JP2014154187A - Manufacturing method of glass substrate for magnetic recording medium, and glass substrate for magnetic recording medium - Google Patents

Manufacturing method of glass substrate for magnetic recording medium, and glass substrate for magnetic recording medium Download PDF

Info

Publication number
JP2014154187A
JP2014154187A JP2013023437A JP2013023437A JP2014154187A JP 2014154187 A JP2014154187 A JP 2014154187A JP 2013023437 A JP2013023437 A JP 2013023437A JP 2013023437 A JP2013023437 A JP 2013023437A JP 2014154187 A JP2014154187 A JP 2014154187A
Authority
JP
Japan
Prior art keywords
glass substrate
magnetic recording
polishing
recording medium
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2013023437A
Other languages
Japanese (ja)
Inventor
Minoru Tamada
稔 玉田
Haruhiko Otsuka
晴彦 大塚
Raita Tasaki
雷太 田先
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2013023437A priority Critical patent/JP2014154187A/en
Priority to PH12014000045A priority patent/PH12014000045A1/en
Priority to CN201410045489.4A priority patent/CN103978422A/en
Publication of JP2014154187A publication Critical patent/JP2014154187A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/04Lapping machines or devices; Accessories designed for working plane surfaces
    • B24B37/07Lapping machines or devices; Accessories designed for working plane surfaces characterised by the movement of the work or lapping tool
    • B24B37/10Lapping machines or devices; Accessories designed for working plane surfaces characterised by the movement of the work or lapping tool for single side lapping
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • G11B5/8404Processes or apparatus specially adapted for manufacturing record carriers manufacturing base layers

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Magnetic Record Carriers (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method of a glass substrate for a magnetic recording medium capable of making surface waviness in short wavelength and surface waviness in medium wavelength sufficiently small in a principal face of the glass substrate for the magnetic recording medium.SOLUTION: A manufacturing method of a glass substrate for a magnetic recording medium comprises a polishing process for polishing a principal face of the glass substrate by using a soft abrasive pad having a polishing surface where surface roughness Ra at measurement wavelength 2.5 to 80 μm is 0.40 to 1.40 μm, and the surface roughness Ra at measurement wavelength 2.5 to 800 μm is 0.40 to 2.00 μm.

Description

本発明は磁気記録媒体用ガラス基板の製造方法及び磁気記録媒体用ガラス基板に関する。   The present invention relates to a method for producing a glass substrate for a magnetic recording medium and a glass substrate for a magnetic recording medium.

近年、磁気ディスク(以下、磁気記録媒体とも呼ぶ。)の高記録密度化の要求に伴い、磁気記録媒体上のビットサイズが微小化している。そのため、より小さなビットサイズに対応する、微弱な磁気信号を正確に記録及び/又は再生できることが求められている。   In recent years, the bit size on a magnetic recording medium has been miniaturized with the demand for higher recording density of a magnetic disk (hereinafter also referred to as a magnetic recording medium). Therefore, it is required that a weak magnetic signal corresponding to a smaller bit size can be accurately recorded and / or reproduced.

微弱な磁気信号を正確に記録及び/又は再生するためには、磁気記録媒体と磁気ヘッドとの距離(磁気ヘッドの浮上量)をできるだけ小さくする必要がある。磁気ヘッドは、磁気記録媒体の主表面の表面うねりにある程度追従するが、磁気記録媒体の主表面の表面うねりが大き過ぎる場合、磁気ヘッドを安定的に浮上させることが困難となる。磁気ヘッドの浮上量が小さい状態で、安定的に記録の読み書きを行うためには、磁気記録媒体の基板である磁気記録媒体用ガラス基板の主表面の表面うねりを低減する必要がある。   In order to accurately record and / or reproduce a weak magnetic signal, it is necessary to make the distance between the magnetic recording medium and the magnetic head (the flying height of the magnetic head) as small as possible. The magnetic head follows the surface waviness of the main surface of the magnetic recording medium to some extent. However, if the surface waviness of the main surface of the magnetic recording medium is too large, it is difficult to stably float the magnetic head. In order to stably read and write with the flying height of the magnetic head being small, it is necessary to reduce the surface waviness of the main surface of the glass substrate for magnetic recording medium, which is the substrate of the magnetic recording medium.

表面うねりを低減するために、磁気記録媒用ガラス基板の主表面は、表面粗さが小さい軟質研磨パッドを用いて仕上げ研磨されている。具体的には、特許文献1においては、先ず、軟質研磨パッドを研磨定盤に装着した後に、その表面を、ダイヤモンド粒子等を砥粒として有するドレッサを用いてドレス処理する。そして、ドレス処理された軟質研磨パッドを用いて磁気記録媒体用ガラス基板を研磨して、表面うねりが小さい磁気記録媒体用ガラス基板を製造する。軟質研磨パッドは、研磨定盤の表面の凹凸形状に由来する軟質研磨パッドの表面のうねりなどを除去して研磨面をより平滑にするため、研磨定盤に装着した後にドレス処理が施されている。   In order to reduce surface waviness, the main surface of the glass substrate for a magnetic recording medium is finish-polished using a soft polishing pad having a small surface roughness. Specifically, in Patent Document 1, first, a soft polishing pad is mounted on a polishing surface plate, and then the surface is dressed using a dresser having diamond particles or the like as abrasive grains. And the glass substrate for magnetic recording media is grind | polished using the soft polishing pad by which the dressing process was carried out, and the glass substrate for magnetic recording media with a small surface waviness is manufactured. The soft polishing pad is dressed after being mounted on the polishing platen in order to remove the waviness on the surface of the soft polishing pad resulting from the uneven shape of the surface of the polishing platen and make the polishing surface smoother. Yes.

特開2008−112572号公報JP 2008-112572 A

しかしながら、特許文献1に記載された方法でドレス処理された軟質研磨パッドを使用した場合においても、近年の高記録密度化の要求を満たす磁気記録媒体に対応する磁気記録媒体用ガラス基板を提供することが困難となっている。   However, even when a soft polishing pad dressed by the method described in Patent Document 1 is used, a glass substrate for a magnetic recording medium corresponding to a magnetic recording medium that satisfies the recent demand for higher recording density is provided. It has become difficult.

磁気記録媒体の高記録密度化に伴い、磁気ヘッドのスライダのサイズは小さく、磁気ヘッドの浮上量は小さくなる。磁気ヘッドは、そのスライダの長さより長い波長を有する磁気記録媒体の主表面のうねりには追従しやすいが、スライダの長さと同程度以下の波長を有するうねりに追従することは難しい。そのため、磁気ヘッドのスライダのサイズが小さくなった場合、より短い波長域の表面うねりを小さくして、磁気記録媒体上で磁気ヘッドが安定に浮上できるようにする必要がある。そして、磁気記録媒体の基板である磁気記録媒体用ガラス基板の主表面にも、より短い波長域の表面うねりを小さくすることが求められるようになってきている。   As the recording density of the magnetic recording medium increases, the slider size of the magnetic head becomes smaller and the flying height of the magnetic head becomes smaller. The magnetic head easily follows the undulation of the main surface of the magnetic recording medium having a wavelength longer than the length of the slider, but it is difficult to follow the undulation having a wavelength less than or equal to the length of the slider. Therefore, when the size of the slider of the magnetic head is reduced, it is necessary to reduce the surface waviness in a shorter wavelength region so that the magnetic head can stably float on the magnetic recording medium. Further, the main surface of a glass substrate for a magnetic recording medium, which is a substrate for a magnetic recording medium, has been required to reduce surface waviness in a shorter wavelength region.

本願発明は、磁気記録媒体用ガラス基板の主表面において、短波長の表面うねり及び中波長の表面うねりを十分に小さくできる磁気記録媒体用ガラス基板の製造方法を提供することを目的とする。   An object of the present invention is to provide a method for producing a glass substrate for a magnetic recording medium capable of sufficiently reducing the surface waviness of a short wavelength and the surface waviness of a medium wavelength on the main surface of the glass substrate for a magnetic recording medium.

本願発明は、測定波長2.5〜80μmにおける表面粗さRaが0.40〜1.40μmであり、かつ、測定波長2.5〜800μmにおける表面粗さRaが0.40〜2.00μmである、研磨面を有する軟質研磨パッドを用いてガラス基板の主表面を研磨する研磨工程を含む、
磁気記録媒体用ガラス基板の製造方法を提供する。
In the present invention, the surface roughness Ra at a measurement wavelength of 2.5 to 80 μm is 0.40 to 1.40 μm, and the surface roughness Ra at a measurement wavelength of 2.5 to 800 μm is 0.40 to 2.00 μm. A polishing step of polishing a main surface of a glass substrate using a soft polishing pad having a polishing surface;
A method for producing a glass substrate for a magnetic recording medium is provided.

本発明によれば、磁気記録媒体用ガラス基板の主表面において、短波長の表面うねり及び中波長の表面うねりを十分に小さくできる磁気記録媒体用ガラス基板の製造方法を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of the glass substrate for magnetic recording media which can fully make short surface waviness of a short wavelength and surface waviness of medium wavelength in the main surface of the glass substrate for magnetic recording media can be provided.

本実施形態に係るドレッサの一例の概略構成図である。It is a schematic structure figure of an example of a dresser concerning this embodiment. 両面研磨装置の一例の模式的な縦断面図である。It is a typical longitudinal cross-sectional view of an example of a double-side polish apparatus.

以下、本発明に係る実施形態を、図面を参照しながら説明する。   Hereinafter, embodiments according to the present invention will be described with reference to the drawings.

[磁気記録媒体用ガラス基板の製造方法の概略]
本実施形態の磁気記録媒体用ガラス基板の製造方法の概略について説明する。
[Outline of manufacturing method of glass substrate for magnetic recording medium]
The outline of the manufacturing method of the glass substrate for magnetic recording media of this embodiment is demonstrated.

先ず、本発明において、磁気記録媒体用ガラス基板は、アモルファスガラスでも良く、結晶化ガラスでも良く、ガラス基板の表層に強化層を有する強化ガラス(例えば、化学強化ガラス)でも良い。一例を挙げると、磁気記録媒体用ガラス基板に高い機械的強度が求められる場合、ガラス基板の表層に強化層を形成する強化工程(例えば、化学強化工程)を実施する。強化工程は、最初の研磨工程前、最後の研磨工程後、又は各研磨工程間のいずれで実施しても良い。   First, in the present invention, the glass substrate for a magnetic recording medium may be amorphous glass, crystallized glass, or tempered glass (for example, chemically tempered glass) having a tempered layer on the surface layer of the glass substrate. As an example, when high mechanical strength is required for a glass substrate for magnetic recording media, a strengthening step (for example, a chemical strengthening step) for forming a reinforcing layer on the surface layer of the glass substrate is performed. The strengthening step may be performed either before the first polishing step, after the last polishing step, or between each polishing step.

本発明の磁気記録媒体用ガラス基板のガラス素基板は、フロート法、フュージョン法、プレス成形法、ダウンドロー法又はリドロー法等の方法により成形されるが、本発明はこの点で限定されない。   The glass substrate of the glass substrate for a magnetic recording medium of the present invention is formed by a method such as a float method, a fusion method, a press molding method, a down draw method, or a redraw method, but the present invention is not limited in this respect.

磁気記録媒体用ガラス基板は、上述の方法で成形されたガラス素基板に、
(工程1)ガラス素基板を、中央部に円形孔を有する円盤形状に加工した後、内周側面と外周側面を面取り加工する形状付与工程;
(工程2)ガラス基板の端面(内周端面及び外周端面)を研磨する端面研磨工程;
(工程3)ガラス基板の上下両主表面を研磨する主表面研磨工程;
(工程4)ガラス基板を精密洗浄して乾燥する洗浄工程;
を含む工程を施すことによって製造される。
The glass substrate for magnetic recording medium is a glass substrate formed by the above-described method.
(Step 1) A shape imparting step of chamfering the inner peripheral side surface and the outer peripheral side surface after processing the glass substrate into a disk shape having a circular hole in the center portion;
(Step 2) An end surface polishing step for polishing the end surfaces (the inner peripheral end surface and the outer peripheral end surface) of the glass substrate;
(Step 3) Main surface polishing step for polishing the upper and lower main surfaces of the glass substrate;
(Step 4) A cleaning step of precisely cleaning and drying the glass substrate;
It is manufactured by performing the process including.

そして、上述の工程を含む製造方法によって得られた磁気記録媒体用ガラス基板は、磁性層などの薄膜を形成する工程を経て、磁気記録媒体とされる。   And the glass substrate for magnetic recording media obtained by the manufacturing method including the above-described steps is used as a magnetic recording medium through a step of forming a thin film such as a magnetic layer.

主表面研磨工程の前において、主表面のラップ(例えば、遊離砥粒ラップ、固定砥粒ラップなど)を実施しても良く、また、各工程間にガラス基板の洗浄(工程間洗浄)やガラス基板表面のエッチング(工程間エッチング)を実施しても良い。なお、ここで言う主表面のラップは、広義の主表面の研磨である。また、研磨工程は、1次研磨のみでも良く、1次研磨と2次研磨を行っても良く、2次研磨の後に3次研磨を行っても良い。   Prior to the main surface polishing step, wrapping of the main surface (for example, loose abrasive wrap, fixed abrasive wrap, etc.) may be performed, and glass substrate cleaning (inter-step cleaning) or glass between each step Etching of the substrate surface (inter-process etching) may be performed. The main surface lapping mentioned here is polishing of the main surface in a broad sense. Further, the polishing step may be only primary polishing, primary polishing and secondary polishing may be performed, or tertiary polishing may be performed after secondary polishing.

次に、各々の工程について、説明する。   Next, each step will be described.

(工程1)形状付与工程
形状付与工程では、ガラス素基板を、中央部に円形孔を有する円盤形状に加工した後、内周側面と外周側面を面取り加工する。形状付与工程における、内周及び外周側面部の面取り加工は、一般にダイヤモンド砥粒を固定した砥石を用いて行う。
(Step 1) Shape imparting step In the shape imparting step, the glass base substrate is processed into a disk shape having a circular hole in the center, and then the inner peripheral side surface and the outer peripheral side surface are chamfered. The chamfering processing of the inner and outer peripheral side surfaces in the shape imparting step is generally performed using a grindstone to which diamond abrasive grains are fixed.

(工程2)端面研磨工程
端面研磨工程では、ガラス基板の内周端面及び外周端面を端面研磨する。
(Step 2) End surface polishing step In the end surface polishing step, the inner peripheral end surface and the outer peripheral end surface of the glass substrate are end polished.

外周端面及び内周端面の研磨は、どちらを先に実施しても良い。   Either the outer peripheral end face or the inner peripheral end face may be polished first.

(工程3)主表面研磨工程
主表面研磨工程では、両面研磨装置を用いて、ガラス基板の主表面に研磨液を供給しながらガラス基板の上下主表面を研磨する。なお、両面研磨装置としては、特に限定されないが、例えば16B型両面研磨装置、20B型両面研磨装置、22B型両面研磨装置等を使用することができる。
(Step 3) Main surface polishing step In the main surface polishing step, the upper and lower main surfaces of the glass substrate are polished using a double-side polishing apparatus while supplying a polishing liquid to the main surface of the glass substrate. The double-side polishing apparatus is not particularly limited, and for example, a 16B type double-side polishing apparatus, a 20B type double-side polishing apparatus, a 22B type double-side polishing apparatus, or the like can be used.

研磨工程は、1次研磨(仕上げ研磨)のみの1段研磨でも良いし、1次研磨と2次研磨(仕上げ研磨)を行う2段研磨でも良いし、1次研磨、2次研磨を経て3次研磨(仕上げ研磨)を行う3段研磨でも良い。通常、各々の研磨工程の間には、洗浄工程(工程間洗浄)を設ける。   The polishing step may be one-step polishing with only primary polishing (finish polishing), two-step polishing with primary polishing and secondary polishing (finish polishing), or three after primary polishing and secondary polishing. Three-stage polishing in which next polishing (finish polishing) is performed may be used. Usually, a cleaning process (inter-process cleaning) is provided between each polishing process.

本実施形態の磁気記録媒体用ガラス基板の製造方法は、この仕上げ研磨工程において、後述する特定の方法を実施することによって、主表面の表面うねりが十分に小さい磁気記録媒体用ガラス基板を製造するものである。仕上げ研磨の詳細については、後述する。   The manufacturing method of the glass substrate for magnetic recording media of this embodiment manufactures the glass substrate for magnetic recording media whose surface waviness of a main surface is small enough by implementing the specific method mentioned later in this final polishing process. Is. Details of the finish polishing will be described later.

(工程4)洗浄工程
洗浄工程では、仕上げ研磨後のガラス基板を、例えば、洗剤を用いたスクラブ洗浄、洗剤溶液へ浸漬した状態での超音波洗浄、純水へ浸漬した状態での超音波洗浄等を順次行い、イソプロピルアルコール等の蒸気により乾燥する。
(Process 4) Cleaning process In the cleaning process, for example, scrub cleaning using a detergent, ultrasonic cleaning in a state where the glass substrate is immersed in a detergent solution, and ultrasonic cleaning in a state where the glass substrate is immersed in pure water. Etc. are sequentially performed and dried with steam such as isopropyl alcohol.

[本実施形態の磁気記録媒体用ガラス基板の製造方法]
本実施形態においては、上述の(工程3)における仕上げ研磨の研磨具として、後述する研磨面特性を有する軟質研磨パッドと、コロイダルシリカを含有する研磨液を用いて、両面研磨装置により上下主表面を研磨する。
[Method of Manufacturing Glass Substrate for Magnetic Recording Medium of this Embodiment]
In the present embodiment, as a polishing tool for final polishing in the above-described (Step 3), a soft polishing pad having polishing surface characteristics to be described later and a polishing liquid containing colloidal silica are used, and the upper and lower main surfaces are processed by a double-side polishing apparatus. To polish.

軟質研磨パッドとは、一般的に、ベース層と、プラスチックフォーム等で作られた表面層(一般的にNAP層と呼ばれる)と、を有する研磨パッドのことを指す。本実施形態では、ドレス処理によって、軟質研磨パッドの表面層の表皮を研削除去する。これにより、プラスチックフォームに含まれる気泡が開口され、ガラス基板を研磨する研磨面が形成される。このように、表面層の表皮を研削除去してプラスチックフォームの気泡を開口した状態の軟質研磨パッドは、スエードタイプの研磨パッドともいわれる。軟質研磨パッドは、ガラス基板の仕上げ研磨によく使用される。   The soft polishing pad generally refers to a polishing pad having a base layer and a surface layer (generally called a NAP layer) made of plastic foam or the like. In the present embodiment, the skin of the surface layer of the soft polishing pad is ground and removed by dressing. Thereby, the bubble contained in a plastic foam is opened, and the grinding | polishing surface which grind | polishes a glass substrate is formed. As described above, the soft polishing pad in which the skin of the surface layer is removed by grinding to open the bubbles of the plastic foam is also referred to as a suede type polishing pad. Soft polishing pads are often used for finish polishing of glass substrates.

コロイダルシリカを含有する研磨液としては、一次粒子の平均粒子直径が1〜50nm、好ましくは5〜30nm、更に好ましくは10〜30nmのコロイダルシリカを主成分とするものを使用することが好ましい。   As the polishing liquid containing colloidal silica, it is preferable to use a polishing liquid mainly composed of colloidal silica having an average primary particle diameter of 1 to 50 nm, preferably 5 to 30 nm, more preferably 10 to 30 nm.

軟質研磨パッドは、ガラス基板を研磨する前に、予めドレッサを用いてドレス処理を施し、研磨パッドの研磨面の形状及び表面粗さを調整する。   Before polishing the glass substrate, the soft polishing pad is subjected to dressing using a dresser in advance to adjust the shape and surface roughness of the polishing surface of the polishing pad.

例えばウレタン製の軟質研磨パッドは、内部に発泡層を有し、その中に研磨剤粒子を一時的に保持する構成を有する。そのため、軟質研磨パッドの研磨面に、この発泡層を開口させるために、ドレッサを用いてドレス処理し、研磨パッドの表面層を研削除去し、研磨面を形成させる必要がある。ドレス処理としては、後述する研磨装置の定盤に研磨パッドを装着した後、後述するドレッサを用いて研磨パッドの表面層を研削除去する。   For example, a soft polishing pad made of urethane has a structure in which a foam layer is formed inside and abrasive particles are temporarily held therein. Therefore, in order to open the foamed layer on the polishing surface of the soft polishing pad, it is necessary to perform dressing using a dresser and to remove the surface layer of the polishing pad by grinding to form a polishing surface. As the dressing process, a polishing pad is mounted on a surface plate of a polishing apparatus described later, and then a surface layer of the polishing pad is ground and removed using a dresser described later.

図1に、本実施形態に係るドレッサの一例の概略構成図を示す。   FIG. 1 shows a schematic configuration diagram of an example of a dresser according to the present embodiment.

図1に示すように、ドレッサ10は、ステンレス又はアルミニウム合金等の金属を円盤形状に加工した台座12と、台座12の上平面14に形成されたダイヤモンド砥粒等の砥粒層16と、を有する。砥粒層16は、例えば電着法又はロウ付け法などの方法によって、所定のパターンに形成される。図1では、砥粒層16の積層パターンの一例として、台座12の周方向に、複数の扇形状の砥粒層16が形成された構成を示したが、本発明はこの点において限定されない。   As shown in FIG. 1, the dresser 10 includes a pedestal 12 obtained by processing a metal such as stainless steel or an aluminum alloy into a disk shape, and an abrasive layer 16 such as diamond abrasive grains formed on the upper plane 14 of the pedestal 12. Have. The abrasive layer 16 is formed in a predetermined pattern by a method such as an electrodeposition method or a brazing method. Although FIG. 1 shows a configuration in which a plurality of fan-shaped abrasive layers 16 are formed in the circumferential direction of the pedestal 12 as an example of a laminated pattern of the abrasive layers 16, the present invention is not limited in this respect.

なお、砥粒の形成方法の一例であるロウ付け法とは、ダイヤモンド砥粒等の砥粒を保持(固定)する砥粒層を、ロウ付けにより形成する方法である。より具体的には、高温の溶融状態のロウを、ダイヤモンド砥粒等の砥粒の表面に付着させた後に固化させることで、砥粒を固定する方法である。   The brazing method, which is an example of a method for forming abrasive grains, is a method for forming an abrasive grain layer that holds (fixes) abrasive grains such as diamond abrasive grains by brazing. More specifically, it is a method of fixing abrasive grains by solidifying a wax in a molten state at a high temperature after adhering it to the surface of abrasive grains such as diamond abrasive grains.

ロウ付け法で砥粒層を形成したドレッサの砥粒層の表面は、後述する電着法で砥粒層を形成したものに比べ、砥粒の突き出し量が多く、かつ、砥粒の上部の高さが均一となる。そのため、ロウ付法で砥粒層を形成したドレッサを用いて研磨パッドの表面をドレス処理すると、より平滑な研磨面を得ることができる。   The surface of the abrasive grain layer of the dresser formed with the brazing method has a larger amount of protruding abrasive grains than the one formed with the electrodeposition method described later, and the upper part of the abrasive grain. The height is uniform. Therefore, a smoother polished surface can be obtained by dressing the surface of the polishing pad using a dresser having an abrasive layer formed by brazing.

一方、電着法で砥粒層を形成する場合、砥粒を固定(保持)する砥粒層の金属を、メッキ法などによって台座の上平面に形成して、砥粒を砥粒層に埋め込むため、砥粒の直径の半分以上が金属の砥粒層中に埋まることとなる。そのため、電着法で砥粒層を形成したドレッサの砥粒層の表面は、ロウ付け法のドレッサの表面と比して、砥粒の突き出し量が小さくなる。また、ドレス処理中に砥粒が砥粒層から外れることを防止するため、粒径が異なる砥粒を混合し、粒径が大きい砥粒の間に粒子径が小さい砥粒が入る構成となる。そのため、電着法で砥粒層を形成したドレッサの表面は、ロウ付け法で形成したドレッサの表面と比して、不均一となる。そのため、電着法で砥粒層を形成したドレッサを用いて研磨パッドをドレス処理すると、研磨パッドの研磨面の表面粗さは大きくなる傾向がある。しかしながら、電着法により砥粒層を形成したドレッサでのドレス処理は、ロウ付け法で砥粒層を形成したドレッサでのドレス処理と比して、ドレス処理速度が速く、かつ、研磨パッドの研削の際の抵抗が小さくなる。   On the other hand, when an abrasive layer is formed by electrodeposition, the metal of the abrasive layer that fixes (holds) the abrasive is formed on the upper surface of the pedestal by plating or the like, and the abrasive is embedded in the abrasive layer. Therefore, more than half of the diameter of the abrasive grains is buried in the metal abrasive grain layer. Therefore, the surface of the abrasive layer of the dresser on which the abrasive layer is formed by the electrodeposition method has a smaller protrusion amount of the abrasive than the surface of the dresser by the brazing method. Further, in order to prevent the abrasive grains from being detached from the abrasive layer during the dressing process, abrasive grains having different particle diameters are mixed, and the abrasive grains having a small particle diameter enter between the abrasive grains having a large particle diameter. . Therefore, the surface of the dresser on which the abrasive layer is formed by the electrodeposition method becomes non-uniform compared to the surface of the dresser formed by the brazing method. Therefore, when the polishing pad is dressed using a dresser having an abrasive layer formed by electrodeposition, the surface roughness of the polishing surface of the polishing pad tends to increase. However, dressing with a dresser having an abrasive layer formed by electrodeposition is faster than the dressing with a dresser having an abrasive layer formed by brazing, and the dressing speed of the polishing pad is high. The resistance during grinding is reduced.

ドレス処理は、前述の主表面研磨工程における、両面研磨装置を用いて実施することができる。図2に、主表面研磨工程やドレス処理工程で使用できる、両面研磨装置の一例の模式的な縦断面図を示す。図2に示されるように、両面研磨装置100は、複数のガラス基板の両主表面を同時に研磨するように構成されている。両面研磨装置100は、基台200と、下定盤300と、上定盤400と、昇降機構500と、回転伝達機構600とを有する。基台200の上部には、下定盤300が回転可能に支持されており、基台200の内部には、後述する駆動部としての上定盤400等を回転駆動する駆動モーターが取り付けられている。   The dressing process can be performed using a double-side polishing apparatus in the main surface polishing step described above. FIG. 2 shows a schematic longitudinal sectional view of an example of a double-side polishing apparatus that can be used in the main surface polishing process and the dressing process. As shown in FIG. 2, the double-side polishing apparatus 100 is configured to simultaneously polish both main surfaces of a plurality of glass substrates. The double-side polishing apparatus 100 includes a base 200, a lower surface plate 300, an upper surface plate 400, an elevating mechanism 500, and a rotation transmission mechanism 600. A lower surface plate 300 is rotatably supported on the upper portion of the base 200, and a drive motor that rotationally drives an upper surface plate 400 as a drive unit to be described later is attached to the inside of the base 200. .

下定盤300は、図示しないキャリヤに保持された複数のガラス基板の下面を研磨する下側研磨パッドを有する。また、上定盤400は、下定盤300の上方に対向配置され複数のガラス基板の上面を研磨する上側研磨パッドを有する。   The lower surface plate 300 has a lower polishing pad for polishing the lower surfaces of a plurality of glass substrates held by a carrier (not shown). Further, the upper surface plate 400 includes an upper polishing pad that is disposed so as to face the upper surface plate 300 so as to polish the upper surfaces of a plurality of glass substrates.

昇降機構500は、基台200の上方に起立する門型のフレーム700により支持されており、キャリヤ交換時に上定盤400を昇降させる昇降用シリンダ装置520を有する。昇降用シリンダ装置520は、フレーム700の梁720の中央に垂下方向に伸縮動作するように取り付けられている。昇降用シリンダ装置520のピストンロッド540は、下方に延在している。   The elevating mechanism 500 is supported by a gate-type frame 700 that stands above the base 200, and includes an elevating cylinder device 520 that elevates and lowers the upper surface plate 400 when replacing the carrier. The lifting cylinder device 520 is attached to the center of the beam 720 of the frame 700 so as to expand and contract in the hanging direction. The piston rod 540 of the lifting cylinder device 520 extends downward.

ピストンロッド540の下側先端部には、吊下部材800の中央部が結合されている。吊下部材800は、上定盤400を吊下するように取り付けられている。吊下部材800は、上下方向に延在する複数の支柱800aと、支柱800aの下端部に固定された円環状取付部材800bと、支柱800aの上端部に固定された板状取付部材800cとを備える。円環状取付部材800bの下面に、上定盤400の上面が固定されている。したがって、昇降用シリンダ装置520のピストンロッド540が上方向または下方向に駆動されると、ピストンロッド540と吊下部材800を介して連結された上定盤400も同時に駆動されて上昇または降下する。   A central portion of the suspension member 800 is coupled to the lower end portion of the piston rod 540. The suspension member 800 is attached so as to suspend the upper surface plate 400. The suspension member 800 includes a plurality of support posts 800a extending in the vertical direction, an annular attachment member 800b fixed to the lower end portion of the support post 800a, and a plate-like attachment member 800c fixed to the upper end portion of the support post 800a. Prepare. The upper surface of the upper surface plate 400 is fixed to the lower surface of the annular mounting member 800b. Therefore, when the piston rod 540 of the lifting cylinder device 520 is driven upward or downward, the upper surface plate 400 connected to the piston rod 540 via the suspension member 800 is also driven simultaneously to rise or lower. .

回転伝達機構600は、上定盤400の駆動モーターのモーター駆動軸610の上端に円筒形状に形成された結合部620を有する。また、回転伝達機構600は、上定盤400の中心孔を貫通する結合部620の上側側面に形成されたキー溝(凹部)620aに嵌合可能なキー(爪)810を有する。上定盤400の内周側に突出するキー810は、支軸820を揺動中心として、支軸820によって円環状取付部材800bに揺動可能に取り付けられている。   The rotation transmission mechanism 600 has a coupling portion 620 formed in a cylindrical shape at the upper end of the motor drive shaft 610 of the drive motor of the upper surface plate 400. The rotation transmission mechanism 600 includes a key (claw) 810 that can be fitted in a key groove (recess) 620 a formed on the upper side surface of the coupling portion 620 that passes through the center hole of the upper surface plate 400. The key 810 protruding to the inner peripheral side of the upper surface plate 400 is swingably attached to the annular mounting member 800b by the support shaft 820 with the support shaft 820 as a swing center.

両面研磨装置100は、上定盤400、昇降機構500、回転伝達機構600を制御する制御部900を有する。制御部900は、CPU等の演算処理装置を備え、演算処理装置により処理される所定のプログラムに従って、所定の処理を実行できる。   The double-side polishing apparatus 100 includes a control unit 900 that controls the upper surface plate 400, the lifting mechanism 500, and the rotation transmission mechanism 600. The control unit 900 includes an arithmetic processing device such as a CPU, and can execute predetermined processing according to a predetermined program processed by the arithmetic processing device.

図2で示した両面研磨装置を用いたドレス処理の方法としては、先ず、両面研磨装置の定盤表面に軟質研磨パッドを装着する。そして、予め作成されたドレッサを用いて、水を流しながら所定の圧力、所定の時間でドレス処理を施す。これにより、軟質研磨パッドの表面層を細部に研削除去し、微細な開口部を研磨面に出現させるとともに、軟質研磨パッドの研磨面を所定の表面粗さに調整する。なお、ドレス処理は、1種類のドレッサを用いて1回のドレス処理を施すことで実施されても良いし、2種類以上のドレッサを用いて2回以上のドレス処理を施すことで実施されても良い。   As a dressing method using the double-side polishing apparatus shown in FIG. 2, first, a soft polishing pad is mounted on the surface of the surface plate of the double-side polishing apparatus. Then, using a dresser prepared in advance, dressing is performed at a predetermined pressure and a predetermined time while flowing water. As a result, the surface layer of the soft polishing pad is ground and removed in detail, and fine openings appear on the polishing surface, and the polishing surface of the soft polishing pad is adjusted to a predetermined surface roughness. The dressing process may be performed by performing one dressing process using one type of dresser, or by performing two or more dressing processes using two or more types of dressers. Also good.

本実施形態においては、ドレス処理後の軟質研磨パッドの研磨面が、
(a)測定波長2.5〜80μmにおける表面粗さRaが0.40〜1.40μm、より好ましくは0.40〜1.34μm、更に好ましくは0.40〜1.24μmであり、かつ、(b)測定波長2.5〜800μmにおける表面粗さRaが0.40〜2.00μm、より好ましくは0.40〜1.80μm、更に好ましくは0.40〜1.75μmである、軟質研磨パッドを用いてガラス基板の主表面を仕上げ研磨する。
In this embodiment, the polishing surface of the soft polishing pad after the dressing process is
(A) The surface roughness Ra at a measurement wavelength of 2.5 to 80 μm is 0.40 to 1.40 μm, more preferably 0.40 to 1.34 μm, still more preferably 0.40 to 1.24 μm, and (B) Soft polishing in which the surface roughness Ra at a measurement wavelength of 2.5 to 800 μm is 0.40 to 2.00 μm, more preferably 0.40 to 1.80 μm, still more preferably 0.40 to 1.75 μm. The main surface of the glass substrate is finish-polished using a pad.

上述の軟質研磨パッドを用いて仕上げ研磨することにより、測定波長40〜200μmにおける表面うねりWa(短波長の表面うねり)が、0.06nm以下であり、かつ、測定波長200〜1250μmにおける表面うねりWa(中波長の表面うねり)が、0.08nm以下である磁気記録媒体用ガラス基板を製造することができる。即ち、本実施形態の磁気記録媒体用ガラス基板の製造方法により、短波長領域から中波長領域に亘る表面うねりが十分に小さい磁気記録媒体用ガラス基板を製造できる。   By surface polishing using the above-described soft polishing pad, the surface waviness Wa (short-wave surface waviness) at a measurement wavelength of 40 to 200 μm is 0.06 nm or less, and the surface waviness Wa at a measurement wavelength of 200 to 1250 μm. A glass substrate for a magnetic recording medium having (medium wavelength surface waviness) of 0.08 nm or less can be produced. That is, by the method for manufacturing a glass substrate for magnetic recording medium of the present embodiment, a glass substrate for magnetic recording medium having a sufficiently small surface undulation from the short wavelength region to the medium wavelength region can be manufactured.

近年、磁気記録媒体の高記録密度化に伴って、磁気ヘッドのスライダの大きさは小さく、スライダの浮上量は小さくなっている。磁気ヘッドのスライダの長さと同程度の波長域における、磁気記録媒体の主表面のうねりが大きい場合、スライダは、そのうねりに対して追従が難しくなり、スライダの浮上姿勢が不安定となり、磁気記録媒体の主表面で安定的にスライダを浮上させることが困難となる。   In recent years, with the increase in recording density of magnetic recording media, the size of the slider of the magnetic head has been reduced and the flying height of the slider has been reduced. When the waviness of the main surface of the magnetic recording medium is large in the wavelength range similar to the length of the slider of the magnetic head, the slider becomes difficult to follow the waviness, the flying posture of the slider becomes unstable, and magnetic recording It becomes difficult to float the slider stably on the main surface of the medium.

また、磁気記録媒体の主表面のうねりは、磁気記録媒体の基板である磁気記録媒体用ガラス基板の主表面のうねりに大きな影響を受ける。そのため、スライダの浮上姿勢を安定化させるためには、スライダの長さと同程度の波長域における、磁気記録媒体用ガラス基板の主表面のうねりを十分小さくすることが重要である。   Further, the undulation of the main surface of the magnetic recording medium is greatly influenced by the undulation of the main surface of the glass substrate for magnetic recording medium, which is the substrate of the magnetic recording medium. Therefore, in order to stabilize the flying posture of the slider, it is important to sufficiently reduce the undulation of the main surface of the glass substrate for a magnetic recording medium in a wavelength region similar to the length of the slider.

なお、表面粗さが粗いドレッサを用いてドレス処理された軟質研磨パッドを用いてガラス基板の主表面を研磨した場合、主表面の長波長領域の表面うねりを小さくできるが、短波長領域の表面うねりを低減することは困難である。一方、表面粗さが細かいドレッサを用いてドレス処理された軟質研磨パッドを用いてガラス基板の主表面を研磨した場合、主表面の短波長領域の表面うねりを小さくできるが、長波長領域の表面うねりを低減することは困難である。   When the main surface of the glass substrate is polished using a soft polishing pad dressed with a dresser having a rough surface roughness, the surface waviness of the long wavelength region of the main surface can be reduced, but the surface of the short wavelength region can be reduced. It is difficult to reduce the swell. On the other hand, when the main surface of a glass substrate is polished with a soft polishing pad dressed with a dresser with a fine surface roughness, the surface waviness of the short wavelength region of the main surface can be reduced, but the surface of the long wavelength region It is difficult to reduce the swell.

本実施形態に係る磁気記録媒体用ガラス基板の製造方法においては、近年の磁気記録媒体の高記録密度化に伴い、サイズが小さくなっていく磁気ヘッドのスライダに対応するため、上述の特性を満たす研磨面を有する軟質研磨パッドを用いて仕上げ研磨することにより、磁気記録媒体用ガラス基板の主表面の短波長領域の表面うねり(測定波長40〜200μmにおける表面うねりWa)、および、中波長領域の表面うねり(測定波長200〜1250μmにおける表面うねりWa)を十分に低減することができる。   In the method for manufacturing a glass substrate for a magnetic recording medium according to the present embodiment, the above-mentioned characteristics are satisfied in order to cope with a slider of a magnetic head whose size is decreasing with the recent increase in recording density of the magnetic recording medium. By performing final polishing using a soft polishing pad having a polishing surface, surface waviness in the short wavelength region of the main surface of the glass substrate for magnetic recording media (surface waviness Wa at a measurement wavelength of 40 to 200 μm), and in the medium wavelength region Surface waviness (surface waviness Wa at a measurement wavelength of 200 to 1250 μm) can be sufficiently reduced.

また、近年、磁気記録装置の読み出し速度を上げるため、ハードディスクドライブ(HDD)中で磁気記録媒体の回転速度を高速化する傾向にあるが、磁気記録媒体をHDD中で高速回転させたときに生じる、フラッタリングと呼ばれる磁気ディスクの振動により、磁気ヘッドの浮上姿勢が不安定となる問題が指摘されている。   In recent years, in order to increase the reading speed of the magnetic recording apparatus, there is a tendency to increase the rotation speed of the magnetic recording medium in the hard disk drive (HDD), but this occurs when the magnetic recording medium is rotated at high speed in the HDD. A problem has been pointed out that the floating posture of the magnetic head becomes unstable due to the vibration of the magnetic disk called fluttering.

フラッタリングを発生させる原因は種々あるが、数mmオーダの表面のうねりも原因の一つと考えられる。このような長波長領域の表面うねりを小さくすることにより、高速回転時のフラッタリングを抑制し、磁気ヘッドの浮上姿勢をより安定化させることが期待できる。そのため、磁気記録媒体の基板である磁気記録媒体用ガラス基板の主表面も、長波長領域の表面うねりを小さくすることが求められる。   Although there are various causes of fluttering, surface waviness on the order of several millimeters is considered to be one of the causes. By reducing the surface waviness in such a long wavelength region, it can be expected that fluttering during high-speed rotation is suppressed and the flying posture of the magnetic head is further stabilized. Therefore, the main surface of the glass substrate for magnetic recording medium, which is the substrate of the magnetic recording medium, is also required to reduce the surface waviness in the long wavelength region.

本実施形態においては、測定波長8.3〜2500μmにおける表面粗さRaが、0.60〜2.30μmである軟質研磨パッドを用いて仕上げ研磨することが好ましい。これにより、測定波長1250〜5000μmといった長波長領域の表面うねりWaが、0.13nm以下である磁気記録媒体用ガラス基板を製造することができる。   In the present embodiment, it is preferable to perform final polishing using a soft polishing pad having a surface roughness Ra of 0.60 to 2.30 μm at a measurement wavelength of 8.3 to 2500 μm. Thereby, the glass substrate for magnetic recording media whose surface waviness Wa of a long wavelength region, such as a measurement wavelength of 1250-5000 micrometers, is 0.13 nm or less can be manufactured.

磁気記録媒体用ガラス基板における、短波長領域から中波長領域に亘る表面うねりを小さくし、かつ、長波長領域の表面うねりも小さくすることにより、磁気記録媒体をHDDで高速回転させたときの磁気ヘッドの浮上姿勢がより安定化することが期待できる。   Magnetism when rotating a magnetic recording medium at high speed with an HDD by reducing the surface waviness from the short wavelength region to the medium wavelength region and also reducing the surface waviness in the long wavelength region on the glass substrate for magnetic recording media. It can be expected that the flying posture of the head is further stabilized.

また、磁気記録媒体用ガラス基板における、短波長領域から中波長領域に亘る表面うねりを小さくし、かつ、長波長領域の表面うねりを小さくすることにより、最も精密な(小さい)磁気ヘッドのスライダである「フェムトスライダ」(長さ約0.85mm)であっても、それよりも大きいスライダであっても、適用可能な磁気記録媒体用ガラス基板となる。   In addition, by reducing the surface waviness from the short wavelength region to the medium wavelength region in the glass substrate for magnetic recording media and reducing the surface waviness in the long wavelength region, it is the most accurate (small) magnetic head slider. Whether it is a certain “femto slider” (length: about 0.85 mm) or a slider larger than that, a glass substrate for a magnetic recording medium is applicable.

そのため、異なるサイズのスライダを使用している異なる品種のHDD用の磁気記録媒体用ガラス基板を同時に製造可能となり、複数品種のHDD向けの磁気記録媒体用ガラス基板を生産性良く製造できる。   Therefore, glass substrates for magnetic recording media for different types of HDDs using sliders of different sizes can be manufactured simultaneously, and glass substrates for magnetic recording media for a plurality of types of HDDs can be manufactured with high productivity.

なお、研磨パッドの研磨面の表面粗さRaは、JIS B 0651−2001に準拠して、触針式の表面粗さ計を用いて測定することができる。   The surface roughness Ra of the polishing surface of the polishing pad can be measured using a stylus type surface roughness meter in accordance with JIS B 0651-2001.

また、磁気記録媒体用ガラス基板の主表面の表面うねりWaは、光散乱方式表面観察機を用いて測定することができる。測定方法としては、レーザ光を測定対象物の表面に入射し、測定対象物からの反射光を検出して、主表面の高さ情報を得る。   Further, the surface waviness Wa of the main surface of the glass substrate for a magnetic recording medium can be measured using a light scattering type surface observation machine. As a measurement method, laser light is incident on the surface of the measurement object, reflected light from the measurement object is detected, and height information of the main surface is obtained.

(磁気ディスクの製造方法)
本発明の磁気記録媒体は、例えば下記のような方法により磁気記録媒体用ガラス基板に磁性層を含む多層膜を形成させて得られる。ここでは、一例を挙げるが、本発明は下記方法に限定されない。
(Magnetic disk manufacturing method)
The magnetic recording medium of the present invention can be obtained, for example, by forming a multilayer film including a magnetic layer on a glass substrate for a magnetic recording medium by the following method. Here, although an example is given, the present invention is not limited to the following method.

磁気記録媒体は、例えば、ガラス基板の主表面上に、少なくとも磁性層(磁気記録層)、保護層、潤滑層が積層された構成になっている。このとき、磁性層の下に、付着層及び/又は下地層などのその他の層を形成しても良い。   The magnetic recording medium has, for example, a configuration in which at least a magnetic layer (magnetic recording layer), a protective layer, and a lubricating layer are laminated on the main surface of a glass substrate. At this time, other layers such as an adhesion layer and / or an underlayer may be formed under the magnetic layer.

磁性層は、長手方向記録方式でも、垂直記録方式でも良いが、記録密度向上の点から、垂直記録方式であることが好ましい。   The magnetic layer may be a longitudinal recording method or a vertical recording method, but is preferably a vertical recording method from the viewpoint of improving the recording density.

垂直記録方式の場合、通常、CoNiFe、FeCoB、CoCuFe、NiFe、FeAlSi、FeTaN、FeN、FeTaC、CoFeB又はCoZrNなどの、(軟磁性)下地層を形成させる。(軟磁性)下地層を形成させることにより、磁気ヘッドからの記録磁界を還流させることができる。   In the case of the perpendicular recording method, a (soft magnetic) underlayer such as CoNiFe, FeCoB, CoCuFe, NiFe, FeAlSi, FeTaN, FeN, FeTaC, CoFeB or CoZrN is usually formed. By forming the (soft magnetic) underlayer, the recording magnetic field from the magnetic head can be refluxed.

また、下地層と磁性層との間に、RuやRu合金などの非磁性中間層を形成しても良い。非磁性中間層を形成することにより、エピタキシャル成長により成膜する磁性層を、より容易に形成できる。また、軟磁性下地層及び記録用磁性層との磁気交換結合を断つことができる。   Further, a nonmagnetic intermediate layer such as Ru or Ru alloy may be formed between the underlayer and the magnetic layer. By forming the nonmagnetic intermediate layer, the magnetic layer formed by epitaxial growth can be more easily formed. Further, the magnetic exchange coupling between the soft magnetic underlayer and the recording magnetic layer can be broken.

垂直記録方式の磁性層は、磁化容易軸が基板面に対して垂直方向を向いた磁性膜であり、通常、CoPt系合金が使用される。このとき、高い固有媒体ノイズの原因となる、粒間交換結合を低減するため、十分に隔離された微粒子構造とするのが好ましい。具体的には、CoPt系合金などに、SiO、SiO、Cr、CoO、Ta又はTiOなどの酸化物や、Cr、B、Cu、Ta又はZrなどの金属を添加し、CoPt系合金間を十分に隔離することが好ましい。 A perpendicular recording type magnetic layer is a magnetic film having an easy axis of magnetization oriented in a direction perpendicular to the substrate surface, and a CoPt alloy is usually used. At this time, in order to reduce intergranular exchange coupling that causes high intrinsic medium noise, it is preferable to have a sufficiently isolated fine particle structure. Specifically, an oxide such as SiO 2 , SiO, Cr 2 O 3 , CoO, Ta 2 O 3, or TiO 2 or a metal such as Cr, B, Cu, Ta, or Zr is added to a CoPt alloy or the like. In addition, it is preferable to sufficiently separate the CoPt-based alloys.

軟磁性下地層、中間層及び磁性層は、上述のガラス基板の製造方法で得られたガラス基板を、精密洗浄(成膜前洗浄)して表面の粒子を除去した後、インラインスパッタ法、DCマグネトロンスパッタ法などの手法により、連続的に形成できる。   The soft magnetic underlayer, the intermediate layer, and the magnetic layer are obtained by precision cleaning (cleaning before film formation) of the glass substrate obtained by the above-described glass substrate manufacturing method to remove surface particles, followed by in-line sputtering, DC It can be formed continuously by a technique such as magnetron sputtering.

保護層は、磁性層の腐食を防ぐために形成する。また、磁気ヘッドが磁気記録媒体に接触したときに、磁気記録媒体表面の損傷を防ぐ役割も果たす。具体的な保護層の例としては、C、ZrO又はSiOなどを含む材料が挙げられる。保護層の形成方法としては、例えば、インラインスパッタ法、CVD法又はスピンコート法などが挙げられる。 The protective layer is formed to prevent corrosion of the magnetic layer. It also serves to prevent damage to the surface of the magnetic recording medium when the magnetic head comes into contact with the magnetic recording medium. Specific examples of the protective layer include materials containing C, ZrO 2, or SiO 2 . Examples of the method for forming the protective layer include an in-line sputtering method, a CVD method, and a spin coating method.

磁気ヘッドと磁気記録媒体との摩擦を低減するために、保護膜の表面には潤滑膜を形成する。潤滑膜の具体例としては、例えばパーフルオロポリエーテル、フッ素化アルコール又はフッ素化カルボン酸などを使用できる。潤滑膜は、ディップ法又はスプレー法などの手法により、形成できる。   In order to reduce the friction between the magnetic head and the magnetic recording medium, a lubricating film is formed on the surface of the protective film. As a specific example of the lubricating film, for example, perfluoropolyether, fluorinated alcohol, fluorinated carboxylic acid, or the like can be used. The lubricating film can be formed by a technique such as dipping or spraying.

[実施例]
以下、実施例を挙げて本発明を更に説明するが、本発明はこれにより何ら制限されるものではない。
[Example]
EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated further, this invention is not restrict | limited at all by this.

[ドレス処理]
(例1)
ドレス処理として、先ず、ウレタン製の軟質研磨パッドを、研磨装置の上下定盤に装着した。
[Dress processing]
(Example 1)
As the dressing process, first, a soft polishing pad made of urethane was mounted on the upper and lower surface plates of the polishing apparatus.

次に、1段回目のドレス処理として、軟質研磨パッドの研磨面に水を流しながら、圧力3.0kPa、ドレス処理時間10分間の条件で、ドレス処理を施した。ドレッサとしては、直径95mmのステンレス円盤に電着法により♯800のダイヤモンド砥粒を付着させたものを使用した。   Next, as the first-stage dressing process, the dressing process was performed under the conditions of a pressure of 3.0 kPa and a dressing process time of 10 minutes while flowing water over the polishing surface of the soft polishing pad. As the dresser, a stainless steel disk having a diameter of 95 mm and having # 800 diamond abrasive grains attached thereto by electrodeposition was used.

次に、2段階目のドレス処理として、軟質研磨パッドの研磨面に水を流しながら、圧力3.0kPa、ドレス処理時間30分間の条件で、ドレス処理を施した。ドレッサとしては、直径95mmのステンレス製円盤に、ロウ付け法で♯1000のダイヤモンド砥粒を付着させたものを使用した。   Next, as a second-stage dressing process, a dressing process was performed under the conditions of a pressure of 3.0 kPa and a dressing process time of 30 minutes while water was passed through the polishing surface of the soft polishing pad. As a dresser, a stainless steel disk having a diameter of 95 mm and diamond abrasive grains of # 1000 adhered by a brazing method was used.

(例2)
2段階目のドレス処理において、直径95mmのステンレス製円盤に、ロウ付け法で♯800のダイヤモンド砥粒を付着させたドレッサを使用し、ドレス処理時間を10分間に変更した以外は例1と同様の方法でドレス処理を行った。
(Example 2)
Same as Example 1 except that in the second stage dressing, a dresser in which # 800 diamond abrasive grains were attached to a 95 mm diameter stainless steel disk by brazing was used, and the dressing time was changed to 10 minutes. The dressing process was performed by the method of.

(例3)
1段階目のドレス処理において、直径95mmのステンレス製円盤に、ロウ付け法で♯800のダイヤモンド砥粒を付着させたドレッサを使用し、ドレス処理時間を20分間に変更し、2段階目のドレス処理を実施しなかった以外は例1と同様の方法で、ドレス処理を行った。
(Example 3)
In the first stage dressing process, a dresser in which # 800 diamond abrasive grains are attached to a 95 mm diameter stainless steel disk by brazing is used, and the dressing time is changed to 20 minutes. A dressing process was performed in the same manner as in Example 1 except that the process was not performed.

(例4)
2段階目のドレス処理を実施しなかった以外は例1と同様の方法で、ドレス処理を行った。
(Example 4)
The dressing process was performed in the same manner as in Example 1 except that the second stage dressing process was not performed.

(例5)
1段階目のドレス処理において、直径95mmのステンレス製円盤に、ロウ付け法で♯1000のダイヤモンド砥粒を付着させたドレッサを使用し、ドレス処理時間を30分間に変更し、2段階目のドレス処理を実施しなかった以外は例1と同様の方法で、ドレス処理を行った。
(Example 5)
In the first stage dressing process, a dresser in which # 1000 diamond abrasive grains are attached to a 95 mm diameter stainless steel disk by brazing is used, and the dressing time is changed to 30 minutes, and the second stage dressing process is performed. A dressing process was performed in the same manner as in Example 1 except that the process was not performed.

(例6)
1段階目のドレス処理において、直径95mmのステンレス製円盤に、電着法で♯600のダイヤモンド砥粒を付着させたドレッサを使用し、ドレス処理時間を8分間に変更し、2段階目のドレス処理を実施しなかった以外は例1と同様の方法で、ドレス処理を行った。
(Example 6)
In the first stage dressing process, a dresser in which # 600 diamond abrasive grains are attached to the 95 mm diameter stainless steel disc by the electrodeposition method is used, and the dressing time is changed to 8 minutes. A dressing process was performed in the same manner as in Example 1 except that the process was not performed.

(例7)
1段階目のドレス処理において、直径95mmのステンレス製円盤に、電着法で♯400のダイヤモンド砥粒を付着させたドレッサを使用し、ドレス処理時間を5分間に変更し、2段階目のドレス処理を実施しなかった以外は例1と同様の方法で、ドレス処理を行った。
(Example 7)
In the first stage dressing process, a dresser in which # 400 diamond abrasive grains are attached to the 95 mm diameter stainless steel disk by electrodeposition is used, and the dressing time is changed to 5 minutes, and the second stage dressing process is performed. A dressing process was performed in the same manner as in Example 1 except that the process was not performed.

(例8)
1段階目のドレス処理において、直径95mmのステンレス製円盤に、ロウ付け法で♯800のダイヤモンド砥粒を付着させたドレッサを使用し、ドレス処理時間を10分間に変更し、2段階目のドレス処理を実施しなかった以外は例1と同様の方法で、ドレス処理を行った。
(Example 8)
In the first stage dressing process, a dresser in which # 800 diamond abrasive grains are attached to a 95 mm diameter stainless steel disk by brazing is used, and the dressing time is changed to 10 minutes. A dressing process was performed in the same manner as in Example 1 except that the process was not performed.

ドレッサの砥粒が付着している表面について、レーザ顕微鏡(オリンパス社製、型式:LEXT−OLS3500)を用いて、表面粗さ(算術平均粗さRa)を測定した。砥粒が付着しているドレッサの表面には、砥粒が突き出しているため、触針式表面粗さ計を用いた表面粗さ測定では、測定中の触針の状態を安定に保つことできないおそれがある。そのため、本実施形態においては、上述のレーザ顕微鏡を用いた光学的な方法により表面粗さ(算術平均粗さRa)を測定した。なお、光学的方法で測定した表面粗さと、触針式表面粗さ計を用いて測定した表面粗さは、その測定方式が異なるため、得られた表面粗さは異なる値となる。
ドレッサの算術平均粗さRaは、レーザ顕微鏡の対物レンズを5倍、ズームを1倍に設定し、測定視野を2560μm×1920μmとし、カットオフが853.3μmの条件で測定した。測定したドレッサの算術平均粗さRaを表1に示す。また、表1に、各例における、ドレス処理の条件を示す。
Surface roughness (arithmetic mean roughness Ra) was measured using a laser microscope (Olympus, model: LEXT-OLS3500) on the surface to which the dresser abrasive grains adhered. Since the abrasive grains protrude from the surface of the dresser to which the abrasive grains adhere, surface roughness measurement using a stylus type surface roughness meter cannot maintain the state of the stylus during measurement stably. There is a fear. Therefore, in this embodiment, the surface roughness (arithmetic average roughness Ra) was measured by an optical method using the laser microscope described above. In addition, since the measurement method differs between the surface roughness measured by the optical method and the surface roughness measured using a stylus type surface roughness meter, the obtained surface roughness has different values.
The arithmetic average roughness Ra of the dresser was measured under the condition that the objective lens of the laser microscope was set to 5 times, the zoom was set to 1 time, the measurement field of view was 2560 μm × 1920 μm, and the cutoff was 853.3 μm. Table 1 shows the measured arithmetic average roughness Ra of the dresser. Table 1 shows dressing conditions in each example.

Figure 2014154187
各例における、ドレス処理後の軟質研磨パッドの表面粗さRaは、研磨装置の定盤に研磨パッドを装着した状態で表面粗さを容易に測定できる触針式表面粗さ計(東京精密社製:Surfcom 130A)を用いて測定した。なお、カットオフ値(λs、λc)は、(2.5μm,80μm)、(2.5μm,800μm)、(8.3μm,2500μm)の3つの条件に設定した。
Figure 2014154187
In each example, the surface roughness Ra of the soft polishing pad after dressing is a stylus type surface roughness meter (Tokyo Seimitsu Co., Ltd.) that can easily measure the surface roughness with the polishing pad mounted on the surface plate of the polishing apparatus. Manufactured by Surfcom 130A). The cut-off values (λs, λc) were set to three conditions of (2.5 μm, 80 μm), (2.5 μm, 800 μm), and (8.3 μm, 2500 μm).

ドレス処理後の軟質研磨パッドの表面粗さRaをまとめたものを表2に示す。   Table 2 summarizes the surface roughness Ra of the soft polishing pad after dressing.

Figure 2014154187
[磁気記録媒体用ガラス基板の製造]
フロート法で成形されたシリケートガラス板を、中央部に円孔を有する円盤形状ガラス基板に加工した。この円盤形状ガラス基板の内周側面と外周側面を面取り加工し、その後、ガラス基板の上下面のラッピングを、酸化アルミニウム砥粒を用いて行い、砥粒を洗浄除去した。
Figure 2014154187
[Manufacture of glass substrates for magnetic recording media]
A silicate glass plate formed by the float process was processed into a disk-shaped glass substrate having a circular hole in the center. The inner peripheral side surface and the outer peripheral side surface of this disk-shaped glass substrate were chamfered, and then the upper and lower surfaces of the glass substrate were lapped with aluminum oxide abrasive grains, and the abrasive grains were washed and removed.

内周側面と内周面取り部を研磨ブラシと酸化セリウム砥粒を用いて研磨し、内周側面と内周面取り部のキズを除去し、鏡面となるように加工した。次に、内周端面研磨を行ったガラス基板を、外周側面と外周面取り部を研磨ブラシと酸化セリウム砥粒を用いて研磨し、外周側面と外周面取り部のキズを除去し、鏡面となるように加工した。内周端面研磨と外周端面研磨を行ったガラス基板は、超音波洗浄により、砥粒を洗浄除去した。   The inner peripheral side surface and the inner peripheral chamfered portion were polished by using a polishing brush and cerium oxide abrasive grains, and scratches on the inner peripheral side surface and the inner peripheral chamfered portion were removed to make a mirror surface. Next, the outer peripheral side surface and the outer peripheral chamfered portion are polished with a polishing brush and a cerium oxide abrasive grain, and the outer peripheral side surface and the outer peripheral chamfered portion are removed from scratches to become a mirror surface. It was processed into. The glass substrate that had been subjected to inner peripheral end surface polishing and outer peripheral end surface polishing was cleaned and removed by ultrasonic cleaning.

次に、図2の両面研磨装置を使用して、ガラス基板の主表面を1次研磨、次いで、洗浄、乾燥した。その後、ガラス基板の主表面を2次研磨し、次いで、洗浄、乾燥した。   Next, using the double-side polishing apparatus of FIG. 2, the main surface of the glass substrate was subjected to primary polishing, and then washed and dried. Thereafter, the main surface of the glass substrate was subjected to secondary polishing, and then washed and dried.

洗浄後のガラス基板に対して、3次研磨(仕上げ研磨)を実施した。仕上げ研磨の研磨具としては、前述のドレス処理を施した後の軟質ウレタン製の研磨パッドと、一次粒子の平均粒子直径が20〜30nmのコロイダルシリカを含有する研磨液とを用いて、16B型両面研磨装置(スピードファム社製:DSM−16B−5PV)を使用して、上下主表面を研磨した。研磨時間は、総研磨量が上下両主平面の厚さ方向の合計で1μmになるように設定した。   Tertiary polishing (final polishing) was performed on the cleaned glass substrate. As a polishing tool for final polishing, using a polishing pad made of soft urethane after the above-mentioned dressing treatment and a polishing liquid containing colloidal silica having an average particle diameter of primary particles of 20 to 30 nm, type 16B The upper and lower main surfaces were polished using a double-side polishing apparatus (manufactured by Speed Fam Co., Ltd .: DSM-16B-5PV). The polishing time was set so that the total polishing amount was 1 μm in total in the thickness direction of the upper and lower main planes.

研磨後のガラス基板について、洗浄後に、光散乱方式表面観察機(KLA Tencor社製:OSA6100)を用いて表面うねりWaを測定した。測定方法としては、波長405nmのレーザ光を測定対象物の表面に60度の角度で入射し、測定対象物からの反射光を検出して、主表面の高さ情報を得る。本実施形態においては、φ65mmのガラス基板について、上下主表面の半径15mm〜31mmの範囲を測定領域として測定した。前述の測定範囲は、磁気記録媒体の記録再生領域を含む。   About the glass substrate after grinding | polishing, surface waviness Wa was measured after washing | cleaning using the light-scattering type surface observation machine (KLA Tencor company make: OSA6100). As a measurement method, laser light having a wavelength of 405 nm is incident on the surface of the measurement object at an angle of 60 degrees, and reflected light from the measurement object is detected to obtain height information of the main surface. In the present embodiment, a glass substrate having a diameter of 65 mm was measured with a radius of the upper and lower main surfaces ranging from 15 mm to 31 mm as a measurement region. The aforementioned measurement range includes the recording / reproducing area of the magnetic recording medium.

表2には、各例で得られたガラス基板の表面うねりWaも示した。   Table 2 also shows the surface waviness Wa of the glass substrate obtained in each example.

[評価]
(グライドハイトテスト)
各例で作製したガラス基板を、精密洗浄した後、インライン型スパッタリング装置にて、軟磁性下地層としてNiFe層、非磁性中間層としてRu層、垂直磁気記録層としてCoCrPtSiOのグラニュラ構造層を順次積層した。その後、保護層として非晶質ダイヤモンド状カーボン膜を形成した。その後、ディップ法により、潤滑膜としてパーフルオロポリエーテル膜を形成し、磁気記録媒体を作製した。
[Evaluation]
(Glide height test)
After the glass substrate produced in each example was precisely cleaned, an NiFe layer as a soft magnetic underlayer, a Ru layer as a nonmagnetic intermediate layer, and a granular structure layer of CoCrPtSiO 2 as a perpendicular magnetic recording layer were sequentially formed using an in-line sputtering apparatus. Laminated. Thereafter, an amorphous diamond-like carbon film was formed as a protective layer. Thereafter, a perfluoropolyether film was formed as a lubricating film by a dip method to produce a magnetic recording medium.

得られた磁気記録媒体について、磁気ヘッド浮上特性の評価をグライドハイトテスト(グライドアバランシェ試験)により実施した。   The magnetic head flying characteristics of the obtained magnetic recording medium were evaluated by a glide height test (glide avalanche test).

グライドハイトテストとは、磁気記録媒体の主表面において、スライダが安定して浮上できる高さの最小値を評価するテストである。   The glide height test is a test for evaluating the minimum height at which the slider can stably fly on the main surface of the magnetic recording medium.

グライドハイトテストを実施するテスト装置について説明する。テスト装置は、磁気記録媒体を回転させるスピンドルと、磁気記録媒体上に位置し、磁気ディスクの回転により浮上するグライドスライダと、アコースティック・エミッション(AE)センサと、接触探知部と、を備える。   A test apparatus for performing the glide height test will be described. The test apparatus includes a spindle that rotates a magnetic recording medium, a glide slider that is positioned on the magnetic recording medium and floats by rotation of the magnetic disk, an acoustic emission (AE) sensor, and a contact detection unit.

AEセンサは、グライドスライダの浮上姿勢が不安定になり、グライドスライダが磁気記録媒体の主表面に接触した場合に発生する弾性波を検出する機能を有する。また、接触探知部は、AEセンサのフィルタを通した出力が所定の値以上であるか否かを検出する機能を有する。   The AE sensor has a function of detecting an elastic wave generated when the flying posture of the glide slider becomes unstable and the glide slider comes into contact with the main surface of the magnetic recording medium. The contact detection unit has a function of detecting whether or not the output through the filter of the AE sensor is equal to or higher than a predetermined value.

グライドハイトテストの具体的な実施方法について説明する。先ず、磁気記録媒体を回転させ、グライドスライダを浮上させる。次に、グライドスライダを磁気記録媒体上の記録領域全面に移動させる。そして、グライドスライダの浮上姿勢が不安定となり、グライドスライダが磁気記録媒体の主表面に接触した際に発生する弾性波をAEセンサで検出する。   A specific implementation method of the glide height test will be described. First, the magnetic recording medium is rotated to float the glide slider. Next, the glide slider is moved over the entire recording area on the magnetic recording medium. Then, the flying posture of the glide slider becomes unstable, and an elastic wave generated when the glide slider comes into contact with the main surface of the magnetic recording medium is detected by the AE sensor.

一定の回転速度で磁気記録媒体を回転させた後、徐々に回転速度を減少させ、グライドスライダの浮上高さを減少させる。そして、AEセンサのフィルタを通した出力が所定の値以上になったときの、グライドスライダの浮上高さをグライドハイトとする。なお、グライドスライダの浮上高さは、磁気記録媒体の回転速度から算出することができる。   After rotating the magnetic recording medium at a constant rotation speed, the rotation speed is gradually decreased, and the flying height of the glide slider is decreased. Then, the flying height of the glide slider when the output through the filter of the AE sensor becomes a predetermined value or more is defined as the glide height. The flying height of the glide slider can be calculated from the rotational speed of the magnetic recording medium.

高記録密度化の観点から、磁気記録媒体のグライドハイトテストにより測定されたグライドハイトは、2.5nm以下であることが好ましく、2.0nm以下であることがより好ましく、1.8nm以下であることが更に好ましい。   From the viewpoint of increasing the recording density, the glide height measured by the glide height test of the magnetic recording medium is preferably 2.5 nm or less, more preferably 2.0 nm or less, and 1.8 nm or less. More preferably.

各例における、グライドハイトテストの結果を表3に示す。   Table 3 shows the results of the glide height test in each example.

Figure 2014154187
表3の結果から、測定波長2.5〜80μmにおける表面粗さRaが0.40〜1.40μmであり、かつ、測定波長2.5〜800μmにおける表面粗さRaが0.40〜2.00μmである研磨面を有する軟質研磨パッドを用いて仕上げ研磨した例1〜例4の磁気記録媒体用ガラス基板を用いた磁気記録媒体は、グライドハイトが2.5nm以下と良好であった。一方、例5〜例8の磁気記録媒体用ガラス基板を用いて作製された磁気記録媒は、これらの試験結果も不十分であった。
Figure 2014154187
From the results of Table 3, the surface roughness Ra at a measurement wavelength of 2.5 to 80 μm is 0.40 to 1.40 μm, and the surface roughness Ra at a measurement wavelength of 2.5 to 800 μm is 0.40 to 2. The magnetic recording media using the glass substrates for magnetic recording media of Examples 1 to 4 that were finish-polished using a soft polishing pad having a polishing surface of 00 μm had a good glide height of 2.5 nm or less. On the other hand, the test results of the magnetic recording media produced using the glass substrates for magnetic recording media of Examples 5 to 8 were insufficient.

特に、例3と例5との比較において、例5では、例3で使用したドレス工具よりも表面粗さが小さいドレス工具を用いて、より長いドレス時間でドレス処理を施した軟質研磨パッドを用いて仕上げ研磨を施している。その結果、例5のガラス基板は、測定波長が短波長領域(40〜200μm)の表面うねりは、例3のガラス基板よりも小さくなったが、測定波長が中波長領域(200〜1250μm)の表面うねりが大きくなっている。そのため、例5のガラス基板はグライドハイトテストの結果が、好ましい値を満たしていない。   In particular, in comparison between Example 3 and Example 5, in Example 5, a soft polishing pad that was dressed for a longer dressing time using a dressing tool having a surface roughness smaller than that of the dressing tool used in Example 3 was used. Used for finish polishing. As a result, in the glass substrate of Example 5, the surface undulation of the measurement wavelength in the short wavelength region (40 to 200 μm) was smaller than that of the glass substrate of Example 3, but the measurement wavelength was in the medium wavelength region (200 to 1250 μm). The surface swell is large. Therefore, the glass substrate of Example 5 does not satisfy the preferable value of the result of the glide height test.

即ち、本発明によれば、磁気記録媒体用ガラス基板の主表面を、測定波長2.5〜80μmにおける表面粗さRaが0.40〜1.40μmであり、かつ、測定波長2.5〜800μmにおける表面粗さRaが0.40〜2.00μmである研磨面を有する、軟質研磨パッドを用いて仕上げ研磨することにより、高記録密度に対応した磁気記録媒体を提供できる。   That is, according to the present invention, the main surface of the glass substrate for a magnetic recording medium has a surface roughness Ra of 0.40 to 1.40 μm at a measurement wavelength of 2.5 to 80 μm and a measurement wavelength of 2.5 to By performing final polishing using a soft polishing pad having a polishing surface with a surface roughness Ra of 0.40 to 2.00 μm at 800 μm, a magnetic recording medium corresponding to a high recording density can be provided.

10 ドレッサ
12 台座
14 上平面
16 砥粒層
100 両面研磨装置
200 基台
300 下定盤
400 上定盤
500 昇降機構
600 回転伝達機構
DESCRIPTION OF SYMBOLS 10 Dresser 12 Base 14 Upper plane 16 Abrasive grain layer 100 Double-side polish apparatus 200 Base 300 Lower surface plate 400 Upper surface plate 500 Lifting mechanism 600 Rotation transmission mechanism

Claims (5)

測定波長2.5〜80μmにおける表面粗さRaが0.40〜1.40μmであり、かつ、測定波長2.5〜800μmにおける表面粗さRaが0.40〜2.00μmである、研磨面を有する軟質研磨パッドを用いてガラス基板の主表面を研磨する研磨工程を含む、
磁気記録媒体用ガラス基板の製造方法。
A polished surface having a surface roughness Ra of 0.40 to 1.40 μm at a measurement wavelength of 2.5 to 80 μm and a surface roughness Ra of 0.40 to 2.00 μm at a measurement wavelength of 2.5 to 800 μm. A polishing step of polishing the main surface of the glass substrate using a soft polishing pad having
A method for producing a glass substrate for a magnetic recording medium.
前記研磨面は、測定波長8.3〜2500μmにおける表面粗さRaが0.60〜2.30μmである、
請求項1に記載の磁気記録媒体用ガラス基板の製造方法。
The polished surface has a surface roughness Ra of 0.60 to 2.30 μm at a measurement wavelength of 8.3 to 2500 μm.
The manufacturing method of the glass substrate for magnetic recording media of Claim 1.
前記研磨工程は、平均粒子径が1〜50nmのシリカ粒子を含む研磨液を用いてガラス基板の主表面を研磨する工程を含む、
請求項1又は2に記載の磁気記録媒体用ガラス基板の製造方法。
The polishing step includes a step of polishing the main surface of the glass substrate using a polishing liquid containing silica particles having an average particle diameter of 1 to 50 nm.
The manufacturing method of the glass substrate for magnetic recording media of Claim 1 or 2.
中央部に円孔を有する円盤形状の磁気記録媒体用ガラス基板であって、
前記磁気記録媒体用ガラス基板の主表面は、
測定波長40〜200μmにおける表面うねりWaが0.06nm以下であり、かつ、測定波長200〜1250μmにおける表面うねりWaが0.08nm以下である、
磁気記録媒体用ガラス基板。
A disk-shaped glass substrate for a magnetic recording medium having a circular hole in the center,
The main surface of the magnetic recording medium glass substrate is:
The surface waviness Wa at a measurement wavelength of 40 to 200 μm is 0.06 nm or less, and the surface waviness Wa at a measurement wavelength of 200 to 1250 μm is 0.08 nm or less.
Glass substrate for magnetic recording media.
前記主平面は、測定波長1250〜5000μmにおける表面うねりWaが0.13nm以下である、
請求項4に記載の磁気記録媒体用ガラス基板。
The main plane has a surface waviness Wa of 0.13 nm or less at a measurement wavelength of 1250 to 5000 μm.
The glass substrate for magnetic recording media according to claim 4.
JP2013023437A 2013-02-08 2013-02-08 Manufacturing method of glass substrate for magnetic recording medium, and glass substrate for magnetic recording medium Withdrawn JP2014154187A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013023437A JP2014154187A (en) 2013-02-08 2013-02-08 Manufacturing method of glass substrate for magnetic recording medium, and glass substrate for magnetic recording medium
PH12014000045A PH12014000045A1 (en) 2013-02-08 2014-01-30 Glass substrate for magnetic recording medium and method for manufacturing the glass substrate for magnetic recording medium
CN201410045489.4A CN103978422A (en) 2013-02-08 2014-02-08 Method for manufacturing glass substrate for magnetic recording medium, and glass substrate for magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013023437A JP2014154187A (en) 2013-02-08 2013-02-08 Manufacturing method of glass substrate for magnetic recording medium, and glass substrate for magnetic recording medium

Publications (1)

Publication Number Publication Date
JP2014154187A true JP2014154187A (en) 2014-08-25

Family

ID=51270722

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013023437A Withdrawn JP2014154187A (en) 2013-02-08 2013-02-08 Manufacturing method of glass substrate for magnetic recording medium, and glass substrate for magnetic recording medium

Country Status (3)

Country Link
JP (1) JP2014154187A (en)
CN (1) CN103978422A (en)
PH (1) PH12014000045A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017042852A (en) * 2015-08-25 2017-03-02 株式会社フジミインコーポレーテッド Polishing pad, polishing pad conditioning method, pad conditioning agent and usage of the same
CN114523340A (en) * 2022-02-22 2022-05-24 深圳大学 Complete grinding and polishing equipment and grinding and polishing method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116670328A (en) * 2021-10-28 2023-08-29 东海炭素株式会社 Polycrystalline SiC molded body and method for producing same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002092867A (en) * 2000-09-21 2002-03-29 Hoya Corp Method of manufacturing glass substrate for information recording medium and method of manufacturing information recording medium
JP2011104713A (en) * 2009-11-17 2011-06-02 Asahi Glass Co Ltd Dressing tool for glass substrate polishing pad
JP2011210286A (en) * 2010-02-26 2011-10-20 Asahi Glass Co Ltd Method of manufacturing glass substrate for magnetic recording medium
JP2012234604A (en) * 2011-05-09 2012-11-29 Asahi Glass Co Ltd Method for manufacturing glass substrate for magnetic recording medium and glass substrate for magnetic recording medium

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002076675A1 (en) * 2001-03-27 2002-10-03 Nippon Sheet Glass Co., Ltd. Substrate for information recording medium and production method thereof, information recording medium, and glass blank sheet
US8821735B2 (en) * 2010-04-01 2014-09-02 Hoya Corporation Manufacturing method of a glass substrate for a magnetic disk
JP5737043B2 (en) * 2011-07-29 2015-06-17 旭硝子株式会社 Substrate glass and glass substrate

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002092867A (en) * 2000-09-21 2002-03-29 Hoya Corp Method of manufacturing glass substrate for information recording medium and method of manufacturing information recording medium
JP2011104713A (en) * 2009-11-17 2011-06-02 Asahi Glass Co Ltd Dressing tool for glass substrate polishing pad
JP2011210286A (en) * 2010-02-26 2011-10-20 Asahi Glass Co Ltd Method of manufacturing glass substrate for magnetic recording medium
JP2012234604A (en) * 2011-05-09 2012-11-29 Asahi Glass Co Ltd Method for manufacturing glass substrate for magnetic recording medium and glass substrate for magnetic recording medium

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017042852A (en) * 2015-08-25 2017-03-02 株式会社フジミインコーポレーテッド Polishing pad, polishing pad conditioning method, pad conditioning agent and usage of the same
CN114523340A (en) * 2022-02-22 2022-05-24 深圳大学 Complete grinding and polishing equipment and grinding and polishing method
CN114523340B (en) * 2022-02-22 2023-02-14 深圳大学 Complete grinding and polishing equipment and grinding and polishing method

Also Published As

Publication number Publication date
PH12014000045A1 (en) 2015-08-10
CN103978422A (en) 2014-08-13

Similar Documents

Publication Publication Date Title
JP6165227B2 (en) Glass substrate, method for manufacturing glass substrate for magnetic disk, substrate for magnetic disk, magnetic disk, method for manufacturing magnetic disk
JP5338928B2 (en) Glass substrate for magnetic recording media
JP5029777B1 (en) GLASS SUBSTRATE FOR MAGNETIC RECORDING MEDIUM AND MAGNETIC RECORDING MEDIUM USING THE GLASS SUBSTRATE FOR MAGNETIC RECORDING MEDIUM
US20050074635A1 (en) Information recording medium and method of manufacturing glass substrate for the information recording medium, and glass substrate for the information recording medium, manufactured using the method
JP2014154187A (en) Manufacturing method of glass substrate for magnetic recording medium, and glass substrate for magnetic recording medium
JP5126401B1 (en) Glass substrate for magnetic recording media
JP2012033265A (en) Glass substrate for magnetic recording medium and manufacturing method thereof
JP4860580B2 (en) Magnetic disk substrate and magnetic disk
JP6138113B2 (en) Method for manufacturing glass substrate for information recording medium, method for manufacturing magnetic disk, and carrier for grinding
JP4977795B1 (en) GLASS SUBSTRATE FOR MAGNETIC RECORDING MEDIUM AND MAGNETIC RECORDING MEDIUM USING THE GLASS SUBSTRATE FOR MAGNETIC RECORDING MEDIUM
JP5494747B2 (en) Manufacturing method of glass substrate for magnetic recording medium, and glass substrate for magnetic recording medium
JP5067498B1 (en) Glass substrate for magnetic recording medium and magnetic recording medium
JP5781845B2 (en) HDD glass substrate, HDD glass substrate manufacturing method, and HDD magnetic recording medium
JP4973762B2 (en) Glass substrate for magnetic recording medium and method for manufacturing the same
JP5212530B2 (en) GLASS SUBSTRATE FOR MAGNETIC RECORDING MEDIUM AND MAGNETIC RECORDING MEDIUM USING THE GLASS SUBSTRATE FOR MAGNETIC RECORDING MEDIUM
JP2013016257A (en) Glass substrate for magnetic recording medium and magnetic recording medium
JP6328052B2 (en) Method for manufacturing glass substrate for information recording medium, method for manufacturing information recording medium, and polishing pad
JP4698546B2 (en) Method for manufacturing glass substrate for magnetic disk, method for manufacturing magnetic disk
JP4600938B2 (en) Manufacturing method of glass substrate for magnetic disk and manufacturing method of magnetic disk
JP4962598B2 (en) Glass substrate for magnetic recording medium and method for manufacturing the same
WO2013146132A1 (en) Manufacturing method for glass substrate for information recording medium, and information recording medium
JP6088534B2 (en) Method for manufacturing glass substrate for information recording medium, method for manufacturing information recording medium, and disk-shaped glass substrate
JP2015069684A (en) Method for manufacturing glass substrate for magnetic recording medium and method for manufacturing magnetic recording medium
JP2013089280A (en) Method of manufacturing magnetic recording medium glass substrate and method of manufacturing magnetic recording medium
JP6267115B2 (en) Information recording medium glass substrate, information recording medium glass substrate manufacturing method, magnetic recording medium, and magnetic recording medium manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150812

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160726

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20160819