長さ5mmに対して6mm)で断続的に溶接することで、溶接箇所の温度上昇を抑制し、反りを低減することができることが分かった。
ここで、断続的に行う溶接回数を増やせば、反りは小さくなるが肉盛り溶接の効率が低下し、また前記回数を減らせば肉盛り溶接の効率は上がるが反りは大きくなる。したがって、前記溶接パスPの場合は、30mm〜60mmが好ましい範囲である。
As a result of the verification, it was found that the temperature of the welded portion varied depending on the weld length, and the amount of warpage associated therewith was different. That is, when performing build-up welding of the welding path P, the welding path P is intermittent with a constant welding length shorter than the length of the welding path P (here, for example, 6 mm with respect to the length of 5 mm of the welding path P). It has been found that the temperature rise of the welded portion can be suppressed and the warpage can be reduced by welding to the surface.
Here, if the number of weldings performed intermittently is increased, the warpage is reduced, but the efficiency of build-up welding is reduced. If the number is decreased, the efficiency of build-up welding is increased, but the warp is increased. Therefore, in the case of the welding path P, 30 mm to 60 mm is a preferable range.

また、前記一定の長さで断続的に溶接を行う場合であっても、溶接箇所をできるだけ離しておく方が相互の熱の影響が小さく、したがって熱による反りの発生を抑制することができる。
そこで、本実施形態では、断続的に対角位置で60mm以下の一定長さの溶接を行う。即ち、例えば溶接トーチ10bで円筒状をなすワークWの一定長さ分肉盛り溶接を行った段階で一旦溶接を停止し、次に、溶接箇所の対角位置の溶接を行う。続いて、その溶接を一定長さ行ったとき溶接を一旦中断して、今度は以上で行った溶接位置間で溶接を行う。この断続的な肉盛り溶接は溶接トーチ10bを静止した状態でワークWを回転させて行う。なお、肉盛り必要箇所を、現状1周分ずつ溶接を実施してもよい。
Further, even when welding is performed intermittently with the constant length, the influence of mutual heat is smaller when the welding locations are separated as much as possible, and therefore, the occurrence of warpage due to heat can be suppressed.
Therefore, in this embodiment, welding with a constant length of 60 mm or less is performed intermittently at diagonal positions. That is, for example, the welding is temporarily stopped at the stage where build-up welding is performed for a certain length of the workpiece W having a cylindrical shape with the welding torch 10b, and then the welding at the diagonal position of the welding location is performed. Subsequently, when the welding is performed for a certain length, the welding is temporarily interrupted, and the welding is performed between the welding positions performed as described above. This intermittent build-up welding is performed by rotating the workpiece W while the welding torch 10b is stationary. It should be noted that welding may be performed on the necessary portion of the build for each current round.

図8Aはこの溶接手順を説明するためのワークWの斜視図であり、同一溶接パスPにおける最初の4箇所の溶接位置を示している。また、図8Bは同一溶接パスPを全て溶接したときの溶接順序を示す図である。
肉盛り溶接は、既に述べたように、ワークWを載せた回転台の回転と溶接トーチ10bでの溶接動作を制御することで行う。即ち回転台を駆動する回転駆動装置、例えばステッピングモータの回転角を制御する。その回転角の制御は、円筒状ワークWの1溶接パスPの円周を、例えば図8Bに示すよう8等分割してそれぞれに溶接順に1〜8の番号を付した場合、図示のように直前の溶接箇所から離れた箇所とそれの対角位置にある箇所を選択して、回転するワークWが溶接トーチ10bの位置に達したとき肉盛り溶接を開始して前記一定の長さの溶接を行う。多層の肉盛り溶接を行うときも上記溶接順序動作を繰り返す。
FIG. 8A is a perspective view of the workpiece W for explaining this welding procedure, and shows the first four welding positions in the same welding pass P. FIG. Moreover, FIG. 8B is a figure which shows the welding order when all the same welding passes P are welded.
As described above, build-up welding is performed by controlling the rotation of the turntable on which the workpiece W is placed and the welding operation with the welding torch 10b. That is, the rotation angle of a rotation drive device that drives the turntable, for example, a stepping motor, is controlled. The rotation angle is controlled by dividing the circumference of one welding path P of the cylindrical workpiece W into, for example, eight equal parts as shown in FIG. By selecting a location away from the previous welding location and a location at the diagonal position thereof, when the rotating workpiece W reaches the position of the welding torch 10b, the build-up welding is started and welding of the predetermined length is performed. I do. The above-described welding sequence operation is repeated also when multi-layer welding is performed.

このように、円筒状のワークWの一周分の溶接パスPを一定長さで複数区間に区切り、各区間のうち周上の対角位置の区間を次溶接区間とするよう溶接順序を設定し、その溶接順序にしたがって溶接を実行する。これによりワークWの反りを無くするか又は大幅に緩和することができる。   In this way, the welding path P for one round of the cylindrical workpiece W is divided into a plurality of sections with a fixed length, and the welding order is set so that the section of the diagonal position on the circumference of each section is the next welding section. The welding is performed according to the welding sequence. Thereby, the warp of the workpiece W can be eliminated or greatly reduced.

図9は、異なる溶接パスP間における肉盛り溶接の順序を説明するワークWの断面図である。
図9に示すよう、溶接パスP間においても、溶接時に熱が分散するように、隣接した溶接パスPを連続して肉盛り溶接を行わず、出来るだけ離れた溶接パスPを溶接することで、ワークWの反りを抑制することができる。
即ち、図9は溶接順序を模式的に示す図であって、図中の番号で示すように、飛び飛びの溶接パスPを肉盛り溶接しながら、図示例では、(1)、(2)、(3)の順番で全体の肉盛りを行う。
FIG. 9 is a cross-sectional view of the workpiece W for explaining the order of build-up welding between different welding passes P.
As shown in FIG. 9, even between the welding paths P, by welding the welding paths P as far apart as possible without performing overlay welding on adjacent welding paths P so that heat is dispersed during welding. , Warpage of the workpiece W can be suppressed.
That is, FIG. 9 is a diagram schematically showing the welding sequence, and as shown by the numbers in the drawing, while performing the build-up welding of the flying welding path P, in the illustrated example, (1), (2), The whole meat is piled up in the order of (3).

図10は、ワークWの異なる部分毎に溶接パスPを連続して肉盛り溶接を行う場合における溶接順序を説明するワークWの断面図である。
即ち、図10に示すように、ワークWの異なる部分毎に溶接パスPを連続して肉盛り溶接を行う場合は、ワークWの各ワークW面毎に溶接方向を変更して肉盛り溶接を行うことで、溶接に伴う熱を分散することができる。
FIG. 10 is a cross-sectional view of the workpiece W for explaining the welding sequence in the case where the build-up welding is continuously performed for each different portion of the workpiece W.
That is, as shown in FIG. 10, in the case where build-up welding is continuously performed for each different part of the work W, the welding direction is changed for each work W surface of the work W to perform build-up welding. By doing, the heat accompanying welding can be dispersed.

つまり、溶接長さだけではなく、溶接方向、ワークWの初期状態(余熱や冷却)を変えても歪みの発生を抑制できる。
例えば、図10に矢印で示すように、溶接方向を、一定の連続する複数の溶接パスP毎に変化させることもできる。これによって溶接による熱を分散させることができるため、熱による歪みの発生を一層抑制することができる。
That is, not only the welding length but also the welding direction and the initial state (remaining heat and cooling) of the workpiece W can be changed to suppress the occurrence of distortion.
For example, as indicated by an arrow in FIG. 10, the welding direction can be changed for each of a plurality of continuous welding paths P. As a result, heat generated by welding can be dispersed, so that generation of distortion due to heat can be further suppressed.

以上は、溶接時に反りの発生を抑制するものであるが、次に、これとは別に、事後において、即ち溶接時に発生した反りを相殺して軽減又は相殺する方法について説明する。
図11は溶接時に発生したワークWの反りを軽減又は相殺する方法を説明するワークWの断面図であって、図11Aは肉盛り溶接を行った状態を示し、図11Bは図11Aで示す肉盛り溶接により発生した反りを相殺するために行った裏面の肉盛り溶接を行った状態を示す。
つまり、溶接熱によるワークの歪みを逆に利用して、溶接面と反対側(裏面)から歪みを与えることにより表側の歪みを相殺するもので、図示矢印Fで示すように、溶接熱によりワークWの前面(表面)が歪んだとき、その背面(裏面)に肉盛り溶接を施すことで反りを軽減又は相殺することができる。
更に、別の方法として、ワークWに冶具に依る機械的拘束を与えて、熱による反りを機械的に抑制してもよい。これは溶接時にワークWを歪みが発生しないように強制的に拘束することで行う。
The above is for suppressing the occurrence of warpage during welding. Next, separately from this, a method for canceling or reducing or canceling the warpage occurring after welding, that is, during welding will be described.
FIG. 11 is a cross-sectional view of the workpiece W for explaining a method for reducing or canceling the warpage of the workpiece W generated during welding. FIG. 11A shows a state in which overlay welding is performed, and FIG. 11B shows the meat shown in FIG. The state which performed the build-up welding of the back surface performed in order to cancel the curvature which generate | occur | produced by the build-up welding is shown.
In other words, the distortion of the work due to the welding heat is used in reverse, and the distortion on the front side is canceled by giving the distortion from the opposite side (back surface) to the welding surface. When the front surface (front surface) of W is distorted, warping can be reduced or offset by applying build-up welding to the rear surface (back surface).
Furthermore, as another method, mechanical warping by a jig may be applied to the workpiece W to mechanically suppress warping due to heat. This is performed by forcibly restraining the workpiece W so as not to generate distortion during welding.

以上説明したように、本実施形態によれば、従来廃棄されていたタイヤ成形用金型素材を利用することで、低コストでタイヤ成形用金型素材が得られるほか、従来のように鋳型や鍛造型を製造する必要がないから、そのタクトタイムを大幅に短縮することができる。
得られたタイヤ成形用金型素材は加工されて目的とするタイヤ成形用金型が製造される。
As described above, according to the present embodiment, a tire molding die material can be obtained at a low cost by using a tire molding die material that has been disposed of in the past. Since there is no need to manufacture a forging die, the tact time can be greatly reduced.
The obtained tire molding die material is processed to produce a target tire molding die.

10・・・溶接ロボット、10a・・・ロボットアーム、10b・・・溶接トーチ、10c・・・ワイヤ、12・・・溶接制御部、14・・・表示部、16・・・入力部、18・・・冶具、20・・・金型素材、B・・・ビード、P・・・溶接パス、W・・・ワーク。   DESCRIPTION OF SYMBOLS 10 ... Welding robot, 10a ... Robot arm, 10b ... Welding torch, 10c ... Wire, 12 ... Welding control part, 14 ... Display part, 16 ... Input part, 18 ... Jig, 20 ... Die material, B ... Bead, P ... Welding pass, W ... Workpiece.

Claims (11)

溶接部と溶接制御部とを有する溶接装置における金型素材の製造方法であって、
前記溶接制御部における、破棄金型と金型素材との外形データの差分を求める工程と、前記外形データ差分と肉盛り溶接のビード形状に基づき、肉盛り溶接のビード形状で前記差分を埋めるための溶接パスを前記破棄金型上に生成する工程と、
前記溶接部における、生成された溶接パスに肉盛り溶接を行い金型素材を形成する工程と、
を有することを特徴とする金型素材の製造方法。
A method for producing a mold material in a welding apparatus having a welded portion and a welding control portion,
In order to fill the difference with the bead shape of the build-up welding based on the step of obtaining the difference between the outer shape data of the discarded mold and the mold material in the welding control unit, and the bead shape of the build-up welding based on the outline data difference and the build-up weld bead shape Generating a welding pass on the scraping mold,
In the weld, a process of forming a mold material by performing build-up welding on the generated welding path;
The manufacturing method of the metal mold | die material characterized by having.
請求項1に記載された金型素材の製造方法であって、
前記溶接制御部における、前記肉盛り溶接のビード形状を所定の溶接条件に基づき決定し、前記決定したビード形状に基づき前記溶接パスを生成する工程を有することを特徴とする金型素材の製造方法。
A method for producing a mold material according to claim 1,
A method of manufacturing a mold material, comprising: determining a bead shape of the build-up welding based on a predetermined welding condition in the welding control unit, and generating the welding pass based on the determined bead shape. .
請求項1又は2に記載された金型素材の製造方法であって、
前記各金型はいずれも円筒状金型であることを特徴とする金型素材の製造方法。
A method for producing a mold material according to claim 1 or 2,
Each of the molds is a cylindrical mold, and is a method for manufacturing a mold material.
請求項3に記載された金型素材の製造方法であって、
前記溶接パスを前記破棄金型上に生成する工程では、前記溶接パスを破棄金型の周方向に生成することを特徴とする金型素材の製造方法。
A method for producing a mold material according to claim 3,
In the step of generating the welding path on the discard mold, the welding path is generated in the circumferential direction of the discard mold.
請求項4に記載された金型素材の製造方法であって、
前記溶接パスを一定の溶接長さで、かつ直前の溶接位置と連続しない位置で肉盛り溶接を繰り返し行うことを特徴とする金型素材の製造方法。
A method for producing a mold material according to claim 4,
A method of manufacturing a mold material, wherein build-up welding is repeatedly performed at a position where the welding pass has a constant welding length and is not continuous with the immediately preceding welding position.
請求項5に記載された金型素材の製造方法であって、
前記肉盛り溶接を前記溶接パスの異なる対角位置間で断続的に行うことを特徴とする金型素材の製造方法。
A method for producing a mold material according to claim 5,
The method for producing a mold material, wherein the build-up welding is intermittently performed between different diagonal positions of the welding path.
請求項4に記載された金型素材の製造方法であって、
前記肉盛り溶接を離隔したパス間で予め定めた順序にしたがって行うことを特徴とする金型素材の製造方法。
A method for producing a mold material according to claim 4,
A method of manufacturing a mold material, wherein the build-up welding is performed in a predetermined order between separated paths.
請求項4に記載された金型素材の製造方法であって、
前記肉盛り溶接を、複数の連続した溶接パスからなる溶接パスグループの隣接溶接パスグループ間において、溶接方向が異なるように行うことを特徴とする金型素材の製造方法。
A method for producing a mold material according to claim 4,
The method for producing a mold material, wherein the build-up welding is performed so that a welding direction is different between adjacent welding pass groups of a welding pass group including a plurality of continuous welding passes.
請求項4に記載された金型素材の製造方法であって、
肉盛り溶接を行った溶接面に溶接による反りが発生したとき、当該反りを相殺する肉盛り溶接を当該溶接面の背面に施すことを特徴とする金型素材の製造方法。
A method for producing a mold material according to claim 4,
A method for producing a mold material, characterized in that, when warping due to welding occurs on a weld surface on which build-up welding has been performed, build-up welding that offsets the warpage is applied to the back surface of the weld surface.
溶接部と溶接制御部とを有する溶接装置における金型素材の製造装置であって、
破棄金型と金型素材との外形データの差分を求める演算部と、前記外形データ差分と肉盛り溶接のビード形状に基づき、肉盛り溶接のビード形状で前記差分を埋めるための溶接パスを前記破棄金型上に生成する溶接パス生成部とを備えた前記溶接制御部と、
生成された溶接パスに肉盛り溶接を行い金型素材を形成する溶接手段を備えた前記溶接部と、
を有することを特徴とする金型素材の製造装置。
An apparatus for manufacturing a mold material in a welding apparatus having a welding part and a welding control part,
Based on the outer shape data difference and the build-up bead shape based on the outer shape data difference and the build-up weld bead shape, a calculation path for calculating the difference between the outer shape data of the scrap metal mold and the die material is a welding path for filling the difference The welding control unit comprising a welding path generation unit for generating on the discard mold;
The welded portion having welding means for forming a mold material by performing build-up welding on the generated welding path;
An apparatus for producing a mold material, comprising:
請求項1ないし9のいずれかに記載された金型素材の製造方法又は請求項10に記載された金型素材の製造装置であって、前記各金型は、いずれもタイヤ成形用金型であることを特徴とする金型素材の製造方法又は金型素材の製造装置。   A method for manufacturing a mold material according to any one of claims 1 to 9, or a manufacturing apparatus for a mold material according to claim 10, wherein each of the molds is a tire molding mold. A method for manufacturing a mold material or an apparatus for manufacturing a mold material, characterized in that:
JP2013029480A 2013-02-18 2013-02-18 Method and apparatus for producing mold material Pending JP2014155959A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013029480A JP2014155959A (en) 2013-02-18 2013-02-18 Method and apparatus for producing mold material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013029480A JP2014155959A (en) 2013-02-18 2013-02-18 Method and apparatus for producing mold material

Publications (1)

Publication Number Publication Date
JP2014155959A true JP2014155959A (en) 2014-08-28

Family

ID=51577212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013029480A Pending JP2014155959A (en) 2013-02-18 2013-02-18 Method and apparatus for producing mold material

Country Status (1)

Country Link
JP (1) JP2014155959A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016068121A (en) * 2014-09-30 2016-05-09 日立金属株式会社 Method of manufacturing hot forging metallic mold
JP2019136708A (en) * 2018-02-06 2019-08-22 株式会社Subaru Mold remodeling method
JP2020537614A (en) * 2017-10-17 2020-12-24 グレガリオ エッセ.エッレ.エッレ. Mold manufacturing method and mold

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016068121A (en) * 2014-09-30 2016-05-09 日立金属株式会社 Method of manufacturing hot forging metallic mold
JP2020537614A (en) * 2017-10-17 2020-12-24 グレガリオ エッセ.エッレ.エッレ. Mold manufacturing method and mold
JP7228273B2 (en) 2017-10-17 2023-02-24 グレガリオ エッセ.エッレ.エッレ. Mold manufacturing method and mold
JP2019136708A (en) * 2018-02-06 2019-08-22 株式会社Subaru Mold remodeling method
JP7009247B2 (en) 2018-02-06 2022-01-25 株式会社Subaru Mold modification method

Similar Documents

Publication Publication Date Title
CN112368099B (en) Method and apparatus for manufacturing layered structure
JP2016196012A (en) Weld molding control method and weld molding control apparatus
WO2019098006A1 (en) Method and apparatus for manufacturing layered model
US20190366473A1 (en) Metal additive manufacturing equipment utilizing semi-solid mental formation
JP2019104986A (en) Scanning strategy for perimeter and region isolation
CN104289797A (en) Rapid MIG forming system
JP2014155959A (en) Method and apparatus for producing mold material
JP7197437B2 (en) LAMINATED PRODUCT LAYER PLANNING METHOD, LAMINATED PRODUCT MANUFACTURING METHOD AND MANUFACTURING APPARATUS
WO2020129560A1 (en) Method for setting excess thickness, device for setting excess thickness, method for producing shaped object, and program
JP7203671B2 (en) LAMINATED PRODUCT MANUFACTURING METHOD AND LAMINATED MOLDED PRODUCT
WO2019176759A1 (en) Method for producing shaped article and shaped article
Shen et al. A path generation method for wire and arc additive remanufacturing of complex hot forging dies
Campocasso et al. A framework for future CAM software dedicated to additive manufacturing by multi-axis deposition
JP6765360B2 (en) Structure manufacturing method and structure
CN116194242A (en) Machine learning device, laminated modeling system, machine learning method for welding conditions, and method and program for determining welding conditions
JP2019089126A (en) Manufacturing method of molded body, manufacturing apparatus, and molded body
JP7123738B2 (en) LAMINATED PRODUCT MANUFACTURING METHOD AND LAMINATED MOLDED PRODUCT
WO2019181556A1 (en) Method for producing shaped article and shaped article
WO2019098021A1 (en) Method for producing molded article, production device, and molded article
JP7160768B2 (en) Laminate-molded article setting method, laminate-molded article manufacturing method, and manufacturing apparatus
JP7181154B2 (en) Laminate-molded article manufacturing method
CN111805057B (en) Metal lamination molding method
JP7258715B2 (en) LAMINATED PRODUCT MANUFACTURING METHOD AND LAMINATED MOLDED PRODUCT
JP6753989B1 (en) Laminate planning method of laminated model, manufacturing method and manufacturing equipment of laminated model
JP6753990B1 (en) Laminate planning method of laminated model, manufacturing method and manufacturing equipment of laminated model