JP2014134145A - Number-of-compressors control system - Google Patents

Number-of-compressors control system Download PDF

Info

Publication number
JP2014134145A
JP2014134145A JP2013002671A JP2013002671A JP2014134145A JP 2014134145 A JP2014134145 A JP 2014134145A JP 2013002671 A JP2013002671 A JP 2013002671A JP 2013002671 A JP2013002671 A JP 2013002671A JP 2014134145 A JP2014134145 A JP 2014134145A
Authority
JP
Japan
Prior art keywords
pressure
compressor
time
limit pressure
compressors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013002671A
Other languages
Japanese (ja)
Other versions
JP6176518B2 (en
Inventor
Shigeki Ochi
重喜 越智
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miura Co Ltd
Original Assignee
Miura Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miura Co Ltd filed Critical Miura Co Ltd
Priority to JP2013002671A priority Critical patent/JP6176518B2/en
Publication of JP2014134145A publication Critical patent/JP2014134145A/en
Application granted granted Critical
Publication of JP6176518B2 publication Critical patent/JP6176518B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Positive-Displacement Pumps (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a number-of-compressors control system enabling a smallest number of compressors to operate according to the used load of compressed air even if the compressors are load/unload compressors, thereby suppressing power consumption.SOLUTION: A number-of-compressors control system comprises a plurality of compressors 2. Each compressor 2 switches an operation to an unload operation if a discharge-side pressure exceeds an upper limit pressure PH and to a load operation if the discharge-side pressure exceeds a lower limit pressure PL. A number-of-compressors control device 5 stops one of the compressors 2 if pressure-UP time TU from the lower limit pressure PL to the upper limit pressure PH is shorter than first set time. The number-of-compressors controller 5 stops one of the compressors 2 if pressure-DOWN time TD is longer than second set time from the upper limit pressure PH to the lower limit pressure PL.

Description

本発明は、複数台の空気圧縮機を備え、圧縮空気の使用負荷に応じて圧縮機の運転台数を変更する圧縮機台数制御システムに関するものである。   The present invention relates to a compressor number control system that includes a plurality of air compressors and changes the number of operating compressors according to the use load of compressed air.

出願人は、先に、下記特許文献1に開示されるように、すべての圧縮機を容量制御しつつ、レシーバタンクの圧力に基づき、運転中の圧縮機の負荷率(停止時0%〜全負荷時100%)を求め、この負荷率が運転台数に基づき定められる停止負荷率以下になると、運転中の一台を停止させる圧縮機台数制御システムを提案している。   As disclosed in the following Patent Document 1, the applicant previously controlled the capacity of all the compressors, and based on the pressure of the receiver tank, the load factor of the compressor during operation (0% at stop to all When the load factor is equal to or less than the stop load factor determined based on the number of operating units, a compressor number control system that stops one unit in operation is proposed.

特許第4924855号公報(請求項2、段落0009)Japanese Patent No. 4924855 (Claim 2, paragraph 0009)

しかしながら、容量制御せずに、単にロード運転とアンロード運転とを切り替える圧縮機の場合には、ロード運転中は負荷率100%、アンロード運転中は負荷率0%となり、レシーバタンクの圧力に基づき圧縮機の負荷率を把握することができない。   However, in the case of a compressor that simply switches between load operation and unload operation without capacity control, the load factor is 100% during load operation and the load factor is 0% during unload operation. Based on this, the load factor of the compressor cannot be grasped.

そこで、本発明が解決しようとする課題は、圧縮機がロードアンロード機であっても、圧縮空気の使用負荷に応じた最少台数で運転することができ、それにより消費電力を抑えることのできる圧縮機台数制御システムを提供することにある。   Therefore, the problem to be solved by the present invention is that even if the compressor is a load / unload machine, it can be operated with the minimum number of units according to the use load of the compressed air, thereby reducing power consumption. It is to provide a compressor number control system.

本発明は、前記課題を解決するためになされたもので、請求項1に記載の発明は、吐出側の圧力が上限圧力PHを上回るとアンロード運転に切り替える一方、下限圧力PLを下回るとロード運転に切り替える複数台の圧縮機と、これら圧縮機から圧縮空気が供給されると共に圧縮空気利用機器へ圧縮空気を送るレシーバタンクに設けられ、圧縮空気の圧力を検出する圧力センサと、前記圧縮機の運転台数を変更する台数制御器とを備え、前記台数制御器は、下限圧力PLから上限圧力PHまでの昇圧時間TUが第一設定時間よりも短ければ、前記圧縮機を一台停止させることを特徴とする圧縮機台数制御システムである。   The present invention has been made to solve the above problems, and the invention according to claim 1 switches to unload operation when the pressure on the discharge side exceeds the upper limit pressure PH, while loading when the pressure falls below the lower limit pressure PL. A plurality of compressors to be switched to operation, a pressure sensor for detecting the pressure of the compressed air provided in a receiver tank to which the compressed air is supplied from the compressors and which sends the compressed air to a device using the compressed air; and the compressor A unit controller that changes the number of operating units, and the unit controller stops one of the compressors if the pressure increase time TU from the lower limit pressure PL to the upper limit pressure PH is shorter than the first set time. This is a control system for the number of compressors.

請求項1に記載の発明によれば、圧縮機がロードアンロード機であっても、下限圧力PLから上限圧力PHまでの昇圧時間TUが第一設定時間よりも短ければ、圧縮機を一台停止させることで、圧縮空気の使用負荷に応じた最少台数で運転することができ、それにより消費電力を抑えることができる。   According to the first aspect of the present invention, even if the compressor is a load / unload machine, if the pressurization time TU from the lower limit pressure PL to the upper limit pressure PH is shorter than the first set time, one compressor is used. By stopping, it is possible to operate with the minimum number of units according to the use load of the compressed air, thereby reducing power consumption.

請求項2に記載の発明は、前記第一設定時間としての一台停止ロード時間は、次式により設定されることを特徴とする請求項1に記載の圧縮機台数制御システムである。但し、P0は大気圧[kPa]、Qはレシーバタンクの容量[m]、QCは次停止予定機の吐出容量[m/min]、PHは上限圧力[kPa]、PLは下限圧力[kPa]、Kは空気の水分、温度および配管容量を考慮した数である。
一台停止ロード時間[秒]=(60/P0)・K・(Q/QC)・{(PH+P0)/(PL+P0)−1}・(PL+P0)
The invention according to claim 2 is the compressor number control system according to claim 1, wherein the one-unit stop load time as the first set time is set by the following equation. However, P0 is the atmospheric pressure [kPa], Q is the capacity of the receiver tank [m 3 ], QC is the discharge capacity [m 3 / min] of the next scheduled stop machine, PH is the upper limit pressure [kPa], and PL is the lower limit pressure [ kPa] and K are numbers in consideration of the moisture, temperature and pipe capacity of the air.
Single unit stop load time [seconds] = (60 / P0) * K * (Q / QC) * {(PH + P0) / (PL + P0) -1} * (PL + P0)

請求項2に記載の発明によれば、圧縮空気の生産流量と消費流量との差が次停止予定機の吐出流量よりも多ければ、圧縮機を一台停止する制御を簡易に行うことができる。これにより、圧縮機がロードアンロード機であっても、圧縮空気の使用負荷に応じた最少台数で運転することができ、それにより消費電力を抑えることができる。   According to the second aspect of the present invention, if the difference between the production flow rate and the consumption flow rate of the compressed air is larger than the discharge flow rate of the next scheduled stop machine, the control for stopping one compressor can be easily performed. . As a result, even if the compressor is a load / unload machine, it can be operated with the minimum number of units according to the use load of the compressed air, thereby reducing power consumption.

請求項3に記載の発明は、前記台数制御器は、上限圧力PHから下限圧力PLまでの降圧時間TDが第二設定時間よりも長ければ、前記圧縮機を一台停止させることを特徴とする請求項1または請求項2に記載の圧縮機台数制御システムである。   The invention according to claim 3 is characterized in that the number controller stops one of the compressors when the pressure reduction time TD from the upper limit pressure PH to the lower limit pressure PL is longer than the second set time. A compressor number control system according to claim 1 or claim 2.

請求項3に記載の発明によれば、圧縮機がロードアンロード機であっても、上限圧力PHから下限圧力PLまでの降圧時間TDが第二設定時間よりも長ければ、圧縮機を一台停止させることで、圧縮空気の使用負荷に応じた最少台数で運転することができ、それにより消費電力を抑えることができる。   According to the invention described in claim 3, even if the compressor is a load / unload machine, if the pressure reduction time TD from the upper limit pressure PH to the lower limit pressure PL is longer than the second set time, one compressor is provided. By stopping, it is possible to operate with the minimum number of units according to the use load of the compressed air, thereby reducing power consumption.

さらに、請求項4に記載の発明は、前記第二設定時間としての一台停止アンロード時間は、次式により設定されることを特徴とする請求項3に記載の圧縮機台数制御システムである。但し、P0は大気圧[kPa]、Qはレシーバタンクの容量[m]、QCは次停止予定機の吐出容量[m/min]、PHは上限圧力[kPa]、PLは下限圧力[kPa]、nは次停止予定機の吐出容量に換算した運転台数、Kは空気の水分、温度および配管容量を考慮した数である。
一台停止アンロード時間[秒]=(60/P0)・K・[Q/{(n−1)・QC}]・{(PH+P0)/(PL+P0)−1}・(PL+P0)
Further, the invention according to claim 4 is the compressor number control system according to claim 3, wherein the one-unit stop unload time as the second set time is set by the following equation. . However, P0 is the atmospheric pressure [kPa], Q is the capacity of the receiver tank [m 3 ], QC is the discharge capacity [m 3 / min] of the next scheduled stop machine, PH is the upper limit pressure [kPa], and PL is the lower limit pressure [ kPa], n is the number of operating units converted into the discharge capacity of the next scheduled stop machine, and K is a number that takes into account the moisture, temperature, and pipe capacity of the air.
One-station stop unload time [seconds] = (60 / P0) · K · [Q / {(n−1) · QC}] · {(PH + P0) / (PL + P0) −1} · (PL + P0)

請求項4に記載の発明によれば、圧縮空気の消費流量が次停止予定機を停止した場合の圧縮空気の生産流量よりも少なければ、圧縮機を一台停止する制御を簡易に行うことができる。これにより、圧縮機がロードアンロード機であっても、圧縮空気の使用負荷に応じた最少台数で運転することができ、それにより消費電力を抑えることができる。   According to the invention described in claim 4, if the consumption flow rate of the compressed air is less than the production flow rate of the compressed air when the next scheduled stop machine is stopped, the control for stopping one compressor can be easily performed. it can. As a result, even if the compressor is a load / unload machine, it can be operated with the minimum number of units according to the use load of the compressed air, thereby reducing power consumption.

本発明によれば、圧縮機がロードアンロード機であっても、圧縮空気の使用負荷に応じた最少台数で運転することができ、それにより消費電力を抑えることのできる圧縮機台数制御システムを実現することができる。   According to the present invention, even if the compressor is a load / unload machine, the compressor number control system that can be operated with the minimum number of units according to the use load of the compressed air and thereby can reduce power consumption. Can be realized.

本発明の圧縮機台数制御システムの一実施例を示す概略図である。It is the schematic which shows one Example of the compressor number control system of this invention. 図1の圧縮機台数制御システムによる運転台数の増加制御の一例を示す図であり、運転中の圧縮機の吐出圧力、レシーバタンク内の圧力、運転台数を増やすための起動表を示している。It is a figure which shows an example of the increase control of the operation number by the compressor number control system of FIG. 1, and has shown the starting table for increasing the discharge pressure of the compressor in operation, the pressure in a receiver tank, and the number of operation. 図1の圧縮機台数制御システムにおいて、運転中の圧縮機の吐出側の圧力変化を示す概略図である。In the compressor number control system of FIG. 1, it is the schematic which shows the pressure change by the side of the discharge of the compressor in operation.

以下、本発明の具体的実施例を図面に基づいて詳細に説明する。
図1は、本発明の圧縮機台数制御システム1の一実施例を示す概略図である。本実施例の圧縮機台数制御システム1は、複数台の圧縮機2,2,…と、これら圧縮機2から圧縮空気が供給されるレシーバタンク3と、このレシーバタンク3内の圧力を検出する圧力センサ4と、この圧力センサ4の検出圧力などに基づき前記各圧縮機2を制御する台数制御器5とを備える。
Hereinafter, specific embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a schematic diagram showing an embodiment of a compressor number control system 1 according to the present invention. The compressor number control system 1 according to the present embodiment detects a plurality of compressors 2, 2,..., A receiver tank 3 to which compressed air is supplied from the compressor 2, and a pressure in the receiver tank 3. A pressure sensor 4 and a number controller 5 for controlling the compressors 2 based on the pressure detected by the pressure sensor 4 are provided.

各圧縮機2は、外気を吸入し圧縮して吐出する。各圧縮機2からの圧縮空気は、共通のレシーバタンク3を介して、一または複数の各種の圧縮空気利用機器(図示省略)へ送られる。   Each compressor 2 sucks outside air, compresses it, and discharges it. Compressed air from each compressor 2 is sent to one or a plurality of various compressed air utilization devices (not shown) via a common receiver tank 3.

各圧縮機2は、ロードアンロード機である。各圧縮機2は、運転と停止とが切り替えられる他、運転中には、吐出側の圧力に基づき、ロード運転とアンロード運転とが切り替えられる。本実施例では、台数制御器5により発停が制御され、運転中には、圧縮機2に付属の圧力センサで吐出側の圧力を検知して、圧縮機2に付属の制御回路にて、ロード運転(全負荷運転)とアンロード運転(無負荷運転)とを切り替える。具体的には、各圧縮機2は、吐出側の圧力が上限圧力PHを上回るとアンロード運転に切り替える一方、下限圧力PLを下回るとロード運転に切り替える。   Each compressor 2 is a load / unload machine. Each compressor 2 is switched between operation and stop, and during operation, the load operation and the unload operation are switched based on the pressure on the discharge side. In this embodiment, the start / stop is controlled by the number controller 5, and during operation, the pressure sensor attached to the compressor 2 detects the pressure on the discharge side, and the control circuit attached to the compressor 2 Switch between load operation (full load operation) and unload operation (no load operation). Specifically, each compressor 2 switches to the unload operation when the pressure on the discharge side exceeds the upper limit pressure PH, and switches to the load operation when it falls below the lower limit pressure PL.

各圧縮機2は、典型的には互いに同一の吐出容量とされるが、後述するように異なる吐出容量であってもよい。また、各圧縮機2は、上限圧力PH同士が互いに同一とされ、下限圧力PL同士が互いに同一とされる。但し、厳密には、上限圧力PH同士や下限圧力PL同士は、必ずしも同一値にならないので、許容範囲内に収めればよい。また、各圧縮機2の上限圧力PHや下限圧力PLなどを予め台数制御器5に設定しておき、台数制御器5が、運転中の圧縮機2について、上限圧力PHの平均値としての平均上限圧力と、下限圧力PLの平均値としての平均下限圧力とを求めて、これら平均値を用いて制御するようにしてもよい。   The compressors 2 typically have the same discharge capacity, but may have different discharge capacities as described later. Further, in each compressor 2, the upper limit pressures PH are the same, and the lower limit pressures PL are the same. However, strictly speaking, the upper limit pressures PH and the lower limit pressures PL do not necessarily have the same value, and may be within an allowable range. In addition, the upper limit pressure PH and the lower limit pressure PL of each compressor 2 are set in the number controller 5 in advance, and the number controller 5 determines the average as the average value of the upper limit pressure PH for the compressor 2 in operation. You may make it control by calculating | requiring an upper limit pressure and the average lower limit pressure as an average value of lower limit pressure PL, and using these average values.

なお、運転中の圧縮機2に吐出容量が異なる圧縮機2が含まれる場合、後述する比台数という概念を用いて、台数制御器5は、運転中の圧縮機2について、その上限圧力PHiに比台数Niを乗じた値の総和を求めると共に、これを比台数Niの総和で除した値として平均上限圧力を求めればよい(平均上限圧力=Σ(Ni・PHi)/ΣNi)。また、運転中の圧縮機2について、その下限圧力PLiに比台数Niを乗じた値の総和を求めると共に、これを比台数Niの総和で除した値として平均下限圧力を求めればよい(平均下限圧力=Σ(Ni・PLi)/ΣNi)。ここで、上限圧力PHiとは、複数台の圧縮機2の内、i号機の上限圧力を示し、下限圧力PLiとは、i号機の下限圧力を示している。   When the compressor 2 with different discharge capacities is included in the operating compressor 2, the number controller 5 sets the upper limit pressure PHi for the operating compressor 2 using the concept of a specific number described later. What is necessary is just to obtain | require the average upper limit pressure as a value which remove | divided this by the sum total of the specific number Ni while calculating | requiring the sum total of the value which multiplied the specific number Ni (average upper limit pressure = (SIGMA (Ni * PHi) / ΣNi). Further, for the compressor 2 in operation, the sum of values obtained by multiplying the lower limit pressure PLi by the specific number Ni is obtained, and the average lower limit pressure may be obtained as a value obtained by dividing the sum by the sum of the specific number Ni (average lower limit). Pressure = Σ (Ni · PLi) / ΣNi). Here, the upper limit pressure PHi indicates the upper limit pressure of the i-th unit among the plurality of compressors 2, and the lower limit pressure PLi indicates the lower limit pressure of the i-th unit.

レシーバタンク3は、各圧縮機2から圧縮空気が供給される一方、一または複数の圧縮空気利用機器へ圧縮空気を供給する中空容器である。レシーバタンク3内の圧力を検出可能に、圧力センサ4が設けられる。   The receiver tank 3 is a hollow container that is supplied with compressed air from each compressor 2 and supplies compressed air to one or a plurality of compressed air using devices. A pressure sensor 4 is provided so that the pressure in the receiver tank 3 can be detected.

台数制御器5は、各圧縮機2および圧力センサ4に接続され、圧力センサ4による検出圧力や経過時間などに基づき、各圧縮機2を制御する。言い換えれば、圧力センサ4による検出圧力や経過時間などに基づき、各圧縮機2の運転の有無を切り替えて、運転台数を変更する。   The number controller 5 is connected to each compressor 2 and the pressure sensor 4 and controls each compressor 2 based on the pressure detected by the pressure sensor 4 and the elapsed time. In other words, based on the pressure detected by the pressure sensor 4 and the elapsed time, the operation number of each compressor 2 is switched to change the number of operating units.

具体的には、(1)圧縮機2の運転台数の増加制御と、(2)圧縮機2の運転台数の減少制御とを、それぞれ以下のとおり実行する。これにより、圧縮空気の使用負荷に応じた最少台数で運転することができ、システム全体の消費電力を抑えることができる。   Specifically, (1) control for increasing the number of operating compressors 2 and (2) control for decreasing the number of operating compressors 2 are executed as follows. Thereby, it can drive | operate with the minimum number according to the use load of compressed air, and can suppress the power consumption of the whole system.

(1)圧縮機2の運転台数の増加制御
図2は、圧縮機の運転台数の増加制御の一例を示す図であり、運転中の圧縮機2の吐出圧力と、レシーバタンク3内の圧力(つまり圧力センサ4の検出圧力)と、運転台数を増やすための起動表とを示している。
(1) Control of increase in the number of operating compressors 2 FIG. 2 is a diagram showing an example of control of increase in the number of operating compressors. The discharge pressure of the compressor 2 during operation and the pressure in the receiver tank 3 ( That is, a pressure detected by the pressure sensor 4) and a start-up table for increasing the number of operating units are shown.

起動表は、レシーバタンク3内の圧力Pとその変化率ΔPとに基づき、圧縮機2を如何に起動するか、言い換えれば運転台数を如何に増加させるかを示している。この制御は、圧力センサ4の検出圧力Pと圧力変化率ΔPとをそれぞれ所定周期で求め、それに基づき行われる。   The start-up table shows how to start the compressor 2 based on the pressure P in the receiver tank 3 and the rate of change ΔP, in other words, how to increase the number of operating units. This control is performed based on the detected pressure P of the pressure sensor 4 and the pressure change rate ΔP at predetermined intervals.

圧力変化率ΔPとは、所定時間当たりの変動圧力である。圧力変化率ΔPがマイナスの場合、レシーバタンク3内の圧力は減少傾向にあり、圧力変化率ΔPがプラスの場合、レシーバタンク3内の圧力は増加傾向にある。圧縮空気利用機器による圧縮空気の使用量が、圧縮機2による圧縮空気の吐出量よりも多い場合、レシーバタンク3内の圧力は減少し、逆に、圧縮機2による圧縮空気の吐出量が、圧縮空気利用機器による圧縮空気の使用量よりも多い場合、レシーバタンク3内の圧力は増加する。   The pressure change rate ΔP is a fluctuating pressure per predetermined time. When the pressure change rate ΔP is negative, the pressure in the receiver tank 3 tends to decrease, and when the pressure change rate ΔP is positive, the pressure in the receiver tank 3 tends to increase. When the amount of compressed air used by the device using compressed air is larger than the amount of compressed air discharged by the compressor 2, the pressure in the receiver tank 3 decreases, and conversely, the amount of compressed air discharged by the compressor 2 is When the amount of compressed air used is greater than the amount of compressed air used by the device using compressed air, the pressure in the receiver tank 3 increases.

圧縮機2からレシーバタンク3への配管の圧力損失により、レシーバタンク3内の圧力は、圧縮機2の吐出圧力よりも若干低圧になる。そのため、図2において若干傾きのある破線で結んで示すように、レシーバタンク3内の圧力PL1,PL2,PH1は、それぞれ、圧縮機2の吐出圧力PL1´,PL2´,PH1´と対応する。   Due to the pressure loss of the piping from the compressor 2 to the receiver tank 3, the pressure in the receiver tank 3 is slightly lower than the discharge pressure of the compressor 2. Therefore, as shown in FIG. 2 connected by a slightly inclined line, the pressures PL1, PL2 and PH1 in the receiver tank 3 correspond to the discharge pressures PL1 ′, PL2 ′ and PH1 ′ of the compressor 2, respectively.

台数制御器5は、圧力センサ4の検出圧力と、予め設定した圧力値とを比較して、所定の場合に圧縮機2の運転台数を増加する。この際、運転台数を増加させる圧力値は、前記起動表に示すように、圧力センサ4の検出圧力Pの圧力変化率ΔPに基づき異なるよう設定される。つまり、台数制御器5は、圧力センサ4の検出圧力Pが台数増加用圧力A以下になると圧縮機2を一台起動させるが、運転台数を増加させるか否かの境界値としての台数増加用圧力Aは、圧力変化率ΔPがマイナス側へ大きくなるほど段階的に高圧になるよう設定される。   The number controller 5 compares the detected pressure of the pressure sensor 4 with a preset pressure value, and increases the number of operating compressors 2 in a predetermined case. At this time, the pressure value for increasing the number of operating units is set to be different based on the pressure change rate ΔP of the detected pressure P of the pressure sensor 4 as shown in the startup table. That is, the number controller 5 starts one compressor 2 when the detected pressure P of the pressure sensor 4 becomes equal to or less than the number A pressure A, but increases the number as a boundary value for determining whether to increase the number of operating units. The pressure A is set so as to increase gradually as the pressure change rate ΔP increases to the negative side.

運転台数を増加させる場合、台数制御器5は、圧力センサ4の検出圧力Pが台数増加用圧力A以下の状態を維持する場合、所定時間(連続起動防止時間)を経過するごとに圧縮機2を一台起動させるが、圧力変化率ΔPが設定値(−ΔP1)以下の領域(つまりΔP≦−ΔP1)では、圧力センサ4の検出圧力Pが即時増加用圧力B以下になれば、前記所定時間の経過を待つことなくさらに一台起動させる。なお、即時増加用圧力Bは、圧力変化率ΔPの絶対値が大きいほど高圧に設定されるのがよい。   When the number of operating units is increased, the unit controller 5 maintains the state in which the detected pressure P of the pressure sensor 4 is equal to or lower than the number A increasing pressure A. In the region where the pressure change rate ΔP is equal to or less than the set value (−ΔP1) (that is, ΔP ≦ −ΔP1), if the detected pressure P of the pressure sensor 4 is equal to or less than the immediate increase pressure B, the predetermined Start one more machine without waiting for the passage of time. The immediate increase pressure B is preferably set to a higher pressure as the absolute value of the pressure change rate ΔP is larger.

以下、具体的制御について、図2に基づき説明する。なお、第一下限圧力PL1よりも低圧で第二下限圧力PL2が設定され、第一下限圧力PL1および第二下限圧力PL2は、第一上限圧力PH1よりも低圧に設定される。さらに、図示例の場合、第一下限圧力PL1〜第一上限圧力PH1は、各圧縮機2の下限圧力PL〜上限圧力PHと対応するか、これを含む形で設定される。また、各設定値ΔP1,ΔP2は、圧縮機一台分の全負荷運転時の吐出容量を考慮して設定される。   Hereinafter, specific control will be described with reference to FIG. The second lower limit pressure PL2 is set lower than the first lower limit pressure PL1, and the first lower limit pressure PL1 and the second lower limit pressure PL2 are set lower than the first upper limit pressure PH1. Further, in the illustrated example, the first lower limit pressure PL1 to the first upper limit pressure PH1 correspond to or include the lower limit pressure PL to the upper limit pressure PH of each compressor 2. Each set value ΔP1, ΔP2 is set in consideration of the discharge capacity during full load operation for one compressor.

(1−1)圧力変化率ΔPの絶対値が第一設定値ΔP1未満である場合。具体的には、−ΔP1<ΔP<+ΔP1である場合。
圧力センサ4の検出圧力Pが台数増加用圧力Aとしての第二下限圧力PL2以下になると一台起動させる。これにより通常は圧力が第二下限圧力PL2を上回るが、この間も圧縮空気の使用負荷が増加し続けると、圧力が第二下限圧力PL2以下を維持する場合がある。その場合、所定の連続起動防止時間を経過するごとに圧縮機2を一台起動させる。つまり、圧力センサ4の検出圧力Pが図2における「1台起動」領域に留まる場合には、停止中の圧縮機2がある限り、連続起動防止時間を経過するごとに一台ずつ起動させる。
(1-1) The absolute value of the pressure change rate ΔP is less than the first set value ΔP1. Specifically, when -ΔP1 <ΔP <+ ΔP1.
When the detected pressure P of the pressure sensor 4 is equal to or lower than the second lower limit pressure PL2 as the pressure A for increasing the number of units, one unit is activated. As a result, the pressure normally exceeds the second lower limit pressure PL2, but if the use load of compressed air continues to increase during this time, the pressure may remain below the second lower limit pressure PL2. In that case, every time the predetermined continuous activation prevention time elapses, one compressor 2 is activated. That is, when the detected pressure P of the pressure sensor 4 remains in the “one unit start” region in FIG. 2, as long as there is a compressor 2 that is stopped, the unit is started one by one every time the continuous start prevention time elapses.

(1−2)圧力変化率ΔPの絶対値が第一設定値ΔP1以上であるが第二設定値ΔP2未満である場合。具体的には、−ΔP2<ΔP≦−ΔP1である場合。
圧力センサ4の検出圧力Pが台数増加用圧力Aとしての第一下限圧力PL1以下になると一台起動させる。この場合も、一台起動させても第一下限圧力PL1以下を維持する場合、所定の連続起動防止時間を経過するごとに一台起動させるが、即時増加用圧力Bとしての第二下限圧力PL2以下になれば、連続起動防止時間の経過を待つことなくさらにもう一台起動させる。
(1-2) A case where the absolute value of the pressure change rate ΔP is equal to or greater than the first set value ΔP1 but less than the second set value ΔP2. Specifically, when -ΔP2 <ΔP ≦ −ΔP1.
When the detected pressure P of the pressure sensor 4 becomes equal to or lower than the first lower limit pressure PL1 as the number increase pressure A, one unit is activated. In this case as well, when the first lower limit pressure PL1 or less is maintained even if one unit is started, one unit is started every time a predetermined continuous start prevention time elapses, but the second lower limit pressure PL2 as the immediate increase pressure B is used. If it becomes below, another one is started without waiting for progress of the continuous starting prevention time.

つまり、図2において、「1台起動」領域に入ることで一台を起動させても、なおその領域に留まる場合には、停止中の圧縮機2がある限り、連続起動防止時間ごとに一台ずつ圧縮機2を起動させる。また、その間、「さらに1台起動」領域に入れば、連続起動防止時間を経過しないでも、さらに一台を起動させる。   That is, in FIG. 2, if one unit is started by entering the “one start” area, but still stays in that area, one unit is kept for each continuous start prevention time as long as the compressor 2 is stopped. The compressor 2 is started one by one. In the meantime, if the “one more unit activation” area is entered, one unit is activated even if the continuous activation prevention time has not elapsed.

(1−3)圧力変化率ΔPの絶対値が第二設定値ΔP2以上である場合。具体的には、ΔP≦−ΔP2である場合。
圧力センサ4の検出圧力Pが台数増加用圧力Aとしての第一上限圧力PH1以下になると一台起動させる。この場合も、一台起動させても第一上限圧力PH1以下を維持する場合、所定の連続起動防止時間を経過するごとに一台起動させるが、即時増加用圧力Bとしての第一下限圧力PL1以下になれば、連続起動防止時間の経過を待つことなくさらにもう一台起動させる。
(1-3) The absolute value of the pressure change rate ΔP is equal to or greater than the second set value ΔP2. Specifically, when ΔP ≦ −ΔP2.
When the detected pressure P of the pressure sensor 4 becomes equal to or lower than the first upper limit pressure PH1 as the pressure A for increasing the number of units, one unit is activated. In this case as well, when the first upper limit pressure PH1 or less is maintained even if one unit is started, one unit is started each time a predetermined continuous start prevention time elapses, but the first lower limit pressure PL1 as the immediate increase pressure B is used. If it becomes below, another one is started without waiting for progress of the continuous starting prevention time.

つまり、図2において、「1台起動」領域に入ることで一台を起動させても、なおその領域に留まる場合には、停止中の圧縮機2がある限り、連続起動防止時間ごとに一台ずつ圧縮機2を起動させる。また、その間、「さらに1台起動」領域に入れば、連続起動防止時間を経過しないでも、さらに一台を起動させる。   That is, in FIG. 2, if one unit is started by entering the “one start” area, but still stays in that area, one unit is kept for each continuous start prevention time as long as the compressor 2 is stopped. The compressor 2 is started one by one. In the meantime, if the “one more unit activation” area is entered, one unit is activated even if the continuous activation prevention time has not elapsed.

(2)圧縮機2の運転台数の減少制御
図3は、本実施例の圧縮機台数制御システム1において、運転中の圧縮機2の吐出側の圧力変化を示す概略図である。
(2) Reduction control of the number of operating compressors 2 FIG. 3 is a schematic diagram showing a pressure change on the discharge side of the compressor 2 during operation in the compressor number control system 1 of the present embodiment.

台数制御器5は、下限圧力PLから上限圧力PHまでの昇圧時間TUが第一設定時間よりも短ければ、圧縮機2を一台停止させる。この第一設定時間は、適宜に設定されるが、後述する数式7(または数式8)の右辺で求められる一台停止ロード時間[秒]とするのが好ましい。   If the pressure increase time TU from the lower limit pressure PL to the upper limit pressure PH is shorter than the first set time, the number controller 5 stops one compressor 2. The first set time is appropriately set, but it is preferable to set the one-unit stop load time [seconds] obtained on the right side of Equation 7 (or Equation 8) described later.

また、台数制御器5は、上限圧力PHから下限圧力PLまでの降圧時間TDが第二設定時間よりも長ければ、圧縮機2を一台停止させるようにしてもよい。この第二設定時間は、適宜に設定されるが、後述する数式11(または数式12)の右辺で求められる一台停止アンロード時間[秒]とするのが好ましい。   Further, the number controller 5 may stop one compressor 2 if the pressure reduction time TD from the upper limit pressure PH to the lower limit pressure PL is longer than the second set time. The second set time is appropriately set, but it is preferable to set the one-unit stop unload time [seconds] obtained on the right side of Formula 11 (or Formula 12) described later.

ここで、下限圧力PLから上限圧力PHまでの昇圧時間TUや、上限圧力PHから下限圧力PLまでの降圧時間TDは、各圧縮機2からレシーバタンク3までの配管の圧力損失が正確に分からないことを考慮して、つまり各圧縮機2の吐出側の圧力が上限圧力PHや下限圧力PLになる時のレシーバタンク3の圧力が正確に把握できないことを考慮し、次のようにして求めるのが好ましい。つまり、レシーバタンク3内の圧力を圧力センサ4で監視し、その圧力が下降から上昇に転じた時から、上昇から下降に転じた時までの時間を、タイマで計測して昇圧時間TUとする。また、同様に、レシーバタンク3内の圧力が上昇から下降に転じた時から、下降から上昇に転じた時までの時間を、タイマで計測して降圧時間TDとする。   Here, the pressure loss of the piping from each compressor 2 to the receiver tank 3 is not accurately known for the pressure increase time TU from the lower limit pressure PL to the upper limit pressure PH and the pressure decrease time TD from the upper limit pressure PH to the lower limit pressure PL. In consideration of this, that is, taking into account that the pressure of the receiver tank 3 when the pressure on the discharge side of each compressor 2 becomes the upper limit pressure PH or the lower limit pressure PL cannot be accurately grasped, it is obtained as follows. Is preferred. That is, the pressure in the receiver tank 3 is monitored by the pressure sensor 4, and the time from when the pressure changes from falling to rising until when the pressure changes from rising to falling is measured by a timer to be the pressure increase time TU. . Similarly, the time from when the pressure in the receiver tank 3 changes from rising to lowering to when it changes from lowering to rising is measured by a timer and used as the step-down time TD.

以下、図3に基づき具体的に説明すると、ロードアンロード機からなる圧縮機2を台数制御する場合、通常、運転中の圧縮機2は、全部がロード運転するか、全部がアンロード運転するように、運転状態を切り替えられる。そして、ロード運転中はレシーバタンク3内の圧力が上昇し、アンロード運転中はレシーバタンク3内の圧力が下降する。このときの圧力の変化時間は下記のようになる。   In the following, a specific description will be given based on FIG. 3. When the number of compressors 2 composed of load / unload machines is controlled, the compressors 2 that are currently operating are either all loaded or unloaded. As described above, the operation state can be switched. The pressure in the receiver tank 3 increases during the load operation, and the pressure in the receiver tank 3 decreases during the unload operation. The pressure change time at this time is as follows.

運転中の圧縮機2のロード運転時の吐出量をX[m/sec]、圧縮空気利用機器の消費空気量をY[m/sec]とし、レシーバタンク3の容量をQ[m]、下限圧力(ロード圧力)をPL[kPa]、上限圧力(アンロード圧力)をPH[kPa]とすると、ボイルの法則PV=Cを用いて、以下のとおりとなる。なお、大気圧をP0とする。 The discharge amount during the load operation of the compressor 2 during operation is X [m 3 / sec], the amount of air consumed by the compressed air utilization device is Y [m 3 / sec], and the capacity of the receiver tank 3 is Q [m 3 ], When the lower limit pressure (load pressure) is PL [kPa] and the upper limit pressure (unload pressure) is PH [kPa], Boyle's law PV = C is used. The atmospheric pressure is P0.

(2−1)ロード運転中の関係式
ロード運転時、下限圧力PLから上限圧力PHまでの昇圧時間TU[秒]を用いて、次式が導かれる。
(2-1) Relational expression during load operation At the time of load operation, the following expression is derived using the pressure increase time TU [seconds] from the lower limit pressure PL to the upper limit pressure PH.

[数1] (PL+P0)・{Q+TU(X−Y)}=(PH+P0)・Q   [Expression 1] (PL + P0) · {Q + TU (XY)} = (PH + P0) · Q

この数式1を変形すると、次式が導かれる。   By transforming Equation 1, the following equation is derived.

[数2] TU=Q・{(PH+P0)/(PL+P0)−1}/(X−Y)   [Expression 2] TU = Q · {(PH + P0) / (PL + P0) −1} / (XY)

(2−2)アンロード運転中の関係式
アンロード運転時、上限圧力PHから下限圧力PLまでの降圧時間TD[秒]を用いて、次式が導かれる。
(2-2) Relational expression during unloading operation At the time of unloading operation, the following equation is derived using the pressure reduction time TD [seconds] from the upper limit pressure PH to the lower limit pressure PL.

[数3] (PH+P0)・Q=(PL+P0)・(Q+TD・Y)   [Expression 3] (PH + P0) * Q = (PL + P0) * (Q + TD * Y)

この数式3を変形すると、次式が導かれる。   By transforming Equation 3, the following equation is derived.

[数4] TD=Q・{(PH+P0)/(PL+P0)−1}/Y   [Formula 4] TD = Q · {(PH + P0) / (PL + P0) −1} / Y

ここで、圧縮機の吐出量Xは既知、圧縮機の下限圧力PLや上限圧力PHも既知である。一方、レシーバタンクの容量Qは、それ自体は既知であるが、実際には配管や圧力損失を考慮する必要がある。また、昇圧時間TUや降圧時間TDは、測定可能な値である。従って、下記のとおり、前述した一台停止ロード時間や一台停止アンロード時間を求めることができる。   Here, the discharge amount X of the compressor is known, and the lower limit pressure PL and the upper limit pressure PH of the compressor are also known. On the other hand, the capacity Q of the receiver tank is known per se, but actually, it is necessary to consider piping and pressure loss. Further, the step-up time TU and the step-down time TD are measurable values. Accordingly, as described below, the one-unit stop load time and the one-unit stop unload time described above can be obtained.

(2−3)一台停止ロード時間
数式2より、次式が導かれる。
(2-3) Single-unit stop load time From Equation 2, the following equation is derived.

[数5] X−Y=Q・{(PH+P0)/(PL+P0)−1}/TU   [Formula 5] XY = Q · {(PH + P0) / (PL + P0) −1} / TU

さて、圧縮空気の生産流量と消費流量との差、つまり、運転中の圧縮機2の吐出量Xと圧縮空気利用機器での消費空気量Yとの差(X−Y)が、次停止予定機の吐出空気量よりも多ければ、一台(次停止予定機)を停止することができることになる。そこで、次停止予定機の吐出容量をQC[m/min]とすると、次式が導かれる。 Now, the difference between the production flow rate and the consumption flow rate of the compressed air, that is, the difference (X−Y) between the discharge amount X of the compressor 2 during operation and the consumption air amount Y in the compressed air utilization device is scheduled to be stopped next. If it is larger than the discharge air amount of the machine, one unit (scheduled next stop machine) can be stopped. Therefore, when the discharge capacity of the next scheduled stop machine is QC [m 3 / min], the following equation is derived.

[数6] Q・{(PH+P0)/(PL+P0)−1}/TU>(QC/60)・P0/(PL+P0)   [Expression 6] Q · {(PH + P0) / (PL + P0) −1} / TU> (QC / 60) · P0 / (PL + P0)

なお、圧縮機2の吐出容量は、圧縮機2からの吐出空気量ではなく、圧縮機2への吸込空気量で表すのが標準であるから、右辺において吐出容量について圧力換算を行っている。つまり、圧縮機2は、ロード運転に切り替えると、QC/60[m/sec]の空気を吸入して圧縮し、大気圧P0より高圧(PL+P0)の空間に吐出することを考慮した換算を行っている。 Note that since the discharge capacity of the compressor 2 is normally expressed not by the amount of air discharged from the compressor 2 but by the amount of air sucked into the compressor 2, pressure conversion is performed on the discharge capacity on the right side. That is, when switching to the load operation, the compressor 2 takes in and compresses air of QC / 60 [m 3 / sec], and performs conversion in consideration of discharging into a space higher than the atmospheric pressure P0 (PL + P0). Is going.

数式6より、次式が導かれ、その右辺が一台停止ロード時間である。なお、Kは、空気の水分、温度および配管容量を考慮した数(1〜2)である。   From Equation 6, the following equation is derived, and the right side of the equation is the one-station stop load time. Note that K is a number (1-2) in consideration of the moisture of air, temperature, and pipe capacity.

[数7] TU<(60/P0)・K・(Q/QC)・{(PH+P0)/(PL+P0)−1}・(PL+P0)   [Expression 7] TU <(60 / P0) · K · (Q / QC) · {(PH + P0) / (PL + P0) -1} · (PL + P0)

大気圧P0を101[kPa]とした場合には、次式のとおりとなる。   When the atmospheric pressure P0 is 101 [kPa], the following equation is obtained.

[数8] TU<0.6K・(Q/QC)・{(PH+101)/(PL+101)−1}・(PL+101)   [Equation 8] TU <0.6K · (Q / QC) · {(PH + 101) / (PL + 101) −1} · (PL + 101)

(2−4)一台停止アンロード時間
数式4より、次式が導かれる。
(2-4) Single-unit stop unload time From Equation 4, the following equation is derived.

[数9] Y=Q・{(PH+P0)/(PL+P0)−1}/TD   [Equation 9] Y = Q · {(PH + P0) / (PL + P0) −1} / TD

さて、圧縮空気の消費流量が、次停止予定機を停止した場合の圧縮空気の生産流量よりも少なければ、つまり、圧縮空気利用機器での消費空気量Yが、次停止予定機を停止した場合の残りの圧縮機2による吐出空気量よりも少なければ、一台(次停止予定機)を停止することができることになる。そこで、次停止予定機の吐出容量をQC[m/min]とすると、次式が導かれる。 Now, if the consumption flow rate of compressed air is less than the production flow rate of compressed air when the next scheduled stop machine is stopped, that is, if the consumed air amount Y in the compressed air utilization device stops the next scheduled stop machine If it is less than the amount of air discharged by the remaining compressor 2, one unit (next scheduled stop machine) can be stopped. Therefore, when the discharge capacity of the next scheduled stop machine is QC [m 3 / min], the following equation is derived.

[数10] Q・{(PH+P0)/(PL+P0)−1}/TD<(n−1)・(QC/60)・P0/(PL+P0)   [Expression 10] Q · {(PH + P0) / (PL + P0) −1} / TD <(n−1) · (QC / 60) · P0 / (PL + P0)

ここで、nは次停止予定機の吐出容量に換算した運転台数である。運転中の圧縮機2の吐出容量が互いに同じ場合、nは運転台数となる。一方、運転中の圧縮機2に吐出容量が異なる圧縮機2が含まれる場合、運転中の圧縮機2について、その圧縮機2の吐出容量を次停止予定機の吐出容量で除した値としての比台数を求め(i号機の比台数Ni=i号機の吐出容量/次停止予定機の吐出容量)、この比台数の総和がnとなる。たとえば、次停止予定機と、この次停止予定機の二倍の吐出容量の圧縮機との、合計二台の圧縮機2が運転しているとすると、比台数の総和「n」は「3」であり、「n−1」は「2」となる。   Here, n is the number of operating units converted into the discharge capacity of the next scheduled stop machine. When the discharge capacities of the compressors 2 in operation are the same, n is the number of operating units. On the other hand, when the compressor 2 in operation includes compressors 2 with different discharge capacities, the value of the compressor 2 in operation is divided by the discharge capacity of the next scheduled stop machine. The specific number is obtained (the specific number Ni of the number i unit = the discharge capacity of the number i unit / the discharge capacity of the next scheduled stoppage), and the sum of the number of specific numbers is n. For example, if a total of two compressors 2 are operating, that is, a next scheduled stop machine and a compressor having a discharge capacity that is twice that of the next scheduled stop machine, the total number “n” of specific units is “3”. "N-1" becomes "2".

数式10より、次式が導かれ、その右辺が一台停止アンロード時間である。なお、Kは、空気の水分、温度および配管容量を考慮した数(1〜2)である。   From Equation 10, the following equation is derived, and the right side thereof is the one-unit stop unload time. Note that K is a number (1-2) in consideration of the moisture of air, temperature, and pipe capacity.

[数11] TD>(60/P0)・K・[Q/{(n−1)・QC}]・{(PH+P0)/(PL+P0)−1}・(PL+P0)   [Equation 11] TD> (60 / P0) · K · [Q / {(n−1) · QC}] · {(PH + P0) / (PL + P0) −1} · (PL + P0)

大気圧P0を101[kPa]とした場合には、次式のとおりとなる。   When the atmospheric pressure P0 is 101 [kPa], the following equation is obtained.

[数12] TD>0.6K・[Q/{(n−1)・QC}]・{(PH+101)/(PL+101)−1}・(PL+101)   [Equation 12] TD> 0.6K [Q / {(n-1) .QC}]. {(PH + 101) / (PL + 101) -1}. (PL + 101)

数式7(または数式8)および数式11(または数式12)を満足していれば一台停止することができるが、各圧縮機2の上限圧力PH同士や下限圧力PL同士は、必ずしも全機において同一の値ではないので、ロード運転からアンロード運転に切り替わるときに全台が切り替わるわけではなく、一方の数式が満足できていても、他方の数式を満足できないおそれがある。そこで、ロード運転時に、数式7(または数式8)の右辺で求められる時間よりも短ければ一台停止させ、これに代えてまたはこれに加えて、アンロード運転時に、数式11(または数式12)の右辺で求められる時間より長ければ一台停止させればよい。但し、このような条件が連続して規定の時間満足している場合に、一台停止させることにより運転台数を制御するのが好ましい。   One unit can be stopped if Formula 7 (or Formula 8) and Formula 11 (or Formula 12) are satisfied, but the upper limit pressures PH and the lower limit pressures PL of the compressors 2 are not necessarily limited to all units. Since they are not the same value, not all units are switched when switching from the load operation to the unload operation. Even if one of the equations is satisfied, the other equation may not be satisfied. Therefore, if the time is shorter than the time calculated on the right side of Equation 7 (or Equation 8) during the load operation, one unit is stopped. Instead of or in addition to this, Equation 11 (or Equation 12) is used during the unload operation. If it is longer than the time required on the right side, one unit may be stopped. However, when such a condition is continuously satisfied for a specified time, it is preferable to control the number of operating units by stopping one unit.

本実施例の圧縮機台数制御システム1によれば、圧縮機2がロードアンロード機であっても、圧縮空気の使用負荷に応じた最少台数で運転することができ、それにより消費電力を抑えることができる。   According to the compressor number control system 1 of the present embodiment, even if the compressor 2 is a load / unload machine, the compressor 2 can be operated with the minimum number corresponding to the use load of the compressed air, thereby reducing power consumption. be able to.

本発明の圧縮機台数制御システム1は、前記実施例の構成に限らず適宜変更可能である。特に、(a)圧縮機2の吐出側の圧力が下限圧力PLから上限圧力PHまで昇圧する時間TUが、第一設定時間よりも短ければ圧縮機2を一台停止させるか、(b)圧縮機2の吐出側の圧力が上限圧力PHから下限圧力PLまで降圧する時間TDが、第二設定時間よりも長ければ圧縮機2を一台停止させるのであれば、その他の構成は適宜に変更可能である。   The compressor number control system 1 of the present invention is not limited to the configuration of the above-described embodiment, and can be changed as appropriate. In particular, (a) if the time TU during which the pressure on the discharge side of the compressor 2 is increased from the lower limit pressure PL to the upper limit pressure PH is shorter than the first set time, one compressor 2 is stopped, or (b) compression If the time TD during which the pressure on the discharge side of the machine 2 is reduced from the upper limit pressure PH to the lower limit pressure PL is longer than the second set time, if one compressor 2 is stopped, other configurations can be changed as appropriate. It is.

1 圧縮機台数制御システム
2 圧縮機
3 レシーバタンク
4 圧力センサ
5 台数制御器
1 Compressor number control system 2 Compressor 3 Receiver tank 4 Pressure sensor 5 Number controller

Claims (4)

吐出側の圧力が上限圧力PHを上回るとアンロード運転に切り替える一方、下限圧力PLを下回るとロード運転に切り替える複数台の圧縮機と、
これら圧縮機から圧縮空気が供給されると共に圧縮空気利用機器へ圧縮空気を送るレシーバタンクに設けられ、圧縮空気の圧力を検出する圧力センサと、
前記圧縮機の運転台数を変更する台数制御器とを備え、
前記台数制御器は、下限圧力PLから上限圧力PHまでの昇圧時間TUが第一設定時間よりも短ければ、前記圧縮機を一台停止させる
ことを特徴とする圧縮機台数制御システム。
A plurality of compressors that switch to unload operation when the pressure on the discharge side exceeds the upper limit pressure PH, and switch to load operation when the pressure falls below the lower limit pressure PL;
A pressure sensor for detecting the pressure of the compressed air, provided in a receiver tank that is supplied with compressed air from these compressors and sends the compressed air to the compressed air utilization device;
A unit controller for changing the number of operating compressors,
The number control unit of the compressor stops one compressor if the pressure increase time TU from the lower limit pressure PL to the upper limit pressure PH is shorter than the first set time.
前記第一設定時間としての一台停止ロード時間は、次式により設定される
ことを特徴とする請求項1に記載の圧縮機台数制御システム。
一台停止ロード時間[秒]=(60/P0)・K・(Q/QC)・{(PH+P0)/(PL+P0)−1}・(PL+P0)
但し、P0は大気圧[kPa]、Qはレシーバタンクの容量[m]、QCは次停止予定機の吐出容量[m/min]、PHは上限圧力[kPa]、PLは下限圧力[kPa]、Kは空気の水分、温度および配管容量を考慮した数である。
The one-unit stop load time as the first set time is set according to the following equation: The compressor number control system according to claim 1.
Single unit stop load time [seconds] = (60 / P0) * K * (Q / QC) * {(PH + P0) / (PL + P0) -1} * (PL + P0)
However, P0 is the atmospheric pressure [kPa], Q is the capacity of the receiver tank [m 3 ], QC is the discharge capacity [m 3 / min] of the next scheduled stop machine, PH is the upper limit pressure [kPa], and PL is the lower limit pressure [ kPa] and K are numbers in consideration of the moisture, temperature and pipe capacity of the air.
前記台数制御器は、上限圧力PHから下限圧力PLまでの降圧時間TDが第二設定時間よりも長ければ、前記圧縮機を一台停止させる
ことを特徴とする請求項1または請求項2に記載の圧縮機台数制御システム。
3. The compressor according to claim 1, wherein the number controller stops one of the compressors when a pressure reduction time TD from an upper limit pressure PH to a lower limit pressure PL is longer than a second set time. Compressor number control system.
前記第二設定時間としての一台停止アンロード時間は、次式により設定される
ことを特徴とする請求項3に記載の圧縮機台数制御システム。
一台停止アンロード時間[秒]=(60/P0)・K・[Q/{(n−1)・QC}]・{(PH+P0)/(PL+P0)−1}・(PL+P0)
但し、P0は大気圧[kPa]、Qはレシーバタンクの容量[m]、QCは次停止予定機の吐出容量[m/min]、PHは上限圧力[kPa]、PLは下限圧力[kPa]、nは次停止予定機の吐出容量に換算した運転台数、Kは空気の水分、温度および配管容量を考慮した数である。
The compressor unit number control system according to claim 3, wherein the one-unit stop unload time as the second set time is set by the following equation.
One-station stop unload time [seconds] = (60 / P0) · K · [Q / {(n−1) · QC}] · {(PH + P0) / (PL + P0) −1} · (PL + P0)
However, P0 is the atmospheric pressure [kPa], Q is the capacity of the receiver tank [m 3 ], QC is the discharge capacity [m 3 / min] of the next scheduled stop machine, PH is the upper limit pressure [kPa], and PL is the lower limit pressure [ kPa], n is the number of operating units converted into the discharge capacity of the next scheduled stop machine, and K is a number that takes into account the moisture, temperature, and pipe capacity of the air.
JP2013002671A 2013-01-10 2013-01-10 Compressor number control system Active JP6176518B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013002671A JP6176518B2 (en) 2013-01-10 2013-01-10 Compressor number control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013002671A JP6176518B2 (en) 2013-01-10 2013-01-10 Compressor number control system

Publications (2)

Publication Number Publication Date
JP2014134145A true JP2014134145A (en) 2014-07-24
JP6176518B2 JP6176518B2 (en) 2017-08-09

Family

ID=51412603

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013002671A Active JP6176518B2 (en) 2013-01-10 2013-01-10 Compressor number control system

Country Status (1)

Country Link
JP (1) JP6176518B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110552871A (en) * 2019-08-19 2019-12-10 武汉世纪楚林科技有限公司 Air compressor group control energy-saving method and device, terminal equipment and storage medium

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007120497A (en) * 2005-09-30 2007-05-17 Hitachi Ltd Control system for air-compressing apparatus

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007120497A (en) * 2005-09-30 2007-05-17 Hitachi Ltd Control system for air-compressing apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110552871A (en) * 2019-08-19 2019-12-10 武汉世纪楚林科技有限公司 Air compressor group control energy-saving method and device, terminal equipment and storage medium
CN110552871B (en) * 2019-08-19 2020-09-18 武汉世纪楚林科技有限公司 Air compressor group control energy-saving method and device, terminal equipment and storage medium

Also Published As

Publication number Publication date
JP6176518B2 (en) 2017-08-09

Similar Documents

Publication Publication Date Title
JP4924855B1 (en) Compressor number control system
JP6200905B2 (en) Fluid compression system or control device thereof
KR101167556B1 (en) Number-of-compressors controlling system
JP6014508B2 (en) Fluid compression system
JP5224474B2 (en) Compressor capacity control method and compressor
JP6383806B2 (en) Air compressor and control method
JP2007120497A (en) Control system for air-compressing apparatus
JP2000297765A (en) Compressor device
JP2012067754A (en) Control system for air compression apparatus
JP2007120497A5 (en)
JP6111674B2 (en) Compressor number control system
JP5978062B2 (en) air compressor
JP2009156208A (en) Control device of compressor
JP5374188B2 (en) Compressor number control system
JP2005048755A (en) Compressor number control system
JP5646282B2 (en) Compressor and operation control method thereof
JP6176518B2 (en) Compressor number control system
JP5915931B2 (en) Compressor number control system
JP2019138200A (en) Compressor system
JP6539319B2 (en) Fluid compression system or controller thereof
JP5915932B2 (en) Compressor number control system
JP5444264B2 (en) Control device for gas compressor
JP3573877B2 (en) Operation control device for gas compressor
JP2013024162A (en) System for controlling number of compressors
JP6397660B2 (en) Fluid compression system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151023

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160728

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170301

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170616

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170629

R150 Certificate of patent or registration of utility model

Ref document number: 6176518

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250