JP2014141637A - セルロースナノファイバー含有ゴムマスターバッチ - Google Patents

セルロースナノファイバー含有ゴムマスターバッチ Download PDF

Info

Publication number
JP2014141637A
JP2014141637A JP2013232415A JP2013232415A JP2014141637A JP 2014141637 A JP2014141637 A JP 2014141637A JP 2013232415 A JP2013232415 A JP 2013232415A JP 2013232415 A JP2013232415 A JP 2013232415A JP 2014141637 A JP2014141637 A JP 2014141637A
Authority
JP
Japan
Prior art keywords
cellulose
mass
acid
cellulose nanofiber
rubber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013232415A
Other languages
English (en)
Other versions
JP6143187B2 (ja
Inventor
Takayuki Shimaoka
隆行 嶋岡
Yusuke Kohara
佑介 小原
Yasutomo Noishiki
泰友 野一色
Katsuto Suzuki
勝人 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2013232415A priority Critical patent/JP6143187B2/ja
Publication of JP2014141637A publication Critical patent/JP2014141637A/ja
Application granted granted Critical
Publication of JP6143187B2 publication Critical patent/JP6143187B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Processes Of Treating Macromolecular Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

【課題】環境への配慮がなされているとともに、優れた破断特性を持つ加硫ゴム組成物の原料となるセルロースナノファイバー含有ゴムマスターバッチを提供する。
【解決手段】本発明のセルロースナノファイバー含有ゴムマスターバッチは、平均繊維幅が100nm未満のセルロースナノファイバーとゴムラテックスを含有する固形分濃度が3質量%以下である水分散液から水分を除去して得られるものである。本発明のセルロースナノファイバー含有ゴムマスターバッチにおいて、前記水分散液が、カチオン性高分子あるいはカチオン性界面活性剤を含有することが好ましい。
【選択図】なし

Description

本発明は、セルロースナノファイバー含有ゴムマスターバッチに関する。
従来、アラミド、セルロース等の短繊維や、シンジオタクチックポリブタジエン等の結晶性ポリマーでゴムを補強して硬度およびモジュラスを改善する技術が知られている(特許文献1参照)。
特許文献1には、耐摩耗性に優れるゴム組成物を提供することを目的として、ジエン系ゴム成分、澱粉およびセルロースからなるゴム組成物が提案され、セルロースとして特にバクテリアセルロースを用いることも提案されている。しかし特許文献1の技術は、ゴムとセルロースとの相容性が悪いことによって破断特性が悪いという問題を有する。
特許文献2には、天然植物繊維から調製された微粉末セルロース繊維をジエン系ゴムに配合したゴム組成物が開示されている。しかし特許文献2の技術は、その製法上、セルロース繊維の繊維長が短いため、セルロース繊維配合量に見合った剛性、補強性を得る面において改善の余地がある。
よって、環境への配慮がなされ、破断特性に優れた加硫ゴム組成物を得ることは未だ困難である。
特開2005−133025号公報 特開2005−75856号公報
本発明の目的は、環境への配慮がなされているとともに、優れた破断特性を持つ加硫ゴム組成物の原料となるセルロースナノファイバー含有ゴムマスターバッチを提供することである。
本発明者らは加硫ゴム組成物においてゴム中でのセルロースナノファイバーの分散性が著しく強度特性に影響を与えることを見出した。またセルロースナノファイバー含有ゴムマスターバッチの製造時の条件により、セルロースナノファイバーの加硫ゴム中での分散性が大きく左右されることを見出した。そして、これらの知見に基づき、以下のセルロースナノファイバー分散液から製造されるセルロース含有ゴム分散マスターバッチを原料とした加硫ゴム組成物が優れた破断特性を持つことを見出した。
本発明は、以下の態様を有する。
[1]平均繊維幅が100nm未満のセルロースナノファイバーとゴムラテックスを含有する固形分濃度が3質量%以下である水分散液から水分を除去して得られるセルロースナノファイバー含有ゴムマスターバッチ。
[2]前記水分散液がカチオン性高分子を含有する、[1]に記載のセルロースナノファイバー含有ゴムマスターバッチ。
[3]前記水分散液がカチオン性界面活性剤を含有する、[1]または[2]に記載のセルロースナノファイバー含有ゴムマスターバッチ。
本発明のセルロースナノファイバー含有ゴムマスターバッチを原料とすることで優れた破断特性を持つ加硫ゴム組成物を得ることができる。
「セルロースナノファイバー」
セルロースナノファイバーは、通常製紙用途で用いるパルプ繊維よりもはるかに細く且つ短いI型結晶構造のセルロース繊維あるいは棒状粒子である。
セルロースナノファイバーがI型結晶構造を有していることは、グラファイトで単色化したCuKα(λ=1.5418Å)を用いた広角X線回折写真より得られる回折プロファイルにおいて、2θ=14〜17°付近と2θ=22〜23°付近の2箇所の位置に典型的なピークを有することで同定することができる。
セルロースナノファイバーの、X線回折法によって求められる結晶化度は、好ましくは60%以上、より好ましくは65%以上、さらに好ましくは70%以上である。結晶化度が前記下限値以上であれば、耐熱性と低線熱膨張率発現の点でさらに優れた性能が期待できる。結晶化度については、X線回折プロファイルを測定し、そのパターンから常法により求めることができる(Segalら、Textile Research Journal、29巻、786ページ、1959年)。
<繊維幅>
セルロースナノファイバーは、電子顕微鏡で観察して求めた平均繊維幅が100nm未満のセルロースである。セルロースナノファイバーの平均繊維幅は2nm以上100nm未満が好ましく、2〜50nmがより好ましく、2〜30nmがさらに好ましく、2〜15nmが特に好ましい。セルロースナノファイバーの平均繊維幅が前記上限値を超えると、セルロースナノファイバーとしての特性(高強度や高剛性、高寸法安定性、樹脂と複合化した際の高分散性、透明性)を得ることが困難になる。セルロースナノファイバーの平均繊維幅が前記下限値未満であると、セルロース分子として分散媒に溶解してしまうため、セルロースナノファイバーとしての特性(高強度や高剛性、高寸法安定性)を得ることが困難になる。
セルロースナノファイバーの電子顕微鏡観察による平均繊維幅の測定は以下のようにして行う。セルロースナノファイバー含有スラリーを調製し、該スラリーを親水化処理したカーボン膜被覆グリッド上にキャストして透過型電子顕微鏡(TEM)観察用試料とする。幅広の繊維を含む場合には、ガラス上にキャストした表面の操作型電子顕微鏡(SEM)像を観察してもよい。構成する繊維の幅に応じて1000倍、5000倍、10000倍、20000倍、50000倍あるいは100000倍のいずれかの倍率で電子顕微鏡画像による観察を行う。但し、試料、観察条件や倍率は下記の条件を満たすように調整する。
(1)観察画像内の任意箇所に一本の直線Xを引き、該直線Xに対し、20本以上の繊維が交差する。
(2)同じ画像内で該直線Xと垂直に交差する直線Yを引き、該直線Yに対し、20本以上の繊維が交差する。
上記のような電子顕微鏡観察画像に対して、直線Xに交錯する繊維、直線Yに交錯する繊維の各々について少なくとも20本(すなわち、合計が少なくとも40本)の幅(繊維の短径)を読み取る。こうして上記のような電子顕微鏡画像を少なくとも3組以上観察し、少なくとも40本×3組(すなわち、少なくとも120本)の繊維幅を読み取る。このように読み取った繊維幅を平均して平均繊維幅を求める。この平均繊維幅は数平均繊維径と等しい。
セルロースナノファイバーの最大繊維幅は50nm以下が好ましく、30nm以下がより好ましい。セルロースナノファイバーの最大繊維幅が前記上限値以下であれば、ゴムと混ぜ合わせて得た複合材料の強度が高くなる。
<繊維長>
セルロースナノファイバーの平均繊維長は、0.1〜5.0μmが好ましい。平均繊維長が前記下限値以上であれば、セルロースナノファイバーを樹脂に配合した際の強度向上効果が充分に得られる。平均繊維長が前記上限値以下であれば、セルロースナノファイバーを樹脂に配合した際の混合性がより良好となる。繊維長は、前記平均繊維幅を測定する際に使用した電子顕微鏡観察画像を解析することにより求めることができる。すなわち、上記のような電子顕微鏡観察画像に対して、直線Xに交錯する繊維、直線Yに交錯する繊維の各々について少なくとも20本(すなわち、合計が少なくとも40本)の繊維長を読み取る。こうして上記のような電子顕微鏡画像を少なくとも3組以上観察し、少なくとも40本×3組(すなわち、少なくとも120本)の繊維長を読み取る。このように読み取った繊維長を平均して平均繊維長を求める。
セルロースナノファイバーを、透明基板等の強度が求められる用途に適用する場合には、繊維長は長め(具体的には500nm〜4μm)であることが好ましく、樹脂に配合する場合には、繊維長は短め(具体的には200nm〜2μm)であることが好ましい。
<アニオン基>
セルロースナノファイバーは、アニオン基を有して表面電荷が負となっていてもよい。
セルロースナノファイバーがアニオン基を有する場合、その含有量は、0.1〜2.0mmol/gであることが好ましく、0.1〜1.5mmol/gであることがより好ましく、0.2〜1.2mmol/gであることがさらに好ましい。アニオン基の含有量が前記範囲であれば、セルロースナノファイバーの水和性が高くなり過ぎず、スラリー化した際の粘度が低くなる。アニオン基の含有量が前記上限値を超えると、水和性が高くなりすぎてセルロースナノファイバーが溶解するおそれがある。
なお、セルロースは、カルボキシ基を導入する処理を施さなくても、少量(具体的には0.1mmol/g未満)のカルボキシ基を有している。
前記アニオン基としては、カルボキシ基、リン酸基、スルホン酸基等が挙げられる。
アニオン基の含有量は、米国TAPPIの「Test Method T237 cm−08(2008):Carboxyl Content of pulp」の方法を用いて求める。アニオン基の含有量をより広範囲まで測定可能にするために、前記試験方法に用いる試験液のうち、炭酸水素ナトリウム(NaHCO3)/塩化ナトリウム(NaCl)=0.84g/5.85gを蒸留水で1000mlに溶解希釈した試験液について、前記試験液の濃度が実質的に4倍となるように、水酸化ナトリウム1.60gに変更した以外は、TAPPI T237 cm−08(2008)に準じる。また、アニオン基を導入した場合には、アニオン基導入前後のセルロース繊維における測定値の差を実質的なアニオン基含有量とする。なお、測定試料とする絶乾セルロース繊維は、加熱乾燥の際の加熱によって起こる可能性があるセルロースの変質を避けるため、凍結乾燥により得たものを使用する。
当該アニオン基含有量測定方法は、1価のアニオン基(カルボキシ基)についての測定方法であることから、定量対象のアニオン基が多価の場合には、前記1価のアニオン基含有量として得られた値を、酸価数で除した数値をアニオン基含有量とする。
「セルロースナノファイバーの製造方法」
<セルロース繊維原料>
本発明において、セルロースナノファイバーの原料となる、セルロースを含む繊維原料としては、製紙用パルプ、コットンリンターやコットンリントなどの綿系パルプ、麻、麦わら、バガスなどの非木材系パルプ、ホヤや海草などから単離されるセルロースなどが挙げられる。これらの中でも、入手のしやすさという点で、製紙用パルプが好ましい。製紙用パルプとしては、広葉樹クラフトパルプ(晒クラフトパルプ(LBKP)、未晒クラフトパルプ(LUKP)、酸素漂白クラフトパルプ(LOKP)など)、針葉樹クラフトパルプ(晒クラフトパルプ(NBKP)、未晒クラフトパルプ(NUKP)、酸素漂白クラフトパルプ(NOKP)など)、サルファイトパルプ(SP)、ソーダパルプ(AP)等の化学パルプ、セミケミカルパルプ(SCP)、ケミグラウンドウッドパルプ(CGP)等の半化学パルプ、砕木パルプ(GP)、サーモメカニカルパルプ(TMP、BCTMP)等の機械パルプ、楮、三椏、麻、ケナフ等を原料とする非木材パルプ、古紙を原料とする脱墨パルプが挙げられる。これらの中でも、より入手しやすいことから、クラフトパルプ、脱墨パルプ、サルファイトパルプが好ましい。
セルロース繊維原料は1種を単独で用いてもよいし、2種以上混合して用いてもよい。
<化学処理工程>
上記のセルロースを含む繊維原料は、そのままでセルロースナノファイバーの原料として用いてもよいが、微細化工程で微細化が促進されることから、極性基及び嵩高基の少なくとも一方からなる置換基を0.1〜2.0mmol/g含有させる化学処理を施すことが好ましい。
極性基としては、アニオン基(具体的には、カルボキシ基、リン酸基、硫酸エステル基、スルホン酸基、フェノール基、硝酸エステル基)が挙げられ、カルボキシ基、リン酸基が好ましい。
嵩高基としては、アルキル基、ベンジル基(ベンゼン環)及びベンゼン誘導体含有基、アシル基、シリル基、トリチル基、トシル基があげられる。
[カルボキシ基の導入]
カルボキシ基をセルロース繊維原料に導入する方法としては、酸化剤を使用して、セルロースの水酸基の一部をカルボキシ基に酸化する方法が挙げられる。
酸化剤としては、オゾン、二酸化塩素、過酸化水素、過酢酸、過硫酸、過マンガン酸、塩素、次亜塩素酸、亜塩素酸、塩素酸、過塩素酸またはこれらの塩等の水溶液、六価クロム酸硫酸混液、ジョーンズ試薬(無水クロム酸の硫酸酸性溶液)、クロロクロム酸ピリジリニウム(PCC試薬)などのクロム酸酸化試薬、Swern酸化などに使われる活性化ジメチルスルホキシド試薬、また触媒的な酸化が生じるテトラプロピルアンモニウムテルルテナート(TPAP)や、2,2,6,6−テトラメチルピペリジン−1−オキシル(TEMPO)などのN−オキシル化合物等が挙げられる。これらのうち、セルロース繊維にカルボキシ基を導入する効率が高いため、オゾン、TEMPO、過酸化水素、二酸化塩素が好ましく、オゾン、TEMPOがより好ましい。
[オゾンによる処理]
オゾンによる処理では、セルロースの一部の水酸基がカルボニル基やカルボキシ基に換わる。これにより、セルロース繊維間の結合力が弱まり、解繊性が向上する。
オゾンは、空気、酸素ガス、酸素添加空気等の酸素含有気体を、公知のオゾン発生装置に供給することにより発生させることができる。
オゾンによる処理は、オゾンが存在する閉じた空間または雰囲気中にセルロース繊維原料を曝すことで行われる。オゾンが含まれる気体中のオゾン濃度は、250g/m以上であると、爆発するおそれがあるため、250g/m未満である必要がある。しかし、濃度が低いと、オゾン使用量が増えるため、オゾン濃度は50〜215g/mであることが好ましい。オゾン濃度が前記下限値以上であれば、オゾンの取り扱いが容易であり、しかも微細化工程でのセルロースナノファイバーの収率の向上効果がより高くなる。
セルロース繊維原料に対するオゾン添加量は特に制約されるものではないが、セルロース繊維原料の固形分100質量部に対して5〜30質量部であることが好ましい。オゾン添加量が前記下限値以上であれば、微細化工程でのセルロースナノファイバーの収率向上効果がより高くなる。しかし、前記上限値を超えると、オゾン処理前後の歩留まりの低下、脱水性の悪化を引き起こす。また、微細化工程ではセルロースナノファイバーの収率向上効果が頭打ちとなる。
オゾン処理温度としては特に制約されるものではなく、0〜50℃の範囲で適宜調整される。また、オゾン処理時間についても特に制約されるものではなく、1〜360分間の範囲で適宜調整される。
なお、セルロース繊維原料にオゾン処理を施した後、追酸化処理を施してもよい。追酸化処理に用いる酸化剤としては、二酸化塩素、亜塩素酸ナトリウム等の塩素系化合物の他、酸素、過酸化水素、過硫酸、過酢酸などが挙げられる。
また、オゾン処理の後には、処理されたセルロース繊維原料に対して、アルカリ溶液で処理するアルカリ処理を施すことが好ましい。アルカリ処理の方法としては、特に限定されないが、例えば、アルカリ溶液中に、オゾン処理したセルロース繊維原料を浸漬する方法が挙げられる。
アルカリ溶液に含まれるアルカリ化合物は、無機アルカリ化合物であってもよいし、有機アルカリ化合物であってもよい。
無機アルカリ化合物としては、アルカリ金属の水酸化物またはアルカリ土類金属の水酸化物、アルカリ金属の炭酸塩またはアルカリ土類金属の炭酸塩、アルカリ金属のリン酸塩またはアルカリ土類金属のリン酸塩が挙げられる。
アルカリ金属の水酸化物としては、水酸化リチウム、水酸化ナトリウム、水酸化カリウムが挙げられる。アルカリ土類金属の水酸化物としては、水酸化カルシウムが挙げられる。
アルカリ金属の炭酸塩としては炭酸リチウム、炭酸水素リチウム、炭酸カリウム、炭酸水素カリウム、炭酸ナトリウム、炭酸水素ナトリウムが挙げられる。アルカリ土類金属の炭酸塩としては、炭酸カルシウムなどが挙げられる。
アルカリ金属のリン酸塩としては、リン酸リチウム、リン酸カリウム、リン酸3ナトリウム、リン酸水素2ナトリウムなどが挙げられる。アルカリ土類金属のリン酸塩としては、リン酸カルシウム、リン酸水素カルシウムなどが挙げられる。
有機アルカリ化合物としては、アンモニア、脂肪族アミン、芳香族アミン、脂肪族アンモニウム、芳香族アンモニウム、複素環式化合物およびその水酸化物、炭酸塩、リン酸塩等が挙げられる。例えば、アンモニア、ヒドラジン、メチルアミン、エチルアミン、ジエチルアミン、トリエチルアミン、プロピルアミン、ジプロピルアミン、ブチルアミン、ジアミノエタン、ジアミノプロパン、ジアミノブタン、ジアミノペンタン、ジアミノヘキサン、シクロヘキシルアミン、アニリン、テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、テトラプロピルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシド、ベンジルトリメチルアンモニウムヒドロキシド、ピリジン、N,N−ジメチル−4−アミノピリジン、炭酸アンモニウム、炭酸水素アンモニウム、リン酸水素2アンモニウム等が挙げられる。
上記アルカリ化合物は1種単独でもよいし、2種以上を組み合わせてもよい。
アルカリ溶液における溶媒としては水または有機溶媒のいずれであってもよいが、極性溶媒(水、アルコール等の極性有機溶媒)が好ましく、少なくとも水を含む水系溶媒がより好ましい。また、アルカリ溶液のうちでは、汎用性が高いことから、水酸化ナトリウム水溶液、水酸化カリウム水溶液、アンモニア水溶液が特に好ましい。
オゾン処理したセルロース繊維原料を浸漬させたアルカリ溶液の25℃におけるpHは9以上であることが好ましく、10以上であることがより好ましく、11〜14であることがさらに好ましい。アルカリ溶液のpHが前記下限値以上であれば、セルロースナノファイバーの収率がより高くなる。しかし、pHが14を超えると、アルカリ溶液の取り扱い性が低下するだけでなく、セルロースナノファイバーの溶解が起こる。
[TEMPOによる処理]
TEMPOによる処理では、セルロース繊維原料に対し、TEMPOおよびハロゲン化アルカリの存在下で酸化剤を反応させて、セルロースの水酸基の一部をカルボキシ基に換える。これにより、セルロース繊維間の結合力が弱まり、解繊性が向上する。
TEMPOとともに酸化触媒として使用するハロゲン化アルカリは特に制約されるものではなく、ヨウ化アルカリ、臭化アルカリ、塩化アルカリ、フッ化アルカリ等を適宜選択して使用することができる。
酸化剤についても特に制約されるものではなく、次亜塩素酸ナトリウム、亜塩素酸ナトリウム、次亜臭素酸ナトリウム、亜臭素酸ナトリウム等を適宜選択して使用することができる。
TEMPOおよびハロゲン化アルカリの使用量は特に制約されるものではないが、各々、セルロース繊維原料の固形分100質量部に対して0.1〜15質量部であることが好ましい。TEMPOおよびハロゲン化アルカリの添加量が各々前記下限値以上であれば、微細化工程でのセルロースナノファイバーの収率向上効果がより高くなる。しかし、前記上限値を超えると、微細化工程でのセルロースナノファイバーの収率向上効果が頭打ちとなるおそれがある。
酸化剤の使用量についても特に制約されるものではないが、セルロース繊維原料の固形分100質量部に対して、1〜80質量部が好ましい。
セルロース繊維原料を含む分散液をTEMPOにより処理する際の分散液のpHは、使用する酸化剤の種類に応じて適宜調整する。セルロース繊維原料分散液のpH調整は、水酸化カリウム、アンモニア等の塩基性物質、あるいは酢酸、シュウ酸等の酸性物質を適宜添加することで行う。
セルロース繊維原料をTEMPOにより処理する際の処理温度は、20〜100℃の範囲であることが好ましく、また処理時間は、0.5〜4時間であることが好ましい。
[カルボン酸系化合物による処理]
また、カルボキシ基をセルロース繊維原料に導入する方法としては、分子内に2以上のカルボキシ基を有するカルボン酸系化合物を用いる方法も好ましい。
カルボン酸系化合物による処理では、セルロース分子が有するヒドロキシ基と、カルボン酸系化合物とが脱水反応して、極性基(−COO)を形成する。これにより、セルロース繊維間の結合力が弱まり、解繊性が向上する。
セルロース繊維原料をカルボン酸系化合物により処理する具体的方法としては、セルロース繊維原料にガス化したカルボン酸系化合物を混合する方法、セルロース繊維原料の分散液にカルボン酸系化合物を添加する方法等が挙げられる。これらのうち、工程が簡便で且つカルボキシ基導入の効率が高くなることから、セルロース繊維原料にガス化したカルボン酸系化合物を混合する方法が好ましい。カルボン酸系化合物をガス化する方法としては、カルボン酸系化合物を加熱する方法が挙げられる。
本処理において使用するカルボン酸系化合物は、2つのカルボキシ基を有する化合物、2つのカルボキシ基を有する化合物の酸無水物、およびそれらの誘導体よりなる群から選ばれる少なくとも1種である。2つのカルボキシ基を有する化合物の中では、2つのカルボキシ基を有する化合物(ジカルボン酸化合物)が好ましい。
2つのカルボキシ基を有する化合物としては、プロパン二酸(マロン酸)、ブタン二酸(コハク酸)、ペンタン二酸(グルタル酸)、ヘキサン二酸(アジピン酸)、2−メチルプロパン二酸、2−メチルブタン二酸、2−メチルペンタン二酸、1,2−シクロヘキサンジカルボン酸、2−ブテン二酸(マレイン酸、フマル酸)、2−ペンテン二酸、2,4−ヘキサジエン二酸、2−メチル−2−ブテン二酸、2−メチル−2ペンテン二酸、2−メチリデンブタン二酸(イタコン酸)、ベンゼン−1,2−ジカルボン酸(フタル酸)、ベンゼン−1,3−ジカルボン酸(イソフタル酸)、ベンゼン−1,4−ジカルボン酸(テレフタル酸)、エタン二酸(シュウ酸)等のジカルボン酸化合物が挙げられる。
2つのカルボキシ基を有する化合物の酸無水物としては、無水マレイン酸、無水コハク酸、無水フタル酸、無水グルタル酸、無水アジピン酸、無水イタコン酸、無水ピロメリット酸、無水1,2−シクロヘキサンジカルボン酸等のジカルボン酸化合物や複数のカルボキシ基を含む化合物の酸無水物が挙げられる。
2つのカルボキシ基を有する化合物の酸無水物の誘導体としては、ジメチルマレイン酸無水物、ジエチルマレイン酸無水物、ジフェニルマレイン酸無水物等の、カルボキシ基を有する化合物の酸無水物の少なくとも一部の水素原子が置換基(例えば、アルキル基、フェニル基等)で置換されたものが挙げられる。
これらのうち、工業的に適用しやすく、また、ガス化しやすいことから、無水マレイン酸、無水コハク酸、無水フタル酸が好ましい。
セルロース繊維原料に対するカルボン酸系化合物の質量割合は、セルロース繊維原料の固形分100質量部に対して、カルボン酸系化合物が0.1〜500質量部であることが好ましく、10〜200質量部であることがより好ましい。カルボン酸系化合物の割合が前記下限値以上であれば、セルロースナノファイバーの収率をより向上させることができる。しかし、前記上限値を超えても、収率向上の効果は頭打ちとなり、無駄にカルボン酸系化合物を使用するだけである。
処理温度は、セルロースの熱分解温度の点から、250℃以下であることが好ましい。さらに、処理の際に水が含まれている場合には、80〜200℃にすることが好ましく、100〜170℃にすることがより好ましい。
本処理においては、必要に応じて触媒を用いることもできる。触媒としてはピリジンやトリエチルアミン、水酸化ナトリウム、酢酸ナトリウム等の塩基性触媒や、酢酸、硫酸、過塩素酸等の酸性触媒を用いることが好ましい。
カルボン酸系化合物による処理の後には、オゾンによる処理と同様に、処理したセルロース繊維原料に、アルカリ溶液で処理するアルカリ処理を施すことが好ましい。
[リン酸基の導入]
リン酸基をセルロースに導入する方法としては、乾燥した、あるいは湿潤状態のセルロース繊維原料にリン酸またはリン酸誘導体の粉末や水溶液を混合する方法、セルロース繊維原料の分散液にリン酸またはリン酸誘導体の水溶液を添加する方法等が挙げられる。これら方法においては、通常、リン酸またはリン酸誘導体の粉末や水溶液を混合または添加した後に、脱水処理、加熱処理等を行う。
ここで用いられるリン酸またはリン酸誘導体としては、リン原子を含有するオキソ酸、ポリオキソ酸或いはそれらの誘導体から選ばれる少なくとも1種の化合物が挙げられる。 具体的には、リン酸;リン酸二水素ナトリウム、リン酸水素二ナトリウム、リン酸三ナトリウムなどのリン酸のナトリウム塩;ピロリン酸ナトリウム、メタリン酸ナトリウムなどのポリリン酸のナトリウム塩;リン酸二水素カリウム、リン酸水素二カリウム、リン酸三カリウムなどのリン酸のカリウム塩;ピロリン酸カリウム、メタリン酸カリウムなどのポリリン酸のカリウム塩;リン酸二水素アンモニウム、リン酸水素二アンモニウム、リン酸三アンモニウムなどのリン酸のアンモニウム塩;ピロリン酸アンモニウム、メタリン酸アンモニウムなどのポリリン酸のアンモニウム塩が挙げられる。これらは1種を単独で用いてもよく、2種以上を併用してもよい。上記のうちでも、リン酸二水素ナトリウム、リン酸水素二ナトリウムが好ましい。
セルロース繊維原料に対するリン酸またはリン酸誘導体の質量割合は、セルロース繊維原料の固形分100質量部に対してリン酸またはリン酸誘導体が、リン元素量として0.2〜500質量部であることが好ましく、1〜400質量部であることがより好ましく、2〜200質量部であることがさらに好ましい。リン酸またはリン酸誘導体の割合が前記下限値以上であれば、セルロースナノファイバーの収率をより向上させることができる。しかし、前記上限値を超えても、収率向上の効果は頭打ちとなり、無駄にリン酸またはリン酸誘導体を使用するだけである。
加熱処理温度は、セルロースの熱分解温度の点から、250℃以下であることが好ましい。また、セルロースの加水分解を抑える観点から、加熱処理温度は100〜170℃であることが好ましい。さらに、加熱処理の際にリン酸またはリン酸誘導体を添加した系に水が含まれている間の加熱については、好ましくは130℃以下、より好ましくは110℃以下で加熱して充分に水分を除去乾燥するとよい。その後は、100〜170℃で加熱処理することが好ましい。また、水分を除く際には減圧乾燥機を用いてもよい。
リン酸またはリン酸誘導体による処理の後には、オゾンによる処理と同様に、処理したセルロース繊維原料に、アルカリ処理を施してもよい。
上記の処理によって、セルロースはリン酸由来の基(−PO 2−、−PO)を有するようになる。セルロースは2種以上のリン酸由来の基を有してもよい。例えば、セルロースが、水素イオンの数が異なる2種のリン酸由来を有してもよい。
[酵素処理]
本発明で用いるセルロース繊維原料は、必ずしも上記の極性基または嵩高基を有する必要はないが、上記の極性基または嵩高基を有さない場合には、所謂セルラーゼと総称される酵素によってセルロース繊維原料を処理することが好ましい。セルラーゼは、セロビオヒドロラーゼ活性、エンドグルカナーゼ活性、ベータグルコシダーゼ活性を有する酵素である。
酵素処理で使用する酵素は、上記の活性を有する酵素を適宜の量で混合して使用してもよいし、市販のセルラーゼ製剤を用いてもよい。
市販のセルラーゼ製剤としては、トリコデルマ(Trichoderma)属、アクレモニウム属(Acremonium)属、アスペルギルス(Aspergillus)属、ファネロケエテ(Phanerochaete)属、トラメテス属(Trametes)、フーミコラ(Humicola)属、バチルス(Bacillus)属などに由来するセルラーゼ製剤が挙げられる。
このようなセルラーゼ製剤の市販品としては、全て商品名で、例えば、セルロイシンT2(エイチピィアイ社製)、メイセラーゼ(明治製菓社製)、ノボザイム188(ノボザイム社製)、マルティフェクトCX10L(ジェネンコア社製)等が挙げられる。
なお、市販されているセルラーゼ製剤には、上記した各種のセルラーゼ活性を有すると同時に、ヘミセルラーゼ活性も有しているものが多い。
酵素処理では、酵素として、セルラーゼ以外に、ヘミセルラーゼ系酵素を単独に使用してもよいし、セルラーゼとヘミセルラーゼ系酵素とを混合使用してもよい。ヘミセルラーゼ系酵素の中でも、キシランを分解する酵素であるキシラナーゼ(xylanase)、マンナンを分解する酵素であるマンナーゼ(mannase)、アラバンを分解する酵素であるアラバナーゼ(arabanase)を使用することが好ましい。また、ペクチンを分解する酵素であるペクチナーゼもヘミセルラーゼ系酵素として使用することができる。
酵素処理の際の分散液のpHは、使用する酵素の活性が高くなる範囲に保つことが好ましい。例えば、トリコデルマ起源の市販の酵素の場合、pHは4〜8の間が好ましい。
また、酵素処理の際の分散液の温度は、使用する酵素の活性が高くなる範囲に保つことが好ましい。例えば、トリコデルマ起源の市販の酵素の場合、温度は40℃〜60℃が好ましい。温度が前記下限値未満では酵素活性が低下して処理時間が長くなり、前記上限値を超えると酵素が失活するおそれがある。酵素処理の処理時間は10分〜24時間の範囲が好ましい。酵素処理の処理時間が10分未満では酵素処理の効果が発現しにくい。24時間を超えると酵素によりセルロース繊維の分解が進みすぎて、得られるセルロースナノファイバーの平均繊維長が短くなりすぎるおそれがある。
なお、所定時間以上に酵素が活性なままで残留していると前記のようにセルロースの分解が進み過ぎるため、所定の酵素処理が終了した際には、酵素反応の停止処理を施すことが好ましい。酵素反応の停止処理としては、酵素処理を施した分散液を水洗し、酵素を除去する方法、酵素処理を施した分散液に水酸化ナトリウムをpHが12程度になるように添加して酵素を失活させる方法、酵素処理を施した分散液の温度を温度90℃まで上昇させて酵素を失活させる方法が挙げられる。
<微細化工程>
微細化工程はセルロース繊維原料分散液を、平均繊維幅が100nm未満のセルロースナノファイバーが得られるように微細化処理して、セルロースナノファイバーを含有するセルロースナノファイバー分散液を得る工程である。
微細化工程では、通常、微細化処理装置を用いる。微細化処理装置としては、高速回転解繊機、グラインダー(石臼型粉砕機)、高圧ホモジナイザーや超高圧ホモジナイザー、高圧衝突型粉砕機、ボールミル、ビーズミル、ディスク型リファイナー、コニカルリファイナー、二軸混練機、振動ミル、高速回転下でのホモミキサー、超音波分散機、ビーターなど、湿式粉砕する装置等を適宜使用することができる。これらは単独で用いてもよいし、同一の装置を複数台使用してもよいし、異なる種類の装置を組み合わせてもよい。異なる種類の装置を組み合わせる場合、リファイナー、高圧ホモジナイザー、高速回転解繊機のいずれか2つを組み合わせることが好ましい。
微細化処理に供給するセルロース繊維原料分散液の固形分濃度は0.1〜20質量%であることが好ましく、0.5〜10質量%であることがより好ましい。セルロース繊維原料分散液の固形分濃度が前記下限値以上であれば、微細化処理の効率が向上し、前記上限値以下であれば、微細化処理装置内での閉塞を防止できる。
希釈するための分散媒としては、水、有機溶媒、水と有機溶媒との混合物が挙げられる。
<精製工程>
精製工程は、微細化工程後に、セルロースナノファイバー分散液を、平均繊維幅が2〜100nmになるように精製する工程である。精製工程によってセルロースナノファイバー分散液を精製すれば、大きな繊維径を有する繊維が除去されて、セルロースナノファイバーの外観をより良好できると共に物性をより向上させることができる。強度が重視されるような用途にセルロースナノファイバーを使用する場合には、精製工程によって大きな繊維からなる破壊核が少なくなるため、強度のばらつきや低下を防ぐことができる。
精製工程においては、セルロースナノファイバーのうちの大きな繊維を除去して、平均繊維幅100nm未満のものを濃縮する精製装置を用いる。
精製装置としては、例えば、比重差を利用したデカンタや遠心分離機、クリーナー、形状の違いを利用したスクリーンやフィルター、浮選分離するフローテーターや加圧浮上装置などが挙げられる。これらは単独で用いてもよいし、種類の異なる複数を組み合わせてもよい。
「セルロースナノファイバー含有水分散液」
本発明のセルロースナノファイバー含有ゴムマスターバッチはセルロースナノファイバーと、ゴムラテックスを含有する固形分濃度3質量%以下である水分散液から水を除去して得られるものである。水分散液はセルロースナノファイバー、ゴムラテックス以外にこれらの成分を凝集させる働きを持つギ酸、カチオン性高分子、カチオン性界面活性剤などの成分を含有する。さらに従来ゴム工業で使用される他の配合剤を添加してもよい。例えば、シリカ粒子やカーボンブラック、繊維などの無機、有機のフィラー、シランカップリング剤などが挙げられる。
水分散液の固形分量は0.01質量%以上3質量%以下が好ましく、0.05質量%以上2.8質量%以下がより好ましく、0.08質量%以上2.5質量%以下がさらに好ましい。0.01質量%以下であると水を除去するのに多大なエネルギーとコストを必要とし、好ましくない。一方、3質量%よりも固形分濃度が高いと、水分散液中でセルロースナノナノファイバー同士が凝集をおこし、得られるセルロースナノファイバー含有ゴム複合体中において凝集物となり強度低下を引き起こす。
セルロースナノファイバー含有水分散液中のセルロースナノファイバーはゴム成分100質量部に対して、通常1質量部以上、好ましくは3質量部以上、更に好ましくは5質量部以上、通常100質量部以下、好ましくは70質量部以下、更に好ましくは50質量部以下である。セルロースナノファイバー量が少ないと補強効果が充分でなく、逆に多いとゴムの加工性が低下する。
<カチオン性高分子>
カチオン性高分子の例としては、ポリアミドポリアミン系樹脂、ポリアミドポリ尿素系樹脂、ポリアミン系樹脂等が例示でき、これらカチオン性樹脂の1種以上が適宜用いられる。因みに、ポリアミドポリアミン系樹脂の具体例としては、ポリアミドポリアミン−エピクロルヒドリン樹脂、ポリアミドポリアミン−グリオキザール樹脂、ポリアミドポリアミン−ホルムアルデヒド樹脂等がある。
ポリアミドポリ尿素系樹脂の具体例としては、ポリアミドポリ尿素−エピクロルヒドリン樹脂、ポリアミドポリ尿素−グリオキザール樹脂、ポリアミドポリ尿素−ホルムアルデヒド樹脂等がある。さらに、ポリアミン系樹脂の具体例としては、ポリアルキレンポリアミン−エピクロルヒドリン樹脂、ポリアルキレンポリアミン−エピクロルヒドリン−ジアルキル硫酸樹脂、アルキレンジアミン−アルキレンジハライド樹脂、ポリエチレンイミン等が例示される。
セルロースナノファイバー含有水分散液中にカチオン性高分子を配合する場合、ゴム成分100質量部に対して、通常0.1質量部以上、好ましくは2質量部以上、更に好ましくは3質量部以上、通常20質量部以下、好ましくは15質量部以下、更に好ましくは10質量部以下である。カチオン性高分子が0.1質量部未満である場合、セルロースナノファイバーとゴムラテックスを凝集させるのに不十分であり、20質量部以上の場合は得られるセルロースナノファイバー含有ゴムマスターバッチ中のカチオン性高分子の割合が大きくなるため、得られるマスターバッチの耐水性が低下するなどの問題を引き起こすため好ましくない。
<カチオン性界面活性剤>
カチオン性界面活性剤としては、アルキルトリメチルアンモニウム塩、ジアルキルジメチルアンモニウム塩、アルキルジメチルベンジルアンモニウム塩、アシルアミノエチルジエチルアンモニウム塩、アシルアミノエチルジエチルアミン塩、アルキルアミドプロピルジメチルベンジルアンモニウム塩、アルキルピリジニウム塩、アルキルピリジニウム硫酸塩、ステアラミドメチルピリジニウム塩、アルキルキノリニウム塩、アルキルイソキノリニウム塩、脂肪酸ポリエチレンポリアミド、アシルアミノエチルピリジニウム塩、アシルコラミノホルミルメチルピリジニウム塩等の第4級アンモニウム塩、ステアロオキシメチルピリジニウム塩、脂肪酸トリエタノールアミン、脂肪酸トリエタノールアミンギ酸塩、トリオキシエチレン脂肪酸トリエタノールアミン、セチルオキシメチルピリジニウム塩、p−イソオクチルフェノキシエトキシエチルジメチルベンジルアンモニウム塩等のエステル結合アミンやエーテル結合第4級アンモニウム塩、アルキルイミダゾリン、1−ヒドロキシエチル−2−アルキルイミダゾリン、1−アセチルアミノエチル−2−アルキルイミダゾリン、2−アルキル−4−メチル−4−ヒドロキシメチルオキサゾリン等の複素環アミン、ポリオキシエチレンアルキルアミン、N−アルキルプロピレンジアミン、N−アルキルポリエチレンポリアミン、N−アルキルポリエチレンポリアミンジメチル硫酸塩、アルキルビグアニド、長鎖アミンオキシドなどのアミン誘導体等が挙げられる。
セルロースナノファイバー含有水分散液中にカチオン性界面活性剤を配合する場合、ゴム成分100質量部に対して、通常0.1質量部以上、好ましくは2質量部以上、更に好ましくは3質量部以上、通常20質量部以下、好ましくは15質量部以下、更に好ましくは10質量部以下である。カチオン性界面活性剤が0.1質量部未満である場合、セルロースナノファイバーとゴムラテックスを凝集させるのに不十分であり、20質量部以上の場合は得られるセルロースナノファイバー含有ゴムマスターバッチ中のカチオン性界面活性剤の割合が大きくなるため、得られるマスターバッチの耐水性が低下するなどの問題を引き起こすため好ましくない。
<ゴムラテックス>
使用するゴムラテックスとしては、例えば天然ゴム(NR)、ポリイソプレンゴム(IR)、スチレン− ブタジエン共重合体ゴム(SBR)、ポリブタジエンゴム(BR)、ブチルゴム(IIR)、ニトリルゴム(NBR)、クロロプレンゴム(CR)、アクリルゴム(ACM)、フッ素ゴム(FKM)などのゴムのラテックス(好ましくは濃度:5〜60質量%)を用いるのが好ましい。
セルロースナノファイバー含有ゴムラテックス水分散液を調製する工程において、セルロースナノファイバー水分散液とラテックス分散液、他の成分を混合する方法には特に限定はなく、例えばプロペラ式撹拌装置、ホモジナイザー、ロータリー撹拌装置、電磁撹拌装置、手動での撹拌、あるいは攪拌せずに自然拡散などの一般的方法によることができる。
セルロースナノファイバー含有ゴムラテックス水分散液から水を除去するのには、例えば自然乾燥、オーブン乾燥、凍結乾燥、噴露乾燥などの一般的方法によることができるが、セルロースナノファイバー含有ゴムラテックスをろ材により分離後、乾燥すると効率的に水分を除去する事ができる。
「ゴム組成物の調製」
ゴム組成物は、本発明のセルロースナノファイバー含有マスターバッチから製造される。具体的にはセルロースナノファイバー含有ゴムマスターバッチを加硫あるいは必要に応じてセルロースナノファイバー含有ゴムマスターバッチにゴムラテックスを加えた後に加硫することにより製造される。また前述の従来ゴム工業で使用される他の配合剤を加硫前にゴム用混練機等の公知の方法を用いて混合した後、成形し、公知の方法で加硫反応させることにより得られる。配合剤としてはシリカ粒子やカーボンブラック、繊維などの、無機、有機のフィラー、シランカップリング剤、加硫剤、ステアリン酸、加硫促進剤、加硫促進助剤、オイル、硬化レジン、ワックス、老化防止剤などを上げる事ができる。
このうち、加硫剤としては、有機過酸化物または硫黄系加硫剤を使用することが可能である。有機過酸化物としては従来ゴム工業で使用される各種のものが使用可能であるが、中でも、ジクミルパーオキサイド、t−ブチルパーオキシベンゼン及びジ−t−ブチルパーオキシ−ジイソプロピルベンゼンが好ましい。また、硫黄系加硫剤としては、例えば硫黄、モルホリンジスルフィドなどを使用することができ、中でも硫黄が好ましい。これらの加硫剤は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
ゴムラテックス分散液中の加硫剤の配合量としては、ゴム成分100質量部に対して硫黄の場合、通常7.0質量部以下、好ましくは6.0質量部以下である。また、通常1.0質量部以上、好ましくは3.0質量部以上、中でも4.0質量部以上である。
加硫工程の条件は特に限定されず、ゴム成分を加硫ゴムとできる温度以上であればよい。なかでも、有機溶媒を揮発させて除去できる点から、加熱温度は、60℃以上が好ましく、100℃以上がより好ましい。なお、微細セルロース繊維の分解を抑制する点から、加熱温度は250℃以下が好ましく、200℃以下がより好ましい。加熱時間は、生産性などの点から、通常、5分以上、好ましくは10分以上、更に好ましくは15分以上で、180分以下が好ましい。加熱処理は複数回にわたって、温度・加熱時間を変更して実施してもよい。
本発明のセルロースナノファイバー含有ゴムマスターバッチから製造される加硫ゴム組成物は、高い破断強度及び弾性率を有し、乗用車用、トラック用、バス用、重車両用などの空気入りタイヤなどのタイヤ、その他、ゴムクローラ、コンベアベルト等、各種のゴム製品に適用することができる。
以下、実施例及び比較例によって、本発明をさらに具体的に説明するが、本発明はその要旨を超えない限り、以下の実施例により限定されるものではない。
<セルロースナノファイバーの調製>
セルロースを含む繊維原料として、カルボキシ基含有量0.06mmol/g、固形分濃度30質量%(水分70質量%)、絶乾質量換算で20gの広葉樹漂白クラフトパルプ(LBKP)を用意した。
上記LBKPを容器内に収容し、その容器にオゾン濃度200g/mのオゾン・酸素混合気体を5L導入し、25℃で2分間振とうした。このときのオゾン添加率はパルプ乾燥質量に対して5質量%であった。6時間静置した後、容器内のオゾンおよび空気を除去してオゾン酸化処理を終了した。
処理終了後、イオン交換水で懸濁洗浄し、洗浄水のpHが6以上になるまで洗浄を繰り返した。その後、ろ紙を用いて減圧ろ過し、固形分濃度20質量%の酸化処理パルプを得た。
上記酸化処理パルプ(絶乾質量換算で20g)にイオン交換水を添加して、固形分濃度2質量%のスラリーを調製した。そのスラリーに水酸化ナトリウムを、水酸化ナトリウム濃度が0.3質量%になるよう添加し、5分間攪拌した後、室温で30分静置した。次いで、イオン交換水で懸濁洗浄し、洗浄水のpHが8以下になるまで洗浄を繰り返して、アルカリ処理パルプを含むスラリーを得た。
次いで、イオン交換水を加えて、セルロース繊維濃度0.5質量%のセルロース繊維水分散液を調製した。該セルロース繊維水分散液を解繊処理装置(エムテクニック社製、クレアミックス−2.2S)を用いて、21500回転/分の条件で30分間解繊処理した。その後、遠心分離機(コクサン社製「H−200NR」)を用い、約12000Gで10分間処理し、これにより分離した上澄み液を、セルロースナノファイバーの水分散液として回収した。
得られたセルロースナノファイバーの水分散液を透過型電子顕微鏡にて観察し、平均繊維幅を測定した所、4nmであった。
<マスターバッチの製造>
製造例1
天然ゴムラテックス(固形分濃度20質量%)を0.2質量%に希釈した後、天然ゴムラテックス100部に対してIKAホモジナイザーを用いて11000rpmで攪拌しながら、上記<セルロースナノファイバーの調製>によって得られたセルロースナノファイバー水分散液(0.2質量%)5部を添加し、さらに10分間攪拌した。スリーワンモーターを用いて500rpmで攪拌しながらゆっくりとギ酸(5質量%)を20部添加した。2時間静置した後、ゴム浮遊分を回収した。シリンダドライヤにて110℃、10分間乾燥させた後、真空乾燥機にて110℃、3時間乾燥してマスターバッチ1(M.B.1)を作製した。
製造例2
製造例1においてギ酸の代わりにWS4024(星光PMC社製、1質量%)を5部添加した以外は製造例1と同様にしてマスターバッチ2(M.B.2)を製造した。
製造例3
製造例1においてギ酸の代わりにカチオーゲンDDM−PG(第一工業製薬株式会社製、1質量%)を1.25部添加した以外は製造例1と同様にしてマスターバッチ3(M.B.3)を製造した。
製造例4
製造例1において天然ゴムラテックス(固形分濃度20質量%)を0.2質量%に希釈せずに使用した以外は製造例1と同様にしてマスターバッチ4(M.B.4)を作製した。
製造例5
天然ゴムラテックス(固形分濃度20質量%)の固形分量として100質量部に対し、スリーワンモーターを用いて500rpmで攪拌しながらゆっくりとギ酸(5質量%)を20部添加した。2時間静置した後、ゴム浮遊分を回収した。シリンダドライヤにて110℃、10分間乾燥させた後、真空乾燥機にて110℃、3時間乾燥してマスターバッチ5(M.B.5)を作製した。
製造例1から製造例5で作製したマスターバッチの配合と水を除去する前のセルロースナノファイバー含有水分散液の固形分濃度を表1に示す。
実施例1
製造例1で得られたM.B.1は、ゴム成分(天然ゴムラテックス)100質量部に対して、セルロース繊維1を5質量部含む。これにさらに、亜鉛華(1号亜鉛華、浅岡窯業原料社製)3質量部、加硫促進剤(N−tert−ブチル−2−ベンゾチアゾールスルフェンアミド、和光純薬工業社製)1質量部、硫黄(5%油処理粉末硫黄、鶴見化学工業社製)2質量部、ステアリン酸(和光純薬工業社製)3質量部を配合し、混練を行った。
詳細には、マスターバッチ1に対し、加硫促進剤と硫黄を除く成分を添加し、140℃で3分間混練装置(ラボプラストミルμ、東洋精機社製)を用い混練し、さらに加硫促進剤と硫黄を添加し、80℃で3分間混練することによりゴム組成物を得た。このゴム組成物を150℃で30分間加圧プレス加硫し、厚さ1mmの加硫ゴム組成物1を得た。
実施例2
製造例2で得られたM.B.2を使用した以外は実施例1と同様にして加硫ゴム組成物2を得た。
実施例3
製造例3で得られたM.B.3を使用した以外は実施例1と同様にして加硫ゴム組成物3を得た。
比較例1
製造例4で得られたM.B.4を使用した以外は実施例1と同様にして加硫ゴム組成物4を得た。
比較例2
製造例5で得られた天然ゴム(M.B.5)を使用した以外は実施例1と同様にして加硫ゴム組成物5を得た。
Figure 2014141637
[評価試験]
実施例1及び比較例1,2で得られた加硫ゴム組成物1、加硫ゴム組成物2、加硫ゴム組成物3、加硫ゴム組成物4、加硫ゴム組成物5を、所定のダンベル形状の試験片にし、破断強度とM300を評価した。その結果を表2に示す。破断強度及びM300は、JIS K6251に準じた引張試験により、加硫ゴム組成物の破断強度及びM300を測定し、比較例2の値を100とした指数で表示した。その指数が大きいほど補強性に優れることを示す。
Figure 2014141637
表2より、本発明のセルロースナノファイバー含有ゴムマスターバッチを用いた実施例1〜3のゴム組成物は、天然ゴムのみである比較例2と比べ、高い弾性率、高い破壊強度を示し、本発明のセルロースナノファイバー含有ゴムマスターバッチから作製された加硫ゴム組成物は優れた強度特性を持つことが分かる。
一方、セルロースナノファイバーとゴムラテックスを含有する固形分濃度が3質量%を超える水分散液から作製されたM.B.4より得た加硫ゴム組成物は高い補強効果が認められなかった。

Claims (3)

  1. 平均繊維幅が100nm未満のセルロースナノファイバーとゴムラテックスを含有する固形分濃度が3質量%以下である水分散液から水分を除去して得られるセルロースナノファイバー含有ゴムマスターバッチ。
  2. 前記水分散液がカチオン性高分子を含有する、請求項1に記載のセルロースナノファイバー含有ゴムマスターバッチ。
  3. 前記水分散液がカチオン性界面活性剤を含有する、請求項1または2に記載のセルロースナノファイバー含有ゴムマスターバッチ。
JP2013232415A 2012-12-25 2013-11-08 セルロースナノファイバー含有ゴムマスターバッチ Active JP6143187B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013232415A JP6143187B2 (ja) 2012-12-25 2013-11-08 セルロースナノファイバー含有ゴムマスターバッチ

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012281522 2012-12-25
JP2012281522 2012-12-25
JP2013232415A JP6143187B2 (ja) 2012-12-25 2013-11-08 セルロースナノファイバー含有ゴムマスターバッチ

Publications (2)

Publication Number Publication Date
JP2014141637A true JP2014141637A (ja) 2014-08-07
JP6143187B2 JP6143187B2 (ja) 2017-06-07

Family

ID=51423200

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013232415A Active JP6143187B2 (ja) 2012-12-25 2013-11-08 セルロースナノファイバー含有ゴムマスターバッチ

Country Status (1)

Country Link
JP (1) JP6143187B2 (ja)

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016017096A (ja) * 2014-07-04 2016-02-01 王子ホールディングス株式会社 繊維含有樹脂組成物の製造方法
JP2016147996A (ja) * 2015-02-13 2016-08-18 住友ゴム工業株式会社 ミクロフィブリル化植物繊維・ゴム複合体及びその製造方法、並びに、ゴム組成物及び空気入りタイヤ
JP2016147948A (ja) * 2015-02-12 2016-08-18 横浜ゴム株式会社 タイヤ用ゴム組成物およびそれを用いた空気入りタイヤ
WO2016136453A1 (ja) * 2015-02-26 2016-09-01 住友ゴム工業株式会社 マスターバッチの製造方法、該製造方法により得られるマスターバッチ、タイヤ用ゴム組成物及び空気入りタイヤ
JP2016204594A (ja) * 2015-04-28 2016-12-08 日信工業株式会社 油田装置
JP2016210822A (ja) * 2015-04-28 2016-12-15 バンドー化学株式会社 ゴム組成物及びその製造方法、並びに、伝動ベルト及びその製造方法
JP2017036217A (ja) * 2015-08-04 2017-02-16 王子ホールディングス株式会社 化粧料
JP2017071700A (ja) * 2015-10-07 2017-04-13 日本製紙株式会社 アニオン変性セルロースナノファイバーの製造方法
JP6155415B1 (ja) * 2015-12-25 2017-06-28 日本製紙株式会社 マスターバッチ、ゴム組成物、及びそれらの製造方法
JP2017165942A (ja) * 2016-03-15 2017-09-21 バンドー化学株式会社 ゴム組成物及びそれを用いた伝動ベルト
JP2017537203A (ja) * 2014-12-09 2017-12-14 アーケマ・インコーポレイテッド 大気酸素の存在下でおいてポリマーを架橋させるための組成物及び方法
JP6271823B1 (ja) * 2016-09-26 2018-01-31 バンドー化学株式会社 ゴム組成物及びそれを用いた伝動ベルト
WO2018056055A1 (ja) * 2016-09-26 2018-03-29 バンドー化学株式会社 ゴム組成物及びそれを用いた伝動ベルト
EP3315540A1 (en) 2016-11-01 2018-05-02 Sumitomo Rubber Industries, Ltd. Method for producing masterbatch
EP3315539A1 (en) 2016-11-01 2018-05-02 Sumitomo Rubber Industries, Ltd. Method for producing masterbatch
JP2018119072A (ja) * 2017-01-26 2018-08-02 日本製紙株式会社 マスターバッチ、ゴム組成物、及びそれらの製造方法
JP2018123238A (ja) * 2017-02-01 2018-08-09 日本製紙株式会社 マスターバッチの製造方法
JP2018131573A (ja) * 2017-02-17 2018-08-23 日本製紙株式会社 ゴム組成物の製造方法
JP2018131574A (ja) * 2017-02-17 2018-08-23 日本製紙株式会社 ゴム組成物の製造方法
WO2018181224A1 (ja) * 2017-03-29 2018-10-04 日本製紙株式会社 ゴム組成物およびその製造方法
WO2018199191A1 (ja) * 2017-04-27 2018-11-01 日本製紙株式会社 マスターバッチ、ゴム組成物及びそれらの製造方法
CN110291149A (zh) * 2017-02-09 2019-09-27 日本制纸株式会社 橡胶组合物和其制造方法
CN110317370A (zh) * 2019-07-08 2019-10-11 华南理工大学 一种阳离子表面活性剂改性纳米纤维素/天然橡胶复合材料及其制备方法
JP2020063327A (ja) * 2018-10-15 2020-04-23 日信工業株式会社 複合材料の製造方法及び複合材料
WO2020100979A1 (ja) * 2018-11-16 2020-05-22 日本製紙株式会社 アニオン変性セルロースナノファイバーを含有するマスターバッチおよびゴム組成物の製造方法
JP2020193228A (ja) * 2020-09-02 2020-12-03 王子ホールディングス株式会社 化粧料
EP3757159A1 (en) * 2019-06-24 2020-12-30 Sumitomo Rubber Industries, Ltd. Nanocellulose/surfactant composite
CN112409660A (zh) * 2018-04-04 2021-02-26 史国民 耐油橡胶密封件材料
US11014405B2 (en) 2017-03-16 2021-05-25 Sumitomo Rubber Industries, Ltd. Pneumatic tire
CN114341250A (zh) * 2019-10-09 2022-04-12 横滨橡胶株式会社 表面处理纳米纤维素母炼胶
US11382842B2 (en) 2015-08-04 2022-07-12 Oji Holdings Corporation Cosmetic
US11566118B2 (en) 2016-02-18 2023-01-31 Starlite Co., Ltd. Nanofiber dispersion, method of producing nanofiber dispersion, powdery nanofibers obtainable from the dispersion, resin composition containing the powdery nanofibers ad molding material for 3D printer using the resin composition
WO2023136130A1 (ja) * 2022-01-17 2023-07-20 日本製紙株式会社 ゴム組成物及びその製造方法
JP7346697B1 (ja) 2022-12-28 2023-09-19 株式会社スギノマシン ゴム複合物、ウェットマスターバッチ、ドライマスターバッチ、ゴム組成物

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002241507A (ja) * 2000-12-12 2002-08-28 Jsr Corp ジエン系ゴム・無機化合物複合体及びその製造方法並びにそれを含有するゴム組成物
JP2005112918A (ja) * 2003-10-03 2005-04-28 Tokuyama Corp ゴム組成物
JP2010144001A (ja) * 2008-12-17 2010-07-01 Sumitomo Rubber Ind Ltd 天然ゴムの製造方法
JP2011231204A (ja) * 2010-04-27 2011-11-17 Kyoto Univ ゴム組成物及びゴム組成物の製造方法
JP2011231208A (ja) * 2010-04-27 2011-11-17 Kyoto Univ ゴム組成物及びゴム組成物の製造方法
JP2013018918A (ja) * 2011-07-13 2013-01-31 Kao Corp ゴム組成物及びその製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002241507A (ja) * 2000-12-12 2002-08-28 Jsr Corp ジエン系ゴム・無機化合物複合体及びその製造方法並びにそれを含有するゴム組成物
JP2005112918A (ja) * 2003-10-03 2005-04-28 Tokuyama Corp ゴム組成物
JP2010144001A (ja) * 2008-12-17 2010-07-01 Sumitomo Rubber Ind Ltd 天然ゴムの製造方法
JP2011231204A (ja) * 2010-04-27 2011-11-17 Kyoto Univ ゴム組成物及びゴム組成物の製造方法
JP2011231208A (ja) * 2010-04-27 2011-11-17 Kyoto Univ ゴム組成物及びゴム組成物の製造方法
JP2013018918A (ja) * 2011-07-13 2013-01-31 Kao Corp ゴム組成物及びその製造方法

Cited By (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016017096A (ja) * 2014-07-04 2016-02-01 王子ホールディングス株式会社 繊維含有樹脂組成物の製造方法
US10752764B2 (en) 2014-12-09 2020-08-25 Arkema Inc. Compositions and methods for crosslinking polymers in the presence of atmospheric oxygen
JP2017537203A (ja) * 2014-12-09 2017-12-14 アーケマ・インコーポレイテッド 大気酸素の存在下でおいてポリマーを架橋させるための組成物及び方法
JP2016147948A (ja) * 2015-02-12 2016-08-18 横浜ゴム株式会社 タイヤ用ゴム組成物およびそれを用いた空気入りタイヤ
JP2016147996A (ja) * 2015-02-13 2016-08-18 住友ゴム工業株式会社 ミクロフィブリル化植物繊維・ゴム複合体及びその製造方法、並びに、ゴム組成物及び空気入りタイヤ
WO2016136453A1 (ja) * 2015-02-26 2016-09-01 住友ゴム工業株式会社 マスターバッチの製造方法、該製造方法により得られるマスターバッチ、タイヤ用ゴム組成物及び空気入りタイヤ
US10428188B2 (en) 2015-02-26 2019-10-01 Sumitomo Rubber Industries, Ltd. Method for producing master batch, master batch obtained by said production method, rubber composition for tire, and pneumatic tire
JPWO2016136453A1 (ja) * 2015-02-26 2017-11-30 住友ゴム工業株式会社 マスターバッチの製造方法、該製造方法により得られるマスターバッチ、タイヤ用ゴム組成物及び空気入りタイヤ
JP2016204594A (ja) * 2015-04-28 2016-12-08 日信工業株式会社 油田装置
JP2016210822A (ja) * 2015-04-28 2016-12-15 バンドー化学株式会社 ゴム組成物及びその製造方法、並びに、伝動ベルト及びその製造方法
JP2017036217A (ja) * 2015-08-04 2017-02-16 王子ホールディングス株式会社 化粧料
US11382842B2 (en) 2015-08-04 2022-07-12 Oji Holdings Corporation Cosmetic
JP2017071700A (ja) * 2015-10-07 2017-04-13 日本製紙株式会社 アニオン変性セルロースナノファイバーの製造方法
WO2017110944A1 (ja) * 2015-12-25 2017-06-29 日本製紙株式会社 マスターバッチ、ゴム組成物、及びそれらの製造方法
JP6155415B1 (ja) * 2015-12-25 2017-06-28 日本製紙株式会社 マスターバッチ、ゴム組成物、及びそれらの製造方法
CN108368277A (zh) * 2015-12-25 2018-08-03 日本制纸株式会社 母料、橡胶组合物和它们的制造方法
EP3395865A4 (en) * 2015-12-25 2019-07-17 Nippon Paper Industries Co., Ltd. MASTER MIXTURE, RUBBER COMPOSITION AND PROCESSES FOR PRODUCING A MASTER MIXTURE AND A RUBBER COMPOSITION
US11118020B2 (en) 2015-12-25 2021-09-14 Nippon Paper Industries Co., Ltd. Masterbatch, rubber composition, and methods for producing the same
US11566118B2 (en) 2016-02-18 2023-01-31 Starlite Co., Ltd. Nanofiber dispersion, method of producing nanofiber dispersion, powdery nanofibers obtainable from the dispersion, resin composition containing the powdery nanofibers ad molding material for 3D printer using the resin composition
JP2017165942A (ja) * 2016-03-15 2017-09-21 バンドー化学株式会社 ゴム組成物及びそれを用いた伝動ベルト
WO2018056055A1 (ja) * 2016-09-26 2018-03-29 バンドー化学株式会社 ゴム組成物及びそれを用いた伝動ベルト
JP6271823B1 (ja) * 2016-09-26 2018-01-31 バンドー化学株式会社 ゴム組成物及びそれを用いた伝動ベルト
US10414882B2 (en) 2016-11-01 2019-09-17 Sumitomo Rubber Industries, Ltd. Method for producing masterbatch
US10435522B2 (en) 2016-11-01 2019-10-08 Sumitomo Rubber Industries, Ltd. Method for producing masterbatch
EP3315539A1 (en) 2016-11-01 2018-05-02 Sumitomo Rubber Industries, Ltd. Method for producing masterbatch
EP3315540A1 (en) 2016-11-01 2018-05-02 Sumitomo Rubber Industries, Ltd. Method for producing masterbatch
JP2018119072A (ja) * 2017-01-26 2018-08-02 日本製紙株式会社 マスターバッチ、ゴム組成物、及びそれらの製造方法
JP2018123238A (ja) * 2017-02-01 2018-08-09 日本製紙株式会社 マスターバッチの製造方法
EP3581618A4 (en) * 2017-02-09 2020-09-02 Nippon Paper Industries Co., Ltd. RUBBER COMPOSITION AND METHOD OF MANUFACTURING THEREOF
US11352482B2 (en) 2017-02-09 2022-06-07 Nippon Paper Industries Co., Ltd. Rubber composition and method for producing same
CN110291149B (zh) * 2017-02-09 2022-07-29 日本制纸株式会社 橡胶组合物和其制造方法
CN110291149A (zh) * 2017-02-09 2019-09-27 日本制纸株式会社 橡胶组合物和其制造方法
JP2018131573A (ja) * 2017-02-17 2018-08-23 日本製紙株式会社 ゴム組成物の製造方法
JP2018131574A (ja) * 2017-02-17 2018-08-23 日本製紙株式会社 ゴム組成物の製造方法
US11014405B2 (en) 2017-03-16 2021-05-25 Sumitomo Rubber Industries, Ltd. Pneumatic tire
JPWO2018181224A1 (ja) * 2017-03-29 2020-02-06 日本製紙株式会社 ゴム組成物およびその製造方法
JP7061998B2 (ja) 2017-03-29 2022-05-02 日本製紙株式会社 ゴム組成物およびその製造方法
WO2018181224A1 (ja) * 2017-03-29 2018-10-04 日本製紙株式会社 ゴム組成物およびその製造方法
WO2018199191A1 (ja) * 2017-04-27 2018-11-01 日本製紙株式会社 マスターバッチ、ゴム組成物及びそれらの製造方法
JP6473550B1 (ja) * 2017-04-27 2019-02-20 日本製紙株式会社 マスターバッチ、ゴム組成物及びそれらの製造方法
CN112409660A (zh) * 2018-04-04 2021-02-26 史国民 耐油橡胶密封件材料
CN112409660B (zh) * 2018-04-04 2023-04-25 宏阳鑫精密科技(福建)有限公司 耐油橡胶密封件材料
JP7029125B2 (ja) 2018-10-15 2022-03-03 日立Astemo株式会社 複合材料の製造方法
JP2020063327A (ja) * 2018-10-15 2020-04-23 日信工業株式会社 複合材料の製造方法及び複合材料
WO2020100979A1 (ja) * 2018-11-16 2020-05-22 日本製紙株式会社 アニオン変性セルロースナノファイバーを含有するマスターバッチおよびゴム組成物の製造方法
EP3757159A1 (en) * 2019-06-24 2020-12-30 Sumitomo Rubber Industries, Ltd. Nanocellulose/surfactant composite
CN110317370A (zh) * 2019-07-08 2019-10-11 华南理工大学 一种阳离子表面活性剂改性纳米纤维素/天然橡胶复合材料及其制备方法
CN114341250A (zh) * 2019-10-09 2022-04-12 横滨橡胶株式会社 表面处理纳米纤维素母炼胶
CN114341250B (zh) * 2019-10-09 2023-08-22 横滨橡胶株式会社 表面处理纳米纤维素母炼胶
JP2020193228A (ja) * 2020-09-02 2020-12-03 王子ホールディングス株式会社 化粧料
WO2023136130A1 (ja) * 2022-01-17 2023-07-20 日本製紙株式会社 ゴム組成物及びその製造方法
JP7346697B1 (ja) 2022-12-28 2023-09-19 株式会社スギノマシン ゴム複合物、ウェットマスターバッチ、ドライマスターバッチ、ゴム組成物

Also Published As

Publication number Publication date
JP6143187B2 (ja) 2017-06-07

Similar Documents

Publication Publication Date Title
JP6143187B2 (ja) セルロースナノファイバー含有ゴムマスターバッチ
JP6702448B2 (ja) 微細繊維状セルロース凝集物の製造方法
JP6143186B2 (ja) 複合材の製造方法
EP2975084B1 (en) Method for manufacturing rubber composition
EP2975077B1 (en) Method for manufacturing rubber composition, rubber composition, vulcanized rubber, and tire
JP5988843B2 (ja) 複合材料
JP6270379B2 (ja) 微細セルロース繊維複合体及びその製造方法
JP2014105233A (ja) ゴム改質材、繊維ゴム分散液およびゴム組成物
JP6048365B2 (ja) ゴム改質材、ゴム改質材分散液、及びゴム組成物
JP2013177540A (ja) ゴム改質材、ゴムラテックス分散液及びゴム組成物
JP2014227525A (ja) 微細セルロース繊維複合体の製造方法
JP2018119072A (ja) マスターバッチ、ゴム組成物、及びそれらの製造方法
JP6020334B2 (ja) ゴム改質材、ゴムラテックス分散液及びゴム組成物
JP2014125689A (ja) 微細セルロース繊維の製造方法
JP2014125691A (ja) 微細セルロース繊維の製造方法
WO2020100979A1 (ja) アニオン変性セルロースナノファイバーを含有するマスターバッチおよびゴム組成物の製造方法
JP5884722B2 (ja) 微細セルロース繊維分散液の製造方法
JP2014141658A (ja) ゴム改質剤、ゴムラテックス分散液及びゴム組成物
JP2014139303A (ja) ゴム改質剤、ゴムラテックス分散液及びゴム組成物
JP6951844B2 (ja) マスターバッチの製造方法
JP6915170B2 (ja) ゴム組成物の製造方法
JP7015970B2 (ja) ゴム組成物及びその製造方法
JP6832110B2 (ja) マスターバッチの製造方法

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20140902

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140902

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170404

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20170414

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170427

R150 Certificate of patent or registration of utility model

Ref document number: 6143187

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250