JP2014145028A - 回路接続材料、回路部材の接続構造体、及び回路部材の接続構造体の製造方法 - Google Patents

回路接続材料、回路部材の接続構造体、及び回路部材の接続構造体の製造方法 Download PDF

Info

Publication number
JP2014145028A
JP2014145028A JP2013014355A JP2013014355A JP2014145028A JP 2014145028 A JP2014145028 A JP 2014145028A JP 2013014355 A JP2013014355 A JP 2013014355A JP 2013014355 A JP2013014355 A JP 2013014355A JP 2014145028 A JP2014145028 A JP 2014145028A
Authority
JP
Japan
Prior art keywords
circuit
connection material
substrate
connection
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013014355A
Other languages
English (en)
Other versions
JP6107175B2 (ja
Inventor
Hiroshi Yokota
弘 横田
Susumu Kawakami
晋 川上
Masahiro Arifuku
征宏 有福
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2013014355A priority Critical patent/JP6107175B2/ja
Publication of JP2014145028A publication Critical patent/JP2014145028A/ja
Application granted granted Critical
Publication of JP6107175B2 publication Critical patent/JP6107175B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/831Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus
    • H01L2224/83101Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus as prepeg comprising a layer connector, e.g. provided in an insulating plate member

Landscapes

  • Adhesives Or Adhesive Processes (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Combinations Of Printed Boards (AREA)
  • Wire Bonding (AREA)
  • Conductive Materials (AREA)

Abstract

【課題】
回路部材同士の接続に用いた場合に、低圧での接続においても充分に低い接続抵抗が得られる回路接続材料を提供すること。
【解決手段】
基板上に第一の回路電極が形成された第一の回路部材と、第二の基板上に第二の回路電極が形成された第二の回路部材とを、前記第一の回路電極と前記第二の回路電極とが電気的に接続されるように接着するための回路接続材料であって、熱可塑性樹脂と、ラジカル重合性化合物と、ラジカル重合開始剤とを含有し、前記熱可塑性樹脂がアクリル樹脂を含み、前記アクリル樹脂の重量平均分子量が1000〜5000である、回路接続材料を提供する。
【選択図】なし

Description

本発明は、回路接続材料、回路部材の接続構造体、及び回路部材の接続構造体の製造方法に関する。
半導体、液晶ディスプレイ等の分野で電子部品を固定し、回路接続を行うために各種の接着材料が使用されている。
例えば、液晶ディスプレイとテープキャリアパッケージ(Tape Carrier Package:TCP)との接続、フレキシブルプリント基板(Flexible Printed Circuits:FPC)とTCPとの接続、FPCとプリント配線板との接続には、回路接続をより確実に行うために、接着剤中に導電性粒子を分散させた異方導電性接着剤が使用されている(例えば、特許文献1〜4参照)。更に、半導体シリコンチップを基板に実装する場合でも、従来のワイヤーボンドに代えて、半導体シリコンチップを基板に直接実装するいわゆるチップオングラス(Chip−on−glass:COG)が行われており、ここでも異方導電性接着剤が適用されている。
このような異方導電性接着剤として、例えば特許文献5には、ラジカル重合性樹脂(A)、有機過酸化物(B)、熱可塑性エラストマー(C)、及び所定のリン酸エステル(D)、所定のエポキシシランカップリング剤(E)からなる接着性樹脂組成物中に導電性粒子を含む異方導電性接着剤において、ラジカル重合性樹脂として特定のウレタンアクリレートを用いることを特徴とする異方導電性接着剤が記載されている。また、例えば特許文献6には、絶縁性接着剤と、導電性粒子と、シランカップリング剤を有して成る、厚み方向に導通し、面方向には導通しない異方導電性接着剤が記載されている。
特開昭59−120436号公報 特開昭60−191228号公報 特開平1−251787号公報 特開平7−90237号公報 特許第3503740号公報 特開昭62−62874号公報
ところで、近年、精密電子機器の分野では、回路のフレキシブル化が進んでおり、半導体シリコンチップをポリイミド(PI)、ポリエチレンテレフタレート(PET)等のプラスチック基板に回路電極等が形成された回路部材(例えば、フレキシブル回路基板等)に直接実装するチップオンプラスチック(Chip−on−Plastic:COP)実装が行われ始めている。しかしながら、従来のCOG実装に用いられている回路接続材料及びその接続条件では、フレキシブル回路基板上の回路短絡、熱圧着時のプラスチック基板の変形、プラスチック基板に対する接着力の欠如等の問題点があった。これらの問題点を解決するために、低温(例えば、100〜160℃)、低圧(例えば、チップ上のバンプ面積あたり10〜30MPa)、短時間(例えば、10秒以内)での接続、換言すれば低温低圧速硬化が可能な回路接続材料が求められている。
従来のエポキシ樹脂系を用いた回路接続用接着剤は、高い接着力を得ることができる一方で、低温速硬化のためには活性の高い潜在性硬化剤を使用する必要があり、保存安定性との両立を図ることが困難であった。また、低圧での接続を達成するには、樹脂組成物が充分な流動性を有することが必須であるが、従来のエポキシ樹脂系を用いた回路接続用接着剤では、流動性が不足していた。
また、COP実装用の接着材料として、例えば特許文献5及び特許文献6のように、不飽和化合物のラジカル重合を利用するものを適用した場合、低温速硬化は可能となるものの、樹脂組成物の流動性は未だ充分ではなく、低圧(例えば、チップ上のバンプ面積あたり10〜30MPa)での接続はきわめて困難であった。
本発明は、上記従来技術の有する課題に鑑みてなされたものであり、回路部材同士の接続に用いた場合に、低圧での接続においても充分に低い接続抵抗が得られる回路接続材料を提供することを目的とする。本発明はまた、上記回路接続材料を用いた回路部材の接続構造体、及びその製造方法を提供することを目的とする。
本発明者らは、熱可塑性樹脂として特定の重量平均分子量を有するアクリル樹脂を含有する回路接続材料が、回路部材とICチップ等とを電気的に接続するために特に優れていることを見出し、本発明を完成させた。
すなわち、本発明は、基板上に第一の回路電極が形成された第一の回路部材と、第二の基板上に第二の回路電極が形成された第二の回路部材とを、前記第一の回路電極と前記第二の回路電極とが電気的に接続されるように接着するための回路接続材料であって、熱可塑性樹脂と、ラジカル重合性化合物と、ラジカル重合開始剤とを含有し、前記熱可塑性樹脂がアクリル樹脂を含み、前記アクリル樹脂の重量平均分子量が1000〜5000である回路接続材料を提供する。
本発明に係る回路接続材料は、回路部材とICチップ等とを低圧で接続した場合においても、接続抵抗が充分に低く、例えば、85℃、85%RHの加速試験後においても良好な接続抵抗を示すことから、接続信頼性に優れる。本発明に係る回路接続材料は、一方の回路部材がプラスチックの場合であっても、あるいはガラスの場合であっても優れた効果を発現する。
上記アクリル樹脂の重量平均分子量が1000〜5000であると、本発明に係る回路接続材料は高い流動性と安定した接続信頼性を兼備することができる。
また、上記アクリル樹脂はガラス転移温度が70℃未満であることが好ましい。このようなアクリル樹脂を含有する回路接続材料は、低圧で接続した場合においても安定した接続抵抗を得るのに充分な流動性を有するものとなる。
更に、上記アクリル樹脂は側鎖にヒドロキシル基、カルボキシル基、グリシジル基等の極性又は反応性の官能基を持たない無官能タイプであることが好ましい。このようなアクリル樹脂を含有する回路接続材料は、低圧で接続した場合においても安定した接続抵抗を得るのに充分な流動性を有するものとなる。
本発明に係る回路接続材料は、下記一般式(1)で表されるアルミニウム錯体を更に含有してもよい。
Figure 2014145028

[一般式(1)中、L、L及びLは、それぞれ独立に、アルコキシ陰イオン、β−ジケトンの共役陰イオン又はβ−ケトエステルの共役陰イオンを示す。L、L及びLは、同一であっても良く、異なっていてもよい。]
上記アルミニウム錯体を含有することにより、より一層充分な接着強度を得ることができる。
本発明に係る回路接続材料は、シランカップリング剤を更に含有してもよい。
また、上記シランカップリング剤は、分子内に少なくとも一つのアルコキシシリル基とラジカル重合性二重結合とを含むものが好ましい。これにより、接着力が更に向上する。
本発明に係る回路接続材料は、更に導電性粒子を含んでいてもよい。導電性粒子を含有することにより、接続する電極間(回路電極間等)の接続信頼性を高めることができるとともに、接続抵抗を低減することができる。
本発明は、熱可塑性樹脂、ラジカル重合性化合物、ラジカル重合開始剤、アルミニウム錯体、シランカップリング剤、及び導電性粒子を含有する導電性接着剤層と、導電性接着層の一方の面に形成され、熱可塑性樹脂、ラジカル重合性化合物、ラジカル重合開始剤、アルミニウム錯体、及びシランカップリング剤を含有し、前記導電性粒子を含有しない絶縁性接着剤層とを少なくとも備える、回路接続材料を提供する。
このような導電性接着剤層と絶縁性接着剤層とを備える回路接続材料を用いると、取扱いが容易となるため、接続作業をより簡便に行うことができる。
上記回路接続材料は、ガラス基板のほか、ポリエチレンテレフタレート、ポリカーボネート、ポリイミド等の熱可塑性樹脂などから形成されたプラスチック基板上に、回路電極である金メッキ、ITO(indium tinoxide)、SiN(窒化ケイ素)、SiO(二酸化ケイ素)等の被膜が形成された回路部材とICチップ等とを電気的に接続するために特に優れる。よって、例えば、チップオンガラス実装用、チップオンプラスチック実装用等のチップ実装用として好適に用いられる。
本発明ではまた、基板上に第一の回路電極が形成された第一の回路部材と、第二の基板上に第二の回路電極が形成された第二の回路部材と、第一及び第二の回路部材の間に設けられ、第一の回路電極と第二の回路電極とを対向配置させた状態で第一の回路部材及び第二の回路部材を接続する回路接続部材と、を備え、回路接続部材が、回路接続材料の硬化物からなり、第一の回路電極と第二の回路電極は電気的に接続されている、回路部材の接続構造体を提供する。
本発明に係る回路部材の接続構造体によれば、上記回路接続材料を用いるため、第一の回路部材と第二の回路部材とが高い接着力で接着され、回路部材間の接続抵抗が低いまま維持されている。そのため、本発明に係る回路部材の接続構造体は接続信頼性に優れるものとなる。
本発明ではまた、基板上に第一の回路電極が形成された第一の回路部材と、第二の基板上に第二の回路電極が形成された第二の回路部材との間に上記回路接続材料を配置し、第一の回路部材及び第二の回路部材を加熱及び加圧して回路接続材料を硬化させ、第一の回路部材と第二の回路部材とを接続するとともに第一の回路電極と第二の回路電極とを電気的に接続する、回路部材の接続構造体の製造方法を提供する。
この回路部材の接続構造体の製造方法によれば、上記回路接続材料を用いているため、一方がガラス基板又はプラスチック基板から構成される回路部材である場合に、特に低圧での接続でも回路部材間の接続抵抗が充分に低く、かつ充分な接着力で接着された回路部材の接続構造体を得ることができる。
本発明の回路接続材料によれば、一方の回路部材がガラス基板又はプラスチック基板から構成される回路部材の接続に用いた場合に、特に低圧での接続であっても接続抵抗が充分に低く、高い接続信頼性を有する回路部材を得ることができる。
更に、本発明の回路接続材料は、ガラス基板又はプラスチック基板から構成される回路部材と他の回路部材(例えば、半導体素子、液晶表示素子等)を接着するのに好適であり、接続抵抗及び接続信頼性に優れる。特に、この回路接続材料を用いる回路部材の接続構造体の製造方法によれば、低温低圧速硬化が可能となることから、回路部材への悪影響が充分に抑制される。
回路接続材料の実施形態を示す模式断面図である。 回路部材の接続構造体の実施形態を示す模式断面図である。 回路部材の接続構造体の実施形態を示す模式断面図である。 (a)〜(c)は図2の回路部材の接続構造体を製造する一連の工程図である。 (a)〜(c)は図3の回路部材の接続構造体を製造する一連の工程図である。
以下、場合により図面を参照して、本発明の好適な実施形態について詳細に説明する。なお、各図面において、同一又は同等の要素には同一の符号を付与し、重複する説明を省略する。また、本明細書において、「(メタ)アクリル酸」とは、アクリル酸及びそれに対応するメタクリル酸を意味し、(メタ)アクリレート等の他の類似の表現についても同様である。
また、本明細書において、重量平均分子量(Mw)とは、下記に示す条件に従って、ゲル浸透クロマトグラフ(GPC)より標準ポリスチレンによる検量線を用いて測定した値をいう。
(測定条件)
装置:東ソー株式会社製 GPC−8020
検出器:東ソー株式会社製 RI−8020
カラム:日立化成工業株式会社製 Gelpack GL−A−160−S+GL−A150
試料濃度:120mg/3mL
溶媒:テトラヒドロフラン
注入量:60μL
圧力:30kgf/cm
流量:1.00mL/min
また、本明細書において、ガラス転移温度(Tg)とは、下記に示す条件に従って、示差走査熱量測定(DSC)により測定した値をいう。
(測定条件)
装置:パーキンエルマー社製 DSC7
試料重量:0.01g
測定雰囲気:窒素雰囲気下(流量:50ml/min)
温度範囲:−80〜200℃
昇温速度:10℃/min
判定方法:得られた吸熱曲線の変極点前後の直線を延長し、2本の延長線間の2分の1となる直線と吸熱曲線が交差する温度をガラス転移温度とする。
図1は、回路接続材料の一実施形態を示す模式断面図である。回路接続材料1は、基板上に第一の回路電極が形成された第一の回路部材と、第二の基板上に第二の回路電極が形成された第二の回路部材とを、前記第一の回路電極と前記第二の回路電極とが電気的に接続されるように接着するための回路接続材料であって、熱可塑性樹脂と、ラジカル重合性化合物と、ラジカル重合開始剤とを含有し、前記熱可塑性樹脂がアクリル樹脂を含み、前記アクリル樹脂の重量平均分子量が1000〜5000で規定されるものである。
(熱可塑性樹脂)
熱可塑性樹脂は、加熱により粘度の高い液状状態になって外力により自由に変形し、冷却し外力を取り除くとその形状を保ったままで硬くなり、この過程を繰り返し行える性質を持つ樹脂(高分子)をいう。
(アクリル樹脂)
本実施形態に係る回路接続材料では、熱可塑性樹脂の一成分として、特定の重量分子量で規定されるアクリル樹脂を含む。すなわち、熱可塑性樹脂の一成分として、重量平均分子量が1000〜5000のアクリル樹脂を含むことにより、本実施形態に係る回路接続材料は高い流動性と接続信頼性を兼備できる。
なお、上記アクリル樹脂の重量平均分子量は、流動性と接続信頼性の両立の観点から、1000〜5000で規定されるが、回路接続材料のフィルム形成性を高めることも考慮すると、1200〜4000がより好ましく、1500〜3000が更に好ましい。
また、上記アクリル樹脂のガラス転移温度(Tg)は、回路接続材料の流動性を充分に向上させる観点から、70℃未満が好ましく、30℃未満がより好ましく、0℃未満が更に好ましい。アクリル樹脂のガラス転移温度(Tg)の下限は特に限定されないが、例えば−80℃以上とすることができる。
更に、上記アクリル樹脂は、側鎖にヒドロキシル基、カルボキシル基、グリシジル基等の極性又は反応性の官能基を持たない「無官能タイプ」であることが好ましい。「無官能タイプ」のアクリル樹脂を含むことによって、他成分との相互作用が抑制され、その結果として回路接続材料の流動性を更に向上させることができる。
回路接続材料におけるアクリル樹脂の含有量は、流動性と接続信頼性の両立の観点から、熱可塑性樹脂及びラジカル重合性化合物の全質量を基準として、1質量%以上15質量%以下が好ましく、2質量%以上12質量%以下がより好ましく、4質量%以上10質量%以下が更に好ましい。
なお、本実施形態に係るアクリル樹脂は、上記特性を有する市販品を用いることができるほか、ラジカル重合等の公知の合成方法を用いて得られる合成品を使用してもよい。
本実施形態に係るアクリル樹脂は、例えば、架橋性を有するアクリル系モノマー及びオリゴマー、その他のアクリル系モノマー、並びにアクリル系モノマーと共重合可能なモノマーのいずれか1種類以上と、ラジカル重合開始剤と、を用いたラジカル重合によって得ることができる。
架橋性を有するアクリル系モノマー及びオリゴマーとしては、例えば、ポリテトラメチレングリコールジ(メタ)アクリレート、1,6−ヘキサンジオールジ(メタ)アクリレート、1,9−ノナンジオールジ(メタ)アクリレート、ジメチロールトリシクロデカンジアクリレート、2−ヒドロキシ−1−アクリロキシ−3−メタクリロキシプロパンジ(メタ)アクリレート等のジ(メタ)アクリル酸エステル誘導体、エチレングリコールジ(メタ)アクリレート等のポリエチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート等のポリプロピレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、1,3−ブチレングリコールジ(メタ)アクリレート、2,2−ビス[4−(メタクリロエトキシ)フェニル]プロパンジ(メタ)アクリレート等の2,2−ビス[4−(メタクリロキシポリエトキシ)フェニル]プロパンジ(メタ)アクリレート、2,2−水添ビス[4−(アクリロキシポリエトキシ)フェニル]プロパンジ(メタ)アクリレート、2,2−ビス[4−(アクリロキシエトキシポリプロポキシ)フェニル]プロパンジ(メタ)アクリレートなどが挙げられ、いずれも好適に用いることができるが、側鎖にヒドロキシル基、カルボキシル基、グリシジル基等の極性又は反応性の官能基を持たないことが好ましい。
その他のアクリル系モノマーとしては、例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチル、(メタ)アクリル酸−2−エチルヘキシル、(メタ)アクリル酸ステアリル、エチレングリコール(メタ)アクリレート,トリフルオロエチル(メタ)アクリレート、ペンタフルオロプロピル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート等の(メタ)アクリル酸エステル誘導体、トリメチロールプロパントリ(メタ)アクリレート、テトラメチルメタントリ(メタ)アクリレート、テトラメチロールプロパンテトラ(メタ)アクリレート、ジアリルフタレート及びその異性体、トリアリルイソシアヌレート及びその誘導体、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレートなどが挙げられ、いずれも好適に用いることができるが、側鎖及び末端にヒドロキシル基、カルボキシル基、グリシジル基等の極性又は反応性の官能基を持たないことが好ましい。
アクリル系モノマーと共重合可能なモノマーとしては、例えば、スチレン、α―メチルスチレン、p−メチルスチレン、p−クロロスチレン、クロロメチルステレン等のスチレン誘導体、塩化ビニル、酢酸ビニル、プロピオン酸ビニル等のビニルエステル類、アクリロニトリル等の不飽和ニトリル類、ブタジエン、イソプレン等の共役ジエン類などが挙げられ、いずれも好適に用いることができるが、側鎖及び末端にヒドロキシル基、カルボキシル基、グリシジル基等の極性又は反応性の官能基を持たないことが好ましい。
(アクリル樹脂以外の熱可塑性樹脂)
本実施形態に係る回路接続材料は、アクリル樹脂以外の熱可塑性樹脂を含有してもよい。アクリル樹脂以外の熱可塑性樹脂としては、例えば、フェノキシ樹脂、ポリウレタン樹脂、ポリエステルウレタン樹脂、ブチラール樹脂(例えば、ポリビニルブチラール樹脂)、ポリイミド樹脂、ポリアミド樹脂、酢酸ビニルを構造単位として有する共重合体(酢酸ビニル共重合体、例えばエチレン−酢酸ビニル共重合体)等が挙げられる。これらは1種を単独で又は2種以上を混合して用いることができる。熱可塑性樹脂中にはシロキサン結合又はフッ素置換基が含まれていてもよい。これらは、混合する樹脂同士が完全に相溶する状態又はミクロ相分離を生じて白濁する状態であることが好ましい。
また、上記アクリル樹脂以外の熱可塑性樹脂のガラス転移温度(Tg)は、回路接続材料の流動性と接続信頼性の両立の観点から、−30℃以上190℃以下が好ましく、−25℃以上170℃以下がより好ましく、−20℃以上150℃以下が更に好ましい。
また、回路接続材料をフィルム状に成形して利用する場合、熱可塑性樹脂のMwが大きいほど、良好なフィルム形成性が容易に得られ、また、フィルム状の回路接続材料としての流動性に影響する溶融粘度を広範囲に設定できる。
本実施形態に係るアクリル樹脂以外の熱可塑性樹脂のMwは、5000以上が好ましく、7000以上がより好ましく、10000以上が更に好ましい。熱可塑性樹脂のMwが5000以上であると、良好なフィルム形成性が得られ易くなる。
また、本実施形態に係るアクリル樹脂以外の熱可塑性樹脂のMwは、150000以下が好ましく、100000以下がより好ましく、80000以下が更に好ましい。熱可塑性樹脂のMwが150000以下であると、他の成分との良好な相溶性が得られ易くなる。
回路接続材料における、本実施形態に係るアクリル樹脂以外の熱可塑性樹脂の配合量は、熱可塑性樹脂及びラジカル重合性化合物の全質量を基準として、5質量%以上が好ましく、15質量%以上がより好ましい。熱可塑性樹脂の配合量が5質量%以上であると、回路接続材料をフィルム状に成形して利用する場合に、良好なフィルム形成性が得られ易くなる。また、アクリル樹脂以外の熱可塑性樹脂の配合量は、回路接続材料における導電性粒子を以外の成分の全質量を基準として、80質量%以下が好ましく、70質量%以下がより好ましい。熱可塑性樹脂の配合量が80質量%以下であると、良好な接着剤組成物の流動性が得られ易くなる。
(ラジカル重合性化合物)
ラジカル重合性化合物は、ラジカルにより重合する官能基を有する物質である。ラジカル重合性化合物としては、(メタ)アクリレート化合物、マレイミド化合物、スチレン誘導体等が挙げられる。これらは、1種を単独で、又は2種以上を混合して使用することができる。また、ラジカル重合性化合物は、モノマー又はオリゴマーのいずれの状態でも使用することができ、モノマーとオリゴマーとを混合して使用してもよい。
(メタ)アクリレート化合物としては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、イソプロピル(メタ)アクリレート、イソブチル(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、テトラメチレングリコールジ(メタ)アクリレート、2−ヒドロキシ−1,3−ジアクリロキシプロパン、2,2−ビス[4−(アクリロキシメトキシ)フェニル]プロパン、2,2−ビス[4−(アクリロキシエトキシ)フェニル]プロパン、ジシクロペンテニル(メタ)アクリレートトリシクロデカニル(メタ)アクリレート、トリス(アクリロキシエチル)イソシアヌレート、ウレタン(メタ)アクリレート、イソシアヌール酸エチレンオキシド変性ジアクリレート等が挙げられる。これらは、1種を単独で、又は2種以上を混合して使用することができる。
マレイミド化合物は、例えば、マレイミド基を少なくとも1個有する化合物である。マレイミド化合物としては、例えば、フェニルマレイミド、1−メチル−2,4−ビスマレイミドベンゼン、N,N’−m−フェニレンビスマレイミド、N,N’−p−フェニレンビスマレイミド、N,N’−4、4−ビフェニレンビスマレイミド、N,N’−4,4−(3,3−ジメチルビフェニレン)ビスマレイミド、N,N’−4,4−(3,3−ジメチルジフェニルメタン)ビスマレイミド、N,N’−4,4−(3,3−ジエチルジフェニルメタン)ビスマレイミド、N,N’−4,4−ジフェニルメタンビスマレイミド、N,N’−4,4−ジフェニルプロパンビスマレイミド、N,N’−4,4−ジフェニルエーテルビスマレイミド、N,N’−4,4−ジフェニルスルホンビスマレイミド、2,2−ビス(4−(4−マレイミドフェノキシ)フェニル)プロパン、2,2−ビス(3−s−ブチル−3,4−(4−マレイミドフェノキシ)フェニル)プロパン、1,1−ビス(4−(4−マレイミドフェノキシ)フェニル)デカン、4,4’−シクロヘキシリデン−ビス(1−(4−マレイミドフェノキシ)フェノキシ)−2−シクロヘキシルベンゼン、2,2−ビス(4−(4−マレイミドフェノキシ)フェニル)ヘキサフルオロプロパン等が挙げられる。これらは、1種を単独で、又は2種以上を混合して使用してもよい。
スチレン誘導体は、スチレンのα−位又は芳香族環における水素原子が置換基で置換された化合物である。
また、上記ラジカル重合性化合物の配合量は、熱可塑性樹脂及びラジカル重合性化合物の全質量を基準として、10〜95質量%が好ましく、30〜80質量%がより好ましく、40〜60質量%が更に好ましい。上記配合量に設定することにより、硬化後の耐熱性が充分で、良好なフィルム形成性を有する回路接続材料が得られ易い傾向がある。
(ラジカル重合開始剤)
ラジカル重合開始剤としては、例えば、加熱により分解して遊離ラジカルを発生する過酸化化合物、アゾ系化合物等が挙げられる。これらは目的とする接続温度、接続時間、保存安定性等により適宜選定されるが、反応性と保存安定性の点から、10時間半減期温度が40℃以上、かつ1分半減期温度が180℃以下の有機過酸化物又はアゾ系化合物が好ましく、10時間半減期温度が60℃以上、かつ1分半減期温度が170℃以下の有機過酸化物又はアゾ系化合物がより好ましい。
接続時間を10秒以下とした場合、ラジカル重合開始剤の配合量は、充分な反応率を得るために、熱可塑性樹脂及びラジカル重合性化合物の全質量を100質量部としたとき、0.1〜30質量部とすることが好ましく、0.5〜20質量部とすることがより好ましい。ラジカル重合開始剤の配合量が0.1質量部以上にすることにより充分な反応率を維持しつつ、良好な接着強度及び低い接続抵抗を有する回路接続材料が得られやすい。一方、ラジカル重合開始剤の配合量が30質量部以下にすることにより、回路接続材料の流動性の低下、接続抵抗の上昇、及び保存安定性の低下を抑制しやすい。
ラジカル重合開始剤の具体例としては、例えば、ジアシルパーオキサイド、パーオキシジカーボネート、パーオキシエステル、パーオキシケタール、ジアルキルパーオキサイド、ハイドロパーオキサイド、シリルパーオキサイド等が挙げられる。また、回路部材の接続端子の腐食を抑えるために、ラジカル重合開始剤中に含有される塩素イオン及び有機酸は5000ppm以下であることが好ましい。これらの中でもパーオキシエステル、パーオキシケタール、ジアルキルパーオキサイド、ハイドロパーオキサイド又はシリルパーオキサイドであることが好ましく、高反応性が得られるパーオキシエステル又はパーオキシケタールであることがより好ましい。これらは、1種を単独で、又は2種以上を混合して使用することができる。
ジアシルパーオキサイドとしては、例えば、イソブチリルパーオキサイド、2,4−ジクロロベンゾイルパーオキサイド、3,5,5−トリメチルへキサノイルパーオキサイド、オクタノイルパーオキサイド、ラウロイルパーオキサイド、ステアロイルパーオキサイド、スクシニックパーオキサイド、ベンゾイルパーオキシトルエン、ベンゾイルパーオキサイド等が挙げられる。
パーオキシジカーボネートとしては、例えば、ジ−n−プロピルパーオキシジカーボネート、ジイソプロピルパーオキシジカーボネート、ビス(4−t−ブチルシクロへキシル)パーオキシジカーボネート、ジ−2−エトキシメトキシパーオキシジカーボネート、ジ(2−エチルへキシルパーオキシ)ジカーボネート、ジメトキシブチルパーオキシジカーボネート、ジ(3−メチル−3メトキシブチルパーオキシ)ジカーボネート等が挙げられる。
パーオキシエステルとしては、例えば、クミルパーオキシネオデカノエート、1,1,3,3−テトラメチルブチルパーオキシネオデカノエート、1−シクロへキシル−1−メチルエチルパーオキシネオデカノエート、t−へキシルパーオキシネオデカノエート、t−ブチルパーオキシピバレート、1,1,3,3−テトラメチルブチルパーオキシ−2−エチルへキサノネート、2,5−ジメチル−2,5−ジ(2−エチルヘキサノイルパーオキシ)ヘキサン、1−シクロへキシル−1−メチルエチルパーオキシ−2−エチルヘキサノネート、t−へキシルパーオキシ−2−エチルへキサノネート、t−ブチルパーオキシ−2−エチルへキサノネート、t−ブチルパーオキシイソブチレート、1,1−ビス(t−ブチルパーオキシ)シクロへキサン、t−へキシルパーオキシイソプロピルモノカーボネート、t−ブチルパーオキシ−3,5,5−トリメチルへキサノネート、t−ブチルパーオキシラウレート、2,5−ジメチル−2,5−ジ(m−トルオイルパーオキシ)へキサン、t−ブチルパーオキシイソプロピルモノカーボネート、t−ブチルパーオキシ−2−エチルへキシルモノカーボネート、t−へキシルパーオキシベンゾエート、t−ブチルパーオキシアセテート等が挙げられる。
パーオキシケタールとしては、例えば、1,1−ビス(t−へキシルパーオキシ)−3,3,5−トリメチルシクロへキサン、1,1−ビス(t−へキシルパーオキシ)シクロヘキサン、1,1−ビス(t−ブチルパーオキシ)−3,3,5−トリメチルシクロへキサン、1,1−ビス(t−ブチルパーオキシ)シクロドデカン、2,2−ビス(t−ブチルパーオキシ)デカン等が挙げられる。
ジアルキルパーオキサイドとしては、例えば、α,α’−ビス(t−ブチルパーオキシ)ジイソプロピルベンゼン、ジクミルパーオキサイド、2,5−ジメチル−2,5−ジ(t−ブチルパーオキシ)へキサン、t−ブチルクミルパーオキサイド等が挙げられる。
ハイドロパーオキサイドとしては、例えば、ジイソプロピルベンゼンハイドロパーオキサイド、クメンハイドロパーオキサイド等が挙げられる。
シリルパーオキサイドとしては、例えば、t−ブチルトリメチルシリルパーオキサイド、ビス(t−ブチル)ジメチルシリルパーオキサイド、t−ブチルトリビニルシリルパーオキサイド、ビス(t−ブチル)ジビニルシリルパーオキサイド、トリス(t−ブチル)ビニルシリルパーオキサイド、t−ブチルトリアリルシリルパーオキサイド、ビス(t−ブチル)ジアリルシリルパーオキサイド、トリス(t−ブチル)アリルシリルパーオキサイド等が挙げられる。
これらの加熱により遊離ラジカルを発生するラジカル重合開始剤は、更に分解促進剤、抑制剤等を混合して用いてもよい。また、これらのラジカル重合開始剤をポリウレタン系、ポリエステル系の高分子物質等で被覆してマイクロカプセル化したものは、可使時間が延長されるために好ましい。
本実施形態に係る回路接続材料は、アルミニウム錯体を更に含有していてもよい。
アルミニウム錯体は、アルミニウムに有機基からなる配位子が結合した分子である。配位子は配位部位を1か所にのみ持つ単座配位子であっても、配位部位を2か所以上に持つ多座配位子であってもよい。アルミニウムと配位子との結合は、水素結合又は配位結合のいずれであってもよい。有機基としては、例えば、炭素原子、水素原子及び酸素原子から構成される基が挙げられ、それらは硫黄原子、窒素原子等を更に含んでいてもよい。
アルミニウム錯体は、下記一般式(2)で表されるものが好ましい。
Figure 2014145028

[一般式(2)中、L、L及びLは、それぞれ独立に、アルコキシ陰イオン、β−ジケトンの共役陰イオン又はβ−ケトエステルの共役陰イオンを示す。L、L及びLは、同一であってもよく、異なっていてもよい。]
一般式(2)で表されるアルミニウム錯体の具体例としては、例えば、アルミニウムトリス(アセチルアセトネート)、アルミニウムトリス(エチルアセトアセテート)、アルミニウムモノアセチルアセトネートビス(エチルアセトアセテート)、アルミニウムモノアセチルアセトネートビス(オレイルアセトアセテート)、ジイソプロポキシアルミニウムエチルアセトアセテート、ジイソプロポキシアルミニウムアルキルアセトアセテート等が挙げられる。
これらは、1種を単独で、又は2種以上を混合して使用することができる。
回路接続材料におけるアルミニウム錯体の配合量は、特に制限されるものではないが、例えば、熱可塑性樹脂及びラジカル重合性化合物の全質量を100質量部としたとき、0.1〜20質量部とすることができる。また、硬化物性の観点から、0.5〜15質量部とすることが好ましく、1〜10質量部とすることがより好ましい。
本実施形態に係る回路接続材料は、シランカップリング剤を更に含有してもよい。
シランカップリング剤は、その分子中にアルコキシシリル基(Si−OR)を有する化合物である。シランカップリング剤としては特に制限されないが、例えば、分子内に、少なくとも1つアルコキシシリル基(Si−OR)を有する、下記一般式(6)〜(8)で表される化合物を使用することができる。
X−R21−Si(OR22 (6)
X−R21−SiR23(OR22 (7)
X−R21−Si(R23−OR22 (8)
[式(6)〜(8)中、R21は、炭素数1〜6のアルキレン基を示し、R22及びR23は、それぞれ独立に、炭素数1〜12の直鎖状若しくは分岐状のアルキル基、シクロアルキル基、フェニル基又は置換フェニル基を示し、Xはウレイド基、3、4−エポキシシクロヘキシル基、グリシジルオキシ基、イソシアネート基、ビニル基、メタクリロイル基、アクリロイル基又はメルカプト基を示す。]
なお、式(6)〜(8)中のXとして、(メタ)アクリロイル基等のラジカル重合性二重結合を有する基を含むことが好ましい。これにより、接着力が更に向上する。
シランカップリング剤としては、具体的には、例えば、3−メタクリロキシプロピルメチルジメトキシシラン、3−メタクリロキシプロピルトリメトキシシラン、3−メタクリロキシプロピルメチルジエトキシシラン、3−メタクリロキシプロピルトリエトキシシラン、3−アクリロキシプロピルトリメトキシシラン等が挙げられる。
これらは、1種を単独で、又は2種以上を混合して使用することができる。
回路接続材料におけるシランカップリング剤の含有量は、特に制限されるものではないが、例えば、熱可塑性樹脂及びラジカル重合性化合物の全質量を100質量部としたとき、0.1〜30質量部とすることができる。また、接着力の観点から、1〜20質量部とすることが好ましく、2〜10質量部とすることがより好ましい。
本実施形態に係る回路接続材料は、導電性粒子を更に含んでもよい。
導電性粒子としては、Au、Ag、Ni、Cu、はんだ等の金属粒子、カーボンなどの導電性物質が挙げられる。充分な保存安定性を得るためには、表層がAu、Ag等の貴金属類であることが好ましく、Auであることがより好ましい。また、Ni、Cu等の遷移金属類の表面をAu、Ag等の貴金属類で被覆層を形成してもよい。また、非導電性のガラス、セラミック、プラスチック等の表面に上記導電性物質で被覆層を形成したものも使用することができ、この場合においても被覆層は貴金属類で形成したものが好ましい。
導電性粒子として、非導電性のプラスチック等を導電性物質で被覆したもの又は熱溶融金属粒子を用いると、加熱及び加圧によりこれらの導電性粒子は変形するため、接続時に電極との接触面積が増加し、回路部材における電極の厚みばらつきを吸収する傾向があるので好ましい。
貴金属類の被覆層の厚みは、良好な抵抗を得る観点から、10nm以上とすることが好ましい。ただし、Ni、Cu等の遷移金属類の上に貴金属類の層を設ける場合は、貴金属類層の欠損等により生じる酸化還元作用で遊離ラジカルが発生し、保存安定性の低下を引き起こす傾向があるため、これを防止する観点から、被覆層の厚みは30nm以上とすることが好ましい。なお、被覆層の厚みの上限は特に制限されないが、得られる効果が飽和してくるため、1μm以下とすることが好ましい。
導電性粒子の平均粒径は、SEM観察によって求めることができる。導電性粒子の平均粒径は、分散性及び導電性が良好となる観点から1〜18μmであることが好ましい。導電性粒子の配合量は、回路接続材料における導電性粒子以外の成分100体積部に対して0.1〜60体積部とすることが好ましく、この範囲内で用途に応じて適宜調節することが好ましい。なお、導電性粒子が過剰に存在することによる隣接回路の短絡等を防止する観点から、配合量は0.1〜30体積部とすることがより好ましい。
(安定化剤)
本実施形態に係る回路接続材料には、硬化速度の制御及び貯蔵安定性を更に向上させるために、安定化剤を添加することできる。このような安定化剤としては、特に制限なく公知の化合物を使用することができるが、例えば、ベンゾキノン、ハイドロキノン等のキノン誘導体、4−メトキシフェノール、4−t−ブチルカテコール等のフェノール誘導体、2,2,6,6−テトラメチルピペリジン−1−オキシル、4−ヒドロキシ−2,2,6,6−テトラメチルピペリジン−1−オキシル等のアミノキシル誘導体、テトラメチルピペリジルメタクリレート等のヒンダードアミン誘導体などが挙げられる。安定化剤は、1種を単独で又は2種以上を混合して用いることができる。
安定化剤の配合量は、回路接続材料における導電性粒子以外の成分の全質量を基準として、0.005質量%以上が好ましく、0.01質量%以上がより好ましく、0.02質量%以上が更に好ましい。上記配合量が0.005質量%以上であると、硬化速度を制御し易くなると共に貯蔵安定性が向上し易い傾向がある。安定化剤の配合量は、回路接続材料における導電性粒子以外の成分の全質量を基準として、10質量%以下が好ましく、8質量%以下がより好ましく、5質量%以下が更に好ましい。上記配合量が10質量%以下であると、他の成分と相溶し易い傾向がある。
(その他の成分)
本実施形態に係る回路接続材料は、更に、充填剤、軟化剤、老化防止剤、難燃化剤、色素、チキソトロピック剤、フェノール樹脂、メラミン樹脂、イソシアネート類等を含有していてもよい。
(回路接続材料の一形態)
本実施形態に係る回路接続材料は、フィルム状に成形して使用することができ、更に2層以上の層からなる多層構成(図示せず)としてもよい。例えば、2層フィルム型回路接続材料では、導電性粒子を含む導電性接着剤層と、該導電性接着剤層の片面に形成された絶縁性の絶縁性接着剤層とを備え、導電性接着剤層及び絶縁性接着剤層のいずれにも熱可塑性樹脂、ラジカル重合性化合物、ラジカル重合開始剤、アルミニウム錯体、シランカップリング剤を含有する。導電性接着剤層及び絶縁性接着剤層に含有される熱可塑性樹脂、ラジカル重合性化合物、ラジカル重合開始剤、アルミニウム錯体、シランカップリング剤は、それぞれ同一であってもよく、異なっていてもよい。なお、本発明で規定されるアクリル樹脂は、少なくとも一方の層に含まれていればよく、特に限定されない。
本実施形態に係る回路接続材料が、多層構成のフィルム状である場合、例えば、各層を別々に作製した後、それぞれの層を貼り合せることにより多層フィルム型回路接続材料を作製することができる。例えば、導電性粒子を含有する導電性接着剤層と、該導電性接着剤層の片面に形成された絶縁性の絶縁性接着剤層との2層フィルム型回路接続材料である場合、導電性接着剤層の構成成分の組成物を、溶媒に溶解したものを支持体(PET(ポリエチレンテレフタレート)フィルム等)上に塗工装置を用いて塗布し、組成物が硬化しない温度で所定時間熱風乾燥することにより、導電性接着剤層を作製することができる。同様にして、絶縁性接着剤層も作製することができる。次に、導電性接着剤層と、絶縁性接着剤層とを、例えば、ホットロールラミネータを用いて貼り合せることにより、2層フィルム型回路接続材料を作製することができる。また、導電性接着剤層の厚さは、例えば、1〜10μmとすることができ、絶縁性接着剤層の厚さは、例えば、5〜40μmとすることができ、2層フィルム型回路接続材料全体の厚さは、例えば、6〜50μmとすることができる。
(回路部材の接続構造体)
図2は、回路部材の接続構造体の一実施形態を示す模式断面図である。図2に示すように、本実施形態の回路部材の接続構造体は、相互に対向する基板21から構成される第一の回路部材20及び基板31から構成される第二の回路部材30を備えており、第一の回路部材20と第二の回路部材30との間には、これらを接続する回路接続部材10が設けられている。
基板21から構成される第一の回路部材20は、基板21(第一の基板)と、基板21の主面21a上に形成された回路電極(第一の回路電極)22とを備えている。なお、基板21の主面21a上には、場合により絶縁層(図示せず)が形成されていてもよい。
第一の回路部材20としては、例えば、電気的接続を必要とする電極が形成されているものであれば特に制限はない。具体的には、液晶ディスプレイに用いられているITOで電極が形成されている基板から構成される回路部材等が挙げられる。この基板は、例えば、ガラスの他、ポリイミド(PI)樹脂、ポリエチレンテレフタレート(PET)樹脂、ポリカーボネート(PC)樹脂、メタクリル樹脂、環状オレフィン樹脂等のプラスチックから形成される。また、本実施形態では、金、銅、アルミニウム等の金属又はITO(indium tinoxide)、窒化ケイ素(SiN)、二酸化ケイ素(SiO)等の無機材料からなる材質で表面の少なくとも一部が形成される、多種多様な表面状態を有する回路部材を用いることができる。
一方、第二の回路部材30は、基板(第二の基板)31と、基板31の主面31a上に形成された回路電極(第二の回路電極)32とを備えている。また、基板31の主面31a上にも、場合により絶縁層(図示せず)が形成されていてもよい。第二の回路部材30としては、電気的接続を必要とする電極が形成されているものであれば特に制限はない。具体的には例えば、ICチップ等を挙げることができる。また、第二の基板がプラスチック基板であってもよい。
回路接続部材10は、絶縁性物質11及び導電性粒子7を含有している。導電性粒子7は、対向する回路電極22と回路電極32との間のみならず、主面21aと主面31aとの間にも配置されている。回路部材の接続構造体においては、回路電極22及び回路電極32が、導電性粒子7を介して電気的に接続されている。
この回路部材の接続構造体においては、上述したように、対向する回路電極22と回路電極32とが導電性粒子7を介して電気的に接続されている。このため、回路電極22及び回路電極32間の接続抵抗が充分に低減される。したがって、回路電極22及び回路電極32間の電流の流れを円滑にすることができ、回路の持つ機能を充分に発揮することができる。
図3は、回路部材の接続構造体の他の実施形態を示す模式断面図である。図3に示す回路部材の接続構造体は、回路接続部材10が導電性粒子7を含有していないこと以外は、上述した実施形態に係る回路部材の接続構造体と同じである。図3に示す回路部材の接続構造体では、回路電極22と回路電極32とが導電性粒子を介することなく、電気的に接続される。
回路接続部材10は後述するように、上記回路接続材料の硬化物により構成されていることから、基板21から構成される第一の回路部材20及び基板31から構成される第二の回路部材30に対する回路接続部材10の接着強度が充分に高いものである。また、高温高湿環境下においても安定した接着強度が得られる。また、回路部材の接続構造体では接着強度が充分に高い状態が長期間にわたって持続される。したがって、回路電極22及び回路電極32間の距離の経時的変化が充分に防止され、回路電極22及び回路電極32間の電気特性の長期信頼性を充分に高めることが可能となる。
また、回路接続部材10は、上述の多層フィルム構成の回路接続材料の硬化物により構成されていてもよい。例えば、導電性粒子を含む導電性接着剤層と、該導電性接着剤層の片面に形成された絶縁性の絶縁性接着剤層とを少なくとも有し、導電性接着剤層及び絶縁性接着剤層のいずれにも熱可塑性樹脂、ラジカル重合性化合物、ラジカル重合開始剤、アルミニウム錯体、シランカップリング剤と、を少なくとも含む回路接続材料の硬化物により構成されていてもよい。この場合、第一の回路電極22及び第二の回路電極32のうちの少なくとも一方の回路電極の高さが3.0μm以下であり、回路接続材料1における導電性接着剤層が、高さが3.0μm以下である回路電極側に配置されていることが好ましい。
(回路部材の接続構造体の製造方法)
次に、上述した回路部材の接続構造体の製造方法について説明する。図4及び図5は、回路部材の接続構造体の製造する一連の工程図である。
先ず、上述した第一の回路部材20と、回路接続材料40を用意する(図4(a)及び図5(a)参照)。回路接続材料40は、導電性粒子以外の成分5と、導電性粒子7とを含有する場合と、導電性粒子以外の成分5のみを含有する場合がある。
回路接続材料40の厚さは、10〜50μmであることが好ましい。回路接続材料40の厚さが10μm未満では、回路電極22及び回路電極32間に接着剤組成物が充填不足となる傾向がある。他方、50μmを超えると、回路電極22及び回路電極32間の回路接続材料を充分に排除しきれなくなり、回路電極22及び回路電極32間の導通の確保が困難となる傾向がある。
次に、回路接続材料40を第一の回路部材20の回路電極22が形成されている面上に載せる。なお、回路接続材料40が支持体(図示せず)上に付着している場合には、回路接続材料40側を第一の回路部材20に向けるようにして、第一の回路部材20上に載せる。このとき、回路接続材料40はフィルム状であるため、取り扱いが容易であり、第一の回路部材20と第二の回路部材30との間に回路接続材料40を容易に介在させることができ、第一の回路部材20と第二の回路部材30との接続作業を容易に行うことができる。
そして、回路接続材料40を、図4(a)及び図5(a)の矢印A及びB方向に加圧し、回路接続材料40を第一の回路部材20に仮接続する(図4(b)及び図5(b)参照)。このとき、加熱しながら加圧してもよい。ただし、加熱温度は回路接続材料40中のラジカル重合開始剤がラジカルを発生する温度よりも低い温度とする。
続いて、図4(c)及び図5(c)に示すように、第二の回路部材30を、第二の回路電極32を第一の回路部材20に向けるようにして(すなわち、第一の回路電極22と第二の回路電極32とが対向配置される状態にして)回路接続材料40上に載せる。なお、回路接続材料40が支持体(図示せず)上に付着している場合には、支持体を剥離してから第二の回路部材30を回路接続材料40上に載せる。
そして、回路接続材料40を加熱しながら、図4(c)及び図5(c)の矢印A及びB方向に第一の回路部材20及び第二の回路部材30を介して加圧する。このときの加熱温度は、ラジカル重合開始剤がラジカルを発生可能な温度とする。これにより、ラジカル重合開始剤においてラジカルが発生し、ラジカル重合性化合物の重合が開始される。こうして、回路接続材料40が硬化処理され、本接続が行われ、図2及び3に示すような回路部材の接続構造体が得られる。
加熱温度は、例えば、90〜200℃とし、加圧圧力は、例えば、5〜80MPaとし、接続時間は、例えば、1秒〜10分とする。これらの条件は、接着剤組成物、回路部材によって適宜選択され、必要に応じて、後硬化を行ってもよい。例えば、本実施形態のように、ラジカル重合性化合物及びラジカル重合開始剤を用いている場合、加熱温度を100〜160℃とし、加圧圧力を10〜30MPaとし、接続時間を10秒以内とし、低温低圧速硬化させることもできる。
上記回路部材の接続構造体を製造によれば、得られる回路部材の接続構造体において、回路電極22及び回路電極32間の接続抵抗を充分に低減することができる。
また、回路接続材料40の加熱により、回路電極22と回路電極32との間の距離を充分に小さくした状態で導電性粒子以外の成分5が硬化して絶縁性物質11となり、第一の回路部材20と第二の回路部材30とが回路接続部材10を介して強固に接続される。すなわち、得られる回路部材の接続構造体においては、回路接続部材10は、上記接着剤組成物を含む回路接続材料の硬化物により構成されていることから、第一の回路部材20又は第二の回路部材30に対する回路接続部材10の接着強度が充分に高くなり、特に高温高湿条件下において充分に接着強度が高くなる。また、回路部材の接続構造体では接着強度が充分に高い状態が長期間にわたって持続される。したがって、得られる回路部材の接続構造体は、回路電極22及び回路電極32間の距離の経時的変化が充分に防止され、回路電極22及び回路電極32間の電気特性の長期信頼性に優れる。
なお、上記実施形態では、回路接続材料40に、少なくとも加熱によりラジカルを発生するラジカル重合開始剤を含むものが用いられているが、このラジカル重合開始剤に代えて、光照射のみでラジカルを発生するラジカル重合開始剤を用いてもよい。この場合、回路接続材料40の硬化処理に際して、加熱に代えて光照射を行えばよい。この他にも、必要に応じて、超音波、電磁波等によりラジカルを発生するラジカル重合開始剤を用いてもよい。また、硬化性成分としてエポキシ樹脂及び潜在性硬化剤を用いてもよい。
また、導電性粒子7の代わりに、他の導電材料を用いてもよい。他の導電材料としては、粒子状又は短繊維状のカーボン、AuめっきNi線等の金属線条などが挙げられる。
以下に、本発明を実施例に基づいて具体的に説明するが、本発明はこれに限定されるものではない。
(合成例1:アクリル樹脂AR−1の合成)
攪拌機、温度計、冷却器及び滴下ロートを備えたフラスコに、イソプロピルアルコール(以降、IPA)1kgを仕込み、70℃に加熱した。別途、ノナンジオールジアクリレート(シグマ・アルドリッチ社製)335g、n−ブチルアクリレート(シグマ・アルドリッチ社製)210g、アゾビスイソブチロニトリル(以降、AIBN、シグマ・アルドリッチ社製)4g、IPA400gからなる混合溶液を調製し、上記滴下ロートから5時間かけてフラスコ内に連続滴下して重合を行った。滴下終了後更にAIBN4gを添加して、80℃で4時間熟成した。
重合終了後、減圧下で反応液から未反応単量体、溶剤等の揮発成分を除去し、液状のAR−1を得た。AR−1の重量平均分子量は1600、ガラス転移温度は−70℃であった。
(合成例2:アクリル樹脂AR−2の合成)
攪拌機、温度計、冷却器及び滴下ロートを備えたフラスコに、IPA1kgを仕込み、70℃に加熱した。別途、ジシクロペンテニルオキシエチルメタクリレート(シグマ・アルドリッチ社製)420g、n−ブチルアクリレート(シグマ・アルドリッチ社製)210g、AIBN4g、IPA400gからなる混合溶液を調製し、上記滴下ロートから5時間かけてフラスコ内に連続滴下して重合を行った。滴下終了後更にAIBN4gを添加して、80℃で4時間熟成した。
重合終了後、減圧下で反応液から未反応単量体、溶剤等の揮発成分を除去し、液状のAR−2を得た。AR−2の重量平均分子量は1700、ガラス転移温度は−51℃であった。
(合成例3:アクリル樹脂AR−3の合成)
攪拌機、温度計、冷却器及び滴下ロートを備えたフラスコに、IPA1kgを仕込み、70℃に加熱した。別途、n−ブチルアクリレート(シグマ・アルドリッチ社製)800g、AIBN4g、IPA400gからなる混合溶液を調製し、上記滴下ロートから5時間かけてフラスコ内に連続滴下して重合を行った。滴下終了後更にAIBN4gを添加して、80℃で4時間熟成した。
重合終了後、減圧下で反応液から未反応単量体、溶剤等の揮発成分を除去し、液状のAR−3を得た。AR−3の重量平均分子量は1800、ガラス転移温度は−70℃であった。
(合成例4:ウレタンアクリレートUA−1の合成)
撹拌機、温度計、塩化カルシウム乾燥管を備えた還流冷却管、及び窒素ガス導入管を備えた反応容器に、数平均分子量2000のポリカプロラクトンジオール(脂肪族ポリエステルジオール、商品名:プラクセル220EB、ダイセル化学工業株式会社製)2000質量部(1.00モル)、ジブチルスズジラウレート(シグマ・アルドリッチ社製)5.53質量部を投入した。充分に窒素ガスを導入した後、70〜75℃に加熱し、イソフォロンジイソシアネート(脂肪族イソシアネート、シグマ・アルドリッチ社製)688質量部(3.10モル)を3時間かけて均一に滴下し、反応させた。滴下終了後約10時間反応を継続した。これに2−ヒドロキシエチルアクリレート(シグマ・アルドリッチ社製)238質量部(2.05モル)、ハイドロキノンモノメチルエーテル(シグマ・アルドリッチ社製)0.53質量部を投入し、更に10時間反応させ、IR測定によりイソシアネートが消失したことを確認して反応を終了し、ウレタンアクリレート(UA−1)を得た。得られたウレタンアクリレートの重量平均分子量は10000であった。得られたUA−1は固形分40質量%となるようにメチルエチルケトンに溶解した。
(合成例5:ポリエステルウレタン樹脂PEU−1の合成)
ジガルボン酸としてテレフタル酸(シグマ・アルドリッチ社製)、ジオールとしてプロピレングリコール(シグマ・アルドリッチ社製)及びネオペンチルグリコール(シグマ・アルドリッチ社製)、ジイソシアネートとして4,4’−ジフェニルメタンジイソシアネート(シグマ・アルドリッチ社製)を用いた。
(手順1:ポリエステルポリオールの合成)
まず、テレフタル酸/プロピレングリコール/ネオペンチルグリコールを質量比で59/21/3になるように混合し、撹拌機、温度計、コンデンサー、真空発生装置及び窒素ガス導入管が備え付けられたヒーター付きステンレス製オートクレーブに投入した。更に、触媒として三酸化アンチモンを上記テレフタル酸100molに対して0.003molの比率で、界面活性剤として水酸化コリンを上記テレフタル酸100molに対して4molの比率でそれぞれ投入した。次いで、0.35MPaの窒素圧下で2.5時間かけて250℃まで昇温し、250℃で1時間撹拌した。その後、大気圧(0.1MPa)まで4.0×10−3MPa/分の条件で減圧し、そのまま250℃で3時間撹拌した。25℃まで冷却した後、白色沈殿を取り出し、水洗後、真空乾燥することによってポリエステルポリオールを得た。
(手順2:ポリエステルウレタンPEU−1の合成)
手順1で得られたポリエステルポリオールを十分に乾燥した後、トルエンに溶解し、撹拌機、滴下漏斗、還流冷却機及び窒素ガス導入管を取り付けた四つ口フラスコに投入した。触媒としてジブチルスズラウレートをポリエステルポリオール100質量部に対して0.02質量部の比率で投入した。一方、4,4’−ジフェニルメタンジイソシアネートを、テレフタル酸59質量部に対して17質量部になるように準備し、トルエンに溶解し、上記の滴下漏斗に投入した。反応系内を乾燥窒素で置換してから加熱を開始し、還流し始めたら滴下漏斗内の4,4’−ジフェニルメタンジイソシアネート溶液の半分を一度に加え、激しく撹拌した。残り半分の溶液は3時間かけて滴下し、滴下後さらに1時間撹拌した。25℃まで冷却することによって得られた沈殿を、ジメチルホルムアミドに溶解し、ジメチルホルムアミドと等量のメタノールを加えて、冷蔵庫(5℃)内に一晩放置した。放置後、得られた沈殿を取り出し、真空乾燥することによって、PEU−1を得た。得られたポリエステルウレタン樹脂の重量平均分子量は45000、ガラス転移温度は106℃であった。得られたポリエステルウレタン樹脂は固形分32質量%となるようにメチルエチルケトンとトルエンの1:1溶媒に溶解した。
(YP−70:フェノキシ樹脂の準備)
熱可塑性樹脂として、固形分40質量%となるようにメチルエチルケトンに溶解したフェノキシ樹脂(新日鐵化学株式会社製、商品名:YP−70)を準備した。
(M313:ウレタンアクリレートの準備)
ラジカル重合性化合物として、固形分80質量%となるようにメチルエチルケトンに溶解した多官能ウレタンアクリレート(東亜合成株式会社製、商品名:M313)を準備した。
(INI:ジラウロイルパーオキサイドの準備)
ラジカル重合開始剤として、固形分20質量%となるようにトルエンに溶解したジラウロイルパーオキサイド(和光純薬工業株式会社製、記号:INI)を準備した。
(AC−1:アルミニウム錯体の準備)
アルミニウム錯体として、固形分80質量%となるようにメチルエチルケトンに溶解したビス(エチルアセトアセテート)(2、4−ペンタンジオナト)アルミニウム(和光純薬工業株式会社製、記号:AC−1)を準備した。
(SC−1:シランカップリング剤の準備)
シランカップリング剤として、3−メタクリロキシプロピルトリメトキシシラン(和光純薬工業株式会社製、記号:SC−1)を準備した。
(CP−1:導電性粒子の準備)
ポリスチレンを核とする粒子の表面に、厚み0.2μmのニッケル層を設け、このニッケル層の外側に、厚み0.02μmの金層を設けた平均粒径3μm、比重2.5の導電性粒子(記号:CP−1)を作製して準備した。
(回路接続材料の作製)
表1に示した配合比で各成分を配合し、厚み40μmのPET樹脂フィルムに塗工装置を用いて塗布し、70℃、5分の熱風乾燥によって厚みが20μmである、実施例1〜10及び比較例1、2の回路接続材料を得た。
Figure 2014145028

表1中、導電性粒子を除き、各数値は質量部(ただし、溶液に関しては固形分換算)を表す。導電性粒子の数値は、導電性粒子以外の各成分の合計100体積部に対する体積部を表す。
(接続抵抗の評価)
実施例1〜10及び比較例1、2の回路接続材料を、(A)ガラス基板(外形38mm×28mm、厚さ0.5mm、表面にITO(indium tinoxide)配線パターン(パターン幅50μm、ピッチ50μm)を有するもの)、(B)ポリイミド(PI)基板(外形38mm×28mm、厚さ0.125mm、表面にITO配線パターン(パターン幅50μm、ピッチ50μm)を有するもの)、又は(C)ポリエチレンテレフタレート(PET)基板(外形38mm×28mm、厚さ0.125mm、表面に金(Au)配線パターン(パターン幅50μm、ピッチ50μm)を有するもの)に、2mm×20mmの大きさでPET樹脂フィルムから転写した。ICチップ(外形1.7mm×17.2mm、厚さ0.55mm、バンプの大きさ50μm×50μm、バンプのピッチ50μm、バンプの高さ15μm)を140℃、5秒の条件で、30MPa(バンプ面積換算)の荷重をかけて加熱加圧して実装した。得られた接続構造体の隣接回路間の抵抗値(14端子測定した中の平均値)は、マルチメータを用いて測定した。なお、上記抵抗値は、接続直後(表2中、「試験前」と表示)と、高温高湿試験(85℃、85%RH)を48時間行った後(表2中、「試験後」と表示)に測定した。
Figure 2014145028
接続直後(高温高湿試験前)において、実施例1〜10の回路接続材料を用いたときの抵抗値は、比較例1及び2に比べて、充分に低く良好であった。また、高温高湿試験後において、上記抵抗値は、比較例1及び2に比べて充分に低く、実施例1〜10の回路接続材料を用いた回路部材の接続構造体は良好な接続信頼性を示した。
(回路接続材料の作製:2層フィルム型回路接続材料)
(導電性接着剤層の作製)
表3に示す配合比で、熱可塑性樹脂、ラジカル重合性化合物、ラジカル重合開始剤、アルミニウム錯体、シランカップリング剤、及び導電性粒子を配合し、厚み40μmのPET樹脂フィルムに塗工装置を用いて塗布し、70℃、5分の熱風乾燥によって厚みが6μmである導電性接着剤層を作製した。
(絶縁性接着剤層の作製)
表4に示す配合比で、熱可塑性樹脂、ラジカル重合性化合物、ラジカル重合開始剤、アルミニウム錯体、及びシランカップリング剤を配合し、厚み40μmのPET樹脂フィルムに塗工装置を用いて塗布し、70℃、5分の熱風乾燥によって接着剤層の厚みが14μmである絶縁性接着剤層を作製した。
(2層構成フィルム型回路接続材料の作製)
上記導電性接着剤層と上記絶縁性接着剤層とを、ホットロールラミネータを用いて貼り合わせ、実施例11〜16及び比較例3、4に示す2層フィルム型回路接続材料を得た。
Figure 2014145028
Figure 2014145028

表3、4中、導電性粒子を除き、各数値は質量部(ただし、溶液に関しては固形分換算)を表す。導電性粒子の数値は、導電性粒子以外の各成分の合計100体積部に対する体積部を表す。
(接続抵抗の評価)
実施例11〜16及び比較例3、4の2層フィルム型回路接続材料を、(A)ガラス基板(外形38mm×28mm、厚さ0.5mm、表面にITO(indium tinoxide)配線パターン(パターン幅50μm、ピッチ50μm)を有するもの)、(B)ポリイミド(PI)基板(外形38mm×28mm、厚さ0.125mm、表面にITO配線パターン(パターン幅50μm、ピッチ50μm)を有するもの)、又は(C)ポリエチレンテレフタレート(PET)基板(外形38mm×28mm、厚さ0.125mm、表面に金(Au)配線パターン(パターン幅50μm、ピッチ50μm)を有するもの)に、2mm×20mmの大きさで、導電性接着剤層がそれぞれの基板に接するように配置し、PET樹脂フィルムから転写した。ICチップ(外形1.7mm×17.2mm、厚さ0.55mm、バンプの大きさ50μm×50μm、バンプのピッチ50μm、バンプの高さ15μm)を140℃、5秒の条件で、30MPa(バンプ面積換算)の荷重をかけて加熱加圧して実装した。得られた接続構造体の隣接回路間の抵抗値(14端子測定した中の平均値)は、マルチメータを用いて測定した。なお、上記抵抗値は、接続直後(表5中、「試験前」と表示)と、高温高湿試験(85℃、85%RH)を48時間行った後(表5中、「試験後」と表示)に測定した。
Figure 2014145028
接続直後(高温高湿試験前)において、実施例11〜16の回路接続材料を用いたときの抵抗値は、比較例3及び4に比べて、充分に低く良好であった。また、高温高湿試験後において、上記抵抗値は、比較例3及び4に比べて充分に低く、実施例11〜16の回路接続材料を用いた回路接続部材の接続構造体は良好な接続信頼性を示した。
1、40…回路接続材料、5…導電性粒子以外の成分、7…導電性粒子、10…回路接続部材、11…絶縁性物質、20…第一の回路部材、21…基板(第一の基板)、21a…主面、22…回路電極(第一の回路電極)、30…第二の回路部材、31…基板(第二の基板)、31a…主面、32…回路電極(第二の回路電極)。

Claims (11)

  1. 基板上に第一の回路電極が形成された第一の回路部材と、第二の基板上に第二の回路電極が形成された第二の回路部材とを、前記第一の回路電極と前記第二の回路電極とが電気的に接続されるように接着するための回路接続材料であって、熱可塑性樹脂と、ラジカル重合性化合物と、ラジカル重合開始剤とを含有し、前記熱可塑性樹脂がアクリル樹脂を含み、前記アクリル樹脂の重量平均分子量が1000〜5000である、回路接続材料。
  2. 前記アクリル樹脂のガラス転移温度が70℃未満である、請求項1に記載の回路接続材料。
  3. 前記アクリル樹脂が無官能タイプである、請求項1又は2に記載の回路接続材料。
  4. 下記一般式(1)で表されるアルミニウム錯体を更に含有する、請求項1〜3のいずれか一項に記載の回路接続材料。
    Figure 2014145028

    [一般式(1)中、L、L及びLは、それぞれ独立に、アルコキシ陰イオン、β−ジケトンの共役陰イオン又はβ−ケトエステルの共役陰イオンを示す。L、L及びLは、同一であってもよく、異なっていてもよい。]
  5. シランカップリング剤を更に含有する、請求項1〜4のいずれか一項に記載の回路接続材料。
  6. 前記シランカップリング剤が、分子内に少なくとも一つのアルコキシシリル基とラジカル重合性二重結合とを有する、請求項5に記載の回路接続材料。
  7. 導電性粒子を更に含む、請求項1〜6のいずれか一項に記載の回路接続材料。
  8. 前記熱可塑性樹脂、前記ラジカル重合性化合物、前記ラジカル重合開始剤、前記アルミニウム錯体、前記シランカップリング剤、及び前記導電性粒子を含有する導電性接着剤層と、該導電性接着層の一方の面に形成され、前記熱可塑性樹脂、前記ラジカル重合性化合物、前記ラジカル重合開始剤、前記アルミニウム錯体、及び前記シランカップリング剤を含有し、前記導電性粒子を含有しない絶縁性接着剤層と、を少なくとも備える、請求項7に記載の回路接続材料。
  9. チップ実装用である、請求項1〜8のいずれか一項に記載の回路接続材料。
  10. 第一の基板上に第一の回路電極が形成された第一の回路部材と、
    第二の基板上に第二の回路電極が形成された第二の回路部材と、
    前記第一及び第二の回路部材の間に設けられ、前記第一の回路電極と前記第二の回路電極とを対向配置させた状態で前記第一の回路部材及び第二の回路部材を接続する回路接続部材と、を備え、
    前記回路接続部材が請求項1〜9のいずれか一項に記載の回路接続材料の硬化物からなり、前記第一の回路電極と第二の回路電極とが電気的に接続されている、回路部材の接続構造体。
  11. 第一の基板上に第一の回路電極が形成された第一の回路部材と第二の基板上に第二の回路電極が形成された第二の回路部材との間に請求項1〜9のいずれか一項に記載の回路接続材料を配置し、前記第一の回路部材及び第二の回路部材を介して前記回路接続材料を加熱及び加圧して硬化させ、前記第一の回路部材と前記第二の回路部材とを接続するとともに前記第一の回路電極と前記第二の回路電極とを電気的に接続する、回路部材の接続構造体の製造方法。
JP2013014355A 2013-01-29 2013-01-29 回路接続材料、回路部材の接続構造体、及び回路部材の接続構造体の製造方法 Active JP6107175B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013014355A JP6107175B2 (ja) 2013-01-29 2013-01-29 回路接続材料、回路部材の接続構造体、及び回路部材の接続構造体の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013014355A JP6107175B2 (ja) 2013-01-29 2013-01-29 回路接続材料、回路部材の接続構造体、及び回路部材の接続構造体の製造方法

Publications (2)

Publication Number Publication Date
JP2014145028A true JP2014145028A (ja) 2014-08-14
JP6107175B2 JP6107175B2 (ja) 2017-04-05

Family

ID=51425538

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013014355A Active JP6107175B2 (ja) 2013-01-29 2013-01-29 回路接続材料、回路部材の接続構造体、及び回路部材の接続構造体の製造方法

Country Status (1)

Country Link
JP (1) JP6107175B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016152271A1 (ja) * 2015-03-25 2016-09-29 日東電工株式会社 樹脂組成物、裏面研削用テープ一体型シート状樹脂組成物、ダイシングテープ一体型シート状樹脂組成物、半導体装置の製造方法、及び、半導体装置
JP2016183317A (ja) * 2015-03-25 2016-10-20 日東電工株式会社 樹脂組成物、裏面研削用テープ一体型シート状樹脂組成物、ダイシングテープ一体型シート状樹脂組成物、半導体装置の製造方法、及び、半導体装置

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11343474A (ja) * 1998-06-01 1999-12-14 Toray Ind Inc 接着剤組成物
JP2003313533A (ja) * 2002-04-23 2003-11-06 Sumitomo Bakelite Co Ltd 異方導電性接着剤
US20070104973A1 (en) * 1999-08-12 2007-05-10 Sony Chemicals Corporation Low-temperature setting adhesive and anisotropically electroconductive adhesive film using the same
JP2009021580A (ja) * 2007-06-15 2009-01-29 Namics Corp Led用導電性ダイボンディング剤
JP2009256619A (ja) * 2008-03-28 2009-11-05 Hitachi Chem Co Ltd 接着剤組成物、回路接続用接着剤、接続体及び半導体装置
JP2010254761A (ja) * 2009-04-22 2010-11-11 Kaneka Corp 熱可塑性エラストマー組成物および成形体
JP2011204898A (ja) * 2010-03-25 2011-10-13 Hitachi Chem Co Ltd 接着剤組成物及び回路部材の接続構造体
JP2012067281A (ja) * 2010-08-24 2012-04-05 Hitachi Chemical Co Ltd 回路接続材料、これを用いた回路部材の接続方法、回路接続構造体、及び、回路接続構造体の製造方法
JP2012149274A (ja) * 2007-08-08 2012-08-09 Hitachi Chemical Co Ltd 接着剤組成物、フィルム状接着剤及び回路部材の接続構造
JP2012162721A (ja) * 2012-03-21 2012-08-30 Sony Chemical & Information Device Corp 接着剤及び電気装置
WO2013018152A1 (ja) * 2011-07-29 2013-02-07 日立化成工業株式会社 接着剤組成物、それを用いたフィルム状接着剤及び回路接続材料、回路部材の接続構造及びその製造方法
JP2014077105A (ja) * 2012-09-24 2014-05-01 Tamura Seisakusho Co Ltd 異方性導電性ペーストおよびそれを用いたプリント配線基板
JP2014078479A (ja) * 2012-09-24 2014-05-01 Tamura Seisakusho Co Ltd 異方性導電性ペーストおよびそれを用いたプリント配線基板
JP2014078480A (ja) * 2012-09-24 2014-05-01 Tamura Seisakusho Co Ltd 異方性導電性ペーストおよびそれを用いたプリント配線基板

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11343474A (ja) * 1998-06-01 1999-12-14 Toray Ind Inc 接着剤組成物
US20070104973A1 (en) * 1999-08-12 2007-05-10 Sony Chemicals Corporation Low-temperature setting adhesive and anisotropically electroconductive adhesive film using the same
JP2003313533A (ja) * 2002-04-23 2003-11-06 Sumitomo Bakelite Co Ltd 異方導電性接着剤
JP2009021580A (ja) * 2007-06-15 2009-01-29 Namics Corp Led用導電性ダイボンディング剤
JP2012149274A (ja) * 2007-08-08 2012-08-09 Hitachi Chemical Co Ltd 接着剤組成物、フィルム状接着剤及び回路部材の接続構造
JP2009256619A (ja) * 2008-03-28 2009-11-05 Hitachi Chem Co Ltd 接着剤組成物、回路接続用接着剤、接続体及び半導体装置
JP2010254761A (ja) * 2009-04-22 2010-11-11 Kaneka Corp 熱可塑性エラストマー組成物および成形体
JP2011204898A (ja) * 2010-03-25 2011-10-13 Hitachi Chem Co Ltd 接着剤組成物及び回路部材の接続構造体
JP2012067281A (ja) * 2010-08-24 2012-04-05 Hitachi Chemical Co Ltd 回路接続材料、これを用いた回路部材の接続方法、回路接続構造体、及び、回路接続構造体の製造方法
WO2013018152A1 (ja) * 2011-07-29 2013-02-07 日立化成工業株式会社 接着剤組成物、それを用いたフィルム状接着剤及び回路接続材料、回路部材の接続構造及びその製造方法
JP2012162721A (ja) * 2012-03-21 2012-08-30 Sony Chemical & Information Device Corp 接着剤及び電気装置
JP2014077105A (ja) * 2012-09-24 2014-05-01 Tamura Seisakusho Co Ltd 異方性導電性ペーストおよびそれを用いたプリント配線基板
JP2014078479A (ja) * 2012-09-24 2014-05-01 Tamura Seisakusho Co Ltd 異方性導電性ペーストおよびそれを用いたプリント配線基板
JP2014078480A (ja) * 2012-09-24 2014-05-01 Tamura Seisakusho Co Ltd 異方性導電性ペーストおよびそれを用いたプリント配線基板

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016152271A1 (ja) * 2015-03-25 2016-09-29 日東電工株式会社 樹脂組成物、裏面研削用テープ一体型シート状樹脂組成物、ダイシングテープ一体型シート状樹脂組成物、半導体装置の製造方法、及び、半導体装置
JP2016183317A (ja) * 2015-03-25 2016-10-20 日東電工株式会社 樹脂組成物、裏面研削用テープ一体型シート状樹脂組成物、ダイシングテープ一体型シート状樹脂組成物、半導体装置の製造方法、及び、半導体装置

Also Published As

Publication number Publication date
JP6107175B2 (ja) 2017-04-05

Similar Documents

Publication Publication Date Title
JP5348261B2 (ja) 回路接続材料、接続構造体及びその製造方法
KR101970376B1 (ko) 접착제 조성물 및 접속체
EP1702968A1 (en) Circuit connection material, film-shaped circuit connection material using the same, circuit member connection structure, and manufacturing method thereof
JP5176139B2 (ja) 回路接続材料及びそれを用いた回路部材の接続構造
JP6398570B2 (ja) 回路接続材料、回路部材の接続構造体、及び回路部材の接続構造体の製造方法
JP2013253151A (ja) 回路接続用接着フィルム、並びに回路部材の接続構造体及びその製造方法
JP5115676B1 (ja) 接着剤組成物、それを用いたフィルム状接着剤及び回路接続材料、回路部材の接続構造及びその製造方法
JP6107175B2 (ja) 回路接続材料、回路部材の接続構造体、及び回路部材の接続構造体の製造方法
JP4380327B2 (ja) 回路接続材料、これを用いたフィルム状回路接続材料、回路部材の接続構造及びその製造方法
JP4380328B2 (ja) 回路接続材料、これを用いたフィルム状回路接続材料、回路部材の接続構造及びその製造方法
JP2010100840A (ja) 接着剤フィルム及び回路接続材料
JP2007305583A (ja) 回路接続材料及びそれを用いた回路端子の接続構造
CN107118706B (zh) 各向异性导电膜和由其连接的显示装置
JP4696360B2 (ja) 接着剤組成物、それを用いた回路端子の接続方法及び回路端子の接続構造
JP4604577B2 (ja) 接着剤組成物、それを用いたフィルム状接着剤及び回路接続材料、並びに回路部材の接続構造及びその製造方法
KR102467385B1 (ko) 접속 구조체, 회로 접속 부재 및 접착제 조성물
JP4386145B2 (ja) 回路接続材料、これを用いたフィルム状回路接続材料、回路部材の接続構造及びその製造方法
JP5067101B2 (ja) 接着剤組成物
JP2013253152A (ja) 接着剤組成物、それを用いたフィルム状接着剤及び回路接続材料、並びに回路部材の接続構造及びその製造方法
WO2023195398A1 (ja) 接着剤組成物、回路接続用接着剤フィルム、回路接続構造体及びその製造方法
JP4386146B2 (ja) フィルム状回路接続材料、回路部材の接続構造及びその製造方法
JP4386148B2 (ja) 回路接続材料、これを用いたフィルム状回路接続材料、回路部材の接続構造及びその製造方法
JP2009289729A (ja) 異方導電フィルム
JP5365666B2 (ja) 回路接続材料並びに回路端子の接続構造体及び接続方法
JP5387592B2 (ja) 回路接続材料、及び回路部材の接続構造の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170220

R151 Written notification of patent or utility model registration

Ref document number: 6107175

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350