JP2014120286A - Negative electrode material for lithium battery, method for producing the same, electrode and battery - Google Patents

Negative electrode material for lithium battery, method for producing the same, electrode and battery Download PDF

Info

Publication number
JP2014120286A
JP2014120286A JP2012273770A JP2012273770A JP2014120286A JP 2014120286 A JP2014120286 A JP 2014120286A JP 2012273770 A JP2012273770 A JP 2012273770A JP 2012273770 A JP2012273770 A JP 2012273770A JP 2014120286 A JP2014120286 A JP 2014120286A
Authority
JP
Japan
Prior art keywords
negative electrode
electrode material
group
metal
nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012273770A
Other languages
Japanese (ja)
Other versions
JP6129535B2 (en
Inventor
Ryuji Kadota
隆二 門田
Tadatoshi Kurozumi
忠利 黒住
Takashi Sato
孝志 佐藤
Masashi Sakaguchi
雅司 坂口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2012273770A priority Critical patent/JP6129535B2/en
Publication of JP2014120286A publication Critical patent/JP2014120286A/en
Application granted granted Critical
Publication of JP6129535B2 publication Critical patent/JP6129535B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a negative electrode material with which a lithium ion secondary battery large in charge/discharge and excellent in charge/discharge cycle characteristics can be prepared, and a method for producing the negative electrode material.SOLUTION: There are provided a negative electrode material for a lithium secondary battery and a method for producing the negative electrode material for a lithium secondary battery. The negative electrode material for a lithium secondary battery has a structure where metal particles having an average particle size of 1 μm or less are embedded in a carbon material. The metal particles contain at least one element M1 (tin or the like) selected from elements of metals capable of absorbing and desorbing lithium ions and, if desired, at least one element M2 (cobalt or the like) selected from elements of metals absorbing and desorbing no lithium ions, and further contain 5-50 mass% of carbon, 3-25 mass% of oxygen and 0.1-3 mass% of nitrogen.

Description

本発明は、充放電が大きく、充放電サイクル特性に優れた非水電解質電池の電極材料、及びそれを用いた電極、非水電解質二次電池に関する。さらに詳しく言えば、リチウム二次電池の負極材料、その製造方法、その材料を用いた電極、及びリチウムイオン二次電池に関する。   The present invention relates to an electrode material for a non-aqueous electrolyte battery that is large in charge and discharge and excellent in charge and discharge cycle characteristics, and an electrode and non-aqueous electrolyte secondary battery using the same. More specifically, the present invention relates to a negative electrode material for a lithium secondary battery, a manufacturing method thereof, an electrode using the material, and a lithium ion secondary battery.

リチウムイオン二次電池は、高容量である上、小型化軽量化が可能なため、携帯電話やノートパソコンなど、多くの携帯機器に適用されている。
携帯機器の小型軽量化及び高機能化に伴い、リチウム二次電池の高容量化が求められている。そのため、これまでのリチウム二次電池の負極材に使用されてきた黒鉛の理論電気容量である372mAh/gを超える材料が検討されている。黒鉛に代わる材料として、より高容量を示すケイ素、スズ、アルミニウム、タングステン材料等のリチウムイオンを吸蔵及び放出できる金属を用いた合金系の負極材料が報告されている。
Lithium ion secondary batteries have high capacity and can be reduced in size and weight, and thus are applied to many portable devices such as mobile phones and notebook computers.
With the reduction in size and weight and the increase in functionality of portable devices, there is a demand for higher capacity of lithium secondary batteries. Therefore, a material exceeding 372 mAh / g, which is the theoretical electric capacity of graphite that has been used for the negative electrode materials of lithium secondary batteries so far, has been studied. An alloy-based negative electrode material using a metal capable of occluding and releasing lithium ions, such as silicon, tin, aluminum, and tungsten materials having higher capacity, has been reported as an alternative to graphite.

例えば、ケイ素の理論電気容量は、4199mAh/g、スズの理論電気容量は、994mAh/gである。しかしながら、リチウム挿入時の体積変化率は、ケイ素が4.0、スズが3.6であり、黒鉛の体積変化率1.1に対して、非常に大きい。合金系の負極材料は、リチウムイオンの吸蔵及び放出に伴う大きな体積変化のため、合金負極材料どうし、合金負極材料と導電助剤、合金負極剤と集電体等に剥離が生じたり、合金負極材料が破壊され微粉化したりする。そのため、急激に容量が低下し、サイクル特性がきわめて悪いという欠点があり、実用化のために種々の検討がなされてきた。   For example, the theoretical electric capacity of silicon is 4199 mAh / g, and the theoretical electric capacity of tin is 994 mAh / g. However, the volume change rate when lithium is inserted is 4.0 for silicon and 3.6 for tin, which is much larger than the volume change rate of 1.1 for graphite. The alloy-based negative electrode material has a large volume change due to insertion and extraction of lithium ions, so that the alloy negative electrode material is peeled off between the alloy negative electrode material and the conductive auxiliary agent, the alloy negative electrode agent and the current collector, etc. The material is destroyed and pulverized. For this reason, there is a drawback in that the capacity rapidly decreases and the cycle characteristics are extremely poor, and various studies have been made for practical use.

サイクル特性の改善のために、合金負極材料の体積膨張緩和することが提案されてきた。例えば、リチウムイオンを吸蔵及び放出できる金属を、微粉末化することが提案されているが、金属を微粉末化すると、粒子が凝集しやすく活性化するため大気下で取扱いが困難になる。また、リチウムイオンを吸蔵及び放出できる金属を、リチウムを吸蔵及び放出しない金属と合金化すること、炭素材料と混合すること、リチウムを吸蔵及び放出しない金属やカーボン等で被覆することが提案されてきた。
しかしながら、これらの提案を実施しても、合金系の負極材料のサイクル特性を実用レベルにするには難しいのが実状である。
In order to improve the cycle characteristics, it has been proposed to reduce the volume expansion of the alloy negative electrode material. For example, it has been proposed to finely pulverize a metal that can occlude and release lithium ions. However, when the metal is pulverized, particles are easily aggregated and activated, making it difficult to handle in the atmosphere. In addition, it has been proposed to alloy a metal capable of occluding and releasing lithium ions with a metal that does not occlude and release lithium, to mix with a carbon material, and to coat with a metal or carbon that does not occlude and release lithium. It was.
However, even if these proposals are implemented, it is actually difficult to bring the cycle characteristics of the alloy-based negative electrode material to a practical level.

特開2004−349253号公報(特許文献1)には、リチウムを吸収及び放出が可能な炭素物質と、前記炭素物質の内部に分散されており、電気化学的な充電時にはリチウムと合金化が可能な金属または金属化合物とを含むリチウム二次電池用負極活物質が開示されている。平均粒径が小さい金属または金属化合物の粒子と、炭素前駆体溶液とを混合するため、金属または金属化合物の粒子が凝集しやすく、また、金属または金属化合物の粒子を含むため、電極単位体積あたりの電気容量が小さくなる。   Japanese Patent Application Laid-Open No. 2004-349253 (Patent Document 1) has a carbon material capable of absorbing and releasing lithium and dispersed inside the carbon material, and can be alloyed with lithium during electrochemical charging. A negative electrode active material for a lithium secondary battery containing an active metal or a metal compound is disclosed. Since the metal or metal compound particles having a small average particle diameter are mixed with the carbon precursor solution, the metal or metal compound particles are likely to aggregate, and since the metal or metal compound particles are contained, The electric capacity of becomes smaller.

特開平8−241715号公報(特許文献2)には、金属塩と炭素源となる有機物を混合、非酸化性雰囲気中で焼成することを特徴とする負極活物質が開示されているが、金属成分の含入量が最大40%までであるため、リチウムイオンを吸蔵及び放出できる金属の含有量が少ないため、リチウムイオンの吸蔵及び放出できる金属の含有量が少なく、電気容量を高める効果は少ない。   Japanese Patent Laid-Open No. 8-241715 (Patent Document 2) discloses a negative electrode active material characterized by mixing a metal salt and an organic substance as a carbon source and firing in a non-oxidizing atmosphere. Since the content of the component is up to 40%, the content of the metal that can occlude and release lithium ions is small, so the content of the metal that can occlude and release lithium ions is small, and the effect of increasing the electric capacity is small. .

特開2011−96491号公報(特許文献3)及び特開2011−90943号公報(特許文献4)には、金属もしくは半金属またはこれらの合金、酸化物、窒化物もしくは炭化物を含む粒子と炭素前駆体と触媒を混合することにより、前記粒子と触媒とが炭素前駆体に分散した混合物を形成させ、炭化処理を施すこととを特徴とする負極活物質が開示されているが、凝集して平均粒径が大きくなるため、電池の特性がでにくく、サイクル特性向上効果は乏しい。   Japanese Patent Application Laid-Open No. 2011-96491 (Patent Document 3) and Japanese Patent Application Laid-Open No. 2011-90943 (Patent Document 4) describe particles containing metal, metalloid, alloys thereof, oxides, nitrides or carbides, and carbon precursors. A negative electrode active material characterized by forming a mixture in which the particles and the catalyst are dispersed in a carbon precursor by mixing a body and a catalyst and subjecting to carbonization treatment is disclosed. Since the particle size increases, the battery characteristics are difficult to achieve and the effect of improving the cycle characteristics is poor.

特開2004−349253号公報JP 2004-349253 A 特開平8−241715号公報JP-A-8-241715 特開2011−96491号公報JP 2011-96491 A 特開2011−90943号公報JP 2011-90943 A

本発明は、充放電容量が大きく充放電サイクル特性に優れたリチウムイオン二次電池を作成することができる、リチウムイオンの吸蔵及び放出ができる平均粒径が小さい金属粒子を含み、その金属粒子が炭素材料に埋め込まれた構造のリチウムイオン二次電池負極材料、その製造方法、その材料を用いた電極、及びリチウムイオン二次電池を提供することを目的とする。   The present invention includes a metal particle having a small average particle size capable of occluding and releasing lithium ions, capable of producing a lithium ion secondary battery having a large charge / discharge capacity and excellent charge / discharge cycle characteristics. An object of the present invention is to provide a lithium ion secondary battery negative electrode material having a structure embedded in a carbon material, a manufacturing method thereof, an electrode using the material, and a lithium ion secondary battery.

本発明者らは、上記リチウム二次電池の負極材料の従来技術に鑑み鋭意検討した結果、リチウムイオンを吸蔵及び放出できる金属元素(スズなど)を含む化合物と窒素含有有機化合物を溶媒中で混合して得られる前駆体溶液から、固形分残渣を分離し、固形分残渣を熱処理することにより金属粒子が炭素材料に埋め込まれた構造とすることができ、この材料を負極材料として用いると体積膨張緩和の相乗効果によって、充放電サイクルに優れたリチウムイオン二次電池を作成できることを見出し、本発明を完成した。   As a result of intensive studies in view of the prior art of the negative electrode material of the lithium secondary battery, the present inventors have mixed a compound containing a metal element (such as tin) capable of occluding and releasing lithium ions and a nitrogen-containing organic compound in a solvent. The solid content residue is separated from the resulting precursor solution, and the solid content residue is heat-treated to form a structure in which metal particles are embedded in a carbon material. When this material is used as a negative electrode material, volume expansion occurs. The present inventors have found that a lithium ion secondary battery excellent in charge / discharge cycle can be produced by a synergistic effect of relaxation, and the present invention has been completed.

すなわち、本発明は下記[1]〜[8]のリチウム二次電池の負極材料、[9]のリチウムイオン電池用の電極、[10]のリチウムイオン二次電池、[11]の組電池、及び[12]〜[22]の負極材料の製造方法に関する。
[1]平均粒径1μm以下の金属粒子が炭素材料に埋め込まれた構造を有し、前記金属粒子はリチウムイオンを吸蔵及び放出できる金属の元素から選ばれる少なくとも1種の元素M1を含むリチウム二次電池の負極材料。
[2]元素M1が、アルミニウム、ケイ素、及びスズからなる群から選択される少なくとも1種である前項1に記載の負極材料。
[3]金属粒子が、さらに、リチウムイオンを吸蔵及び放出しない金属の元素から選ばれる少なくとも1種の元素M2を含む前項1または2に記載の負極材料。
[4]前記元素M2が、銅、ニッケル、鉄、チタン、コバルト、モリブデン、タングステン、バナジウム、タンタル、ランタン、マグネシウム、及びセリウムからなる群から選択される少なくとも1種である前項3に記載の負極材料。
[5]前記金属粒子が、元素M1としてスズを含み、かつ元素M2としてコバルトを含む前項3または4に記載の負極材料。
[6]前記負極材料が、5〜50質量%の炭素を含む前項1〜5のいずれかに記載の負極材料。
[7]前記負極材料が、3〜25質量%の酸素を含む前項1〜6のいずれかに記載の負極材料。
[8]前記負極材料が、0.1〜3質量%の窒素を含む前項1〜7のいずれかに記載の負極材料。
[9]前項1〜8のいずれかに記載の負極材料を有するリチウムイオン電池用の電極。
[10]前項9記載の電極を有するリチウムイオン二次電池。
[11]前項10記載のリチウムイオン二次電池を有する組電池。
[12]前項1〜8のいずれかに記載の負極材料の製造方法であって、少なくとも1種の金属元素M1を含む化合物(1)と、窒素含有有機化合物(2)を混合して負極材料前駆体溶液を得る工程1、前記負極材料前駆体溶液から固形分残渣を分離する工程2、及び前記固形分残渣を500〜1300℃の温度で熱処理して負極材料を得る工程3を含む負極材料の製造方法。
[13]前記工程1で、化合物(1)と窒素含有有機化合物(2)とを溶媒に添加し混合して負極材料前駆体溶液を得る前項12記載の負極材料の製造方法。
[14]前記工程1で、化合物(1)を溶媒に溶解した溶液と、窒素含有有機化合物(2)を溶媒に溶解した溶液とを混合して負極材料前駆体溶液を得る前項12記載の負極材料の製造方法。
[15]前記化合物(1)が、金属リン酸塩、金属硫酸塩、金属硝酸塩、金属有機酸塩、金属酸ハロゲン化物、金属アルコキシド、金属ハロゲン化物、金属過ハロゲン酸塩、金属次亜ハロゲン酸塩及び金属錯体からなる群から選ばれる少なくとも1種の化合物である前項12〜14のいずれかに記載の負極材料の製造方法。
[16]前記工程1で用いられる成分のうち溶媒以外の少なくとも1つの成分が炭素原子を有する前項12〜15のいずれかに記載の負極材料の製造方法。
[17]前記工程1で用いられる成分のうち溶媒以外の少なくとも1つの成分が、さらに、酸素原子を有する前項16に記載の負極材料の製造方法。
[18]前記工程1で用いられる成分のうち溶媒以外の少なくとも1つの成分が、さらに、窒素原子を有する前項17に記載の負極材料の製造方法。
[19]前記窒素含有有機化合物(2)が、アミノ基、ニトリル基、イミド基、イミン基、ニトロ基、アミド基、アジド基、アジリジン基、アゾ基、イソシアネート基、イソチオシアネート基、オキシム基、ジアゾ基、及びニトロソ基、ならびにピロール環、ポルフィリン環、イミダゾール環、ピリジン環、ピリミジン環、及びピラジン環から選ばれる1種類以上を分子中に有する前項12〜18のいずれかに記載の負極材料の製造方法。
[20]前記窒素含有有機化合物(2)が、さらに、水酸基、カルボキシル基、アルデヒド基、酸ハライド基、スルホ基、リン酸基、ケトン基、エーテル基、及びエステル基から選ばれる1種類以上を分子中に有する前項19に記載の負極材料の製造方法。
[21]さらに、リチウムイオンを吸蔵及び放出できる金属から選ばれる少なくとも1種の金属粒子を前記負極材料前駆体溶液に添加する工程を有する前項12〜20のいずれかに記載の製造方法。
[22]前記工程3の熱処理が、水素ガスを1〜100体積%含む雰囲気中で行われる前項12〜21のいずれかに記載の負極材料の製造方法。
That is, the present invention provides a negative electrode material for lithium secondary batteries of the following [1] to [8], an electrode for a lithium ion battery of [9], a lithium ion secondary battery of [10], an assembled battery of [11], And [12] to [22].
[1] A metal particle having an average particle diameter of 1 μm or less is embedded in a carbon material, and the metal particle contains at least one element M1 selected from metal elements capable of inserting and extracting lithium ions. Secondary battery negative electrode material.
[2] The anode material according to item 1, wherein the element M1 is at least one selected from the group consisting of aluminum, silicon, and tin.
[3] The negative electrode material according to item 1 or 2, wherein the metal particles further contain at least one element M2 selected from metal elements that do not occlude and release lithium ions.
[4] The negative electrode according to item 3 above, wherein the element M2 is at least one selected from the group consisting of copper, nickel, iron, titanium, cobalt, molybdenum, tungsten, vanadium, tantalum, lanthanum, magnesium, and cerium. material.
[5] The negative electrode material according to [3] or [4], wherein the metal particles contain tin as the element M1 and cobalt as the element M2.
[6] The negative electrode material as described in any one of 1 to 5 above, wherein the negative electrode material contains 5 to 50% by mass of carbon.
[7] The negative electrode material as described in any one of 1 to 6 above, wherein the negative electrode material contains 3 to 25% by mass of oxygen.
[8] The negative electrode material as described in any one of 1 to 7 above, wherein the negative electrode material contains 0.1 to 3% by mass of nitrogen.
[9] An electrode for a lithium ion battery having the negative electrode material as described in any one of 1 to 8 above.
[10] A lithium ion secondary battery having the electrode according to item 9 above.
[11] An assembled battery having the lithium ion secondary battery according to item 10 above.
[12] The method for producing a negative electrode material as described in any one of [1] to [8] above, wherein a compound (1) containing at least one metal element M1 and a nitrogen-containing organic compound (2) are mixed to form a negative electrode material A negative electrode material comprising: a step 1 for obtaining a precursor solution; a step 2 for separating a solid residue from the negative electrode material precursor solution; and a step 3 for obtaining a negative electrode material by heat-treating the solid residue at a temperature of 500 to 1300 ° C. Manufacturing method.
[13] The method for producing a negative electrode material as recited in the aforementioned Item 12, wherein in step 1, the compound (1) and the nitrogen-containing organic compound (2) are added to a solvent and mixed to obtain a negative electrode material precursor solution.
[14] The negative electrode according to item 12 above, wherein in step 1, a solution in which the compound (1) is dissolved in a solvent and a solution in which the nitrogen-containing organic compound (2) is dissolved in the solvent are mixed to obtain a negative electrode material precursor solution. Material manufacturing method.
[15] The compound (1) is a metal phosphate, metal sulfate, metal nitrate, metal organic acid salt, metal acid halide, metal alkoxide, metal halide, metal perhalogenate, metal hypohalous acid. 15. The method for producing a negative electrode material according to any one of 12 to 14 above, which is at least one compound selected from the group consisting of a salt and a metal complex.
[16] The method for producing a negative electrode material as described in any one of 12 to 15 above, wherein at least one component other than the solvent among the components used in the step 1 has a carbon atom.
[17] The method for producing a negative electrode material as recited in the aforementioned Item 16, wherein at least one component other than the solvent among the components used in Step 1 further has an oxygen atom.
[18] The method for producing a negative electrode material as recited in the aforementioned Item 17, wherein among the components used in Step 1, at least one component other than the solvent further contains a nitrogen atom.
[19] The nitrogen-containing organic compound (2) is an amino group, nitrile group, imide group, imine group, nitro group, amide group, azide group, aziridine group, azo group, isocyanate group, isothiocyanate group, oxime group, 19. The negative electrode material according to any one of 12 to 18 above, wherein the molecule has one or more selected from diazo group, nitroso group, pyrrole ring, porphyrin ring, imidazole ring, pyridine ring, pyrimidine ring, and pyrazine ring in the molecule. Production method.
[20] The nitrogen-containing organic compound (2) further comprises at least one selected from a hydroxyl group, a carboxyl group, an aldehyde group, an acid halide group, a sulfo group, a phosphoric acid group, a ketone group, an ether group, and an ester group. 20. The method for producing a negative electrode material as described in 19 above, contained in a molecule.
[21] The method according to any one of items 12 to 20, further comprising a step of adding at least one metal particle selected from metals capable of inserting and extracting lithium ions to the negative electrode material precursor solution.
[22] The method for producing a negative electrode material as described in any one of 12 to 21 above, wherein the heat treatment in the step 3 is performed in an atmosphere containing 1 to 100% by volume of hydrogen gas.

本発明のリチウム二次電池用負極材料は、リチウムイオンを吸蔵及び放出できる金属元素を含む化合物と窒素含有有機化合物とを混合して得られる前駆体溶液から、溶液を分離して固形分残渣を得、この残渣をさらに熱処理することにより製造される。なお、本発明ではケイ素元素も金属元素の範囲に含む。
得られた負極材料は、平均粒径が小さい金属粒子が炭素材料に埋め込まれた構造となり、この負極材料を用いたリチウムイオン二次電池は、体積膨張緩和の相乗効果により優れた充放電サイクル特性を示す。
The negative electrode material for a lithium secondary battery according to the present invention separates a solid residue from a precursor solution obtained by mixing a compound containing a metal element capable of occluding and releasing lithium ions and a nitrogen-containing organic compound. This residue is produced by further heat treatment. In the present invention, silicon element is also included in the range of metal element.
The obtained negative electrode material has a structure in which metal particles having a small average particle size are embedded in a carbon material, and the lithium ion secondary battery using this negative electrode material has excellent charge / discharge cycle characteristics due to the synergistic effect of volume expansion relaxation. Indicates.

実施例1で得た負極材料(1)の粉末X線回折(XRD)スペクトル図である。3 is a powder X-ray diffraction (XRD) spectrum diagram of the negative electrode material (1) obtained in Example 1. FIG. 実施例1で得た負極材料(1)の写真であり、 カーボンの中に微粒子のスズ-コバルトの合金体が存在していることを示すSEM写真(A)、SEM写真(A)より広範囲を撮影したもので、以下の写真(C)〜(F)の各元素でのマッピングの領域を示すSEM写真(B)、EDXによるC kα線の分布を示す写真(C)、O kα線の分布を示す写真(D)、Co kα線の分布を示す写真(E)、Sn Lα線の分布を示す写真(F)である。FIG. 2 is a photograph of the negative electrode material (1) obtained in Example 1, and shows a wider range than SEM photograph (A) and SEM photograph (A) showing that fine tin-cobalt alloy is present in carbon. Photographed, SEM photograph (B) showing the mapping area of each element in the following photographs (C) to (F), photograph (C) showing the distribution of C kα rays by EDX, distribution of O kα rays A photograph (D) showing the distribution of Co kα rays, a photograph (E) showing the distribution of Co kα rays, and a photograph (F) showing the distribution of Sn Lα rays. 実施例2で得た負極材料(2)の粉末X線回折スペクトル図である。3 is a powder X-ray diffraction spectrum diagram of a negative electrode material (2) obtained in Example 2. FIG. 実施例3で得た負極材料(3)の粉末X線回折スペクトル図である。3 is a powder X-ray diffraction spectrum diagram of a negative electrode material (3) obtained in Example 3. FIG. 実施例4で得た負極材料(4)の粉末X線回折スペクトル図である。4 is a powder X-ray diffraction spectrum diagram of a negative electrode material (4) obtained in Example 4. FIG. 実施例5で得た負極材料(5)の粉末X線回折スペクトル図である。6 is a powder X-ray diffraction spectrum diagram of a negative electrode material (5) obtained in Example 5. FIG. 実施例5で得た負極材料(5)のSEM写真(A)、EDXによるSi kα線の分布を示す写真(B)、Sn Lα線の分布を示す写真(C)である。It is a SEM photograph (A) of the negative electrode material (5) obtained in Example 5, a photograph (B) showing the distribution of Sikα rays by EDX, and a photograph (C) showing the distribution of Sn Lα rays. 比較例1で得た負極材料(c1)の粉末X線回折スペクトル図である。4 is a powder X-ray diffraction spectrum diagram of a negative electrode material (c1) obtained in Comparative Example 1. FIG. 比較例2で得た負極材料(c2)の粉末X線回折スペクトル図である。4 is a powder X-ray diffraction spectrum diagram of a negative electrode material (c2) obtained in Comparative Example 2. FIG. 本発明によるリチウムイオン二次電池の実施形態の構成例を示す。The structural example of embodiment of the lithium ion secondary battery by this invention is shown. 図1のXRDスペクトル図の拡大図であり、○はSn‐Co合金、□はSnO2、△はカーボンのピークを示す。FIG. 2 is an enlarged view of the XRD spectrum diagram of FIG. 1, where ◯ indicates a Sn—Co alloy, □ indicates SnO 2 , and Δ indicates a carbon peak.

[負極材料]
本発明のリチウム二次電池用負極材料は、少なくとも平均粒径1μm以下の金属粒子が炭素材料に埋め込まれた構造を有し、金属粒子はリチウムイオンを吸蔵及び放出できる金属の元素から選ばれる少なくとも1種の元素M1を含むことを特徴とする。
[Negative electrode material]
The negative electrode material for a lithium secondary battery of the present invention has a structure in which at least metal particles having an average particle diameter of 1 μm or less are embedded in a carbon material, and the metal particles are at least selected from metal elements capable of inserting and extracting lithium ions. One type of element M1 is included.

まず、本発明のリチウム二次電池用負極材料の構造について説明する。図2(A)に後述する実施例1で得た負極材量のSEM(Scanning Electron Microscope;走査型電子顕微鏡)写真(倍率100000)を示すように、金属粒子が炭素材料に均一に分散されて埋め込まれた構造をしている。金属粒子径は0.1μm(100nm)以下であることがわかる。EDX(Energy Dispersive X-ray spectrometry;エネルギー分散型X線分析)より、金属粒子はリチウムイオンを吸蔵及び放出できる金属の元素から選ばれる少なくとも1種の元素M1としてスズを含み(図2(F))、またリチウムイオンを吸蔵及び放出しない金属の元素から選ばれる少なくとも1種の元素M2として、コバルトを含むことがわかる(図2(E))。   First, the structure of the negative electrode material for a lithium secondary battery of the present invention will be described. As shown in FIG. 2A, a SEM (Scanning Electron Microscope) photograph (magnification 100000) of the amount of the negative electrode material obtained in Example 1 described later, the metal particles are uniformly dispersed in the carbon material. It has an embedded structure. It can be seen that the metal particle diameter is 0.1 μm (100 nm) or less. From EDX (Energy Dispersive X-ray spectrometry), the metal particles contain tin as at least one element M1 selected from metal elements capable of occluding and releasing lithium ions (FIG. 2 (F) In addition, it is understood that cobalt is contained as at least one element M2 selected from metal elements that do not occlude and release lithium ions (FIG. 2E).

本発明に係る負極材料において、金属粒子の平均粒径は、好ましくは1μm以下、より好ましくは0.3μm以下、さらに好ましくは0.1μm以下である。金属粒子の平均粒径は小さくなるほど、電極活物質の面積が大きくなり好ましい。
本発明に係る金属粒子は、リチウムイオンを吸蔵及び放出できる金属の元素から選ばれる少なくとも1種の元素M1を含んでいる。元素M1としては、をアルミニウム、ケイ素、亜鉛、ガリウム、ゲルマニウム、銀、カドミウム、インジュウム、スズ、鉛、アンチモン、ビスマスなどが挙げられ、アルミニウム、ケイ素、及びスズが好ましく、比較的安価で、分散した金属粒子にしやすいので特にスズが好ましい。
In the negative electrode material according to the present invention, the average particle size of the metal particles is preferably 1 μm or less, more preferably 0.3 μm or less, and still more preferably 0.1 μm or less. The smaller the average particle size of the metal particles, the larger the area of the electrode active material, which is preferable.
The metal particles according to the present invention contain at least one element M1 selected from metal elements capable of inserting and extracting lithium ions. Examples of the element M1 include aluminum, silicon, zinc, gallium, germanium, silver, cadmium, indium, tin, lead, antimony, and bismuth. Aluminum, silicon, and tin are preferable, relatively inexpensive, and dispersed. Tin is particularly preferable because it is easy to form metal particles.

本発明に係る金属粒子は、さらに、リチウムイオンを吸蔵及び放出しない金属の元素から選ばれる少なくとも1種の元素M2を含むのが好ましい。元素M2を含む金属粒子の存在により、充放電に伴う膨張、収縮がある程度軽減され、それに伴う応力を緩和することができる。   The metal particles according to the present invention preferably further contain at least one element M2 selected from metal elements that do not occlude and release lithium ions. Due to the presence of the metal particles containing the element M2, expansion and contraction associated with charge / discharge are reduced to some extent, and stress associated therewith can be relaxed.

元素M2としては、銅、ニッケル、鉄、チタン、コバルト、モリブデン、タングステン、バナジウム、タンタル、ランタン、マグネシウム、及びセリウムなどが挙げられる。中でも、銅、ニッケル、鉄、チタン、コバルトは、比較的安価で、分散した金属粒子にしやすく、延性があり好ましい。   Examples of the element M2 include copper, nickel, iron, titanium, cobalt, molybdenum, tungsten, vanadium, tantalum, lanthanum, magnesium, and cerium. Among these, copper, nickel, iron, titanium, and cobalt are preferable because they are relatively inexpensive, easily formed into dispersed metal particles, and have ductility.

本発明の負極材料は、炭素を含む。炭素の含有量は、好ましくは5〜50質量%、より好ましくは10〜40質量%、さらに好ましくは15〜35質量%である。炭素は、リチウムイオンを吸蔵/放出できない金属がリチウム二次電池用負極材料として機能するときの導電性を付与する効果がある。炭素含有量は、多い方が導電性が得やすく、また、少ない方が電極単位質量当たりの電池容量が大きくなるので、導電性及び電池容量の両方を得ようとするならば前記範囲内であることが好ましい。   The negative electrode material of the present invention contains carbon. The carbon content is preferably 5 to 50% by mass, more preferably 10 to 40% by mass, and still more preferably 15 to 35% by mass. Carbon has an effect of imparting conductivity when a metal that cannot occlude / release lithium ions functions as a negative electrode material for a lithium secondary battery. The higher the carbon content, the easier it is to obtain electrical conductivity, and the lower the carbon content, the higher the battery capacity per unit mass of the electrode, so that it is within the above range if both electrical conductivity and battery capacity are to be obtained. It is preferable.

本発明の負極材料は、さらに酸素を含む。酸素含有量は、好ましくは3〜25質量%、より好ましくは4〜20質量%、さらに好ましくは5〜15質量%である。
本発明の負極材料は、さらに窒素を含んでいる。窒素含有量は、好ましくは0.1〜3質量%、より好ましくは0.3〜2質量%、さらに好ましくは0.5〜1.5質量%である。
酸素原子、窒素原子が存在することから、金属酸化物、金属窒化物が生成していると推察される。金属酸化物、金属窒化物により、充放電に伴う膨張、収縮が軽減され、それに伴う応力を緩和することができる。
The negative electrode material of the present invention further contains oxygen. The oxygen content is preferably 3 to 25% by mass, more preferably 4 to 20% by mass, and further preferably 5 to 15% by mass.
The negative electrode material of the present invention further contains nitrogen. The nitrogen content is preferably 0.1 to 3% by mass, more preferably 0.3 to 2% by mass, and still more preferably 0.5 to 1.5% by mass.
Since oxygen atoms and nitrogen atoms are present, it is assumed that metal oxides and metal nitrides are generated. With the metal oxide and metal nitride, expansion and contraction associated with charge / discharge are reduced, and stress associated therewith can be relaxed.

[用途]
本発明の負極材料は、上記で述べたように、体積膨張緩和の相乗効果がある。そのため、本発明の負極材料を負極電極に用いて、充放電サイクル特性に優れたリチウムイオン二次電池を構成することができる。
本発明のリチウムイオン二次電池は、正極電極と、電解液と、セパレータと、前述のような複合材料を有する負極電極(電極)とを備えており、その形態は特に限定されないが、例えば、円筒形、角形、コイン型、あるいはシート型等の形状のものが挙げられる。
[Usage]
As described above, the negative electrode material of the present invention has a synergistic effect of relaxing volume expansion. Therefore, the negative electrode material of this invention can be used for a negative electrode, and the lithium ion secondary battery excellent in the charge / discharge cycle characteristic can be comprised.
The lithium ion secondary battery of the present invention includes a positive electrode, an electrolytic solution, a separator, and a negative electrode (electrode) having the composite material as described above, and the form thereof is not particularly limited. Examples of the shape include a cylindrical shape, a square shape, a coin shape, and a sheet shape.

ここで、リチウムイオン二次電池を構成する負極電極は、集電体と、この集電体を被覆する負極電極層とを有するものである。負極電極層としては、リチウムイオンを吸収/放出することができる負極活物質と導電助材と結着材を含むものを挙げることができる。
集電体としては、例えば、ニッケル箔、銅箔、ニッケルメッシュまたは銅メッシュなどが挙げられる。
Here, the negative electrode which comprises a lithium ion secondary battery has a collector and the negative electrode layer which coat | covers this collector. Examples of the negative electrode layer include a negative electrode active material capable of absorbing / releasing lithium ions, a conductive additive, and a binder.
Examples of the current collector include nickel foil, copper foil, nickel mesh, or copper mesh.

電極層は、例えば、負極活物質と導電助材と結着材を溶剤で混練しペーストとし、集電体に塗布し乾燥させることによって得ることができる。溶媒は、特に制限はなく、N−メチル−2−ピロリドン、ジメチルホルムアミド、イソプロパノール、水などが挙げられる。溶媒として水を使用するバインダーの場合は、増粘剤を併用することが好ましい。溶媒の使用量はペーストが集電体に塗布しやすい粘度範囲となる量とする。   The electrode layer can be obtained, for example, by kneading a negative electrode active material, a conductive additive, and a binder with a solvent to form a paste, applying the paste to a current collector, and drying. The solvent is not particularly limited, and examples thereof include N-methyl-2-pyrrolidone, dimethylformamide, isopropanol, and water. In the case of a binder using water as a solvent, it is preferable to use a thickener together. The amount of the solvent used is such that the paste is in a viscosity range that is easy to apply to the current collector.

ペーストの塗布方法は特に制限されない。電極層の厚さは、通常、50〜200μmである。電極層の厚さは、ペーストの塗布量によって調整できる。また、ペーストを乾燥させた後、加圧成形することによっても調整することができる。加圧成形法としては、ロール加圧、プレス加圧などの成形法が挙げられる。加圧成形するときの圧力は、好ましくは約100MPa〜約300MPaである。 The method for applying the paste is not particularly limited. The thickness of the electrode layer is usually 50 to 200 μm. The thickness of the electrode layer can be adjusted by the amount of paste applied. It can also be adjusted by drying the paste and then press molding. Examples of the pressure molding method include molding methods such as roll pressing and press pressing. The pressure during pressure molding is preferably about 100 MPa to about 300 MPa.

負極活物質としては、本発明の複合材料のみを用いてもよいし、リチウムイオンを吸収/放出することができる他の物質を加えてもよい。リチウムイオンを吸収/放出することができる他の物質としては、炭素材料等が挙げられる。炭素材料としては、人造黒鉛、熱分解黒鉛、膨張黒鉛、天然黒鉛、鱗状黒鉛、鱗片状黒鉛などの黒鉛材料;または易黒鉛化性炭素、難黒鉛化性炭素、ガラス状炭素、非晶質炭素、低温焼成炭などの結晶未発達の炭素質材料が用いられる。 As the negative electrode active material, only the composite material of the present invention may be used, or another substance capable of absorbing / releasing lithium ions may be added. Examples of other substances that can absorb / release lithium ions include carbon materials. Examples of the carbon material include graphite materials such as artificial graphite, pyrolytic graphite, expanded graphite, natural graphite, scaly graphite, and scaly graphite; or graphitizable carbon, non-graphitizable carbon, glassy carbon, and amorphous carbon. A carbonaceous material with an undeveloped crystal such as low-temperature calcined charcoal is used.

導電助剤は電極に対し導電性及び電極安定性(リチウムイオンの挿入・脱離における体積変化に対する緩衝作用)を付与する役目を果たすものであれば特に限定されない。例えば、気相法炭素繊維(例えば、「VGCF」(登録商標),昭和電工株式会社製)、導電性カーボン(例えば、「デンカブラック」;電気化学工業株式会社製、「Super C65」;TIMCAL社製、「Super C45」;TIMCAL社製、「KS6L」;TIMCAL社製)などが挙げられる。導電助剤の量は、負極材100質量部に対して、好ましくは10〜100質量部である。   The conductive auxiliary agent is not particularly limited as long as it has a function of imparting conductivity and electrode stability (a buffering action against volume change in insertion / extraction of lithium ions) to the electrode. For example, vapor grown carbon fiber (for example, “VGCF” (registered trademark), manufactured by Showa Denko KK), conductive carbon (for example, “Denka Black”; manufactured by Denki Kagaku Kogyo Co., Ltd., “Super C65”; TIMCAL “Super C45”; manufactured by TIMCAL, “KS6L” manufactured by TIMCAL, and the like. The amount of the conductive auxiliary is preferably 10 to 100 parts by mass with respect to 100 parts by mass of the negative electrode material.

結着材としては、例えば、ポリエチレン、ポリプロピレン、エチレンプロピレンターポリマー、ブタジエンゴム、スチレンブタジエンゴム、ブチルゴム、アクリルゴム、イオン伝導率の大きな高分子化合物などが挙げられる。イオン伝導率の大きな高分子化合物としては、ポリフッ化ビニリデン、ポリエチレンオキサイド、ポリエピクロルヒドリン、ポリファスファゼン、ポリアクリロニトリルなどが挙げられる。バインダーの量は、負極材100質量部に対して、好ましくは0.5〜100質量部である。   Examples of the binder include polyethylene, polypropylene, ethylene propylene terpolymer, butadiene rubber, styrene butadiene rubber, butyl rubber, acrylic rubber, and a high molecular compound having high ionic conductivity. Examples of the polymer compound having a large ionic conductivity include polyvinylidene fluoride, polyethylene oxide, polyepichlorohydrin, polyphasphazene, polyacrylonitrile and the like. The amount of the binder is preferably 0.5 to 100 parts by mass with respect to 100 parts by mass of the negative electrode material.

リチウムイオン二次電池を構成する正極電極は、集電体と、該集電体を被覆する正極電極層とを有するものである。
集電体としては、例えば、ニッケル箔、鉄箔、ステンレス鋼箔、チタン箔、アルミニウム箔などが挙げられる。正極電極層は、リチウムイオンを吸収/放出することができる負極活物質と導電助材と結着材を含むものを挙げることができ負極電極層と同様な方法で製造できる。正極活物質としては、LiMn24、LiCoO2、LiNiO2、LiFeO2、V25、TiS、MoS等のリチウムを吸蔵、放出が可能な化合物を挙げることができる。
The positive electrode constituting the lithium ion secondary battery has a current collector and a positive electrode layer that covers the current collector.
Examples of the current collector include nickel foil, iron foil, stainless steel foil, titanium foil, and aluminum foil. Examples of the positive electrode layer include those containing a negative electrode active material capable of absorbing / releasing lithium ions, a conductive additive, and a binder, and can be manufactured in the same manner as the negative electrode layer. Examples of the positive electrode active material include compounds that can occlude and release lithium, such as LiMn 2 O 4 , LiCoO 2 , LiNiO 2 , LiFeO 2 , V 2 O 5 , TiS, and MoS.

セパレータとしては、例えば、ポリエチレン、ポリプロピレン等のオレフィンを主成分とした不織布、クロス、微孔フィルム、またはそれらを組み合わせたものなどが挙げられる。また、ポリマー電解質等を用いることもできる。
電解液としては、例えば、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、ベンゾニトリル、アセトニトリル、テトラヒドロフラン、2−メチルテトラヒドロフラン、γ−ブチロラクトン、ジオキソラン、4−メチルジオキソラン、N,N−ジメチルホルムアミド、ジメチルアセトアミド、ジメチルスルホキシド、ジオキサン、1,2−ジメトキシエタン、スルホラン、ジクロロエタン、クロロベンゼン、ニトロベンゼン、ジメチルカーボネート、メチルエチルカーボネート、ジエチルカーボネート、メチルプロピルカーボネート、メチルイソプロピルカーボネート、エチルブチルカーボネート、ジプロピルカーボネート、ジイソプロピルカーボネート、ジブチルカーボネート、ジエチレングリコール、ジメチルエーテル等の非プロトン性溶媒、あるいはこれらの溶媒の2種以上を混合した混合溶媒に、LiPF6、LiBF4、LiSbF6、LiAsF6、LiClO4、LiCF3SO3、Li(CF3SO22N、LiC49SO3、LiSbF6、LiAlO4、LiAlCl4、LiN(CxF2x+1SO2)(CyF2y+1SO2)(ただしx、yは自然数)、LiCl、LiI等のリチウム塩からなる電解質の1種または2種以上を混合させたものを溶解したものを用いることができる。
また、電解液には、リチウムイオン電池の初回充電時に分解反応が起きる物質を少量添加してもよい。このような物質としては、例えば、ビニレンカーボネート、ビフェニール、プロパンスルトンなどが挙げられる。添加量としては0.01〜5質量%が好ましい。
Examples of the separator include non-woven fabrics mainly composed of olefins such as polyethylene and polypropylene, cloth, microporous films, or combinations thereof. A polymer electrolyte or the like can also be used.
Examples of the electrolyte include propylene carbonate, ethylene carbonate, butylene carbonate, benzonitrile, acetonitrile, tetrahydrofuran, 2-methyltetrahydrofuran, γ-butyrolactone, dioxolane, 4-methyldioxolane, N, N-dimethylformamide, dimethylacetamide, dimethyl Sulfoxide, dioxane, 1,2-dimethoxyethane, sulfolane, dichloroethane, chlorobenzene, nitrobenzene, dimethyl carbonate, methyl ethyl carbonate, diethyl carbonate, methyl propyl carbonate, methyl isopropyl carbonate, ethyl butyl carbonate, dipropyl carbonate, diisopropyl carbonate, dibutyl carbonate , Diethylene glycol, dimethyl ether Aprotic solvent such as ether or in a solvent mixture of two or more of these solvents,, LiPF 6, LiBF 4, LiSbF 6, LiAsF 6, LiClO 4, LiCF 3 SO 3, Li (CF 3 SO 2) 2 N, LiC 4 F 9 SO 3 , LiSbF 6 , LiAlO 4 , LiAlCl 4 , LiN (CxF 2 x + 1SO 2 ) (CyF 2 y + 1SO 2 ) (where x and y are natural numbers), and a lithium salt such as LiCl and LiI What melt | dissolved what mixed the 1 type (s) or 2 or more types of electrolyte can be used.
In addition, a small amount of a substance that causes a decomposition reaction when the lithium ion battery is initially charged may be added to the electrolytic solution. Examples of such substances include vinylene carbonate, biphenyl, propane sultone, and the like. As addition amount, 0.01-5 mass% is preferable.

以下、本発明の実施形態であるリチウムイオン二次電池の構成の1例を、図面を参照して説明する。なお、本発明のリチウムイオン二次電池は、以下に説明する形態に限られるものではない。
図10には、本発明の実施形態であるリチウムイオン二次電池1の一例を示す。
本例のリチウムイオン二次電池1は、円筒型と呼ばれるもので、シート状の負極電極2(電極)と、シート状の正極電極3と、これら負極電極2と正極電極3との間に配置されたセパレータ4と、主として負極電極2、正極電極3、及びセパレータ4に含侵されている電解液と、円筒状の電池容器5と、電池容器5を封口する封口部材6とを主体として構成されている。そして、このリチウムイオン二次電池1は、負極電極2と正極電極3とセパレータ4とが重ね合わされ、これらが巻回された状態で電池容器5に収納されて構成されている。
Hereinafter, an example of the configuration of a lithium ion secondary battery according to an embodiment of the present invention will be described with reference to the drawings. In addition, the lithium ion secondary battery of this invention is not restricted to the form demonstrated below.
In FIG. 10, an example of the lithium ion secondary battery 1 which is embodiment of this invention is shown.
The lithium ion secondary battery 1 of this example is called a cylindrical type, and is disposed between a sheet-like negative electrode 2 (electrode), a sheet-like positive electrode 3, and the negative electrode 2 and the positive electrode 3. The separator 4 is mainly composed of the negative electrode 2, the positive electrode 3, the electrolytic solution impregnated in the separator 4, the cylindrical battery container 5, and the sealing member 6 that seals the battery container 5. Has been. The lithium ion secondary battery 1 is configured such that a negative electrode 2, a positive electrode 3, and a separator 4 are overlapped and accommodated in a battery container 5 in a state where they are wound.

上記リチウムイオン二次電池を複数個接続して構成した電池は、「組電池」と称される。「組電池」は、少なくとも2つ以上のリチウムイオン二次電池を用いて、これらを直列及び/または並列に接続することにより構成される。直列及び/または並列にすることにより、組電池の容量及び電圧を自由に調節することが可能になる。
本発明のリチウム電池あるいは組電池を備えることができる物品の具体例としては、オフィスビル、家屋、テント等の建築物、蛍光灯、LED、有機EL等の屋内外の照明器具、信号機、車両、農業機器等の機械類、美容機材、可搬式工具、温冷蔵庫等の家電製品、携帯情報端末等の電子機器、風呂用品トイレ用品等の衛生機材、家具、玩具、装飾品、掲示板、屋外発電機などのアウトドア用品、造花、オブジェ、心臓ペースメーカー用電源、などが挙げられる。
A battery configured by connecting a plurality of the lithium ion secondary batteries is referred to as an “assembled battery”. The “assembled battery” is configured by connecting at least two or more lithium ion secondary batteries in series and / or in parallel. By connecting in series and / or in parallel, the capacity and voltage of the assembled battery can be freely adjusted.
Specific examples of articles that can be provided with the lithium battery or assembled battery of the present invention include office buildings, houses, buildings such as tents, indoor and outdoor lighting fixtures such as fluorescent lights, LEDs, and organic EL, traffic lights, vehicles, Machinery such as agricultural equipment, beauty equipment, portable tools, home appliances such as a warm refrigerator, electronic equipment such as portable information terminals, sanitary equipment such as bath products and toilet articles, furniture, toys, decorations, bulletin boards, outdoor generators Outdoor supplies such as, artificial flowers, objects, power supplies for heart pacemakers.

[負極材料の製造方法]
本発明の負極材料の製造方法は、少なくとも1種の金属元素M1を含む化合物(1)と、窒素含有有機化合物(2)を混合して負極材料前駆体溶液を得る工程1、前記負極材料前駆体溶液から溶液を分離して固形分残渣を得る工程2、及び前記固形分残渣を500〜1300℃の温度で熱処理して負極材料を得る工程3を含む。
[Method for producing negative electrode material]
The method for producing a negative electrode material of the present invention comprises a step 1 of obtaining a negative electrode material precursor solution by mixing a compound (1) containing at least one metal element M1 and a nitrogen-containing organic compound (2), the negative electrode material precursor The process 2 which isolate | separates a solution from a body solution and obtains a solid content residue, and the process 3 which heat-processes the said solid content residue at the temperature of 500-1300 degreeC, and obtains negative electrode material are included.

工程1:
リチウムイオンを吸蔵及び放出できる少なくとも1種の金属元素M1を含む化合物(1)と、窒素含有有機化合物(2)を混合して負極材料前駆体溶液を得る工程である。
化合物(1)と窒素含有有機化合物(2)のいずれかに酸素元素が含まれることを特徴する。
工程1においては、化合物(1)と、窒素含有有機化合物(2)以外に、後述する任意の物質(3)を添加してもよい。任意の物質(3)を添加する場合、化合物(1)、窒素含有有機化合物、任意の物質(3)の少なくとも1つが酸素原子を有してもよい。
工程1では、化合物(1)と、窒素含有有機化合物(2)を混合して負極前駆体溶液を得る。混合方法は沈殿物が析出しないように溶媒に溶解できる方法であれば特に制限はないが、例えば、次の(i)及び(ii)の方法が挙げられる。
Step 1:
In this step, a negative electrode material precursor solution is obtained by mixing a compound (1) containing at least one metal element M1 capable of inserting and extracting lithium ions and a nitrogen-containing organic compound (2).
One of the compounds (1) and the nitrogen-containing organic compound (2) is characterized by containing an oxygen element.
In step 1, in addition to the compound (1) and the nitrogen-containing organic compound (2), an arbitrary substance (3) described later may be added. When arbitrary substance (3) is added, at least one of compound (1), a nitrogen-containing organic compound, and arbitrary substance (3) may have an oxygen atom.
In step 1, compound (1) and nitrogen-containing organic compound (2) are mixed to obtain a negative electrode precursor solution. The mixing method is not particularly limited as long as it can be dissolved in a solvent so that a precipitate does not precipitate, and examples thereof include the following methods (i) and (ii).

(i)化合物(1)と窒素含有有機化合物(2)を溶媒に添加し混合して負極材料前駆体溶液を得る。
(ii)化合物(1)を溶媒に溶解した溶液と、窒素含有有機化合物(2)を溶媒に溶解した溶液とを混合して負極材料前駆体溶液を得る。
混合は、溶解速度を高めるために、撹拌しながら行うことが好ましい。撹拌棒、撹拌羽根、撹拌子などを用いることができる。
溶媒を加熱して溶解、混合させてもよい。また、オートクレーブ等の加圧可能な容器で加圧して、溶解、混合を行ってもよい。
(i) Compound (1) and nitrogen-containing organic compound (2) are added to a solvent and mixed to obtain a negative electrode material precursor solution.
(ii) A solution in which the compound (1) is dissolved in a solvent and a solution in which the nitrogen-containing organic compound (2) is dissolved in a solvent are mixed to obtain a negative electrode material precursor solution.
The mixing is preferably performed with stirring in order to increase the dissolution rate. A stir bar, a stirring blade, a stirring bar, or the like can be used.
The solvent may be heated to dissolve and mix. Moreover, you may melt | dissolve and mix by pressurizing with pressurizable containers, such as an autoclave.

化合物(1):
化合物(1)は、リチウムイオンを吸蔵及び放出できる少なくとも1種の金属元素M1を1種以上含むことを特徴とする。化合物(1)は、さらに後述するリチウムイオンを吸蔵及び放出しない金属元素から選ばれる少なくとも1種の元素M2を含んでいるのが好ましい。
化合物(1)は、酸素原子及びハロゲン原子から選ばれる少なくとも1種を有していることが好ましい。化合物(1)としては、アルコキシド、アセチルアセトン、有機酸塩、ハロゲン化物、酸ハロゲン化物、リン酸塩、硫酸塩及び硝酸塩などが挙げられる。これらの中でも、コストの面から、金属アルコキシド、アセチルアセトンがより好ましく、前記溶媒への溶解性の観点から、金属アルコキシド、アセチルアセトン錯体がさらに好ましい。アルコキシドとしては、メトキシド、プロポキシド、イソプロポキシド、エトキシド、ブトキシド、及びイソブトキシドなどが挙げられる。
化合物(1)は、1種を単独で用いてもよく、2種以上を併用してもよい。
Compound (1):
The compound (1) is characterized by containing at least one metal element M1 capable of inserting and extracting lithium ions. The compound (1) preferably further contains at least one element M2 selected from metal elements that do not occlude and release lithium ions, which will be described later.
The compound (1) preferably has at least one selected from an oxygen atom and a halogen atom. Examples of the compound (1) include alkoxide, acetylacetone, organic acid salt, halide, acid halide, phosphate, sulfate and nitrate. Among these, metal alkoxide and acetylacetone are more preferable from the viewpoint of cost, and metal alkoxide and acetylacetone complex are more preferable from the viewpoint of solubility in the solvent. Examples of the alkoxide include methoxide, propoxide, isopropoxide, ethoxide, butoxide, isobutoxide and the like.
A compound (1) may be used individually by 1 type, and may use 2 or more types together.

窒素含有有機化合物(2):
窒素含有有機化合物(2)としては、前記化合物(1)中の元素M1に配位可能であることが好ましい。窒素含有有機化合物(2)としては、アミノ基、ニトリル基、イミド基、イミン基、ニトロ基、アミド基、アジド基、アジリジン基、アゾ基、イソシアネート基、イソチオシアネート基、オキシム基、ジアゾ基、ニトロソ基などの官能基、またはピロール環、ポルフィリン環、ピロリジン環、イミダゾール環、トリアゾール環、ピリジン環、ピペリジン環、ピリミジン環、ピラジン環、プリン環等の環(以下、これらの官能基及び環をまとめて「含窒素分子団」と略記することがある。)を有するものが好ましい。
化合物(1)の元素M1に配位して、工程1の混合において溶解性を高めると考えられる。
Nitrogen-containing organic compound (2):
The nitrogen-containing organic compound (2) is preferably capable of coordinating with the element M1 in the compound (1). Examples of the nitrogen-containing organic compound (2) include amino group, nitrile group, imide group, imine group, nitro group, amide group, azide group, aziridine group, azo group, isocyanate group, isothiocyanate group, oxime group, diazo group, A functional group such as a nitroso group, or a ring such as a pyrrole ring, a porphyrin ring, a pyrrolidine ring, an imidazole ring, a triazole ring, a pyridine ring, a piperidine ring, a pyrimidine ring, a pyrazine ring, or a purine ring (hereinafter, these functional groups and rings are Those having a combination of “nitrogen-containing molecular groups” are sometimes preferred.
It is considered to coordinate with the element M1 of the compound (1) to enhance the solubility in the mixing in Step 1.

前記窒素含有有機化合物(2)(ただし、酸素原子を含まない。)としては、メラミン、エチレンジアミン、エチレンジアミン・二塩酸塩、トリアゾール、アセトニトリル、アクリロニトリル、エチレンイミン、アニリン、ピロール、ポリエチレンイミンなどが挙げられる。
さらに、前記窒素含有有機化合物(2)は、含窒素分子団に加え、水酸基、カルボキシル基、アルデヒド基、酸ハライド基、スルホ基、リン酸基、ケトン基、エーテル基またはエステル基(これらをまとめて「含酸素分子団」ともいう。)を有することが好ましい。窒素含有有機化合物(2)は、含窒素分子団と含酸素分子団を分子内に有すると、化合物(1)の元素M1に配位し、工程1の混合において、さらに溶解性を高めることができると考えられる。
Examples of the nitrogen-containing organic compound (2) (but not containing oxygen atoms) include melamine, ethylenediamine, ethylenediamine dihydrochloride, triazole, acetonitrile, acrylonitrile, ethyleneimine, aniline, pyrrole, and polyethyleneimine. .
Further, the nitrogen-containing organic compound (2) includes, in addition to the nitrogen-containing molecular group, a hydroxyl group, a carboxyl group, an aldehyde group, an acid halide group, a sulfo group, a phosphoric acid group, a ketone group, an ether group or an ester group. And also referred to as “oxygen-containing molecular group”). When the nitrogen-containing organic compound (2) has a nitrogen-containing molecular group and an oxygen-containing molecular group in the molecule, the nitrogen-containing organic compound (2) is coordinated to the element M1 of the compound (1), and the solubility can be further improved in the mixing in Step 1. It is considered possible.

分子中に酸素原子を含む前記窒素含有有機化合物(2)としては、アミノ酸、アセチルピロールなどのアシルピロール類、ピロールカルボン酸、アセチルイミダゾールなどのアシルイミダゾール類、カルボニルジイミダゾール、イミダゾールカルボン酸、ピラゾール、アセトアニリド、ピラジンカルボン酸、ピペリジンカルボン酸、ピペラジンカルボン酸、モルホリン、ピリミジンカルボン酸、ニコチン酸、2−ピリジンカルボン酸、2,4−ピリジンジカルボン酸、8−キノリノール、ポリビニルピロリドン、ピロール−2−カルボン酸、イミダゾール−4−カルボン酸、2−ピラジンカルボン酸、2−ピペリジンカルボン酸、2−ピペラジンカルボン酸、ニコチン酸、2−ピリジンカルボン酸、2,4−ピリジンジカルボン酸、及び8−キノリノールが好ましく、2−ピラジンカルボン酸、及び2−ピリジンカルボン酸などが挙げられる。中でも、アミノ酸、ならびにその誘導体が好ましい。   Examples of the nitrogen-containing organic compound (2) containing an oxygen atom in the molecule include amino acids, acylpyrroles such as acetylpyrrole, acylimidazoles such as pyrrolecarboxylic acid and acetylimidazole, carbonyldiimidazole, imidazolecarboxylic acid, pyrazole, Acetanilide, pyrazinecarboxylic acid, piperidinecarboxylic acid, piperazinecarboxylic acid, morpholine, pyrimidinecarboxylic acid, nicotinic acid, 2-pyridinecarboxylic acid, 2,4-pyridinedicarboxylic acid, 8-quinolinol, polyvinylpyrrolidone, pyrrole-2-carboxylic acid Imidazole-4-carboxylic acid, 2-pyrazinecarboxylic acid, 2-piperidinecarboxylic acid, 2-piperazinecarboxylic acid, nicotinic acid, 2-pyridinecarboxylic acid, 2,4-pyridinedicarboxylic acid, and 8- Norinoru are preferable, and 2-pyrazine carboxylic acid, and 2-pyridine carboxylic acid. Of these, amino acids and derivatives thereof are preferred.

アミノ酸としては、アラニン、アルギニン、アスパラギン、アスパラギン酸、システイン、グルタミン、グルタミン酸、グリシン、ヒスチジン、イソロイシン、ロイシン、リシン、メチオニン、フェニルアラニン、セリン、トレオニン、トリプトファン、チロシン、バリン、ノルバリン、グリシルグリシン、トリグリシン及びテトラグリシンが好ましく、得られる負極の活性が高いことから、アラニン、グリシン、リシン、メチオニン、チロシンなどが挙げられる。窒素含有有機化合物(2)は、1種を単独で用いてもよく、2種以上を併用してもよい。   As amino acids, alanine, arginine, asparagine, aspartic acid, cysteine, glutamine, glutamic acid, glycine, histidine, isoleucine, leucine, lysine, methionine, phenylalanine, serine, threonine, tryptophan, tyrosine, valine, norvaline, glycylglycine, tri Glycine and tetraglycine are preferable, and since the obtained negative electrode has high activity, alanine, glycine, lysine, methionine, tyrosine and the like can be mentioned. A nitrogen-containing organic compound (2) may be used individually by 1 type, and may use 2 or more types together.

溶媒:
前記溶媒としては、例えば水、アルコール類及び酸類が挙げられる。アルコール類としては、エタノール、メタノール、ブタノール、プロパノール及びエトキシエタノールが好ましく、エタノール及びメタノールがさらに好ましい。酸類としては、酢酸、硝酸(水溶液)、塩酸、リン酸水溶液及びクエン酸水溶液が好ましく、酢酸及び硝酸がさらに好ましい。これらは、1種単独で用いてもよく2種以上を併用してもよい。
solvent:
Examples of the solvent include water, alcohols and acids. As alcohols, ethanol, methanol, butanol, propanol and ethoxyethanol are preferable, and ethanol and methanol are more preferable. As the acids, acetic acid, nitric acid (aqueous solution), hydrochloric acid, phosphoric acid aqueous solution and citric acid aqueous solution are preferable, and acetic acid and nitric acid are more preferable. These may be used alone or in combination of two or more.

任意の物質:
任意の物質(3)としては、沈殿抑制剤、及び金属粒子が挙げられる。
沈殿抑制剤を添加することにより、化合物(1)の沈殿を抑制して、負極前駆体溶液を得ることができる。例えば、化合物(1)が、ハロゲン原子を含み、溶媒として水を使用する場合は、沈殿抑制剤として酸を添加するとよい。
化合物(1)が、酸素原子を有する場合は、ジケトン構造を有する化合物を添加するとよい。ジケトン構造を有する化合物としては、ジアセチル、アセチルアセトン、2,5−ヘキサンジオン及びジメドンがより好ましく、アセチルアセトン及び2,5−ヘキサンジオンなどが挙げられる。
前記沈殿抑制剤は、工程1中のいずれの段階で添加してもよい。
Any substance:
Optional materials (3) include precipitation inhibitors and metal particles.
By adding a precipitation inhibitor, precipitation of the compound (1) can be suppressed to obtain a negative electrode precursor solution. For example, when the compound (1) contains a halogen atom and water is used as a solvent, an acid may be added as a precipitation inhibitor.
When the compound (1) has an oxygen atom, a compound having a diketone structure may be added. As the compound having a diketone structure, diacetyl, acetylacetone, 2,5-hexanedione and dimedone are more preferable, and examples thereof include acetylacetone and 2,5-hexanedione.
The precipitation inhibitor may be added at any stage in step 1.

任意の物質(3)の金属粒子としては、リチウムイオンを吸蔵及び放出できる金属から選ばれる少なくとも一種の金属M11の粒子が挙げられる。金属M11としては、好ましくは、アルミニウム、ケイ素、亜鉛、ガリウム、ゲルマニウム。銀、カドミウム、インジウム、スズ、鉛、アンチモン、ビスマスなどが挙げられ、より好ましくはケイ素が挙げられる。前記金属粒子の平均粒径は、300nm以下であることが好ましい。   Examples of the metal particles of the optional substance (3) include particles of at least one metal M11 selected from metals capable of inserting and extracting lithium ions. The metal M11 is preferably aluminum, silicon, zinc, gallium, or germanium. Silver, cadmium, indium, tin, lead, antimony, bismuth, etc. are mentioned, More preferably, silicon is mentioned. The average particle size of the metal particles is preferably 300 nm or less.

工程2:
工程2は、工程1で得られた前記負極前駆体溶液から溶媒を除去する工程である。
溶媒の除去は大気下で行っても、減圧下で行ってもよく、また不活性ガス(例えば、窒素、アルゴン、ヘリウム)雰囲気下で行ってもよい。
溶媒の除去の際の温度は、特に制限はないが、負極前駆体を分解させないという観点から、好ましくは350℃以下、より好ましくは150℃以下、さらに好ましくは110℃以下である。
溶媒の除去は、工程1で得られた混合物を静置した状態で行ってもよいが、混合物を回転させながら溶媒を除去することが好ましい。例えばエバポレーターを用いることができる。
Step 2:
Step 2 is a step of removing the solvent from the negative electrode precursor solution obtained in Step 1.
The removal of the solvent may be performed in the air, may be performed under reduced pressure, or may be performed in an inert gas (for example, nitrogen, argon, helium) atmosphere.
The temperature at the time of removing the solvent is not particularly limited, but is preferably 350 ° C. or less, more preferably 150 ° C. or less, and further preferably 110 ° C. or less from the viewpoint of not decomposing the negative electrode precursor.
The removal of the solvent may be performed in a state where the mixture obtained in Step 1 is allowed to stand, but it is preferable to remove the solvent while rotating the mixture. For example, an evaporator can be used.

得られた固形分残渣が凝集するなどして不均一である場合に、それらを混合し、解砕してもよい。より均一、微細な粉末としたものを次工程3で用いると、粒径がより均一な負極を得ることができる。さらに、前記リチウムイオンを吸蔵及び放出できる金属の元素から選ばれる少なくとも一種の元素M1を、工程1ではなく、ここで添加してもよい。
混合、解砕方法としては、、例えば、ロール転動ミル、ボールミル、小径ボールミル(ビーズミル)、媒体撹拌ミル、気流粉砕機、乳鉢、自動混練乳鉢、槽解機、ジェトミルを用いることができる。
When the obtained solid content residue is non-uniform due to aggregation or the like, they may be mixed and crushed. When a more uniform and fine powder is used in the next step 3, a negative electrode having a more uniform particle size can be obtained. Further, at least one element M1 selected from metal elements capable of inserting and extracting lithium ions may be added here instead of step 1.
As a mixing and crushing method, for example, a roll rolling mill, a ball mill, a small-diameter ball mill (bead mill), a medium stirring mill, an airflow crusher, a mortar, an automatic kneading mortar, a tank crusher, and a jet mill can be used.

工程3:
工程3は、工程2で得られた固形分残渣を熱処理して負極材料を得る工程である。
熱処理の温度は、500〜1300℃であり、好ましくは500〜1100℃であり、より好ましくは600〜1050℃であり、さらに好ましくは700〜950℃である。熱処理の温度が高いと、電極材料が、焼結、粒成長する。熱処理の温度が低いと、高い活性の電極材料負極を得ることができない。
前記熱処理の方法としては、例えば、静置法、撹拌法、落下法、粉末捕捉法が挙げられる。
Step 3:
Step 3 is a step of obtaining a negative electrode material by heat-treating the solid residue obtained in Step 2.
The temperature of heat processing is 500-1300 degreeC, Preferably it is 500-1100 degreeC, More preferably, it is 600-1050 degreeC, More preferably, it is 700-950 degreeC. When the temperature of the heat treatment is high, the electrode material sinters and grows. If the heat treatment temperature is low, a highly active electrode material negative electrode cannot be obtained.
Examples of the heat treatment method include a stationary method, a stirring method, a dropping method, and a powder trapping method.

静置法とは、静置式の電気炉などに工程2で得られた固形分残渣を置き、これを加熱する方法である。昇温速度は、特に限定されないが、好ましくは1〜100℃/分程度であり、さらに好ましくは5〜50℃/分である。
撹拌法とは、ロータリーキルンなどの電気炉中に前記固形分残渣を入れ、これを撹拌しながら加熱する方法である。加熱時間は、通常10分〜5時間であり、好ましくは30分〜2時間である。
The stationary method is a method in which the solid residue obtained in step 2 is placed in a stationary electric furnace or the like and heated. The rate of temperature increase is not particularly limited, but is preferably about 1 to 100 ° C./min, and more preferably 5 to 50 ° C./min.
The stirring method is a method in which the solid residue is placed in an electric furnace such as a rotary kiln and heated while stirring. The heating time is usually 10 minutes to 5 hours, preferably 30 minutes to 2 hours.

落下法とは、誘導炉中に雰囲気ガスを流しながら、炉を所定の加熱温度まで加熱し、所定温度で熱的平衡を保った後、炉の加熱区域である坩堝中に前記固形分残渣を落下させ、これを加熱する方法である。加熱時間は、通常0.5〜10分であり、好ましくは0.5〜3分である。
粉末捕捉法とは、微量の酸素ガスを含む不活性ガス雰囲気中で、前記固形分残渣を飛沫にして浮遊させ、これを所定の加熱温度に保たれた垂直の管状炉中に捕捉して、加熱する方法である。加熱時間は、0.2秒〜1分、好ましくは0.2〜10秒である。
熱処理に用いる炉としては、管状炉、上蓋型炉、トンネル炉、箱型炉、試料台昇降式炉(エレベーター型)、台車炉などが挙げられる。
In the dropping method, the atmospheric gas is allowed to flow through the induction furnace, the furnace is heated to a predetermined heating temperature, and after maintaining a thermal equilibrium at the predetermined temperature, the solid content residue is placed in a crucible that is a heating area of the furnace. It is a method of dropping and heating this. The heating time is usually 0.5 to 10 minutes, preferably 0.5 to 3 minutes.
Powder capture method is an inert gas atmosphere containing a small amount of oxygen gas, the solid residue is splashed and suspended, captured in a vertical tube furnace maintained at a predetermined heating temperature, It is a method of heating. The heating time is 0.2 second to 1 minute, preferably 0.2 to 10 seconds.
Examples of the furnace used for the heat treatment include a tubular furnace, an upper lid furnace, a tunnel furnace, a box furnace, a sample table raising / lowering furnace (elevator type), and a cart furnace.

熱処理を行う雰囲気は、不活性ガス雰囲気が好ましい。不活性ガスの中でも、窒素、アルゴン、ヘリウムがより好ましく、窒素及びアルゴンがさらに好ましい。これらの不活性ガスは、1種を単独で用いても、2種以上を混合して用いてもよい。   The atmosphere for the heat treatment is preferably an inert gas atmosphere. Among the inert gases, nitrogen, argon, and helium are more preferable, and nitrogen and argon are more preferable. These inert gases may be used alone or in combination of two or more.

不活性ガスに反応性ガスを含有させると、電極負極材料が高い活性を発現するので好ましい。反応ガスとしては、水素ガス、アンモニアガス及び酸素ガスが挙げられる。
反応ガスは、1種を単独で用いてもよく、2種以上を併用してもよい。窒素ガスと水素ガスとの混合ガスの雰囲気で熱処理すると、高い負極性能を有する電極負極が得られる傾向がある。
不活性ガス中に水素ガスを含有させる場合には、水素ガスの濃度は、好ましくは0.01〜10体積%、より好ましくは1〜5体積%である。
熱処理後には、熱処理物を解砕してもよい。解砕には、例えば、ロール転動ミル、ボールミル、小径ボールミル(ビーズミル)、媒体撹拌ミル、気流粉砕機、乳鉢、自動混練乳鉢、槽解機またはジェトミルを用いることができる。
It is preferable to include a reactive gas in the inert gas because the electrode negative electrode material exhibits high activity. Examples of the reaction gas include hydrogen gas, ammonia gas, and oxygen gas.
The reaction gas may be used alone or in combination of two or more. When heat treatment is performed in an atmosphere of a mixed gas of nitrogen gas and hydrogen gas, an electrode negative electrode having high negative electrode performance tends to be obtained.
When hydrogen gas is contained in the inert gas, the concentration of hydrogen gas is preferably 0.01 to 10% by volume, more preferably 1 to 5% by volume.
After the heat treatment, the heat treated product may be crushed. For crushing, for example, a roll rolling mill, a ball mill, a small-diameter ball mill (bead mill), a medium stirring mill, an airflow crusher, a mortar, an automatic kneading mortar, a tank disintegrator, or a jet mill can be used.

熱処理で得られた本発明の材料は金属粒子が炭素材料に埋め込まれた構造を有しており、この材料を負極材料として用いると体積膨張緩和の相乗効果によって、充放電サイクルに優れたリチウムイオン二次電池を作成することができる。   The material of the present invention obtained by heat treatment has a structure in which metal particles are embedded in a carbon material. When this material is used as a negative electrode material, a lithium ion having an excellent charge / discharge cycle due to a synergistic effect of volume expansion relaxation. A secondary battery can be created.

以下に、実施例及び比較例を挙げて本発明を具体的に説明するが、本発明はこれらの記載のみに限定されるものではない。
実施例及び比較例で得た負極材料についての各種の分析方法は以下のとおりである。
EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples and comparative examples, but the present invention is not limited only to these descriptions.
Various analysis methods for the negative electrode materials obtained in Examples and Comparative Examples are as follows.

1.粉末X線回折測定
理学電機株式会社製、ロータフレックスを用いて、試料の粉末X線回折を行った。
測定条件の詳細は以下のとおりである。
X線出力(Cu−Kα):50kV、180mA、
走査軸:θ/2θ、
測定範囲(2θ):10.00°〜89.98°、
測定モード:FT、
読込幅:0.02°、
サンプリング時間:0.70秒、
DS、SS、RS:0.5°、0.5°、0.15mm、
ゴニオメーター半径:185mm。
各試料の粉末X線回折における回折線ピークの本数は、信号(S)とノイズ(N)の比(S/N)が2以上で検出できるシグナルを1つのピークとみなして数えた。
なお、ノイズ(N)は、ベースラインの幅とした。
1. Powder X-ray diffraction measurement Using a rotor flex made by Rigaku Corporation, powder X-ray diffraction of the sample was performed.
The details of the measurement conditions are as follows.
X-ray output (Cu-Kα): 50 kV, 180 mA,
Scanning axis: θ / 2θ,
Measurement range (2θ): 10.00 ° to 89.98 °,
Measurement mode: FT,
Reading width: 0.02 °,
Sampling time: 0.70 seconds,
DS, SS, RS: 0.5 °, 0.5 °, 0.15 mm,
Goniometer radius: 185mm.
The number of diffraction line peaks in powder X-ray diffraction of each sample was counted by regarding a signal that can be detected at a ratio (S / N) of signal (S) to noise (N) of 2 or more as one peak.
The noise (N) is the width of the baseline.

2.元素分析
[炭素・硫黄]
試料約0.01gを量り取り、炭素硫黄分析装置(堀場製作所製EMIA−920V)にて測定を行った。
[窒素・酸素]
試料約0.01gを量り取り、Niカプセルに試料を封入して、酸素窒素分析装置(LECO製TC600)にて測定を行った。
[金属(スズ、コバルト、バナジウム、チタン、タンタル、鉄、アルミニウム、ケイ素など]
試料約0.1gを石英ビーカーに量り取り、硫酸,硝酸及びフッ酸を用いて試料を完全に加熱分解した。冷却後、この溶液を100mlに定容し、さらに適宜希釈し、ICP−OES(SII社製VISTA−PRO)またはICP−MS(Agilent社製HP7500)を用いて定量を行った。
2. Elemental analysis [carbon and sulfur]
About 0.01 g of a sample was weighed and measured with a carbon sulfur analyzer (EMIA-920V manufactured by Horiba, Ltd.).
[Nitrogen / Oxygen]
About 0.01 g of a sample was weighed, sealed in a Ni capsule, and measured with an oxygen-nitrogen analyzer (TC600 manufactured by LECO).
[Metals (tin, cobalt, vanadium, titanium, tantalum, iron, aluminum, silicon, etc.]
About 0.1 g of the sample was weighed into a quartz beaker, and the sample was completely thermally decomposed using sulfuric acid, nitric acid and hydrofluoric acid. After cooling, the solution was made up to a volume of 100 ml, further diluted as appropriate, and quantified using ICP-OES (VISA-PRO by SII) or ICP-MS (HP7500 by Agilent).

3.BET比表面積測定
マウンテック株式会社製、Macsorb,HM−model 1201を用いてBET比表面積を測定した。前処理時間、前処理温度は、それぞれ30分、200℃に設定した。
4.平均粒径
SEM観察により粒子径を実測し、これより数平均粒子径(本発明では「平均粒径」と略記する)を求めた。
3. BET specific surface area measurement The BET specific surface area was measured using Macsorb, HM-model 1201, manufactured by Mountec Co., Ltd. The pretreatment time and pretreatment temperature were set at 30 ° C. and 200 ° C., respectively.
4). Average particle diameter The particle diameter was measured by SEM observation, and the number average particle diameter (abbreviated as “average particle diameter” in the present invention) was determined therefrom.

実施例1:
1.負極材料の製造
ビーカーに、酢酸(和光純薬(株)製)1000ml、水1000mlを入れ、これを撹拌しながら酢酸スズ(和光純薬(株)製)11.51g(48.59mmol)、酢酸コバルト(和光純薬(株)製)8.07g(32.39mmol)を加えて、完全に溶解させた。さらにグリシン(和光純薬(株)製)24.56g(327.20mmol)を加えてから、6時間撹拌を行い、負極前駆体溶液を得た。
ロータリーエバポレーターを用い、窒素雰囲気の減圧下で、ホットスターラーの温度を約100℃に設定し、前記負極前駆体溶液を加熱かつ撹拌しながら、溶媒をゆっくり蒸発させた。完全に溶媒を蒸発させて得られた固形物残渣を自動乳鉢ですり潰して、35.51gの焼成用粉末(1)を得た。
7.2gの焼成用粉末(1)を、ロータリーキルン炉に水素ガスを4体積%含む窒素ガス(すなわち、水素ガス:窒素ガス=4体積%:96体積%の混合ガス)を20ml/分の速度で流しながら、昇温速度10℃/分で、950℃で1.5時間焼成し、自然冷却することにより、粉末状の負極材料(1)2.13gを得た。
負極材料(1)の粉末X線回折スペクトルを図1に示す。35.55°付近は、Sn−Co合金を示している。
Example 1:
1. Production of negative electrode material In a beaker, 1000 ml of acetic acid (manufactured by Wako Pure Chemical Industries, Ltd.) and 1000 ml of water were added, and while stirring this, 11.51 g (48.59 mmol) of tin acetate (manufactured by Wako Pure Chemical Industries, Ltd.), acetic acid Cobalt (manufactured by Wako Pure Chemical Industries, Ltd.) (8.07 g, 32.39 mmol) was added and completely dissolved. Furthermore, after adding 24.56 g (327.20 mmol) of glycine (made by Wako Pure Chemical Industries, Ltd.), it stirred for 6 hours and obtained the negative electrode precursor solution.
Using a rotary evaporator, the temperature of the hot stirrer was set to about 100 ° C. under reduced pressure in a nitrogen atmosphere, and the solvent was slowly evaporated while heating and stirring the negative electrode precursor solution. The solid residue obtained by completely evaporating the solvent was ground in an automatic mortar to obtain 35.51 g of powder for firing (1).
A rate of 20 ml / min of 7.2 g of the powder for firing (1) in a rotary kiln furnace containing nitrogen gas containing 4% by volume of hydrogen gas (that is, hydrogen gas: nitrogen gas = 4% by volume: 96% by volume of mixed gas) The mixture was baked at 950 ° C. for 1.5 hours at a rate of temperature increase of 10 ° C./min. And naturally cooled to obtain 2.13 g of a powdered negative electrode material (1).
The powder X-ray diffraction spectrum of the negative electrode material (1) is shown in FIG. The vicinity of 35.55 ° indicates a Sn—Co alloy.

負極材料(1)を構成する各元素の割合(原子数の比)及び負極材料(1)のBET比表面積を表1に示し、負極材料(1)のSEM(Scanning Electron Microscope;走査型電子顕微鏡)写真(×100000)を図2(A)に示す。金属粒子が炭素材料に埋め込まれた構造をしており、金属粒子径は0.1μm(100nm)以下であることがわかる。また図2(B)に負極材量(1)のSEM写真(×5000)を示した。図2(B)の写真の視野について、EDX(Energy Dispersive X-ray spectrometry;エネルギー分散型X線分析)による元素分析を行った。図2(C)〜(F)(C kα線の分布を示す写真(C)、O kα線の分布を示す写真(D)、Co kα線の分布を示す写真(E)、Sn Lα線の分布を示す写真(F))に各元素の分布を示す。これらの写真から負極材料(1)はスズ粒子を含み(図2(F))、またコバルトを含むことがわかる(図2(E))。   The ratio of each element constituting the negative electrode material (1) (ratio of the number of atoms) and the BET specific surface area of the negative electrode material (1) are shown in Table 1. SEM (Scanning Electron Microscope) of the negative electrode material (1) ) A photograph (× 100,000) is shown in FIG. It can be seen that the metal particles have a structure embedded in a carbon material, and the metal particle diameter is 0.1 μm (100 nm) or less. Moreover, the SEM photograph (x5000) of negative electrode material amount (1) was shown in FIG. 2 (B). 2B was subjected to elemental analysis by EDX (Energy Dispersive X-ray spectrometry). 2 (C) to (F) (photograph (C) showing distribution of C kα ray, photo (D) showing distribution of O kα ray, photo (E) showing distribution of Co kα ray, Sn Lα ray The distribution of each element is shown in the photograph (F) showing the distribution. It can be seen from these photographs that the negative electrode material (1) contains tin particles (FIG. 2 (F)) and also contains cobalt (FIG. 2 (E)).

2.リチウム電池の製造
[リチウムイオン電池の作製]
次に、実施例1で作製した複合材料(負極材料(1))を用いて、電池の負極を作製した。まず、複合材料60質量部、結合剤30質量部、及び導電助剤10質量部に、適量のN−メチル−2−ピロリドンを加え、撹拌混合し、負極用ペーストを調製した。
結合剤には、PVDF(ポリフッ化ビニリデン)、導電助剤には、カーボンブラックを使用した。次に、ドクターブレード法により、厚さ20μmの銅箔上に、負極用ペーストを、約100μmの厚さで塗布し、これを80℃で一晩真空乾燥した。これにより、負極電極層が形成された。なお、負極電極層は、ハンドプレスにより、直径15mmの円柱状に切り出して使用した。一方、厚さ0.5mmのリチウム箔を、直径15mmの円柱状に切り出して正極を形成した。セパレータ部材として、厚さ25μmの多孔質ポリプロピレンからなるフィルムを準備した。また、エチレンカーボネート30体積%と、メチルエチルカーボネート70体積%とを混合して得られた混合溶媒に、LiPF6を1mol/dm3の濃度で溶解し、非水電解液を調製した。これらの負極電極層、非水電解液、正極、及びセパレータを用いて、2032型コインセル(直径20mm、厚み3.2mm)形状のリチウムイオン電池(以下、「実施例1に係る電池」と略記する。)を作製した。
2. Lithium battery manufacturing [lithium ion battery production]
Next, the negative electrode of the battery was produced using the composite material (negative electrode material (1)) produced in Example 1. First, an appropriate amount of N-methyl-2-pyrrolidone was added to 60 parts by mass of the composite material, 30 parts by mass of the binder, and 10 parts by mass of the conductive additive, and the mixture was stirred and mixed to prepare a negative electrode paste.
PVDF (polyvinylidene fluoride) was used as the binder, and carbon black was used as the conductive aid. Next, a negative electrode paste was applied to a thickness of about 100 μm on a copper foil having a thickness of 20 μm by a doctor blade method, and this was vacuum-dried at 80 ° C. overnight. Thereby, the negative electrode layer was formed. In addition, the negative electrode layer was cut into a cylindrical shape having a diameter of 15 mm by hand press and used. On the other hand, a lithium foil having a thickness of 0.5 mm was cut into a cylindrical shape having a diameter of 15 mm to form a positive electrode. A film made of porous polypropylene having a thickness of 25 μm was prepared as a separator member. Further, LiPF6 was dissolved at a concentration of 1 mol / dm3 in a mixed solvent obtained by mixing 30% by volume of ethylene carbonate and 70% by volume of methyl ethyl carbonate to prepare a non-aqueous electrolyte. Using these negative electrode layer, non-aqueous electrolyte, positive electrode, and separator, a lithium ion battery (hereinafter referred to as “battery according to Example 1”) having a 2032 type coin cell (diameter 20 mm, thickness 3.2 mm) is used. .) Was produced.

3.リチウム電池の評価
[充放電試験]
次に、作製した各リチウムイオン電池を用いて、25℃で充放電試験を行った。充放電試験は、電池電位をレストポテンシャルから20mVまで、定電流で充電した後、定電流で、1.5Vまで放電することにより実施した。電流値は、充放電の際に負極(複合材料)に対し1Cになるように設定した(ただし、1Cとは公称容量値の容量を有するセルを定電流放電して、ちょうど1時間で放電終了となる電流値である。)。なお、複合材料の理論容量は、スズの理論容量(994mAh/g)とし、元素分析のスズ含有量46.4%から、461mAh/gと算出される。
この操作を1サイクルとして、合計25サイクルの充放電処理を実施した。また、電池の1サイクル目の放電容量(初期放電容量)と、25サイクル目の放電容量から、次式により、各電池のサイクル特性(%)を求めた。結果を表1に示す。
3. Evaluation of lithium battery [Charge / discharge test]
Next, a charge / discharge test was performed at 25 ° C. using each of the produced lithium ion batteries. The charge / discharge test was performed by charging the battery potential from the rest potential to 20 mV at a constant current, and then discharging the battery potential to 1.5 V at a constant current. The current value was set to 1C with respect to the negative electrode (composite material) at the time of charging / discharging (however, 1C is a constant current discharge of a cell having a nominal capacity value, and the discharge is completed in just one hour. Is the current value.) The theoretical capacity of the composite material is the theoretical capacity of tin (994 mAh / g), and is calculated as 461 mAh / g from the tin content of 46.4% in elemental analysis.
With this operation as one cycle, a total of 25 cycles of charge / discharge treatment were performed. Further, the cycle characteristics (%) of each battery were determined from the discharge capacity (initial discharge capacity) of the first cycle of the battery and the discharge capacity of the 25th cycle according to the following equation. The results are shown in Table 1.

実施例2:
1.負極材料の製造
焼成用粉末を4.8g使用し、1100℃で焼成したこと以外は実施例1と同様の操作を行い、粉末状の負極材料(2)1.46gを得た。なお、この過程で得られた焼成用粉末の質量は35.51gであった。負極材料(2)の粉末X線回折スペクトルを図3に示す。35.55°付近は、Sn−Co合金を示している。負極材料(2)を構成する各元素の割合(原子数の比)及び負極材料(2)のBET比表面積を表1に示す。また、負極材料(2)のSEM観察では、金属粒子の粒径が1μmを超えるものはほとんどなかったことから、その平均粒径は1μm以下である。
Example 2:
1. Manufacture of negative electrode material The powdery negative electrode material (2) 1.46g was obtained except having used 4.8g of powders for baking and baking at 1100 degreeC. The mass of the firing powder obtained in this process was 35.51 g. The powder X-ray diffraction spectrum of the negative electrode material (2) is shown in FIG. The vicinity of 35.55 ° indicates a Sn—Co alloy. Table 1 shows the ratio of each element constituting the negative electrode material (2) (ratio of the number of atoms) and the BET specific surface area of the negative electrode material (2). Further, in the SEM observation of the negative electrode material (2), since there were almost no metal particles having a particle size exceeding 1 μm, the average particle size was 1 μm or less.

2.リチウム電池の製造
実施例1と同様にして、リチウム電池を製造した。
3.リチウム電池の評価
実施例1と同様にして、充放電試験を行った。結果を表1に示す。
2. Production of Lithium Battery A lithium battery was produced in the same manner as in Example 1.
3. Evaluation of Lithium Battery A charge / discharge test was conducted in the same manner as in Example 1. The results are shown in Table 1.

実施例3:
1.負極材料の製造
ビーカーに、酢酸(和光純薬(株)製)1000ml、水1000mlを入れ、これを撹拌しながら酢酸スズ(和光純薬(株)製)11.51g(48.59mmol)、酢酸コバルト(和光純薬(株)製)8.07g(32.39mmol)を加えて、完全に溶解させた。さらに酢酸鉄(アルドリッチ(株)製)1.42g(8.18mmol)、グリシン(和光純薬(株)製)24.56g(327.20mmol)を加えてから、6時間撹拌を行い、負極前駆体溶液を得た。ロータリーエバポレーターを用い、窒素雰囲気の減圧下で、ホットスターラーの温度を約100℃に設定し、前記負極前駆体溶液を加熱かつ撹拌しながら、溶媒をゆっくり蒸発させた。完全に溶媒を蒸発させて得られた固形物残渣を自動乳鉢ですり潰して、36.02gの焼成用粉末(1)を得た。
7.2gの焼成用粉末(3)を、ロータリーキルン炉に水素ガスを4体積%含む窒素ガス(すなわち、水素ガス:窒素ガス=4体積%:96体積%の混合ガス)を20ml/分の速度で流しながら、昇温速度10℃/分で、950℃で1.5時間焼成し、自然冷却することにより、粉末状の負極材料(3)2.11gを得た。
負極材料(3)の粉末X線回折スペクトルを図4に示す。35.55°付近は、Sn−Co合金を示している。
負極材料(3)を構成する各元素の割合(原子数の比)及び負極材料(3)のBET比表面積を表1に示す。また、負極材料(3)のSEM観察では、金属粒子の粒径が1μmを超えるものはほとんどなかったことから、その平均粒径は1μm以下である。
Example 3:
1. Production of negative electrode material In a beaker, 1000 ml of acetic acid (manufactured by Wako Pure Chemical Industries, Ltd.) and 1000 ml of water were added, and while stirring this, 11.51 g (48.59 mmol) of tin acetate (manufactured by Wako Pure Chemical Industries, Ltd.), acetic acid Cobalt (manufactured by Wako Pure Chemical Industries, Ltd.) (8.07 g, 32.39 mmol) was added and completely dissolved. Further, 1.42 g (8.18 mmol) of iron acetate (manufactured by Aldrich Co., Ltd.) and 24.56 g (327.20 mmol) of glycine (manufactured by Wako Pure Chemical Industries, Ltd.) were added, followed by stirring for 6 hours. A body solution was obtained. Using a rotary evaporator, the temperature of the hot stirrer was set to about 100 ° C. under reduced pressure in a nitrogen atmosphere, and the solvent was slowly evaporated while heating and stirring the negative electrode precursor solution. The solid residue obtained by completely evaporating the solvent was ground in an automatic mortar to obtain 36.02 g of powder for firing (1).
A rate of 20 ml / min of 7.2 g of the powder for firing (3) in a rotary kiln furnace containing nitrogen gas containing 4% by volume of hydrogen gas (that is, hydrogen gas: nitrogen gas = 4% by volume: 96% by volume of mixed gas) The mixture was baked at 950 ° C. for 1.5 hours at a rate of temperature increase of 10 ° C./min. And naturally cooled to obtain 2.11 g of a powdered negative electrode material (3).
The powder X-ray diffraction spectrum of the negative electrode material (3) is shown in FIG. The vicinity of 35.55 ° indicates a Sn—Co alloy.
Table 1 shows the ratio of each element constituting the negative electrode material (3) (ratio of the number of atoms) and the BET specific surface area of the negative electrode material (3). Further, in the SEM observation of the negative electrode material (3), since there were almost no metal particles having a particle size exceeding 1 μm, the average particle size was 1 μm or less.

2.リチウム電池の製造
実施例1と同様にして、リチウム電池を製造した。
3.リチウム電池の評価
実施例1と同様にして、充放電試験を行った。結果を表1の「サイクル特性」の欄に示す。
2. Production of Lithium Battery A lithium battery was produced in the same manner as in Example 1.
3. Evaluation of Lithium Battery A charge / discharge test was conducted in the same manner as in Example 1. The results are shown in the column of “Cycle characteristics” in Table 1.

実施例4:
1.負極材料の製造
酢酸コバルトの代わりに硝酸コバルト(和光純薬(株)製)2.38g(8.18mmol)を加え、また4.8gの焼成用粉末(4)にした以外は実施例1と同様の操作を行い、粉末状の負極材料(4)1.39gを得た。なお、この過程で得られた焼成用粉末の質量は12.87gであった。
負極材料(4)の粉末X線回折スペクトルを図5に示す。35.55°は、Sn−Co合金を示している。負極材料(4)を構成する各元素の割合(原子数の比)及び負極材料(4)のBET比表面積を表1に示す。また、負極材料(4)のSEM観察では、金属粒子の粒径が1μmを超えるものはほとんどなかったことから、その平均粒径は1μm以下である。
Example 4:
1. Production of negative electrode material Example 1 except that 2.38 g (8.18 mmol) of cobalt nitrate (manufactured by Wako Pure Chemical Industries, Ltd.) was added instead of cobalt acetate, and 4.8 g of powder for firing (4) was used. The same operation was performed to obtain 1.39 g of a powdered negative electrode material (4). In addition, the mass of the powder for baking obtained in this process was 12.87g.
The powder X-ray diffraction spectrum of the negative electrode material (4) is shown in FIG. 35.55 ° indicates a Sn—Co alloy. Table 1 shows the ratio (ratio of the number of atoms) of each element constituting the negative electrode material (4) and the BET specific surface area of the negative electrode material (4). Further, in the SEM observation of the negative electrode material (4), there was almost no metal particle having a particle size exceeding 1 μm, and therefore the average particle size is 1 μm or less.

2.リチウム電池の製造
実施例1と同様にして、リチウム電池を製造した。
3.リチウム電池の評価
実施例1と同様にして、充放電試験を行った。結果を表1に示す。
2. Production of Lithium Battery A lithium battery was produced in the same manner as in Example 1.
3. Evaluation of lithium battery A charge / discharge test was conducted in the same manner as in Example 1. The results are shown in Table 1.

実施例5:
1.負極材料の製造
実施例1の焼成用粉末7.20gにSi微粉末(アルドリッチ(株)製)600mgを自動乳鉢で30分間混練させ、焼成用粉末にこの混練粉末を3.60g用いた以外は実施例1と同様の操作を行い、粉末状の負極材料(5)1.36gを得た。なお、この過程で得られた焼成用粉末の質量は7.78gであった。また、負極材料(5)のSEM観察では、金属粒子の粒径が1μmを超えるものはほとんどなかったことから、その平均粒径は1μm以下である。
負極材料(5)の粉末X線回折スペクトルを図6に示す。28.43°、47.32°は、Siを示し、35.55°は、Sn−Co合金を示している。
負極材料(5)を構成する各元素の割合(原子数の比)及び負極材料(5)のBET比表面積を表1に示す。図7(A)に負極材量(5)のSEM写真(A)(×5000)、及びEDXによるSi kα線の分布を示す写真(B)、Sn Lα線の分布を示す写真(C)を示す。
Example 5:
1. Production of negative electrode material Except that 7.20 g of the firing powder of Example 1 was kneaded with 600 mg of Si fine powder (manufactured by Aldrich) in an automatic mortar for 30 minutes, and 3.60 g of this kneaded powder was used as the firing powder. The same operation as in Example 1 was performed to obtain 1.36 g of a powdered negative electrode material (5). The mass of the powder for firing obtained in this process was 7.78 g. Further, in the SEM observation of the negative electrode material (5), there was almost no metal particle having a particle size exceeding 1 μm, and therefore the average particle size was 1 μm or less.
The powder X-ray diffraction spectrum of the negative electrode material (5) is shown in FIG. 28.43 ° and 47.32 ° indicate Si, and 35.55 ° indicates a Sn—Co alloy.
Table 1 shows the ratio of each element constituting the negative electrode material (5) (ratio of the number of atoms) and the BET specific surface area of the negative electrode material (5). FIG. 7A shows an SEM photograph (A) (× 5000) of the negative electrode material amount (5), a photograph (B) showing the distribution of Si kα rays by EDX, and a photograph (C) showing the distribution of Sn Lα rays. Show.

2.リチウム電池の製造
実施例1と同様にして、リチウム電池を製造した。
3.リチウム電池の評価
実施例1と同様にして、充放電試験を行った。結果を表1に示す。
2. Production of Lithium Battery A lithium battery was produced in the same manner as in Example 1.
3. Evaluation of Lithium Battery A charge / discharge test was conducted in the same manner as in Example 1. The results are shown in Table 1.

比較例1:
1.負極材料の製造
Co粉((株)高純度化学研究所製;5μmパスの篩分品)660mg、Sn粉((株)高純度化学研究所製;38μmパスの篩分品)1124mg、Fe粉(ジョンソンマッセイ(株)製;5μmパスの篩分品)16mg、カーボン(ライオン(株)製)200mgをアルゴン雰囲気下で遊星ボールミル((株)フリッチュ製PL7ステンレス製8mmボール使用、310rpm、10分稼働、10分停止の繰り返しで、30時間)、粉砕混合して、1602mgの粉末状の負極材料(c1)を得た。負極材料(c1)の粉末X線回折スペクトルを図8に示す。負極材料(c1)を構成する各元素の割合(質量の比)及び負極材料(c1)のBET比表面積を表1に示す。
Comparative Example 1:
1. Production of negative electrode material Co powder (manufactured by Kojundo Chemical Laboratory Co., Ltd .; 5 μm pass sieving product) 660 mg, Sn powder (manufactured by Kojundo Chemical Laboratory Co., Ltd .; 38 μm pass sieving product) 1124 mg, Fe powder (Johnson Massey Co., Ltd .; 5 μm pass sieving product) 16 mg, carbon (Lion Co., Ltd.) 200 mg in an argon atmosphere using a planetary ball mill (Fritsch PL7 stainless steel 8 mm ball, 310 rpm, 10 minutes The operation was repeated for 10 minutes and stopped for 30 hours), and pulverized and mixed to obtain 1602 mg of a powdered negative electrode material (c1). FIG. 8 shows a powder X-ray diffraction spectrum of the negative electrode material (c1). Table 1 shows the ratio (mass ratio) of each element constituting the negative electrode material (c1) and the BET specific surface area of the negative electrode material (c1).

2.リチウム電池の製造
実施例1と同様にして、リチウム電池を製造した。
3.リチウム電池の評価
実施例1と同様にして、充放電試験を行った。結果を表1に示す。
2. Production of Lithium Battery A lithium battery was produced in the same manner as in Example 1.
3. Evaluation of Lithium Battery A charge / discharge test was conducted in the same manner as in Example 1. The results are shown in Table 1.

比較例2:
1.負極材料の製造
ビーカーに、酢酸700ml、水700mlを入れ、これを撹拌しながら酢酸スズ5.75g(24.30mmol)、酢酸コバルト4.04g(16.20mmol)を加えて、完全に溶解する。コハク酸19.32g(163.60mmol)を加えてから、6時間撹拌を行い、負極前駆体溶液を得た。この負極前駆体溶液を用いたこと、また6.0gの焼成用粉末(c2)を用いた以外は実施例1と同様の操作を行い、粉末状の負極材料(c2)1.63gを得た。なお、この過程で得られた焼成用粉末(c2)の質量は22.05gであった。負極材料(c2)の粉末X線回折スペクトルを図9に示す。負極材料(c2)を構成する各元素の割合(質量の比)及び負極材料(c2)のBET比表面積を表1に示す。
Comparative Example 2:
1. Production of negative electrode material 700 ml of acetic acid and 700 ml of water are put into a beaker, and 5.75 g (24.30 mmol) of tin acetate and 4.04 g (16.20 mmol) of cobalt acetate are added and completely dissolved. After adding 19.32 g (163.60 mmol) of succinic acid, the mixture was stirred for 6 hours to obtain a negative electrode precursor solution. The same operation as in Example 1 was carried out except that this negative electrode precursor solution was used and 6.0 g of the firing powder (c2) was used, to obtain 1.63 g of a powdery negative electrode material (c2). . The mass of the firing powder (c2) obtained in this process was 22.05 g. FIG. 9 shows a powder X-ray diffraction spectrum of the negative electrode material (c2). Table 1 shows the ratio (mass ratio) of each element constituting the negative electrode material (c2) and the BET specific surface area of the negative electrode material (c2).

2.リチウム電池の製造
実施例1と同様にして、リチウム電池を製造した。
3.リチウム電池の評価
実施例1と同様にして、充放電試験を行った。結果を表1に示す。
2. Production of Lithium Battery A lithium battery was produced in the same manner as in Example 1.
3. Evaluation of Lithium Battery A charge / discharge test was conducted in the same manner as in Example 1. The results are shown in Table 1.

実施例は、平均粒子が1μm以下の金属粒子が炭素材料に埋め込まれた構造であるためサイクル特性がよい。一方比較例1では、平均粒径1μmを超える金属粒子であるため、サイクル特性が悪い。比較例2は、金属粒子が炭素材料に埋め込まれた構造が観察されずサイクル特性が実施例より劣っている。 Since the embodiment has a structure in which metal particles having an average particle size of 1 μm or less are embedded in a carbon material, the cycle characteristics are good. On the other hand, in the comparative example 1, since it is a metal particle exceeding an average particle diameter of 1 micrometer, cycling characteristics are bad. In Comparative Example 2, the structure in which the metal particles are embedded in the carbon material is not observed, and the cycle characteristics are inferior to those of the Examples.

1 リチウムイオン二次電池
2 シート状の負極電極
3 正極電極
4 セパレータ
5 電池容器
6 封口部材
DESCRIPTION OF SYMBOLS 1 Lithium ion secondary battery 2 Sheet-like negative electrode 3 Positive electrode 4 Separator 5 Battery container 6 Sealing member

Claims (22)

平均粒径1μm以下の金属粒子が炭素材料に埋め込まれた構造を有し、前記金属粒子はリチウムイオンを吸蔵及び放出できる金属の元素から選ばれる少なくとも1種の元素M1を含むリチウム二次電池の負極材料。   The lithium secondary battery has a structure in which metal particles having an average particle size of 1 μm or less are embedded in a carbon material, and the metal particles include at least one element M1 selected from metal elements capable of inserting and extracting lithium ions. Negative electrode material. 元素M1が、アルミニウム、ケイ素及びスズからなる群から選択される少なくとも1種である請求項1に記載の負極材料。   The negative electrode material according to claim 1, wherein the element M1 is at least one selected from the group consisting of aluminum, silicon, and tin. 金属粒子が、さらに、リチウムイオンを吸蔵及び放出しない金属の元素から選ばれる少なくとも1種の元素M2を含む請求項1または2に記載の負極材料。   The negative electrode material according to claim 1 or 2, wherein the metal particles further contain at least one element M2 selected from metal elements that do not occlude and release lithium ions. 前記元素M2が、銅、ニッケル、鉄、チタン、コバルト、モリブデン、タングステン、バナジウム、タンタル、ランタン、マグネシウム、及びセリウムからなる群から選択される少なくとも1種である請求項3に記載の負極材料。   The negative electrode material according to claim 3, wherein the element M2 is at least one selected from the group consisting of copper, nickel, iron, titanium, cobalt, molybdenum, tungsten, vanadium, tantalum, lanthanum, magnesium, and cerium. 前記金属粒子が、元素M1としてスズを含み、かつ元素M2としてコバルトを含む請求項3または4に記載の負極材料。   The negative electrode material according to claim 3 or 4, wherein the metal particles contain tin as the element M1 and cobalt as the element M2. 前記負極材料が、5〜50質量%の炭素を含む請求項1〜5のいずれかに記載の負極材料。   The negative electrode material according to claim 1, wherein the negative electrode material contains 5 to 50% by mass of carbon. 前記負極材料が、3〜25質量%の酸素を含む請求項1〜6のいずれかに記載の負極材料。   The negative electrode material according to claim 1, wherein the negative electrode material contains 3 to 25% by mass of oxygen. 前記負極材料が、0.1〜3質量%の窒素を含む請求項1〜7のいずれかに記載の負極材料。   The negative electrode material according to claim 1, wherein the negative electrode material contains 0.1 to 3% by mass of nitrogen. 請求項1〜8のいずれかに記載の負極材料を有するリチウムイオン電池用の電極。   The electrode for lithium ion batteries which has the negative electrode material in any one of Claims 1-8. 請求項9記載の電極を有するリチウムイオン二次電池。   A lithium ion secondary battery comprising the electrode according to claim 9. 請求項10記載のリチウムイオン二次電池を有する組電池。   The assembled battery which has a lithium ion secondary battery of Claim 10. 請求項1〜8のいずれかに記載の負極材料の製造方法であって、少なくとも1種の金属元素M1を含む化合物(1)と窒素含有有機化合物(2)とを混合して負極材料前駆体溶液を得る工程1、前記負極材料前駆体溶液から固形分残渣を分離する工程2、及び前記固形分残渣を500〜1300℃の温度で熱処理して負極材料を得る工程3を含む負極材料の製造方法。   It is a manufacturing method of the negative electrode material in any one of Claims 1-8, Comprising: The compound (1) and nitrogen-containing organic compound (2) containing at least 1 sort (s) of metal element M1 are mixed, and negative electrode material precursor Production of negative electrode material comprising step 1 of obtaining a solution, step 2 of separating a solid residue from the negative electrode material precursor solution, and step 3 of obtaining a negative electrode material by heat-treating the solid residue at a temperature of 500 to 1300 ° C. Method. 前記工程1で、化合物(1)と窒素含有有機化合物(2)を溶媒に添加し混合して負極材料前駆体溶液を得る請求項12記載の負極材料の製造方法。   The method for producing a negative electrode material according to claim 12, wherein in the step 1, the compound (1) and the nitrogen-containing organic compound (2) are added to a solvent and mixed to obtain a negative electrode material precursor solution. 前記工程1で、化合物(1)を溶媒に溶解した溶液と、窒素含有有機化合物(2)を溶媒に溶解した溶液とを混合して負極材料前駆体溶液を得る請求項12記載の負極材料の製造方法。   13. The negative electrode material precursor solution according to claim 12, wherein in step 1, a solution in which the compound (1) is dissolved in a solvent and a solution in which the nitrogen-containing organic compound (2) is dissolved in the solvent are mixed to obtain a negative electrode material precursor solution. Production method. 前記化合物(1)が、金属リン酸塩、金属硫酸塩、金属硝酸塩、金属有機酸塩、金属酸ハロゲン化物、金属アルコキシド、金属ハロゲン化物、金属過ハロゲン酸塩、金属次亜ハロゲン酸塩及び金属錯体からなる群から選ばれる少なくとも1種の化合物である請求項12〜14のいずれかに記載の負極材料の製造方法。   The compound (1) is a metal phosphate, metal sulfate, metal nitrate, metal organic acid salt, metal acid halide, metal alkoxide, metal halide, metal perhalogenate, metal hypohalite and metal. The method for producing a negative electrode material according to claim 12, which is at least one compound selected from the group consisting of complexes. 前記工程1で用いられる成分のうち溶媒以外の少なくとも1つの成分が炭素原子を有する請求項12〜15のいずれかに記載の負極材料の製造方法。   The manufacturing method of the negative electrode material in any one of Claims 12-15 in which at least 1 component other than a solvent has a carbon atom among the components used at the said process 1. 前記工程1で用いられる成分のうち溶媒以外の少なくとも1つの成分が、さらに、酸素原子を有する請求項16に記載の負極材料の製造方法。   The method for producing a negative electrode material according to claim 16, wherein at least one component other than the solvent among the components used in the step 1 further has an oxygen atom. 前記工程1で用いられる成分のうち溶媒以外の少なくとも1つの成分が、さらに、窒素原子を有する請求項17に記載の負極材料の製造方法。   The method for producing a negative electrode material according to claim 17, wherein at least one component other than the solvent among the components used in Step 1 further has a nitrogen atom. 前記窒素含有有機化合物(2)が、アミノ基、ニトリル基、イミド基、イミン基、ニトロ基、アミド基、アジド基、アジリジン基、アゾ基、イソシアネート基、イソチオシアネート基、オキシム基、ジアゾ基、及びニトロソ基、ならびにピロール環、ポルフィリン環、イミダゾール環、ピリジン環、ピリミジン環、及びピラジン環から選ばれる1種類以上を分子中に有する請求項12〜18のいずれかに記載の負極材料の製造方法。   The nitrogen-containing organic compound (2) is an amino group, nitrile group, imide group, imine group, nitro group, amide group, azide group, aziridine group, azo group, isocyanate group, isothiocyanate group, oxime group, diazo group, And a nitroso group, and a method for producing a negative electrode material according to any one of claims 12 to 18 having in the molecule one or more selected from a pyrrole ring, a porphyrin ring, an imidazole ring, a pyridine ring, a pyrimidine ring, and a pyrazine ring. . 前記窒素含有有機化合物(2)が、さらに、水酸基、カルボキシル基、アルデヒド基、酸ハライド基、スルホ基、リン酸基、ケトン基、エーテル基、及びエステル基から選ばれる1種類以上を分子中に有する請求項19に記載の負極材料の製造方法。   The nitrogen-containing organic compound (2) further contains at least one selected from a hydroxyl group, a carboxyl group, an aldehyde group, an acid halide group, a sulfo group, a phosphoric acid group, a ketone group, an ether group, and an ester group in the molecule. The method for producing a negative electrode material according to claim 19. さらに、リチウムイオンを吸蔵及び放出できる金属から選ばれる少なくとも1種の金属粒子を前記負極材料前駆体溶液に添加する工程を有する請求項12〜20のいずれかに記載の製造方法。   Furthermore, the manufacturing method in any one of Claims 12-20 which has the process of adding the at least 1 sort (s) of metal particle chosen from the metal which can occlude and discharge | release lithium ion to the said negative electrode material precursor solution. 前記工程3の熱処理が、水素ガスを1〜100体積%含む雰囲気中で行われる請求項12〜21のいずれかに記載の負極材料の製造方法。   The method for producing a negative electrode material according to any one of claims 12 to 21, wherein the heat treatment in the step 3 is performed in an atmosphere containing 1 to 100% by volume of hydrogen gas.
JP2012273770A 2012-12-14 2012-12-14 Negative electrode material for lithium battery, method for producing the same, electrode, and battery Expired - Fee Related JP6129535B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012273770A JP6129535B2 (en) 2012-12-14 2012-12-14 Negative electrode material for lithium battery, method for producing the same, electrode, and battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012273770A JP6129535B2 (en) 2012-12-14 2012-12-14 Negative electrode material for lithium battery, method for producing the same, electrode, and battery

Publications (2)

Publication Number Publication Date
JP2014120286A true JP2014120286A (en) 2014-06-30
JP6129535B2 JP6129535B2 (en) 2017-05-17

Family

ID=51174971

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012273770A Expired - Fee Related JP6129535B2 (en) 2012-12-14 2012-12-14 Negative electrode material for lithium battery, method for producing the same, electrode, and battery

Country Status (1)

Country Link
JP (1) JP6129535B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017168463A (en) * 2017-06-28 2017-09-21 昭和電工株式会社 Negative electrode material of lithium ion battery, electrode and battery
CN109309214A (en) * 2017-07-28 2019-02-05 中国石油化工股份有限公司 The preparation method of carbon-coating nickel nanocomposite
CN117229755A (en) * 2023-08-30 2023-12-15 中国科学院重庆绿色智能技术研究院 Water-soluble supermolecule binder with rare earth catalytic function, preparation method thereof and application thereof in lithium-sulfur battery

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004349164A (en) * 2003-05-23 2004-12-09 Nec Corp Negative electrode active material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2006100244A (en) * 2004-09-06 2006-04-13 Pionics Co Ltd Negative electrode active material particle for lithium secondary battery, negative electrode and manufacturing method thereof
JP2007242630A (en) * 2007-05-14 2007-09-20 Mitsubishi Chemicals Corp Nonaqueous secondary battery
WO2008081883A1 (en) * 2006-12-28 2008-07-10 Dow Corning Toray Co., Ltd. Porous silicon-containing carbon-based composite material, electrode composed of the same and battery
JP2008277232A (en) * 2007-04-05 2008-11-13 Hitachi Chem Co Ltd Negative electrode material for lithium secondary battery, its manufacturing method, negative electrode for lithium secondary battery using the negative electrode material, and lithium secondary battery
JP2010153346A (en) * 2008-05-27 2010-07-08 Kobe Steel Ltd Negative electrode material for lithium ion secondary battery, its manufacturing method, and lithium-ion secondary battery
JP2011048992A (en) * 2009-08-26 2011-03-10 Sekisui Chem Co Ltd Carbon material, electrode material, and lithium ion secondary battery negative electrode material
JP2011057541A (en) * 2009-08-11 2011-03-24 Sekisui Chem Co Ltd Carbon material, electrode material, and negative-electrode material for lithium-ion secondary battery
JP2014523468A (en) * 2011-06-30 2014-09-11 コーネル ユニバーシティ Hybrid materials and nanocomposite materials, methods for making them, and uses thereof

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004349164A (en) * 2003-05-23 2004-12-09 Nec Corp Negative electrode active material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2006100244A (en) * 2004-09-06 2006-04-13 Pionics Co Ltd Negative electrode active material particle for lithium secondary battery, negative electrode and manufacturing method thereof
WO2008081883A1 (en) * 2006-12-28 2008-07-10 Dow Corning Toray Co., Ltd. Porous silicon-containing carbon-based composite material, electrode composed of the same and battery
JP2008277232A (en) * 2007-04-05 2008-11-13 Hitachi Chem Co Ltd Negative electrode material for lithium secondary battery, its manufacturing method, negative electrode for lithium secondary battery using the negative electrode material, and lithium secondary battery
JP2007242630A (en) * 2007-05-14 2007-09-20 Mitsubishi Chemicals Corp Nonaqueous secondary battery
JP2010153346A (en) * 2008-05-27 2010-07-08 Kobe Steel Ltd Negative electrode material for lithium ion secondary battery, its manufacturing method, and lithium-ion secondary battery
JP2011057541A (en) * 2009-08-11 2011-03-24 Sekisui Chem Co Ltd Carbon material, electrode material, and negative-electrode material for lithium-ion secondary battery
JP2011048992A (en) * 2009-08-26 2011-03-10 Sekisui Chem Co Ltd Carbon material, electrode material, and lithium ion secondary battery negative electrode material
JP2014523468A (en) * 2011-06-30 2014-09-11 コーネル ユニバーシティ Hybrid materials and nanocomposite materials, methods for making them, and uses thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017168463A (en) * 2017-06-28 2017-09-21 昭和電工株式会社 Negative electrode material of lithium ion battery, electrode and battery
CN109309214A (en) * 2017-07-28 2019-02-05 中国石油化工股份有限公司 The preparation method of carbon-coating nickel nanocomposite
CN109309214B (en) * 2017-07-28 2023-04-11 中国石油化工股份有限公司 Preparation method of carbon-coated nickel nano composite material
CN117229755A (en) * 2023-08-30 2023-12-15 中国科学院重庆绿色智能技术研究院 Water-soluble supermolecule binder with rare earth catalytic function, preparation method thereof and application thereof in lithium-sulfur battery

Also Published As

Publication number Publication date
JP6129535B2 (en) 2017-05-17

Similar Documents

Publication Publication Date Title
Zhang et al. Iron phosphide as negative electrode material for Na-ion batteries
Bresser et al. The importance of “going nano” for high power battery materials
Zhang et al. Li4Ti5O12 prepared by a modified citric acid sol–gel method for lithium-ion battery
US8088305B2 (en) Lithium iron phosphate cathode material
EP2383820B1 (en) Positive electrode active material for lithium secondary battery, and lithium secondary battery
EP2207227A1 (en) Positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery comprising the same
WO2014080608A1 (en) Nanocrystalline silicon material, negative electrode active material, method for producing said material, and electric storage device
Wu et al. Low-temperature synthesis of nano-micron Li4Ti5O12 by an aqueous mixing technique and its excellent electrochemical performance
WO2009117871A1 (en) A method of preparing a lithium iron phosphate cathode material for lithium secondary batteries
JP5949798B2 (en) Electrode material, method for producing electrode material, electrode and lithium ion battery
WO2015186321A1 (en) Material having lithium composite metal oxide part and boron-containing part and method for producing same
EP2760069A1 (en) Electrode material, electrode and electrode material manufacturing method
He et al. Spherical Li4Ti5O12 synthesized by spray drying from a different kind of solution
Zhang et al. CuSbS2 nanobricks as electrode materials for lithium ion batteries
JP2012185979A (en) Method for manufacturing electrode active material
Wang et al. Hydrothermal derived Li2SnO3/C composite as negative electrode materials for lithium-ion batteries
CN106458605B (en) Silicon material and negative electrode for secondary battery
JP6184686B2 (en) Method for producing negative electrode material for lithium ion battery
US9680149B2 (en) Electrode material, paste for electrodes, and lithium ion battery
Kong et al. Graphite modified AlNbO4 with enhanced lithium—Ion storage behaviors and its electrochemical mechanism
Choi et al. SnO 2-graphene nanocomposite free-standing film as anode in lithium-ion batteries
JP6129535B2 (en) Negative electrode material for lithium battery, method for producing the same, electrode, and battery
JP6332539B1 (en) Positive electrode material for lithium ion secondary battery, positive electrode for lithium ion secondary battery, lithium ion secondary battery
CN117185362A (en) Method for producing positive electrode active material for nonaqueous electrolyte secondary battery
US10566621B2 (en) Lithium-ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150911

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160715

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160912

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20161206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170306

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20170313

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170331

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170412

R150 Certificate of patent or registration of utility model

Ref document number: 6129535

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees