JP2006100244A - Negative electrode active material particle for lithium secondary battery, negative electrode and manufacturing method thereof - Google Patents

Negative electrode active material particle for lithium secondary battery, negative electrode and manufacturing method thereof Download PDF

Info

Publication number
JP2006100244A
JP2006100244A JP2005082997A JP2005082997A JP2006100244A JP 2006100244 A JP2006100244 A JP 2006100244A JP 2005082997 A JP2005082997 A JP 2005082997A JP 2005082997 A JP2005082997 A JP 2005082997A JP 2006100244 A JP2006100244 A JP 2006100244A
Authority
JP
Japan
Prior art keywords
negative electrode
active material
electrode active
metal
lithium secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005082997A
Other languages
Japanese (ja)
Other versions
JP5256403B2 (en
Inventor
Hiroshi Kagawa
博 香川
Tsutomu Sada
勉 佐田
Kanae Hashimoto
佳苗 橋本
Masakazu Moriyama
雅和 守山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PIONICS CO Ltd
Original Assignee
PIONICS CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PIONICS CO Ltd filed Critical PIONICS CO Ltd
Priority to JP2005082997A priority Critical patent/JP5256403B2/en
Priority to CNA200680017853XA priority patent/CN101180753A/en
Priority to PCT/JP2006/301827 priority patent/WO2006100837A1/en
Priority to KR1020077024368A priority patent/KR101281277B1/en
Priority to EP06712970A priority patent/EP1873846A4/en
Publication of JP2006100244A publication Critical patent/JP2006100244A/en
Application granted granted Critical
Publication of JP5256403B2 publication Critical patent/JP5256403B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/387Tin or alloys based on tin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/40Alloys based on alkali metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/42Alloys based on zinc
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/46Alloys based on magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/40Alloys based on alkali metals
    • H01M4/405Alloys based on lithium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To solve a problem where, in the case of silicon, tin and aluminum as a negative electrode active material, a ratio of volume expansion/contraction is increased with storage and release of lithium, miniaturization of particles easily occurs, and electrical connection is hindered, whereby a charge-discharge cycle and charge-discharge are difficult to execute. <P>SOLUTION: In this negative electrode active material particles and its manufacturing method, silicon, tin or aluminum as a main constituent and other metals having properties difficult to react with an electrolyte and difficult to store and release lithium are included. By depositing, bonding or fusing the other metals on/to/with at least a part of grain boundaries of the negative electrode active material particles and/or the outside surface or by using CoSn<SB>2</SB>as a main composition by selecting tin for a metal storing and releasing lithium and by selecting cobalt as a metal for stabilizing shape variation in storing and releasing lithium, the negative electrode active material particles capable of suppressing miniaturization and isolation of the particles associated with the storage and release of lithium in charging and discharging, and having excellent electric characteristics with an electron conducting network constructed, this negative electrode and manufacturing methods thereof are provided. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、リチウム二次電池用の新規な高容量の負極活物質粒子と負極及びそれらの製造方法に関し、特に、電気化学的にリチウムを吸蔵及び放出するリチウム二次電池用の負極活物質粒子であって、リチウムを吸蔵及び放出する性質を有する第1の金属と、リチウムの吸蔵及び放出時の形状変化を安定化させる性質を有する第2の金属と、電解液に反応し難く且つリチウムを吸蔵及び放出し難い性質を有する第3の金属とを含み、第3の金属は負極活物質粒子の粒界及び/又は外部表面の少なくとも一部に析出、結合又は融合していること、または、リチウムを吸蔵及び放出する性質を有する錫と、リチウムの吸蔵及び放出時の形状変化を安定化させる性質を有するコバルトを含む負極活物質粒子であって、その組成は主としてCoSnからなることを特徴とするリチウム二次電池用負極活物質粒子と負極及びその製造方法に関する。 The present invention relates to a novel high-capacity negative electrode active material particle and negative electrode for a lithium secondary battery and a method for producing the same, and more particularly, to a negative electrode active material particle for a lithium secondary battery that electrochemically occludes and releases lithium. A first metal having a property of occluding and releasing lithium, a second metal having a property of stabilizing a shape change at the time of occluding and releasing lithium; A third metal having a property that is difficult to occlude and release, and the third metal is precipitated, bonded or fused to at least a part of the grain boundary and / or the outer surface of the negative electrode active material particles, or Negative electrode active material particles containing tin having a property of occluding and releasing lithium and cobalt having a property of stabilizing a shape change at the time of occluding and releasing lithium, the composition of which is mainly CoSn 2 The present invention relates to a negative electrode active material particle for a lithium secondary battery, a negative electrode, and a method for producing the same.

リチウム二次電池は、特に携帯用機器に使用される。昨今の携帯用機器に代表される携帯電話および携帯用パソコンにおいて多くの機能が付加されて使用される電池には、その機器の作動電圧に応じた出力電圧と、使用時間に影響する電池容量を大きくする要求がある。特に、使用時間を長くするための電池容量の増加については、電池スペースが限られているため、電気エネルギーを蓄える活物質のエネルギー密度を高める以外に電池の容量を増加させることはできない。 Lithium secondary batteries are used in particular for portable devices. Batteries that are used with many functions added to mobile phones and personal computers represented by recent portable devices have an output voltage according to the operating voltage of the device and a battery capacity that affects the usage time. There is a demand to enlarge. In particular, with regard to an increase in battery capacity for extending the usage time, the battery capacity cannot be increased except for increasing the energy density of the active material that stores electrical energy because the battery space is limited.

従来から使用されている代表的なリチウム二次電池の正極活物質はコバルト酸リチウムであり、負極活物質は黒鉛である。このような電池材料構成で容積エネルギー効率を400Wh/L以上にするのは困難である。特に、負極活物質としての黒鉛の理論エネルギー量は372mAh/gであるために電池容量を大きくするのには限界があり、理論エネルギー量の大きい他の種類の負極活物質の開発が各研究機関や電池製造メーカーで実施されている。 The positive electrode active material of a typical lithium secondary battery conventionally used is lithium cobaltate, and the negative electrode active material is graphite. With such a battery material configuration, it is difficult to increase the volumetric energy efficiency to 400 Wh / L or more. In particular, the theoretical energy amount of graphite as a negative electrode active material is 372 mAh / g, so there is a limit to increasing the battery capacity, and development of other types of negative electrode active materials having a large theoretical energy amount has been made by each research institution. And are implemented by battery manufacturers.

特開平8−50922号公報、特開2001−332254号公報、特開2002−83594号公報、特開2003−77529号公報、特開2003−109589号公報及び特開2004−11202号公報の中では、黒鉛と同様にリチウムを吸蔵したり放出できる負極活物質としてシリコン及び錫などが挙げられており、これらの金属は単独で使用するとリチウムの吸蔵(充電時)により体積が膨張し、リチウムの放出(放電時)には逆に体積の収縮が起こることが説明されている。 Among JP-A-8-50922, JP-A-2001-332254, JP-A-2002-83594, JP-A-2003-77529, JP-A-2003-109589, and JP-A-2004-11202 Silicon and tin are listed as negative electrode active materials that can occlude and release lithium, as with graphite. When these metals are used alone, the volume expands due to the occlusion of lithium (during charging) and the release of lithium. On the contrary, it is explained that volume contraction occurs during discharge.

また、このような体積の膨張・収縮は金属の結晶構造を破壊し、粒子の微細化による孤立などにより各粒子間の電気的な繋がりが遮断され、その結果、電池の放電容量の利用率低下を招くなどの問題を生じさせることが指摘されている。 In addition, such expansion and contraction of the volume destroys the crystal structure of the metal, and the electrical connection between the particles is cut off by isolation due to the refinement of the particles, resulting in a decrease in the utilization rate of the discharge capacity of the battery. It has been pointed out that this causes problems such as

そこで、これらの問題を改善するために、負極活物質に他の金属を加えて合金化や非晶質化を進めることで金属の体積変化率を低減させたり粒子の微細化を抑制させたり、または、金属に導電性材料を含有させて各粒子間の導電性を維持させたり、さらには、集電体表面に直接リチウムを吸蔵及び放出する金属を柱状に成長させることにより、体積膨張を起こした場合であっても集電体と負極活物質との電気的な繋がりが阻害されないように構成するなどの改良がなされている。 Therefore, in order to improve these problems, by adding other metals to the negative electrode active material and proceeding alloying and amorphization, the volume change rate of the metal can be reduced or the refinement of the particles can be suppressed, Alternatively, a conductive material is contained in the metal to maintain the conductivity between the particles, and further, a metal that occludes and releases lithium directly on the current collector surface is grown in a columnar shape, thereby causing volume expansion. Even in such a case, an improvement has been made such that the electrical connection between the current collector and the negative electrode active material is not inhibited.

しかしながら、このような改良が施された負極活物質の場合であっても従来の黒鉛のような充放電サイクルに対する十分な電池容量の低減抑止効果が得られず、また、合金粒子の微小な破壊や合金粒子表面での不活性な皮膜形成による放電性能の劣化や、さらには、スパッタリング法などによる活物質金属の形成において単位面積当たりの電池容量をあまり大きくできないなど、電池のサイクル性能や容量の改善において未だに解決すべき問題があった。 However, even in the case of a negative electrode active material with such improvements, a sufficient battery capacity reduction deterring effect against charge / discharge cycles like conventional graphite cannot be obtained, and minute destruction of alloy particles Of battery performance and capacity, such as deterioration of discharge performance due to the formation of an inert film on the surface of the alloy particles and the formation of active material metal by sputtering, etc. There was still a problem to be solved in the improvement.

特開平8−50922号公報JP-A-8-50922 特開2001−332254号公報JP 2001-332254 A 特開2002−83594号公報JP 2002-83594 A 特開2003−77529号公報Japanese Patent Laid-Open No. 2003-77529 特開2003−109589号公報JP 2003-109589 A 特開2004−11202号公報JP 2004-11202 A

このように、従来の改良されたシリコン合金又は錫合金からなる負極活物質を用いて負極集電体面を表面処理した場合であっても、リチウムの吸蔵及び放出に伴う体積膨張・収縮の比率が大きく、また、粒子の微細化が起こり易いために各粒子間の電気的な繋がりが阻害され、充放電サイクルと共に放電性能が悪化するといった問題があった。 As described above, even when the negative electrode current collector surface is surface-treated using a negative electrode active material made of a conventional improved silicon alloy or tin alloy, the ratio of volume expansion / contraction due to insertion and extraction of lithium is high. In addition, there is a problem that the electrical connection between the particles is hindered because the particles are easy to be refined and the discharge performance is deteriorated together with the charge / discharge cycle.

本発明は、以上のような問題を解決することを目的に開発されたものであり、その主な目的は、(1)負極活物質粒子のリチウムの吸蔵・放出に伴う粒子の微細化の抑制と、(2)負極活物質粒子のリチウムの吸蔵・放出に伴う粒子の微細化が起こった場合でも、微細化された各微粒子間の電気的な繋がりを保持させることができるリチウム二次電池用の負極活物質粒子及びその負極活物質粒子を用いた負極、並びにそれらの製造方法を提供することにある。なお、ここでいうところの負極活物質粒子の形状には、粒状、短繊維状、片状などの種々の形状が含まれる。 The present invention was developed for the purpose of solving the above-mentioned problems, and its main purpose is (1) suppression of particle miniaturization associated with insertion and extraction of lithium in negative electrode active material particles. And (2) for lithium secondary batteries that can maintain the electrical connection between the finely divided fine particles even when the particles of the negative electrode active material particles are refined due to insertion and extraction of lithium. It is providing the negative electrode active material particle of this, the negative electrode using the negative electrode active material particle, and those manufacturing methods. In addition, the shape of the negative electrode active material particles referred to here includes various shapes such as a granular shape, a short fiber shape, and a flake shape.

本発明のさらなる目的としては、(3)リチウムの吸蔵及び放出時における体積変化を低減できるリチウム二次電池用の負極活物質粒子及びその負極活物質粒子を用いた負極、並びにそれらの製造方法を提供することにある。 As a further object of the present invention, (3) a negative electrode active material particle for a lithium secondary battery capable of reducing volume change at the time of occlusion and release of lithium, a negative electrode using the negative electrode active material particle, and a method for producing the same It is to provide.

また、本発明の別の目的としては、(4)充放電効率が高く、充放電によってもサイクル寿命及びエネルギー密度が低下せず、さらには内部抵抗が増大しないリチウム二次電池用の負極活物質粒子及びその負極活物質粒子を用いた負極、並びにそれらの製造方法を提供することにある。さらに、(5)ニッケルや銅といった特定金属物質を混入させることによって、電圧の向上や電子易動性の向上を促進する導電性物質を用いた負極、並びにそれらの製造方法を提供することも含まれる。 Another object of the present invention is as follows: (4) A negative electrode active material for a lithium secondary battery that has high charge / discharge efficiency, does not decrease cycle life and energy density even when charged / discharged, and does not increase internal resistance. It is in providing the negative electrode using the particle | grains and its negative electrode active material particle, and those manufacturing methods. Furthermore, (5) including providing a negative electrode using a conductive material that promotes improvement in voltage and improvement in electron mobility by mixing a specific metal material such as nickel or copper, and a method for manufacturing the same. It is.

本発明による負極活物質粒子及びその製造方法は、シリコン、錫又はアルミニウムから選ばれた1種又は2種以上の金属を主体として、この他に、リチウムの吸蔵及び放出時のシリコン、錫又はアルミニウムの形状変化を安定化させる性質を有する金属及び/又は電解液に反応し難く且つリチウムを吸蔵及び放出し難い性質を有する金属を含むこと、および前記電解液に反応し難く且つリチウムを吸蔵及び放出し難い性質を有する金属を負極活物質粒子の粒界及び/又は外部表面の少なくとも一部に析出、結合又は融合させていることに特徴があり、特に、電気化学的にリチウムを吸蔵及び放出するリチウム二次電池用の負極活物質粒子であって、リチウムを吸蔵及び放出する性質を有するシリコン、錫又はアルミニウムから選ばれた1種又は2種以上の金属を主成分とする第1の金属と、リチウムの吸蔵及び放出時の形状変化を安定化させる性質を有する第2の金属と、電解液に反応し難く且つリチウムを吸蔵及び放出し難い性質を有する第3の金属とを含み、第3の金属は負極活物質粒子の粒界及び/又は外部表面の少なくとも一部に析出、結合又は融合していること、または、リチウムを吸蔵及び放出する性質を有する錫と、リチウムの吸蔵及び放出時の形状変化を安定化させる性質を有するコバルトを含む負極活物質粒子であって、その組成は主としてCoSnからなること、を特徴とするリチウム二次電池用負極活物質粒子及びその製造方法を提供するものである。 The negative electrode active material particles and the method for producing the same according to the present invention are mainly composed of one or more metals selected from silicon, tin, or aluminum, and in addition to this, silicon, tin, or aluminum at the time of occlusion and release of lithium. A metal that has the property of stabilizing the shape change of the metal and / or a metal that does not easily react with the electrolyte and does not absorb and release lithium, and that it does not easily react with the electrolyte and stores and releases lithium. It is characterized in that a metal having a difficult property is deposited, bonded or fused to at least a part of the grain boundary and / or the outer surface of the negative electrode active material particles, and in particular, electrochemically occludes and releases lithium. Negative electrode active material particles for a lithium secondary battery, one or more selected from silicon, tin or aluminum having the property of occluding and releasing lithium A first metal containing two or more metals as a main component, a second metal having a property of stabilizing the shape change at the time of occlusion and release of lithium, and a lithium that does not easily react with an electrolyte and that occludes and releases lithium. A third metal having a difficult property, and the third metal is precipitated, bonded or fused to at least a part of the grain boundary and / or the outer surface of the negative electrode active material particles, or occludes lithium And negative electrode active material particles containing tin having the property of releasing and cobalt having the property of stabilizing the shape change at the time of occlusion and release of lithium, the composition mainly comprising CoSn 2 A negative electrode active material particle for a lithium secondary battery and a method for producing the same are provided.

すなわち、本発明による負極活物質粒子は従来の負極活物質粒子の形態とは全く異なるもので、その特徴の一つとしては、シリコン、錫又はアルミニウムから選ばれた1種又は2種以上の金属を主成分とする負極活物質粒子の粒界及び/又は外部表面の少なくとも一部に電解液に反応し難く且つリチウムを吸蔵及び放出し難い性質を有する第3の金属を析出、結合又は融合させたものであり、その結果、この負極活物質粒子は、合金化された第3の金属がリチウム吸蔵及び放出に寄与しないために粒子の微細化を抑制して、各粒子間の電気的な繋がりを維持することができる。また、この負極活物質粒子が微粉砕された場合は、特に第3の金属が析出、結合又は融合した粒界において個々の粒子に微細化され易くなり、また、負極活物質粒子が微細化されてしまった場合であっても、微細化された個々の粒子表面の一部には第3の金属が露出されているため、かかる第3の金属が負極活物質粒子表面に電解液との反応による不活性な反応生成膜の形成を防止して各粒子間の電気的な繋がりを維持することができる。 That is, the negative electrode active material particles according to the present invention are completely different from the conventional negative electrode active material particles, and one of the features is one or more metals selected from silicon, tin, or aluminum. And depositing, bonding or fusing a third metal having the property of being difficult to react with the electrolyte and difficult to occlude and release lithium at least at a part of the grain boundary and / or the outer surface of the negative electrode active material particles mainly composed of As a result, the negative electrode active material particles are electrically connected between the particles by suppressing the refinement of the particles because the alloyed third metal does not contribute to the storage and release of lithium. Can be maintained. In addition, when the negative electrode active material particles are finely pulverized, it becomes easy to be miniaturized into individual particles especially at the grain boundaries where the third metal is precipitated, bonded or fused, and the negative electrode active material particles are finely divided. Even if the third metal is exposed, the third metal is exposed on a part of the surface of the individual fine particles, so that the third metal reacts with the electrolyte on the negative electrode active material particle surface. It is possible to prevent the formation of an inactive reaction product film and maintain the electrical connection between the particles.

このように、電解液に反応し難く且つリチウムを吸蔵及び放出し難い性質を有する第3の金属としては、モリブデン、タングステン、タンタル、タリウム、クロム、テリウム、ベリリウム、カルシウム、ニッケル、銀、銅及び鉄よりなる群から選ばれた1種又は2種以上の金属またはそれらの合金が挙げられ、この中で、モリブデン、タングステン、タンタル、タリウム、クロム、テリウム、ベリリウム及びカルシウムのようなシリコン等の負極活物質と合金化し難い金属であっても使用することができる。また、逆にニッケル、銀、銅及び鉄のような金属はシリコン等の負極活物質と容易に合金化する金属ではあるが、これらの金属は、電圧の向上や電子易動を補助することによってハイレート性を向上させ、REDOX反応の効率化を促進することによる反応熱発生の抑制を図ることから、第3の金属として使用することに適している。 As described above, the third metal which does not easily react with the electrolytic solution and does not easily absorb and release lithium includes molybdenum, tungsten, tantalum, thallium, chromium, terium, beryllium, calcium, nickel, silver, copper, and the like. Examples include one or more metals selected from the group consisting of iron or alloys thereof, and among them, negative electrodes such as silicon such as molybdenum, tungsten, tantalum, thallium, chromium, terium, beryllium and calcium. Even metals that are difficult to alloy with the active material can be used. Conversely, metals such as nickel, silver, copper, and iron are metals that can easily be alloyed with negative electrode active materials such as silicon, but these metals can help improve voltage and facilitate electronic mobility. It is suitable for use as a third metal because it suppresses generation of reaction heat by improving the high rate property and promoting the efficiency of the REDOX reaction.

さらに、第3の金属は、負極活物質粒子全体に1wt%以上、さらに好ましくは5wt%以上含まれているとその析出効果は高くなる。ただし、析出された第3の金属は、負極活物質粒子の粒界及び/又は外部表面の少なくとも一部に析出、結合又は融合させられていればよく、粒界等で区分された負極活物質粒子の組織全部を覆うように析出、結合又は融合させる必要はない。 Further, when the third metal is contained in the whole negative electrode active material particles in an amount of 1 wt% or more, more preferably 5 wt% or more, the precipitation effect is enhanced. However, the precipitated third metal may be precipitated, bonded or fused to at least a part of the grain boundary and / or the external surface of the negative electrode active material particles, and the negative electrode active material separated by the grain boundary or the like It is not necessary to deposit, bond or fuse to cover the entire particle structure.

また、負極活物質粒子の粒界及び/又は外部表面に第3の金属をより析出、結合又は融合し易くするためには、シリコン、錫又はアルミニウムから選ばれた1種又は2種以上の第1の金属に、鉄、アルミニウム、クロム、マグネシウム、マンガン、アンチモン、鉛、亜鉛及び珪素よりなる群から選ばれた1種又は2種以上の金属を予め含ませて合金化することが有効であり、特に、シリコン等に対して1wt%以下の割合でこれらの金属を添加させた場合にその効果が大きくなる。また、このような合金粒子は商業的に入手することができる。 Further, in order to make the third metal more easily precipitate, bond or fuse to the grain boundary and / or the outer surface of the negative electrode active material particles, one or more kinds selected from silicon, tin or aluminum are used. It is effective to alloy one metal in advance by including one or more metals selected from the group consisting of iron, aluminum, chromium, magnesium, manganese, antimony, lead, zinc and silicon. In particular, when these metals are added at a ratio of 1 wt% or less with respect to silicon or the like, the effect becomes large. Moreover, such alloy particles can be obtained commercially.

また、本発明による負極活物質粒子は、リチウムの吸蔵及び放出に伴った体積変化による粒子のある程度の微細化を前提としているものであるが、シリコン、錫又はアルミニウムから選ばれた1種又は2種以上の金属を主体とする負極活物質粒子自体の微細化を抑制することも充放電サイクルに伴う電池容量の低下などの防止に寄与することから、負極活物質粒子の形状変化を安定させる目的でシリコン等の第1の金属に加えて、鉄、コバルト、銅、ニッケル、クロム、マグネシウム、鉛、錫、亜鉛、銀、ゲルマニウム、マンガン、チタン、バナジウム、ビスマス、インジウム及びアンチモンよりなる群から選ばれた1種又は2種以上の第2の金属が添加してもよい。 In addition, the negative electrode active material particles according to the present invention are premised on a certain degree of particle miniaturization due to volume change accompanying the occlusion and release of lithium, but one or two selected from silicon, tin or aluminum The purpose of stabilizing the shape change of the negative electrode active material particles is to prevent the reduction of the battery capacity accompanying the charge / discharge cycle, etc. In addition to the first metal such as silicon, it is selected from the group consisting of iron, cobalt, copper, nickel, chromium, magnesium, lead, tin, zinc, silver, germanium, manganese, titanium, vanadium, bismuth, indium and antimony One kind or two or more kinds of second metals may be added.

第2及び第3の金属と主にリチウムの吸蔵及び放出機能を担う第1の金属との合金化は、第2の金属と第3の金属とを予め合金化させた後に第1の金属と合金化させてもよく、また、第2及び第3の金属と第1の金属とを同時に合金化させてもよい。 The alloying of the second metal and the first metal mainly having the function of occluding and releasing lithium is performed by first alloying the second metal and the third metal and then the first metal. Alloying may be performed, and the second and third metals and the first metal may be alloyed simultaneously.

このようなリチウムの吸蔵及び放出機能を担う第1の金属と第2及び第3の金属との合金化手段は、単に第1の金属と第2又は第3のいずれかの金属とを合金化させた後、続いてその合金化された金属と第3又は第2のいずれかの金属とを合金化させる場合に比べて、電解液に反応し難く且つリチウムを吸蔵及び放出し難い性質を有する第3の金属を負極活物質粒子の粒界及び/又は外部表面に積極的に析出、結合又は融合させることを可能にする。 Such an alloying means of the first metal and the second and third metals responsible for the insertion and extraction of lithium simply alloyes the first metal and either the second or third metal. Then, compared with the case where the alloyed metal and either the third or second metal are subsequently alloyed, it has a property that it does not easily react with the electrolyte and does not occlude and release lithium. The third metal can be positively precipitated, bonded or fused to the grain boundary and / or the external surface of the negative electrode active material particles.

また、第3の金属を負極活物質粒子の粒界及び/又は外部表面に析出、結合又は融合させるための第1、第2及び第3の金属の合金化は、不活性ガス封入雰囲気下で、少なくともメカニカルアロイング法、メカニカルグライディング法、溶融法、ガスアトマイジング法、水アトマイジング法、メカノフュージョン法、ハイブリダイジング法、メッキ法、スパッタリング法、蒸着法、気相法、液体急冷法又は気体急冷法から選ばれた1又は2以上の方法を用いることが好ましく、さらに、析出、結合又は融合された第3の金属の結合を強化するためには、第1、第2及び第3の金属の合金化後、不活性ガス雰囲気中又は真空下で100℃以上の温度で熱処理することが好ましい。また、第3の金属は、芳香族系溶剤(BTX)雰囲気下でマイクロウェーブやプラズマ照射を用いて負極活物質粒子の表面上にマトリックスネットワークの形成に寄与できるように表面処理(析出、固着、被覆又は配位を含む)し、表面導電性の向上を図ることもできる。なお、負極への適用に際しては、これらの異なる方法により作製された負極活物質粒子の混合粉を使用してもよい。 In addition, the alloying of the first, second and third metals for precipitating, bonding or fusing the third metal to the grain boundaries and / or the external surface of the negative electrode active material particles is performed under an inert gas filled atmosphere. , At least mechanical alloying method, mechanical gliding method, melting method, gas atomizing method, water atomizing method, mechanofusion method, hybridizing method, plating method, sputtering method, vapor deposition method, gas phase method, liquid quenching method or It is preferable to use one or more methods selected from gas quenching methods, and in order to further strengthen the bonding of the deposited, bonded or fused third metal, the first, second and third methods After alloying the metal, it is preferable to perform heat treatment at a temperature of 100 ° C. or higher in an inert gas atmosphere or under vacuum. Further, the third metal is subjected to a surface treatment (deposition, fixation, adhesion) so as to contribute to formation of a matrix network on the surface of the negative electrode active material particles using microwaves or plasma irradiation in an aromatic solvent (BTX) atmosphere. Covering or coordination), and surface conductivity can be improved. In application to the negative electrode, a mixed powder of negative electrode active material particles produced by these different methods may be used.

また、合金化された金属の微粒子化は、一度作製された固体金属粒子をジェットミル法又はグライディング法などを用いて粉砕により微粒子化を行ってもよいが、溶融状態にある合金から上記ガスアトマイジング法又は水アトマイジング法などを用いて合金微粒子を作製する場合には、微粒子化された第1、第2及び第3の金属からなる合金粒子を直接得ることができるため、この場合は粉砕工程を省略してもよい。 In addition, the alloyed metal may be atomized by pulverizing the solid metal particles once produced by using a jet mill method or a gliding method. In the case of producing alloy fine particles by using the Ising method or the water atomizing method, the finely divided alloy particles made of the first, second and third metals can be directly obtained. The process may be omitted.

このように、負極活物質粒子の表面、内部、粒界に第3の金属を析出、結合又は融合させることで、負極活物質粒子が適用された負極内で電気化学反応が起きてもその影響を受け難い個々の負極活物質粒子に結合した第3の金属による電子伝導ネットワークを構築し、さらには、形状安定化による負極活物質粒子の膨張・収縮に対する耐久性を高めて粒子の微細化を抑制するためには、電解液に反応し難く且つリチウムを吸蔵及び放出し難い性質を付与するために添加される第3の金属と、形状変化を安定させるために添加される第2の金属との総量が、負極活物質粒子全体に対して5wt%以上であることが好ましい。 Thus, even if an electrochemical reaction occurs in the negative electrode to which the negative electrode active material particles are applied by depositing, bonding or fusing the third metal on the surface, inside, or grain boundary of the negative electrode active material particles, the influence thereof Establish an electron conduction network with a third metal bonded to individual negative electrode active material particles that are difficult to be affected, and further improve the durability against the expansion and contraction of the negative electrode active material particles by stabilizing the shape to make the particles finer In order to suppress, a third metal added to impart a property that does not easily react with the electrolyte and does not absorb and release lithium, and a second metal added to stabilize the shape change, It is preferable that the total amount of is 5 wt% or more with respect to the whole negative electrode active material particle.

また、第3の金属は、負極活物質粒子全体に対して少なくとも1wt%以上、好ましくは5wt%以上含まれていることが望ましく、1wt%以上含まれていない場合は負極活物質粒子の粒界及び/又は外部表面に第3の金属を十分に析出、結合又は融合させることができなくなる。 Further, it is desirable that the third metal is contained at least 1 wt% or more, preferably 5 wt% or more with respect to the whole negative electrode active material particles. And / or the third metal cannot be sufficiently deposited, bonded or fused to the outer surface.

さらに、本発明の他の特徴としては、リチウムを吸蔵及び放出する性質を有する第1の金属である錫を約75wt%〜約90wt%、リチウムの吸蔵及び放出時の形状変化を安定化させる性質を有する第2の金属であるコバルトを約10〜約25wt%含む負極活物質粒子であって、その組成を主としてCoSn結晶を有する合金粒子にすることにより、リチウムを吸蔵及び放出する際の微粉砕化を抑制することができることにある。しかし、このような組成が得られず、または上記のような重量比率が達成されていない場合は、錫やコバルト及びその他の添加金属がフリーな状態となったり、錫とコバルトの組成が異なるCoSnに相当するものが現れたりして粒子の微細化が進み易くなる。なお、他の第2及び/又は第3の金属元素を添加する場合においても、錫とコバルトの含有比率が、錫:約80wt%に対してコバルト:約20Wt%の比率を維持しておけば、CoSn結晶(立方晶)を主成分とする合金が形成されて合金組成の均質化が高まり、充放電時のリチウムの吸蔵及び放出に伴う微細化と粒子の孤立化が抑制され負極活物質粒子としてのサイクル特性を向上させることができる。 Further, as another feature of the present invention, tin, which is a first metal having a property of occluding and releasing lithium, is about 75 wt% to about 90 wt%, and has a property of stabilizing the shape change at the time of occluding and releasing lithium. Negative electrode active material particles containing about 10 to about 25 wt% of cobalt, which is a second metal having an oxygen content, the composition of which is mainly alloy particles having CoSn 2 crystals, thereby reducing the amount of lithium at the time of occlusion and release of lithium. It exists in being able to suppress pulverization. However, if such a composition is not obtained or the weight ratio as described above is not achieved, tin, cobalt and other additive metals become free, or the composition of tin and cobalt is different. The equivalent of 2 Sn 3 appears, and it becomes easy to make the particles finer. Even when other second and / or third metal elements are added, the content ratio of tin and cobalt should be maintained at a ratio of cobalt: about 20 wt% with respect to tin: about 80 wt%. , An alloy mainly composed of CoSn 2 crystal (cubic crystal) is formed, the homogenization of the alloy composition is increased, and the refinement and the isolation of the particles accompanying the occlusion and release of lithium during charging and discharging are suppressed, and the negative electrode active material Cycle characteristics as particles can be improved.

また、負極活物質粒子の合金に添加物として5%以下のホウ素又はリンなどを含有させると、合金粒子の機械的強度が高まることで、リチウムが吸蔵及び放出される場合の微細化による電極面からの脱落が少なくなり抑制できることが、充放電試験後の電極表面のSEM観察により確認できた。逆に、合金粒子の機械的強度を弱めることで微粒子化を抑制できる場合もある。 Moreover, when 5% or less of boron or phosphorus is added as an additive to the alloy of the negative electrode active material particles, the mechanical strength of the alloy particles increases, so that the electrode surface is made finer when lithium is occluded and released. It was confirmed by SEM observation of the electrode surface after the charge / discharge test that the drop-off from the electrode was reduced and suppressed. On the contrary, in some cases, the particle size can be suppressed by weakening the mechanical strength of the alloy particles.

さらに、本発明による負極活物質粒子は、その外表面に導電性金属、金属炭化物又はカーボンから選ばれた1種又は2種以上の導電性材料で固着、被覆及び/又は配位されていることが好ましい。 Furthermore, the negative electrode active material particles according to the present invention are fixed, coated and / or coordinated on the outer surface with one or more conductive materials selected from conductive metals, metal carbides or carbon. Is preferred.

これらの導電性材料は、負極活物質粒子がリチウムの吸蔵及び放出に伴って体積変化した粒子が微細化を起こした場合であっても、上述された粒子の粒界及び/又は外表面に析出、結合又は融合された第3の金属と相まって、各粒子間及び粒子と負極集電体との間の電気的ネットワークを維持するために機能し、このため、このような負極活物質が適用されたリチウム二次電池は、電池の充放電サイクルに伴う放電性能を殆ど劣化させることがない。 These conductive materials are deposited on the grain boundaries and / or on the outer surface of the above-mentioned particles even when the negative electrode active material particles have undergone volume change due to insertion and extraction of lithium and the particles have been refined. In combination with a bonded or fused third metal, to maintain an electrical network between each particle and between the particle and the negative electrode current collector, and thus such negative electrode active material is applied The lithium secondary battery hardly deteriorates the discharge performance accompanying the charge / discharge cycle of the battery.

上記機能を果たす導電性材料としては、例えば、導電性金属については電解液に反応し難く且つリチウムを電気化学的に吸蔵し難い性質を有する金属であることが好ましく、具体的には、ニッケル、鉄、銅、クロム、ニオブ、銀、タンタル、バナジウム、モリブデン、タングステン及びチタンよりなる群から選ばれた1種又は2種以上の金属またはそれらの合金が挙げられ、これらの導電性金属の負極活物質粒子表面への固着、被覆及び/又は配位は、少なくともメカノフュージョン法、ハイブリダイジング法、メッキ法、スパッタリング法、蒸着法、溶射法、噴霧法、塗工法、浸漬法、静電法、焼成法、焼結法、ゾルゲル法、気相法、遊星ボールミル法、マイクロウェーブ法又はプラズマ照射法から選ばれた1又は2以上の方法により行われることが好ましい。 As the conductive material that performs the above function, for example, it is preferable that the conductive metal is a metal that does not easily react with the electrolyte and does not occlude lithium electrochemically. Examples thereof include one or more metals selected from the group consisting of iron, copper, chromium, niobium, silver, tantalum, vanadium, molybdenum, tungsten, and titanium, or alloys thereof. At least the mechanofusion method, hybridizing method, plating method, sputtering method, vapor deposition method, thermal spraying method, spraying method, coating method, dipping method, electrostatic method, Performed by one or more methods selected from firing method, sintering method, sol-gel method, gas phase method, planetary ball mill method, microwave method or plasma irradiation method Rukoto is preferable.

さらに好ましくは、これらの導電性金属は、上述された製法により負極活物質粒子表面に固着、被覆及び/又は配位された後、さらに、不活性ガス雰囲気中又は真空下で100℃以上の温度で熱処理することにより負極活物質粒子との接触界面において相互拡散層が形成させてもよい。この場合は、上述された固着、被覆及び/又は配位方法に比べて導電性金属と負極活物質粒子との一層強固な結合を得ることができ、リチウムの吸蔵及び放出に伴う負極活物質粒子の体積変化が起こった場合でも導電性金属が負極活物質粒子表面から脱落してしまうことを防止する。また、気相法により芳香族溶剤雰囲気下でマイクロウェーブ、プラズマ照射を用いてマトリックスネットワークを負極活物質粒子の表面に形成させることによっても、上記と同じ効果を得ることができる。 More preferably, these conductive metals are fixed, coated and / or coordinated on the surface of the negative electrode active material particles by the above-described manufacturing method, and then further heated to a temperature of 100 ° C. or higher in an inert gas atmosphere or under vacuum. The interdiffusion layer may be formed at the contact interface with the negative electrode active material particles by performing a heat treatment. In this case, it is possible to obtain a stronger bond between the conductive metal and the negative electrode active material particles as compared to the above-described fixing, coating and / or coordination method, and the negative electrode active material particles accompanying the insertion and extraction of lithium. Even when the volume change occurs, the conductive metal is prevented from falling off the surface of the negative electrode active material particles. Further, the same effect as described above can be obtained by forming a matrix network on the surface of the negative electrode active material particles using microwave and plasma irradiation in an aromatic solvent atmosphere by a gas phase method.

さらに、負極活物質粒子の表面の少なくとも一部に、ジルコニア酸化物、チタン酸化物、チタン酸リチウム、硫化物、リン化物又は窒化物などのいずれか1つの化合物を結合させた場合は、充放電に伴う電解液の分解が抑制されて電極の界面抵抗の上昇を抑制することができる。例えば、負極活物質粒子と少量のジルコニア酸化物溶液を混合し、前記負極活物質粒子の表面上に薄く被覆されるように遊星ミル、遊星ボールミルや振動ミルなどを用いて混錬した後、不活性ガス雰囲気炉内で数百℃の熱処理を行うことにより、前記負極活物質粒子の表面上にジルコニア酸化物を焼結させることができる。また、チタン酸リチウムをメカノフュージョン法などの被覆及び結合方法を用いて負極活物質粒子の表面上に結合させた場合は、表面改質と同時に負極活物質として作用させることもできる。 Furthermore, when any one compound such as zirconia oxide, titanium oxide, lithium titanate, sulfide, phosphide or nitride is bonded to at least a part of the surface of the negative electrode active material particles, charging / discharging The decomposition of the electrolyte solution accompanying the above can be suppressed, and an increase in the interfacial resistance of the electrode can be suppressed. For example, after mixing negative electrode active material particles and a small amount of zirconia oxide solution and kneading using a planetary mill, planetary ball mill, vibration mill, etc. so that the surface of the negative electrode active material particles is thinly coated, By performing heat treatment at several hundred degrees Celsius in an active gas atmosphere furnace, zirconia oxide can be sintered on the surface of the negative electrode active material particles. In addition, when lithium titanate is bonded onto the surface of the negative electrode active material particles by using a coating and bonding method such as a mechanofusion method, it can also act as a negative electrode active material simultaneously with the surface modification.

また、金属合金からなる負極活物質粒子をリチウムを吸蔵及び放出できるカーボンとの混合物の総重量に対して重量比で30wt%以上混合させた場合は、充放電に伴う電解液の分解を抑制することができると共に、例え充放電に伴う金属合金粒子の微細化が生じた場合においても、前記カーボンが導電材としての役割を果たし、孤立化による電気的な経路の遮断を抑制することができる。 In addition, when the anode active material particles made of a metal alloy are mixed in a weight ratio of 30 wt% or more with respect to the total weight of the mixture with carbon that can occlude and release lithium, the decomposition of the electrolyte accompanying charge / discharge is suppressed. In addition, even when the metal alloy particles are refined due to charging / discharging, the carbon plays a role as a conductive material, and the electrical path can be prevented from being blocked by isolation.

また、前記導電性金属と同様の機能を果たす炭化物としては、CoC、CrC、FeC、MoC、WC、TiC、TaC及びZrCよりなる群から選ばれた1種又は2種以上の炭化物が挙げられる。この場合の炭化物も導電性金属と同様の製法及び熱処理により、負極活物質粒子表面で炭化物としての結合が生じ、前記導電性金属の場合と同様に強固な結合を示して粒子の体積変化に対しても脱落することがなくなる。 Examples of the carbide that performs the same function as the conductive metal include one or more carbides selected from the group consisting of CoC, CrC, FeC, MoC, WC, TiC, TaC, and ZrC. The carbide in this case is also bonded as a carbide on the surface of the negative electrode active material particles by the same manufacturing method and heat treatment as the conductive metal, and shows a strong bond as in the case of the conductive metal, so that the volume change of the particles However, it will not drop out.

さらに、同様の機能を果たすカーボンとしては、低温焼成カーボン、非晶質カーボン、ケッチェンブラック、アセチレンブラック、繊維状カーボン、ナノチューブ、ナノフォーン及び黒鉛よりなる群から選ばれた1種又は2種以上のカーボンが挙げられる。 Further, the carbon having the same function is one or more selected from the group consisting of low-temperature calcined carbon, amorphous carbon, ketjen black, acetylene black, fibrous carbon, nanotube, nanophone, and graphite. Of carbon.

これらのカーボンは、有機化合物を単独で又は有機化合物に前記カーボンを添加して焼成することにより負極活物質粒子表面に固着、被覆及び/又は配位させてもよく、また、バインダーを用いて負極活物質粒子表面に固着、被覆及び/又は配位させてもよい。例えば、バインダーを用いて負極活物質粒子表面に固着、被覆及び/又は配位させる場合は、PVdFなどのバインダーに負極活物質粒子と前記各種カーボンを添加して混錬し、負極集電体表面に塗工して被覆することにより各種カーボンが負極活物質粒子表面にバインダーを介して結合される。 These carbons may be fixed, coated and / or coordinated on the surface of the negative electrode active material particles by baking the organic compound alone or by adding the carbon to the organic compound, and the negative electrode using a binder. It may be fixed, coated and / or coordinated on the surface of the active material particles. For example, in the case of using a binder to fix, coat and / or coordinate to the surface of the negative electrode active material particles, the negative electrode active material particles and the various carbons are added to a binder such as PVdF and kneaded, and the surface of the negative electrode current collector By coating and coating, various carbons are bonded to the surface of the negative electrode active material particles through a binder.

具体的には、カーボンの負極活物質粒子表面への固着、被覆及び/又は配位は、例えばフェノール樹脂、砂糖、ピッチなどの有機高分子材料を単独で、またはカーボンなどの導電性材料を混合した状態で負極活物質粒子表面に被覆し、約300℃から約1200℃の還元雰囲気中で熱処理することにより、厚さ1μm以下の低温焼成カーボン皮膜を負極活物質粒子表面の一部にマトリックスネットワークを形成させるように焼成したり、さらには、カーボン皮膜に他の導電性材料を含有させることで負極活物質粒子の導電性を一層高めた皮膜層を形成させることができる。この結果、負極活物質粒子がリチウムの吸蔵及び放出により微細化されたとしても、カーボン被膜が少なくとも負極活物質粒子表面の一部に強固に形成されているため、上述された電気的ネットワークが電池の充放電サイクルの進行に伴って破壊されることがなくなり、電池の高い放電性能を維持するために寄与する。 Specifically, the adhesion, coating, and / or coordination of carbon to the negative electrode active material particle surface may be performed by, for example, an organic polymer material such as phenol resin, sugar, or pitch alone, or a conductive material such as carbon mixed. In this state, the surface of the negative electrode active material particles is coated and heat-treated in a reducing atmosphere of about 300 ° C. to about 1200 ° C. to thereby form a low-temperature fired carbon film having a thickness of 1 μm or less on a part of the surface of the negative electrode active material particles. It is possible to form a film layer in which the conductivity of the negative electrode active material particles is further increased by baking the carbon film so as to form other conductive materials. As a result, even if the negative electrode active material particles are refined by occlusion and release of lithium, the carbon coating is firmly formed on at least a part of the surface of the negative electrode active material particles. As the charge / discharge cycle progresses, the battery is not destroyed and contributes to maintaining the high discharge performance of the battery.

すなわち、本発明による負極活物質粒子の特徴は、リチウムの吸蔵及び放出に伴った体積変化による粒子の微細化が進行した場合であっても、各粒子間及び粒子と負極集電体との間の電気的ネットワークが維持できることにある。 That is, the negative electrode active material particles according to the present invention are characterized by the inter-particle and between the particles and the negative electrode current collector, even when the particles are miniaturized due to the volume change accompanying the insertion and extraction of lithium. The electrical network can be maintained.

つぎに、本発明による負極活物質粒子は、さらに負極集電体に適用されてリチウム二次電池用の負極を形成する。 Next, the negative electrode active material particles according to the present invention are further applied to a negative electrode current collector to form a negative electrode for a lithium secondary battery.

本発明による負極を形成するためには、上記負極活物質粒子にアセチレンブラック、ケッチェンブラック、ナノチューブ又はナノフォーンなどの導電性助剤とPVdF、SBRなどのバインダー又はCMCなどのような分散材を加えて混錬した負極合剤を作製し、この負極合剤を厚み8μmから15μmの電解銅箔又は圧延銅箔からなる負極集電体の表裏面に塗工した後、塗工ラインの中で乾燥させる。 In order to form a negative electrode according to the present invention, a conductive auxiliary agent such as acetylene black, ketjen black, nanotube or nanophone and a binder such as PVdF or SBR, or a dispersing agent such as CMC is added to the negative electrode active material particles. In addition, a kneaded negative electrode mixture was prepared, and this negative electrode mixture was applied to the front and back surfaces of a negative electrode current collector made of an electrolytic copper foil or rolled copper foil having a thickness of 8 μm to 15 μm. dry.

乾燥された負極は、その後プレスに掛けられ負極表面が平滑化される。この時、本発明による負極活物質粒子を用いた場合は、負極表面を平滑にするために必要最小限の軽プレスを行うのみでよく、従来の負極活物質粒子を用いた場合のように、負極に重プレスを施して電極密度を高める必要はない。 The dried negative electrode is then pressed and the negative electrode surface is smoothed. At this time, when the negative electrode active material particles according to the present invention are used, it is only necessary to perform a minimum light press to smooth the negative electrode surface, as in the case of using conventional negative electrode active material particles, There is no need to heavy press the negative electrode to increase the electrode density.

このように、本発明による負極に軽プレスを適用する理由は、本発明による負極は電極密度を高めることを一義的な目的とせず、逆に、負極活物質粒子表面に導電性材料を被覆することで多孔質層又はマトリックスネットワーク(2次元的又は3次元的な網目構造など)を形成させたり、負極活物質粒子間の空隙に先の微小なケッチェンブラックやアセチレンブラック、ナノチューブ又はナノフォーンなどの導電性助剤を1wt%〜15wt%の割合で含有させることで多くの微小空間を負極内の負極活物質粒子の周囲に分布させ、その結果、かかる微小空間に負極活物質粒子がリチウムを吸蔵した時に生じる体積増加分を吸収させることを主な目的とするからである。 As described above, the reason why the light press is applied to the negative electrode according to the present invention is that the negative electrode according to the present invention does not have a primary purpose of increasing the electrode density, and conversely, the surface of the negative electrode active material particles is coated with a conductive material. By forming a porous layer or matrix network (such as a two-dimensional or three-dimensional network structure), the fine ketjen black, acetylene black, nanotubes, nanophones, etc., in the voids between the negative electrode active material particles The conductive auxiliary is contained at a ratio of 1 wt% to 15 wt% to distribute a lot of micro spaces around the negative electrode active material particles in the negative electrode. As a result, the negative electrode active material particles contain lithium in the micro space. This is because the main purpose is to absorb the volume increase caused by occlusion.

すなわち、本発明による負極は、負極内に存在する微小空間に負極活物質粒子の体積変化を吸収させることにより、全体として電極厚みの変化を抑制している。この結果、本発明による負極を用いたリチウム二次電池の形状(特に厚み)は充放電に伴った体積変化がほとんど見られず、限られたスペース内に電池が収納されても、電池の厚みなどが変化しないために機器に悪影響を及ぼすことがない。 That is, the negative electrode according to the present invention suppresses the change in the electrode thickness as a whole by absorbing the volume change of the negative electrode active material particles in the minute space present in the negative electrode. As a result, the shape (particularly the thickness) of the lithium secondary battery using the negative electrode according to the present invention hardly changes in volume accompanying charging / discharging, and the thickness of the battery even when the battery is stored in a limited space. Etc. will not adversely affect the equipment.

このようにして作製される負極に対して、負極活物質粒子の密度及び重量と、実際に塗工された負極活物質粒子による塗工層の容積を測定することにより求められる空隙率を、プレス圧力を変更することにより表1に示されるような空隙率を有する各負極を作製した。つぎに、この負極に対してリチウムを吸蔵させた後に続いてリチウムを放出させ、試験前後のそれぞれの負極の厚みから負極厚みの変化率を求めた。 For the negative electrode produced in this manner, the density and weight of the negative electrode active material particles and the porosity determined by measuring the volume of the coating layer of the actually coated negative electrode active material particles are pressed. Each negative electrode having a porosity as shown in Table 1 was produced by changing the pressure. Next, after occluding lithium in the negative electrode, lithium was subsequently released, and the change rate of the negative electrode thickness was determined from the thickness of each negative electrode before and after the test.

表1に示す結果より、負極塗工層の空隙率が30%より小さくなると充電時のリチウム吸蔵による負極容積の増加に伴い、負極の厚みが大きく変化して規格から外れると共に、負極に電解液が浸透し難くなって真空含浸に多大な時間を要したり、含浸量不足で電池性能を悪化させたりする。逆に、負極塗工層の空隙率が70%より大きくなると、限られた容積内に所定量の負極活物質粒子を配置することができなくなり、所望の電池容量が得られないといった問題を生じることになる。 From the results shown in Table 1, when the porosity of the negative electrode coating layer becomes smaller than 30%, the negative electrode thickness greatly deviates from the standard as the negative electrode volume increases due to lithium occlusion during charging. Becomes difficult to permeate and takes a lot of time for vacuum impregnation, and the battery performance deteriorates due to insufficient impregnation. On the other hand, when the porosity of the negative electrode coating layer is greater than 70%, a predetermined amount of negative electrode active material particles cannot be disposed within a limited volume, and a desired battery capacity cannot be obtained. It will be.

この結果、本発明による負極の塗工層の空隙率は、30%以上70%以下の範囲内に、より好ましくは40%以上65%以下の範囲内にあることが好ましい。しかしながら、充電した後に放電した場合の負極の塗工層の空隙の中には約5%程度の容積を占めるリチウムが残存しているため、リチウム二次電池を組み立てた後にエージング工程を経て出荷される状態でのリチウム二次電池の負極塗工層の空隙率は、先の残存しているリチウムの容積を差し引いた35%〜60%の範囲内にあることが好ましい。 As a result, the porosity of the negative electrode coating layer according to the present invention is preferably in the range of 30% to 70%, more preferably in the range of 40% to 65%. However, since lithium occupying a volume of about 5% remains in the voids in the negative electrode coating layer when discharged after charging, it is shipped after an aging process after assembling the lithium secondary battery. In this state, the porosity of the negative electrode coating layer of the lithium secondary battery is preferably in the range of 35% to 60% obtained by subtracting the volume of the remaining lithium.

したがって、このような適当な空隙率を有する塗工層を負極に形成させるためには、塗工される負極活物質粒子の外表面に固着、被覆及び/又は配位させられた被覆材料を利用して粒子外表面近傍に適当な空隙を持たせること、および、塗工後、その負極をロールプレスなどを用いて電極密度を高めるための高加圧成形をしないこと、すなわち、リチウム二次電池への組み込み時において、負極がセパレーターを突き破ることがない程度の負極表面の平滑性を確保するための低加圧成形(例えば、線圧約5kg/cm〜約250kg/cm)を行うことにより、各粒子間及び粒子と負極集電体との間の電気的な繋がりを形成させることが重要である。 Therefore, in order to form a coating layer having such an appropriate porosity on the negative electrode, a coating material fixed, coated and / or coordinated on the outer surface of the coated negative electrode active material particles is used. To provide an appropriate gap in the vicinity of the outer surface of the particle, and after coating, the negative electrode is not subjected to high pressure molding to increase the electrode density using a roll press or the like, that is, a lithium secondary battery By performing low-pressure molding (for example, linear pressure of about 5 kg / cm to about 250 kg / cm) to ensure the smoothness of the negative electrode surface to the extent that the negative electrode does not break through the separator at the time of incorporation into It is important to form an electrical connection between the particles and between the particles and the negative electrode current collector.

また、予め負極にリチウムを吸蔵及び放出をしておくことによりリチウムの放出率を最適化した上でリチウム吸蔵状態中の負極の電極面を押圧状態下で処理すると、負極厚みがすでに変化し終えた負極を得ることができる。その結果、吸湿などに対してさらに十分な対策を講じた上で、この負極を用いて正極と組み合わせてリチウム二次電池を作製すると、充放電に伴う電池の厚みの変化を極めて小さくすることができる。 In addition, if the lithium release rate is optimized by preliminarily inserting and extracting lithium into the negative electrode, and the electrode surface of the negative electrode in the lithium occluded state is processed under pressure, the negative electrode thickness has already changed. A negative electrode can be obtained. As a result, when sufficient measures are taken against moisture absorption, etc., and a lithium secondary battery is produced using this negative electrode in combination with the positive electrode, the change in battery thickness associated with charge / discharge can be extremely reduced. it can.

本発明の他の特徴としては、上述された効果をさらに高める目的で、予めリチウムを吸蔵させた負極活物質粒子を用いることにより、粒子内部の構造を充放電状態が経過した後の粒子構造のような連続及び/又は不連続な微細孔を有する略軽石状の形状をした全体的にはいびつな形状の不定形粒子や、表面及び内部に無数の微小孔や空洞やヒビ割れを有する海綿状網目組織の粒子や、これらの微粒子が集合し結合したような形態を有する凝集(集合)粒子に変化させておくことが有効である。その結果、前記負極活物質粒子を使って電極を作製したものは、リチウムが吸蔵する際に生じる粒子の容積膨張が予め変化させられているために、形状記憶合金のような効果を有し充放電を繰り返した場合においてもその容積変化を最小限に抑制して負極厚みの増加を抑えることができ、また、当該粒子の孔内に負極活物質を充填しておくことで、リチウムの吸蔵及び放出時の体積膨張を該粒子の骨格が抑制し、微粉砕化が抑えられることがある。また電子伝導径路として該骨格が使用される。 また、上述された軽プレスに代わり重プレスを適用することにより、電極の密度を高めて各粒子間の接触なども向上させることも可能となる。なお、この時に使用されるセパレーター、電解質については、材質又は構成などは特に限定されるものではない。 Another feature of the present invention is that the negative electrode active material particles previously occluded with lithium are used for the purpose of further enhancing the above-described effects, so that the structure of the particle structure after the charge / discharge state has elapsed. Such a generally pumice-like amorphous particle having continuous and / or discontinuous micropores, and a sponge-like shape having numerous micropores, cavities, and cracks on the surface and inside. It is effective to change the particles to network particles or aggregated (aggregated) particles having such a form that these fine particles are aggregated and bonded. As a result, an electrode manufactured using the negative electrode active material particles has an effect similar to that of a shape memory alloy because the volume expansion of particles generated when lithium is occluded is changed in advance. Even when the discharge is repeated, the volume change can be suppressed to a minimum to suppress an increase in the thickness of the negative electrode, and by filling the negative electrode active material in the pores of the particles, lithium occlusion and Volume expansion at the time of release may be suppressed by the skeleton of the particles, and pulverization may be suppressed. The skeleton is used as an electron conduction path. In addition, by applying a heavy press instead of the light press described above, it is possible to increase the density of the electrodes and improve the contact between the particles. In addition, about the separator and electrolyte used at this time, a material or a structure is not specifically limited.

表2には、30サイクル経過時の電池容量が初期電池容量に対してどれだけ維持されているかを示した値である30サイクル経過時の電池容量維持率(%)について、本発明による負極活物質粒子の平均粒子径の違いがどのような影響を与えるかを調べた試験結果を示す。 Table 2 shows the battery capacity retention rate (%) after 30 cycles, which is a value indicating how much the battery capacity after 30 cycles is maintained relative to the initial battery capacity. The test result which investigated what kind of influence the difference in the average particle diameter of a substance particle shows is shown.

なお、ここで使用する平均粒子径とは、測定される粒子を網の目が規格化された標準篩いを目開き径の大きいものから順に重ねて篩い分け、各網上に残った粒子の平均粒子径を最後に通過した篩の目開きで表したものである。 The average particle size used here is the average of the particles that remain on each mesh by sieving the particles to be measured by sieving the standard sieves with standardized meshes in order from the largest mesh size. This is expressed by the mesh size of the sieve that passed through the particle diameter at the end.

表2より、負極活物質粒子の平均粒子径が30μmより大きくなると、リチウムを吸蔵し放出する際の体積変化が大きくなり過ぎて粒子内に生じた歪を吸収できずに粒子の微細化が起こり、この結果、30サイクル経過時の電池容量維持率(%)が著しく低下することが判った。したがって、本発明による効果を維持又は高めるためには、負極活物質粒子の平均粒子径を好ましくは20μm以下、より好ましくは5μm以下にすることが望ましい。特に、平均粒径が2μm以下であって、粒度分布の90%以上の粒子が0.01μ〜10μmの範囲内にある負極活物質粒子を用いた場合は、平均粒子径が2μmであっても30サイクル経過後の電池容量維持率100%を達成することができ、また、かかる負極活物質粒子をMCMBなどの負極活物質としてのカーボン材との混合物に対して重量割合で30wt%以上、好ましくは50wt%以上になるように混合し、さらにアセチレンブラックなどの導電材とを混合させた場合は、これらの粒子材料とバインダーとの分散性が改善されて、充放電を繰り返しても前記粒子材料が電極から脱落することがなく電子伝導性を半永久的に維持できる強い結着を得ることができるようになる。前記混合率が30wt%より少ない場合は、本発明負極活物質粒子の増加による電池性能の向上、例えば容積エネルギー効率の改善は微小であり、工業的価値が乏しくなる。 According to Table 2, when the average particle diameter of the negative electrode active material particles is larger than 30 μm, the volume change at the time of occlusion and release of lithium becomes so large that the strain generated in the particles cannot be absorbed and the particles become finer. As a result, it was found that the battery capacity retention rate (%) after 30 cycles was significantly reduced. Therefore, in order to maintain or enhance the effect of the present invention, the average particle diameter of the negative electrode active material particles is preferably 20 μm or less, more preferably 5 μm or less. In particular, when negative electrode active material particles having an average particle size of 2 μm or less and 90% or more of the particle size distribution in the range of 0.01 μm to 10 μm are used, even if the average particle size is 2 μm A battery capacity retention rate of 100% after 30 cycles can be achieved, and such negative electrode active material particles are preferably 30 wt% or more by weight with respect to a mixture with a carbon material as a negative electrode active material such as MCMB. Is mixed so as to be 50 wt% or more, and when a conductive material such as acetylene black is further mixed, the dispersibility between these particle materials and the binder is improved, and the particle material is not affected by repeated charge and discharge. It is possible to obtain a strong bond that can maintain the electron conductivity semi-permanently without dropping from the electrode. When the mixing ratio is less than 30 wt%, the battery performance improvement due to the increase of the negative electrode active material particles of the present invention, for example, the improvement of volumetric energy efficiency is very small and the industrial value becomes poor.

また、本発明による効果を一層高めるためには、複数の粒度分布を有する粉末粒子を混合することにより、リチウムの吸蔵及び放出時に生じる粒子内の応力歪を各粒子間に形成された空隙により、より一層効果的に吸収できることが見出された。 Further, in order to further enhance the effect of the present invention, by mixing powder particles having a plurality of particle size distributions, the stress strain in the particles generated at the time of occlusion and release of lithium is caused by voids formed between the particles, It has been found that it can be absorbed even more effectively.

具体的には、平均粒子径が5μmである負極活物質粒子に対して、例えば、平均粒径が15μm〜20μmである負極活物質粒子を重量比で約10wt%添加することで、負極表面に積極的に凹凸を形成させる。そして、この負極表面を隙間制御されたロールプレスで軽加圧することにより、主に凸部を形成している負極表面上の負極活物質粒子のみが横方向へと延びた偏平状の粒子形状に変形させ、全体としては平滑な表面を有する負極を形成させる。 Specifically, for example, by adding about 10 wt% of negative electrode active material particles having an average particle diameter of 15 μm to 20 μm to the negative electrode active material particles having an average particle diameter of 5 μm on the negative electrode surface. Actively form irregularities. Then, by lightly pressing the negative electrode surface with a gap-controlled roll press, only the negative electrode active material particles on the negative electrode surface mainly forming the convex portions are formed into a flat particle shape extending in the lateral direction. A negative electrode having a smooth surface as a whole is formed by deformation.

このような負極は、リチウムを吸蔵すると、横方向へ変形させられた偏平状の負極活物質粒子が主に横方向に膨張し、また、変形させられた以外の他の負極活物質粒子は偏平状に変形させられた各粒子間に形成された凹部を埋め尽くすように膨張するため、負極全体としての厚みをほとんど変化させることなく体積膨張分を効率よく吸収することができる。 In such a negative electrode, when lithium is occluded, the flat negative electrode active material particles deformed in the lateral direction mainly expand in the horizontal direction, and other negative electrode active material particles other than the deformed negative electrode active material particles are flat. Since the expansion is performed so as to fill the concave portions formed between the particles deformed into a shape, the volume expansion can be efficiently absorbed without substantially changing the thickness of the negative electrode as a whole.

なお、本発明による負極活物質粒子の形状は、球状よりは片状、扁平状、繊維状など細長い形状の方が粒子の微細化が進み難く、この結果、各粒子の突起部分又は繊維状の導電部分が負極内で隣接する粒子と相互に接触又は絡み合って、各粒子間の電気的な繋がりを形成させ易いことが見出された。また、特に負極活物質粒子の形状が球状の場合は、平均粒子径が、例えば数μm以下と小さい方がリチウムが内部まで吸蔵でき、全体としての体積歪が小さく且つ利用率が高くなると共に微粉砕化され難くなる。 In addition, the shape of the negative electrode active material particles according to the present invention is less likely to be finer in the elongated shape such as a flaky shape, a flat shape, and a fibrous shape than a spherical shape. It has been found that the conductive portions are likely to contact or entangle with adjacent particles in the negative electrode to form an electrical link between the particles. In particular, when the shape of the negative electrode active material particles is spherical, when the average particle diameter is small, for example, several μm or less, lithium can be occluded to the inside. It becomes difficult to be pulverized.

このような本発明による負極活物質粒子及び負極は、以下に説明する方法によって作製される。 Such negative electrode active material particles and negative electrodes according to the present invention are produced by the method described below.

本発明による負極活物質粒子は、電気化学的にリチウムを吸蔵及び放出するリチウム二次電池用の負極活物質粒子を製造するための方法であって、リチウムを吸蔵及び放出する性質を有する第1の金属と第1の金属の形状変化を安定化させる性質を有する第2の金属と電解液に反応し難く且つリチウムを吸蔵及び放出し難い性質を有する第3の金属とを準備する第1のステップと、第1の金属に第2の金属と第3の金属とを合金化させて、第3の金属が負極活物質粒子の粒界及び/又は外部表面の少なくとも一部に析出、結合又は融合した負極活物質粒子を作製する第2のステップと、そして導電性金属、金属炭化物及びカーボンから選ばれた1種又は2種以上の導電性材料を固着、被覆及び/又は配位させる第3のステップとを含む製造方法を用いて作製される。 The negative electrode active material particle according to the present invention is a method for producing a negative electrode active material particle for a lithium secondary battery that electrochemically occludes and releases lithium, and has a property of inserting and extracting lithium. And a second metal having a property of stabilizing the shape change of the first metal and a third metal having a property of hardly reacting with the electrolytic solution and difficult to occlude and release lithium. Step, alloying the second metal and the third metal with the first metal, and the third metal is precipitated, bonded or bonded to at least a part of the grain boundary and / or the outer surface of the negative electrode active material particles A second step of producing fused negative electrode active material particles, and a third step of fixing, coating and / or coordinating one or more conductive materials selected from conductive metals, metal carbides and carbon And manufacturing method including It is produced by using the.

なお、前記第2のステップにおける合金化は、予め第2及び第3の金属を合金化させた後に第1の金属と合金化させてもよく、または、第1、第2及び第3の金属を同時に合金化させる方法を採用してもよい。 The alloying in the second step may be performed by previously alloying the second and third metals and then alloying with the first metal, or the first, second and third metals. You may employ | adopt the method of alloying simultaneously.

さらに、本発明による負極を作製するためには、上述された負極活物質粒子の製造方法に続けて、前記負極活物質粒子と他の導電性材料及びバインダーを含む被覆材料を準備するステップと、そして前記被覆材料を負極集電体上に表面処理し、負極を形成させるステップを実施することにより達成される。 Furthermore, in order to produce a negative electrode according to the present invention, following the above-described method for producing negative electrode active material particles, a step of preparing a coating material containing the negative electrode active material particles, another conductive material, and a binder; And it is achieved by surface-treating the said coating material on a negative electrode electrical power collector, and implementing the step which forms a negative electrode.

第1のステップは、リチウムの吸蔵及び放出機能を担う負極活物質、すなわち、第1の金属と第1の金属の形状変化を安定化させるための第2の金属、および電解液に反応し難く且つリチウムを吸蔵及び放出しがたい性質を有する第3の金属を準備するためのステップである。この第1の金属の主なものとしては、シリコン、錫又はアルミニウムから選ばれた1種又は2種以上の金属が挙げられる。また、本ステップにおいては、第1の金属に、鉄、クロム、マグネシウム、マンガン、アンチモン、鉛及び亜鉛よりなる群から選ばれた1種又は2種以上の金属を加えて予め合金化したものを使用してもよい。 The first step is less likely to react with the negative electrode active material responsible for the function of inserting and extracting lithium, that is, the second metal for stabilizing the shape change between the first metal and the first metal, and the electrolytic solution. This is a step for preparing a third metal having a property that it is difficult to occlude and release lithium. As the main thing of this 1st metal, 1 type, or 2 or more types of metals chosen from silicon, tin, or aluminum are mentioned. In this step, the first metal is alloyed in advance by adding one or more metals selected from the group consisting of iron, chromium, magnesium, manganese, antimony, lead and zinc. May be used.

第2の金属は、リチウムの吸蔵及び放出に伴う体積変化による負極活物質粒子自体の微細化を抑制し充放電サイクルに伴う電池容量の低下を防止することなどにも寄与することから負極活物質粒子の形状変化を安定化させる目的で添加される金属であって、好ましくは、鉄、コバルト、銅、ニッケル、クロム、マグネシウム、鉛、亜鉛、銀、ゲルマニウム、マンガン、チタン、バナジウム、ビスマス、インジウム及びアンチモンよりなる群から選ばれた1種又は2種以上の第2の金属が添加される。 Since the second metal contributes to the prevention of the decrease in battery capacity due to the charge / discharge cycle by suppressing the miniaturization of the negative electrode active material particles due to the volume change accompanying the insertion and extraction of lithium, the negative electrode active material. Metal added for the purpose of stabilizing particle shape change, preferably iron, cobalt, copper, nickel, chromium, magnesium, lead, zinc, silver, germanium, manganese, titanium, vanadium, bismuth, indium And one or more second metals selected from the group consisting of antimony are added.

また、第3金属は、電解液に反応し難く且つリチウムを吸蔵及び放出し難い性質を有するものであって、モリブデン、タングステン、タンタル、タリウム、クロム、テリウム、ベリリウム、カルシウム、ニッケル、銀、銅及び鉄よりなる群から選ばれた1種又は2種以上の金属またはそれらの合金が使用され、この中で、モリブデン、タングステン、タンタル、タリウム、クロム、テリウム、ベリリウム及びカルシウムのようにシリコン等の負極活物質と合金化し難い金属であっても使用することができる。また、逆にニッケル、銀、銅及び鉄のような金属はシリコン等の負極活物質と容易に合金化する金属ではあるが、これらの金属は、電圧の向上や電子易動を補助することによってハイレート性を向上させ、REDOX反応の効率化を促進することによる反応熱発生の抑制を図ることから、第3の金属として使用することに適している。 In addition, the third metal has a property that it is difficult to react with the electrolytic solution and it is difficult to occlude and release lithium, and molybdenum, tungsten, tantalum, thallium, chromium, terium, beryllium, calcium, nickel, silver, copper And one or two or more metals selected from the group consisting of iron and iron, or alloys thereof, among them, such as silicon, such as molybdenum, tungsten, tantalum, thallium, chromium, terium, beryllium and calcium. Even metals that are difficult to alloy with the negative electrode active material can be used. Conversely, metals such as nickel, silver, copper, and iron are metals that can easily be alloyed with negative electrode active materials such as silicon, but these metals can help improve voltage and facilitate electronic mobility. It is suitable for use as a third metal because it suppresses generation of reaction heat by improving the high rate property and promoting the efficiency of the REDOX reaction.

第2ステップは第3の金属を負極活物質粒子の粒界及び/又は外部表面への析出、結合又は融合させる為に第1、第2及び第3の金属を合金化させるステップである。 The second step is a step of alloying the first, second, and third metals in order to precipitate, bond, or fuse the third metal to the grain boundaries and / or external surfaces of the negative electrode active material particles.

本ステップにおける上記の金属の合金化による析出、結合又は融合は、第3の金属の金属の析出効果を高めるために不活性ガス封入雰囲気下で、少なくともメカニカルアロイング法、メカニカルグライディング法、溶融法、ガスアトマイジング法、水アトマイジング法、メカノフュージョン法、ハイブリダイジング法、メッキ法、スパッタリング法、蒸着法、気相法、液体急冷法又は気体急冷法から選ばれた1又は2以上の方法により行なわれること好ましく、さらに析出、結合又は融合された第3の金属の結合を強化するためには、第1、第2及び第3の金属の合金化後、不活性ガス雰囲気中又は真空下で100℃以上、さらに好ましくは500℃〜950℃の温度で熱処理することが望ましい。また、第3の金属は、気相法により芳香族系溶剤(BTX)雰囲気下でマイクロウェーブやプラズマ照射を用いて負極活物質粒子の表面上にマトリックスネットワークを形成させるように表面処理(析出、固着、被覆又は配位を含む)し、表面導電性の向上を図ることもできる。なお、負極への適用に際しては、これらの異なる方法により作製された負極活物質粒子の混合粉を使用してもよい。 In this step, precipitation, bonding or fusion by alloying of the above metals is performed at least in a mechanical alloying method, mechanical gliding method, melting method in an atmosphere filled with an inert gas in order to enhance the metal precipitation effect of the third metal. One or more methods selected from gas atomizing method, water atomizing method, mechano-fusion method, hybridizing method, plating method, sputtering method, vapor deposition method, vapor phase method, liquid quenching method or gas quenching method In order to further strengthen the bonding of the deposited, bonded or fused third metal, after the alloying of the first, second and third metals, in an inert gas atmosphere or under vacuum It is desirable to heat-treat at a temperature of 100 ° C. or higher, more preferably 500 ° C. to 950 ° C. In addition, the third metal is subjected to a surface treatment (deposition, deposition, and so on) so as to form a matrix network on the surface of the negative electrode active material particles using microwave or plasma irradiation in an aromatic solvent (BTX) atmosphere by a vapor phase method. (Including fixing, coating, or coordination), and surface conductivity can be improved. In application to the negative electrode, a mixed powder of negative electrode active material particles produced by these different methods may be used.

また、次工程で使用する場合には、ガスアトマイジング法、水アトマイジング法などの上記方法を用いて直接20μm以下の合金粒子を作製することもできるが、ジェットミル法、グライディング法などと組み合わせて、合金化された粒子又は塊を平均粒子径が20μm以下となるように粉砕・分級してから使用することもできる。 In addition, when used in the next step, alloy particles of 20 μm or less can be directly produced using the above methods such as gas atomizing method, water atomizing method, etc., but in combination with jet mill method, gliding method, etc. The alloyed particles or lumps can be used after being pulverized and classified so that the average particle diameter is 20 μm or less.

このように、第1、第2及び第3の金属の合金化に上記のようなステップ及び製法を組み合わせて本発明による負極活物質粒子を作製すると、単に第1、第2及び第3の金属を通常の合金化方法を用いて合金化する場合に比べて、第3の金属を負極活物質粒子の粒界及び/又は外部表面に析出、結合又は融合させるために効果的であり、さらに、合金化された負極活物質粒子の一部非晶質化や複雑形状化も同時に達成されることから、高エネルギー容量で充放電サイクル特性の優れた負極活物質を得ることができるようになる。 As described above, when the negative electrode active material particles according to the present invention are produced by combining the above-described steps and manufacturing methods with the alloying of the first, second, and third metals, the first, second, and third metals are simply used. Is more effective for precipitating, bonding or fusing the third metal to the grain boundary and / or the external surface of the negative electrode active material particles, compared to the case of alloying using a conventional alloying method, A part of the alloyed negative electrode active material particles can be simultaneously made amorphous or complex, so that a negative electrode active material having a high energy capacity and excellent charge / discharge cycle characteristics can be obtained.

本発明による負極活物質粒子の具体例として負極活物質に錫を選んだ場合について説明すると、リチウムの吸蔵及び放出時の錫の形状変化を安定化させる第2の金属としてコバルト粉末75wt%と、電解液に反応し難く且つリチウムを吸蔵及び放出し難い第3の金属としてタングステン粉末25wt%とを不活性ガス雰囲気中で加熱処理して合金を作製した後(その後、数十μmの大きさの合金粉末粒子となるように粉砕・分級してもよい。)、この合金粉末粒子20wt%を錫粉末80wt%と混合し、再度、不活性ガスアトマイジング法により合金を作製した。さらに、作製された数十μm〜百μm程度の大きさの合金をジェットミルなどで微粉砕して分級し、本発明による負極活物質粒子を作製した。 The case where tin is selected as the negative electrode active material as a specific example of the negative electrode active material particle according to the present invention will be described. As a second metal that stabilizes the shape change of tin at the time of occlusion and release of lithium, 75 wt% of cobalt powder, After a heat treatment in an inert gas atmosphere with a tungsten powder of 25 wt% as a third metal that hardly reacts with the electrolyte and does not absorb and desorb lithium, an alloy is produced (there is a size of several tens of μm). The alloy powder particles may be pulverized and classified so as to be alloy powder particles.) 20 wt% of the alloy powder particles were mixed with 80 wt% of tin powder, and an alloy was produced again by an inert gas atomizing method. Further, the produced alloy having a size of about several tens of μm to one hundred μm was finely pulverized and classified by a jet mill or the like to produce negative electrode active material particles according to the present invention.

なお、負極活物質粒子中に含まれる金属酸化物の割合が1wt%より大きくなると、初期負極活物質粒子の利用率が他の効果との相乗効果で90%以下となってしまうため、特に温度が高くなる状態での負極活物質粒子の製造処理は、少なくともバインダーなどと混練されて塗液状態(スラリー状態)になるまでは不活性ガス雰囲気の下で実施されるのが好ましい。 In addition, when the ratio of the metal oxide contained in the negative electrode active material particles exceeds 1 wt%, the utilization factor of the initial negative electrode active material particles becomes 90% or less due to a synergistic effect with other effects. It is preferable to carry out the production process of the negative electrode active material particles in a state of increasing in an inert gas atmosphere at least until the negative electrode active material particles are kneaded with a binder or the like to become a coating liquid state (slurry state).

この作製された負極活物質粒子を電子顕微鏡を用いて観察すると、負極活物質粒子の粒界及び/又は外部表面にタングステンが析出、結合又は融合していることが観察された。 When the produced negative electrode active material particles were observed using an electron microscope, it was observed that tungsten was precipitated, bonded or fused on the grain boundaries and / or the external surface of the negative electrode active material particles.

また、この負極活物質粒子を用いた負極を電解液中で対極の正極との間で電気化学反応を起こさせた場合は、負極活物質粒子の表面の一部に析出、結合又は融合したタングステン部分には電解液と反応したSEI皮膜が形成されず、この結果、負極内に充填されているカーボンなどの導電材との電気的接触が維持されることから、リチウム二次コイン電池の充放電30サイクル経過後の電池の容量減衰率を約1/20まで改善することができた。 In addition, when the negative electrode using the negative electrode active material particles is allowed to undergo an electrochemical reaction with the positive electrode of the counter electrode in the electrolyte, tungsten deposited, bonded or fused on a part of the surface of the negative electrode active material particles Since the SEI film reacted with the electrolyte is not formed on the portion, and as a result, the electrical contact with the conductive material such as carbon filled in the negative electrode is maintained, charging / discharging of the lithium secondary coin battery The capacity decay rate of the battery after 30 cycles could be improved to about 1/20.

第3のステップは、上述のようにして作製された本発明による負極活物質粒子をさらに表面改質処理することにより、負極活物質粒子が電解液と反応したSEI皮膜が形成されることを抑制すると共に、かかる負極活物質粒子が適用された負極内に形成される電気的ネットワークのさらなる強化を目的とするものであって、負極活物質粒子の表面に導電性材料を固着、被覆及び/又は配位することによりその目的が達成される。 In the third step, the negative electrode active material particles according to the present invention produced as described above are further subjected to surface modification treatment, thereby suppressing the formation of an SEI film in which the negative electrode active material particles react with the electrolytic solution. In addition, for the purpose of further strengthening the electrical network formed in the negative electrode to which the negative electrode active material particles are applied, the conductive material is fixed to the surface of the negative electrode active material particles, coated and / or The purpose is achieved by coordination.

本ステップにおいて負極活物質粒子の表面に固着、被覆及び/又は配位される導電性材料は、導電性金属、金属炭化物及びカーボンから選ばれた1種又は2種以上の導電性材料であり、具体的には、(1)ニッケル、鉄、銅、クロム、ニオブ、銀、タンタル、バナジウム、モリブデン、タングステン及びチタンよりなる群から選ばれた1種又は2種以上の金属またはそれらの合金である導電性金属、(2)CoC、CrC、FeC、MoC、WC、TiC、TaC及びZrCよりなる群から選ばれた1種又は2種以上の炭化物、および/または(3)低温焼成カーボン、非晶質カーボン、ケッチェンブラック、アセチレンブラック、ナノチューブ、ナノフォーン、繊維状カーボン及び黒鉛(鱗片状、球状、人造、天然)よりなる群から選ばれた1種又は2種以上のカーボンが使用される。 In this step, the conductive material fixed, coated and / or coordinated on the surface of the negative electrode active material particles is one or more conductive materials selected from conductive metals, metal carbides and carbons, Specifically, (1) one or more metals selected from the group consisting of nickel, iron, copper, chromium, niobium, silver, tantalum, vanadium, molybdenum, tungsten, and titanium, or an alloy thereof. Conductive metal, (2) one or more carbides selected from the group consisting of CoC, CrC, FeC, MoC, WC, TiC, TaC and ZrC, and / or (3) low-temperature calcined carbon, amorphous Selected from the group consisting of carbon, ketjen black, acetylene black, nanotubes, nanophones, fibrous carbon and graphite (flaky, spherical, artificial, natural) One or more carbon is used.

特に、導電性材料として炭化物をメカノフュージョン法、ハイブリダイジング法などにより負極活物質粒子の表面に固着、被覆及び/又は配位させたり、高分子材料とともに焼成することで負極活物質粒子の表面に固着、被覆及び/又は配位させたり、または、負極活物質粒子の表面を直接炭化することで形成させたりした場合は、負極活物質粒子の表面に強固な電子伝導性ネットワークが構築され、このような導電性材料で表面処理がなされていない場合の負極活物質粒子の比抵抗が3Ωcm〜5Ωcmであったのに対して、導電性材料で表面改質処理したものでは0.01Ωcm〜1.0Ωcmまで低減し改善することができた。 In particular, the surface of the negative electrode active material particles is obtained by fixing, coating and / or coordinating the carbide as a conductive material on the surface of the negative electrode active material particles by a mechanofusion method, a hybridizing method, etc. In the case of fixing, covering and / or coordinating, or by directly carbonizing the surface of the negative electrode active material particles, a strong electron conductive network is constructed on the surface of the negative electrode active material particles, The specific resistance of the negative electrode active material particles when the surface treatment was not performed with such a conductive material was 3 Ωcm to 5 Ωcm, whereas that with a surface modification treatment with a conductive material was 0.01 Ωcm to 1 It was reduced to 0.0Ωcm and improved.

導電性金属の負極活物質粒子表面への固着、被覆及び/又は配位にあたっては、少なくともメカノフュージョン法、ハイブリダイジング法、メッキ法、スパッタリング法、蒸着法、溶射法、噴霧法、塗工法、浸漬法、静電法、焼成法、焼結法、ゾルゲル法、気相法又は遊星ボールミル法から選ばれた1又は2以上の方法により行なわれることが好ましく、さらに、不活性ガス雰囲気中又は真空下で100℃以上の温度で熱処理することにより負極活物質粒子との接触界面において相互拡散層が形成させて、導電性金属と負極活物質粒子表面との結合力を高めてもよい。 In fixing, coating and / or coordination of the conductive metal on the negative electrode active material particle surface, at least a mechanofusion method, a hybridizing method, a plating method, a sputtering method, a vapor deposition method, a spraying method, a spraying method, a coating method, It is preferably carried out by one or more methods selected from an immersion method, an electrostatic method, a firing method, a sintering method, a sol-gel method, a gas phase method or a planetary ball mill method, and further in an inert gas atmosphere or in a vacuum. The interdiffusion layer may be formed at the contact interface with the negative electrode active material particles by performing a heat treatment at a temperature of 100 ° C. or higher to increase the bonding force between the conductive metal and the surface of the negative electrode active material particles.

また、カーボンの負極活物質粒子表面への固着、被覆及び/又は配位にあたっては、バインダーを用いて負極活物質粒子表面に固着、被覆及び/又は配位させることも可能であるが、負極活物質粒子との強い電気的接触度及び固着強度を得るためには、有機化合物を単独で又は有機化合物に前記カーボンを添加して焼成することにより負極活物質粒子表面に固着、被覆及び/又は配位させることがより好ましい。 In addition, in fixing, coating and / or coordination of carbon to the surface of the negative electrode active material particles, it is possible to fix, coat and / or coordinate to the surface of the negative electrode active material particles using a binder. In order to obtain a strong electrical contact degree and adhesion strength with the material particles, the organic compound is fixed alone, or the carbon is added to the organic compound and baked to fix, coat and / or distribute on the surface of the negative electrode active material particles. It is more preferable that the position is adjusted.

上述された第2、第3及び上記導電性材料に含まれる金属の負極活物質粒子全体の重量に占める割合が5wt%より少なくなると、リチウムの吸蔵及び放出時の体積膨張・収縮に伴う構造変化の歪疲労から負極活物質粒子の微細化が進み、その結果、孤立化により電気的接触が乏しくなる傾向を示す。また、80wt%より多い場合は、リチウムの吸蔵及び放出に対して負極活物質合金粒子の体積膨張・収縮による微細化が抑制されることにより、孤立化により電気的接触が乏しくなるといった問題点は改善されるものの、負極活物質粒子としての電池容量が極めて小さくなるといった問題点を生ずることになる。 When the ratio of the metal contained in the second, third, and the above-described conductive materials to the total weight of the negative electrode active material particles is less than 5 wt%, the structural change accompanying volume expansion / contraction during lithium insertion and release The negative electrode active material particles are becoming finer due to strain fatigue, and as a result, the electrical contact tends to be poor due to isolation. Further, when the amount is more than 80 wt%, the problem that the electrical contact becomes poor due to isolation by suppressing the miniaturization due to volume expansion / contraction of the negative electrode active material alloy particles with respect to occlusion and release of lithium. Although improved, the battery capacity as the negative electrode active material particles becomes extremely small.

したがって、本発明による目的を達成するためには、負極活物質粒子に含まれる第2、第3及び上記導電性材料に含まれる金属の占める割合が5wt%〜80wt%の範囲内にあることが好ましく、より好ましくは10wt%〜50wt%範囲内にあることがよい。 Therefore, in order to achieve the object according to the present invention, the proportion of the metal contained in the second, third, and conductive materials contained in the negative electrode active material particles is in the range of 5 wt% to 80 wt%. Preferably, it is preferable that it is in the range of 10 wt% to 50 wt%.

つぎに、本発明による負極を作製するためには、上述された負極活物質粒子の製造方法に続けて、導電性材料が固着、被覆及び/又は配位された負極活物質粒子とカーボンやグラファイトなどの追加の導電性材料、バインダーや分散剤などを水や溶剤で粘度調整した塗工液を含む被覆材料を準備する。 Next, in order to produce the negative electrode according to the present invention, the negative electrode active material particles in which the conductive material is fixed, coated and / or coordinated with carbon or graphite, following the above-described method for producing negative electrode active material particles. A coating material containing an additional conductive material such as a coating liquid prepared by adjusting the viscosity of a binder or a dispersant with water or a solvent is prepared.

そして、準備された被覆材料を負極集電体上に、例えば(1)溶射法を用いて直接被覆したり、(2)塗工法を使って塗工するなどして表面処理し、乾燥又は加熱処理を施した後、負極表面の凸部を平滑にするために低圧でロールプレスすることで、所定の厚みと電極密度を有する負極を形成させる。 Then, the prepared coating material is surface-treated on the negative electrode current collector by, for example, (1) direct coating using a spraying method, or (2) coating using a coating method, and drying or heating. After the treatment, a negative electrode having a predetermined thickness and electrode density is formed by roll pressing at a low pressure in order to smooth the convex portion on the negative electrode surface.

このようにして作製された本発明による負極は(1)溶射法を用いて直接被覆した場合、負極の作製後に水分率10ppm以下のイオン性液体を含む電解質を含浸させ、また(2)塗工法を使って塗工した場合は、塗工液に予めイオン性液体単体あるいはイオン性液体を含む電解質を含有させておくか、または真空含浸法で強制的に含有させることなどにより、作製された本発明による負極表面に薄くイオン性液体を含む電解質層を形成させることができる。 The negative electrode according to the present invention produced in this way is (1) impregnated with an electrolyte containing an ionic liquid having a moisture content of 10 ppm or less after the production of the negative electrode when directly coated using a thermal spraying method, and (2) a coating method. If the coating liquid is used, the ionic liquid alone or the electrolyte containing the ionic liquid is included in the coating liquid in advance, or it is forcibly included by the vacuum impregnation method. An electrolyte layer containing a thin ionic liquid can be formed on the negative electrode surface according to the invention.

この結果、本発明による負極に機械的強度を有したイオン性液体を含むゲル状のイオン性液体を用いた固体電解質を用いた場合は、負極と固体電解質とが接触する界面において固体電解質の成分が負極活物質粒子より構成される負極表面処理層内のイオン性液体と相溶することにより負極と固体電解質との密着性を向上させ、また、電解液を用いた場合には、イオン性液体が負極内の負極活物質粒子の表面を覆って不活性な皮膜が形成されることを防止して電子伝導ネットワークの形成を促進させることができる。また、使用されるイオン性液体の種類としては、特にアンモニウム系、ピリジニウム系、ピペリジニウム系のオニウム塩であることが好ましい。なお、イオン性液体の水分率は10ppm以下でなければ、水分によりリチウムが不活性化することとなるので注意を要する。 As a result, when a solid electrolyte using a gelled ionic liquid containing an ionic liquid having mechanical strength is used for the negative electrode according to the present invention, the components of the solid electrolyte at the interface where the negative electrode and the solid electrolyte are in contact with each other Improves the adhesion between the negative electrode and the solid electrolyte by being compatible with the ionic liquid in the negative electrode surface treatment layer composed of the negative electrode active material particles, and when the electrolytic solution is used, the ionic liquid Prevents the formation of an inactive film by covering the surface of the negative electrode active material particles in the negative electrode, thereby facilitating the formation of the electron conduction network. The type of ionic liquid used is particularly preferably an ammonium-based, pyridinium-based, or piperidinium-based onium salt. Note that if the moisture content of the ionic liquid is not 10 ppm or less, lithium is inactivated by moisture, so care must be taken.

また、負極と固体電解質との密着性がさらに高まると、イオン伝導性が向上してより高い充放電容量が得られるようになると共に、充放電を繰り返した場合には、負極活物質粒子の体積変化による固体電解質との接触性が低下してしまうこともより一層抑制されて、さらに優れた充放電サイクル特性が得られるようになる。 Further, when the adhesion between the negative electrode and the solid electrolyte is further increased, the ion conductivity is improved and a higher charge / discharge capacity can be obtained. When charge / discharge is repeated, the volume of the negative electrode active material particles is increased. It is further suppressed that the contact with the solid electrolyte due to the change is reduced, and further excellent charge / discharge cycle characteristics can be obtained.

塗工などによる負極活物質粒子の負極集電体への表面処理方法は、負極活物質粒子のリチウムの吸蔵及び放出に伴う構造破壊により微細化されて電池のサイクル特性の劣化が著しいとの理由から、本格的な研究開発は縮小傾向にある。しかしながら、本発明においては他の特許に説明されているような粗面化された負極集電体表面に数μmの厚み又は高さに柱状シリコンをイオンスパッタリング、PVD、CVD又はメッキなどの方法を用いた表面処理方法に比べて表面処理層の厚みをより一層厚くできることから、電極容量を大きくして容積効率を高めるために有利である。 The reason why the surface treatment method of the negative electrode active material particles to the negative electrode current collector by coating or the like is that the negative electrode active material particles are miniaturized due to structural destruction due to insertion and extraction of lithium and the cycle characteristics of the battery are significantly deteriorated. Therefore, full-fledged research and development is shrinking. However, in the present invention, a method such as ion sputtering, PVD, CVD, or plating of columnar silicon with a thickness or height of several μm on the surface of a roughened negative electrode current collector as described in other patents. Since the thickness of the surface treatment layer can be further increased compared to the surface treatment method used, it is advantageous for increasing the electrode capacity and increasing the volume efficiency.

また、本発明による負極活物質粒子を含む被覆材料を多孔質層又はマトリックスネットワークを形成するように負極集電体へ表面処理するために適した処理方法としては、上述されたように(1)被覆材料を直接、負極集電体表面へ多孔質層又はマトリックスネットワークを形成させるためには、メッキ法、スパッタリング法、蒸着法、溶射法、噴霧法、浸漬法、静電法、気相法又は焼結法などの表面処理方法が挙げられ、また(2)粒状の負極活物質にカーボンなどの導電性材助剤やバインダーを混合した塗液を負極集電体面に塗工して乾燥する表面処理方法などを使用してもよい。 In addition, as a treatment method suitable for surface-treating the coating material containing the negative electrode active material particles according to the present invention on the negative electrode current collector so as to form a porous layer or a matrix network, as described above, (1) In order to form a porous layer or a matrix network directly on the surface of the negative electrode current collector, a coating method, a sputtering method, a vapor deposition method, a thermal spraying method, a spraying method, an immersion method, an electrostatic method, a vapor phase method or Surface treatment methods such as sintering, and (2) a surface on which a negative electrode current collector surface is coated with a coating liquid obtained by mixing a particulate negative electrode active material with a conductive material assistant such as carbon or a binder, and then dried. A processing method or the like may be used.

また、得られた負極に一層強力な電子伝導ネットワークの構築を望む場合は、リチウムイオンが自由に移動でき、且つ負極活物質内でリチウムの吸蔵及び放出を阻害することがないような多孔質層又はマトリックスネットワークを、ニッケル、銅、銀又は鉄などの金属を用いてメッキ法、スパッタリング法、気相法又は蒸着法により、負極表面にさらに形成させることが有利である。 In addition, when it is desired to construct a stronger electron conduction network in the obtained negative electrode, a porous layer in which lithium ions can freely move and does not hinder the insertion and extraction of lithium in the negative electrode active material Alternatively, it is advantageous to further form the matrix network on the negative electrode surface by a plating method, a sputtering method, a vapor phase method or a vapor deposition method using a metal such as nickel, copper, silver or iron.

この結果、負極活物質粒子同士及び負極活物質粒子と負極集電体との電気的な繋がりは、負極活物質粒子の表面及び/又は界面に析出、結合又は融合した第3の金属、または粒子表面に固着、被覆及び/又は配位された導電性材料、並びにこれらの負極活物質粒子と混合して表面処理された導電性助剤により確実に達成される。 As a result, the negative electrode active material particles and the electrical connection between the negative electrode active material particles and the negative electrode current collector are the third metal or particles deposited, bonded or fused on the surface and / or interface of the negative electrode active material particles. This is reliably achieved by the conductive material fixed, coated and / or coordinated on the surface, and the conductive auxiliary surface-treated by mixing with these negative electrode active material particles.

また、本発明による負極活物質粒子と混合して表面処理される導電性助剤にケッチェンブラック又はアセチレンブラック、ナノチューブ、ナノフォーンなどのカーボンを用いる場合は、特に被覆層における重量換算で1wt%〜15wt%含有させると各粒子間などにおいて高い電気的な繋がりを得ることができ、また、リチウムの吸蔵・放出により負極の厚みを変化させないためには、6wt%〜15wt%含有させることでその目的が達成させられる。 In addition, when carbon such as ketjen black or acetylene black, nanotubes, nanophones, etc. is used as the conductive auxiliary agent to be surface-treated by mixing with the negative electrode active material particles according to the present invention, it is particularly 1 wt% in terms of weight in the coating layer When the content is ˜15 wt%, high electrical connection can be obtained between the particles, and in order not to change the thickness of the negative electrode due to occlusion / release of lithium, the content can be increased by including 6 wt% to 15 wt%. The goal is achieved.

さらに、上述されたように、負極に形成される被覆層の空隙率は、負極集電体の表裏面に負極活物質粒子を塗工して熱乾燥した状態での被覆層の空隙率を40%〜65%の範囲内にすることで、負極活物質粒子のリチウムイオンの吸蔵に伴う体積膨張を被覆層内部で吸収して負極の厚みを増大させないことができるため、全体としてリチウム二次電池の形状変化を抑制するために多大な効果があり、また、前記被覆層の表面にニッケル、銀、銅又は鉄から選ばれた1種又は2種以上の金属をメッキなどの方法で被覆することで、多孔質層又はマトリックスネットワークを形成させて電極抵抗を低減させることもできる。 Further, as described above, the porosity of the coating layer formed on the negative electrode is 40% of the porosity of the coating layer in a state where the negative electrode active material particles are coated on the front and back surfaces of the negative electrode current collector and thermally dried. By making the content within the range of from 65% to 65%, it is possible to absorb the volume expansion accompanying the occlusion of lithium ions of the negative electrode active material particles inside the coating layer and not to increase the thickness of the negative electrode. The surface of the coating layer is coated with one or more metals selected from nickel, silver, copper or iron by a method such as plating. Thus, the electrode resistance can be reduced by forming a porous layer or a matrix network.

本発明による負極活物質粒子は、上述されたように(1)負極活物質粒子のリチウムの吸蔵及び放出に伴う粒子の微細化の抑制、および(2)電解液などとの反応による不活性な皮膜が負極活物質粒子の全表面を覆って形成されることを防止し、その結果、強固な電子伝導回路を構築し、リチウムの吸蔵及び放出時における体積変化に影響され難い電気的接続ネットワークの形成を可能とするものである。 As described above, the negative electrode active material particles according to the present invention are inactive as a result of (1) suppression of particle miniaturization associated with insertion and extraction of lithium in the negative electrode active material particles, and (2) reaction with an electrolytic solution and the like. The film prevents the negative electrode active material particles from being formed over the entire surface. As a result, a strong electronic conduction circuit is constructed, and the electrical connection network is less susceptible to volume changes during lithium insertion and extraction. It is possible to form.

なお、本発明における他の金属などとの組み合わせ、個々の成分比率および原材料の粒度、電極の厚み、密度、製造条件、集電体の表面状態、電解質の種類などについては、特に実施例に限定されるものではなく、本発明の技術的思想に従う限り、リチウム二次電池の用途、容量、形態などに応じて適宜選択されるものである。 In addition, combinations with other metals in the present invention, individual component ratios and particle sizes of raw materials, electrode thickness, density, manufacturing conditions, current collector surface condition, electrolyte type, etc. are particularly limited to the examples. However, as long as the technical idea of the present invention is followed, the lithium secondary battery is appropriately selected according to the use, capacity, form, and the like.

以下、本発明による負極活物質粒子を用いた負極、およびその負極を用いたリチウム二次電池について実施例と比較例をもって具体的に説明する。 Hereinafter, the negative electrode using the negative electrode active material particles according to the present invention and the lithium secondary battery using the negative electrode will be specifically described with reference to Examples and Comparative Examples.

図1には、本発明による負極活物質粒子を用いたコインセル1の断面が示されている。コインセル1の中では、負極集電体である銅箔10上に本発明による負極活物質粒子が塗工された負極11と正極2とが、セパレータ12を挟んで積層されている。 FIG. 1 shows a cross section of a coin cell 1 using negative electrode active material particles according to the present invention. In the coin cell 1, a negative electrode 11 and a positive electrode 2 each coated with a negative electrode active material particle according to the present invention are laminated on a copper foil 10, which is a negative electrode current collector, with a separator 12 interposed therebetween.

図2には、本発明による負極活物質粒子3の断面が示されている。負極活物質粒子3の表面及び/又は界面には電解液に反応し難く且つリチウムを吸蔵及び放出し難い性質を有する第3の金属4が析出、結合又は融合されている。 FIG. 2 shows a cross section of the negative electrode active material particles 3 according to the present invention. On the surface and / or interface of the negative electrode active material particle 3, a third metal 4 having a property that hardly reacts with the electrolytic solution and hardly absorbs and releases lithium is deposited, bonded, or fused.

図3には、本発明による負極活物質粒子3をさらに表面改質処理した場合の負極活物質粒子8の断面が示されている。負極活物質粒子8の表面及び/又は界面には第3の金属4が析出、結合又は融合されており、さらに、負極活物質粒子8の表面には導電性材料であるVGCF導電材5やアセチレンブラック6及びフェノール樹脂カーボン層7が固着、被覆及び/又は配位されている。 FIG. 3 shows a cross section of the negative electrode active material particles 8 when the negative electrode active material particles 3 according to the present invention are further surface-modified. The third metal 4 is deposited, bonded or fused on the surface and / or interface of the negative electrode active material particles 8, and the VGCF conductive material 5 or acetylene which is a conductive material is further formed on the surface of the negative electrode active material particles 8. The black 6 and the phenol resin carbon layer 7 are fixed, coated and / or coordinated.

正極活物質としてコバルト酸リチウムと導電材及びバインダーを混錬した塗液を正極集電体であるアルミニウム箔上に厚み130μmとなるように塗工して乾燥し、ロールプレスにより厚み90μmの正極2を作製し、直径16mmの円板形状に打ち抜いた。 A coating solution in which lithium cobalt oxide, a conductive material, and a binder are mixed as a positive electrode active material is applied onto an aluminum foil as a positive electrode current collector to a thickness of 130 μm, dried, and then a positive electrode 2 having a thickness of 90 μm by a roll press. Was punched out into a disk shape with a diameter of 16 mm.

第1の金属である負極活物質として、錫を主成分とする粒子に予めアンチモン0.09%、亜鉛0.02%及びケイ素0.01%が添加されている錫粉末合金粒子を使用した。 As the negative electrode active material which is the first metal, tin powder alloy particles in which 0.09% of antimony, 0.02% of zinc and 0.01% of silicon were added in advance to particles mainly composed of tin were used.

つぎに、第2の金属であるコバルトを67wt%、第3の金属であるモリブデンを33wt%の割合で混合し、ガスアトマイジング法にて約100μmのCo−Mo合金粉末粒子を作製した。 Next, cobalt as the second metal was mixed at 67 wt% and molybdenum as the third metal was mixed at a ratio of 33 wt%, and Co—Mo alloy powder particles of about 100 μm were prepared by a gas atomizing method.

さらに、錫粉末粒子を75wt%、Co−Mo合金粉末粒子を25wt%の割合で混合して溶解し、再度、ガスアトマイジング法にて約10μm〜約150μmのSn−Co/Mo合金粉末粒子3を作製した。 Further, 75 wt% of tin powder particles and 25 wt% of Co—Mo alloy powder particles are mixed and dissolved, and again Sn—Co / Mo alloy powder particles 3 of about 10 μm to about 150 μm by gas atomizing method. Was made.

このようにして作製されたSn−Co/Mo合金粉末粒子3は、錫とコバルトが合金化しているが、電解液に反応し難く且つリチウムを吸蔵及び放出し難いモリブデン4はSn−Co合金粒子3の粒界及び/又は外表面の少なくとも一部に偏析して析出、結合又は融合しており、残りのモリブデン4はSn−Co合金と相互拡散層を形成して、第1の金属である錫と第2の金属であるコバルトとを結合させる役目を果たしている。 The Sn—Co / Mo alloy powder particles 3 thus produced are alloyed with tin and cobalt, but the molybdenum 4 which does not easily react with the electrolyte and does not absorb and release lithium is Sn—Co alloy particles. 3 is segregated to be precipitated, bonded or fused to at least a part of the grain boundary and / or outer surface, and the remaining molybdenum 4 forms a mutual diffusion layer with the Sn—Co alloy and is the first metal. It plays the role of bonding tin and the second metal, cobalt.

したがって、このSn−Co/Mo合金粉末粒子3をさらにジェットミルなどの粉砕機を用いて平均粒子径2μm程度の微粉末粒子となるように粉砕した場合は、ほとんどの合金粉末粒子3がその粒界において破砕され、一方、十分に粉砕されずに残った比較的大きな平均粒子径(平均粒子径約15μm)を有する合金粉末粒子3については、その内部に線状にモリブデン4が析出された粒界が多数存在することとなった。 Therefore, when the Sn—Co / Mo alloy powder particles 3 are further pulverized to a fine powder particle having an average particle diameter of about 2 μm using a pulverizer such as a jet mill, most of the alloy powder particles 3 On the other hand, for the alloy powder particles 3 having a relatively large average particle size (average particle size of about 15 μm) that were crushed at the boundary and remained without being sufficiently pulverized, particles in which molybdenum 4 was precipitated linearly inside There were many worlds.

そして、一旦平均粒子径2μmとなるように分級されたSn−Co/Mo合金粉末粒子3に、5%のフェノール樹脂溶液とVGCF5とアセチレンブラック6とを混合した溶液を噴霧又はスピンコートなどを用いて付着させた後、アルゴン水素ガス雰囲気中、約830℃で熱処理を行い、合金粉末粒子3の外表面にフェノール樹脂をカーボン化させたカーボン層を形成させることにより、VGCF5及びアセチレンブラック6などを固着、被覆及び/又は配位させた複雑な形状を有するSn−Co/Mo合金粉末粒子8(図3参照)を作製した。 Then, a solution obtained by mixing a 5% phenol resin solution, VGCF5, and acetylene black 6 to the Sn—Co / Mo alloy powder particles 3 once classified to have an average particle diameter of 2 μm is sprayed or spin coated. Then, heat treatment is performed at about 830 ° C. in an argon hydrogen gas atmosphere to form a carbon layer obtained by carbonizing a phenol resin on the outer surface of the alloy powder particles 3, thereby obtaining VGCF 5 and acetylene black 6. Sn—Co / Mo alloy powder particles 8 (see FIG. 3) having a complicated shape fixed, coated and / or coordinated were produced.

つぎに、前記Sn−Co/Mo合金粉末粒子8をジェットミルを用いて粉砕し、平均粒子径が2μmとなるように分級したSn−Co/Mo合金粉末粒子8を85wt%と、同じくジェットミルを用いて粉砕し、平均粒子径が20μmとなるように分級したSn−Co/Mo合金粉末粒子9を5wt%に、導電性助剤としてのケッチェンブラックを5wt%、バインダーとしてのPVdFを5wt%とをさらに加えてプラネタリー・ミキサーにて分散混錬し、NMPで粘度調整した塗液を作製した。 Next, the Sn—Co / Mo alloy powder particles 8 were pulverized using a jet mill, and the Sn—Co / Mo alloy powder particles 8 classified so as to have an average particle diameter of 2 μm were 85 wt%. 5% by weight of Sn-Co / Mo alloy powder particles 9 pulverized using a powder and classified so as to have an average particle diameter of 20 μm, 5% by weight of ketjen black as a conductive auxiliary agent, and 5% of PVdF as a binder. % Was added and dispersed and kneaded with a planetary mixer to prepare a coating liquid whose viscosity was adjusted with NMP.

最後に、この塗液を負極集電体である銅箔10の表面上に厚みが約60μmになるように塗工して乾燥した後、線圧約150kg/cmの圧力で加熱ロールプレスして、塗工面の突起状物が平滑になるようにした負極11の電極板を作製した。このとき得られた負極の電極板の厚みは、約52μmであった。 Finally, after coating and drying the coating liquid on the surface of the copper foil 10 as the negative electrode current collector to a thickness of about 60 μm, the film was heated and pressed with a linear pressure of about 150 kg / cm, An electrode plate of the negative electrode 11 was prepared so that the protrusions on the coated surface were smooth. The thickness of the negative electrode plate obtained at this time was about 52 μm.

図4には、このようにして作製された負極11を約16.2mm直径を有する円板状に打ち抜いた後の負極11の一部断面が示されている。負極11は、負極集電体である銅箔10表面上に本発明による負極活物質粒子8、9を含む被覆材料が塗工及び乾燥されて被覆層が形成されている。 FIG. 4 shows a partial cross section of the negative electrode 11 after the negative electrode 11 manufactured in this way is punched into a disk having a diameter of about 16.2 mm. The negative electrode 11 is formed by coating and drying a coating material containing the negative electrode active material particles 8 and 9 according to the present invention on the surface of the copper foil 10 as a negative electrode current collector.

この負極11と上述された正極2及びセパレーター12とを、イオン性液体が添加された1MのLiPF6+EC/DMCの電解液で真空含浸した後、それらをコインセル容器内に配置することにより電池を作製した。23℃の恒温槽内にて5時間率での電池の定電流充放電サイクル試験を実施した結果を表3に示す。 The negative electrode 11 and the above-described positive electrode 2 and separator 12 were vacuum impregnated with an electrolyte solution of 1M LiPF6 + EC / DMC added with an ionic liquid, and then placed in a coin cell container to produce a battery. . Table 3 shows the results of carrying out a constant current charge / discharge cycle test of the battery at a 5-hour rate in a 23 ° C. constant temperature bath.

実施例2では、第1の金属である錫粉末粒子を70wt%、電圧改善のためにシリコン粉末粒子を10wt%、実施例1の場合と同じ第2及び第3の金属との合金であるCo−Mo合金粉末粒子を20wt%の割合で混合し、ガスアトマイジング法にて約20μm〜約110μmのSn−Co−Si/Mo合金粉末粒子3を作製した。この合金粉末粒子3を実施例1と同じ方法で加工してコインセルを作製し、電池の充放電サイクル試験を行った。その結果を表3に示す。 In Example 2, 70 wt% of tin powder particles as the first metal, 10 wt% of silicon powder particles for voltage improvement, Co, which is an alloy with the same second and third metals as in Example 1, is used. -Mo alloy powder particles were mixed at a ratio of 20 wt%, and Sn-Co-Si / Mo alloy powder particles 3 of about 20 µm to about 110 µm were produced by a gas atomizing method. The alloy powder particles 3 were processed in the same manner as in Example 1 to produce a coin cell, and a battery charge / discharge cycle test was performed. The results are shown in Table 3.

実施例3は、第1の金属であるリチウムを吸蔵及び放出する負極活物質粒子として、シリコンを用いて本発明による負極活物質粒子を作製したものである。 In Example 3, negative electrode active material particles according to the present invention were produced using silicon as negative electrode active material particles that occlude and release lithium as the first metal.

具体的には、第2の金属であるニッケルを80wt%、第3の金属であるタングステンを20wt%の割合で混合し、ガスアトマイジング法にて約100μm〜約200μmのNi−W合金粉末粒子を作製した。 Specifically, nickel as the second metal is mixed at 80 wt% and tungsten as the third metal is mixed at a ratio of 20 wt%, and Ni—W alloy powder particles of about 100 μm to about 200 μm by gas atomizing method. Was made.

つぎに、シリコン粉末粒子を65wt%、Ni−W合金粉末粒子を30wt%に、さらに第1の金属としてアルミニウムを5wt%の割合で加えて混合し、ガスアトマイジング法にて約8μm〜約60μmのSi−Ni−Al/W合金粉末粒子3を作製した。 Next, 65 wt% of silicon powder particles, 30 wt% of Ni—W alloy powder particles, and 5 wt% of aluminum as a first metal are added and mixed, and the gas atomizing method is used to add about 8 μm to about 60 μm. Si-Ni-Al / W alloy powder particles 3 were prepared.

このようにして作製された合金粉末粒子3をさらに平均粒子径2μmとなるように粉砕して分級した後、各粒子の表面にニッケルメッキを施した。得られた合金粉末粒子8の少なくとも外表面の一部にはニッケル金属被膜層が形成されており、さらに、アルゴン水素ガス雰囲気下、650℃以上の温度で熱処理することによりニッケルを合金粉末粒子の表面層に拡散させて、合金粉末粒子の表面とニッケルメッキ層とが強固に結合した被膜層を有するSi−Ni−Al/W合金粉末粒子8を作製した。 The alloy powder particles 3 thus produced were further pulverized and classified so as to have an average particle diameter of 2 μm, and then the surface of each particle was plated with nickel. A nickel metal coating layer is formed on at least a part of the outer surface of the obtained alloy powder particles 8, and nickel is further treated by heat treatment at a temperature of 650 ° C. or higher in an argon hydrogen gas atmosphere. Si—Ni—Al / W alloy powder particles 8 having a coating layer in which the surface of the alloy powder particles and the nickel plating layer were firmly bonded were produced by diffusing into the surface layer.

最後に、この合金粉末粒子3と導電性助剤及びバインダーを実施例1と同じ配合比率で混錬し、銅箔10の表面上に塗工して乾燥及び線圧約50kg/cmで軽プレスした後、コインセルに組み込んだ。作製された電池の充放電試験結果を表3に示す。 Finally, the alloy powder particles 3, the conductive auxiliary agent, and the binder were kneaded at the same blending ratio as in Example 1, coated on the surface of the copper foil 10, dried, and lightly pressed at a linear pressure of about 50 kg / cm. Later, it was incorporated into a coin cell. Table 3 shows the charge / discharge test results of the fabricated batteries.

実施例4では、第1の金属である錫粉末粒子を50wt%、平均電圧を高めるためにシリコン粉末粒子を30wt%、第2の金属としてコバルトを20wt%混合して遊星ボールミルを用いて合金粉末を作製した(なお、ガスアトマイジング法又は水アトマイジング法を用いて作製してもよい。)。一部に遊星ボールミル容器壁面に固着した合金部分があったが、それらを除いた粉末粒子を次の工程に使用した。 In Example 4, 50 wt% of tin powder particles as the first metal, 30 wt% of silicon powder particles to increase the average voltage, and 20 wt% of cobalt as the second metal were mixed into an alloy powder using a planetary ball mill. (In addition, you may produce using the gas atomizing method or the water atomizing method.). Some of the alloy parts were fixed to the planetary ball mill container wall surface, but the powder particles excluding them were used in the next step.

次に、このSn−Co−Si合金の微粉末粒子を第3の金属である約85℃に加熱されたニッケルメッキ浴に浸漬し、超音波を付加しながら約30秒間、メッキ処理をした後、洗浄して真空加熱乾燥することで、Sn−Co−Si/Ni合金の微粉末粒子3を作製した。さらに、メッキされたニッケルと合金との間に相互拡散層を形成させて強く結合させるために、約600℃、10分間の熱処理を真空下(不活性ガスを少し入れた真空度)で行った。このようにして作製されたSn−Co−Si合金粉末粒子3の表面には、散点的に第3の金属であるニッケルの粒子が点在して析出、結合又は融合しており、かかるニッケル粒子が合金粒子の表面から容易に脱落しないことから、相互拡散により結合されているものと考えられる。 Next, after the fine powder particles of this Sn—Co—Si alloy were immersed in a nickel plating bath heated to about 85 ° C., which is a third metal, and plated for about 30 seconds while applying ultrasonic waves. The fine powder particles 3 of Sn—Co—Si / Ni alloy were produced by washing and vacuum heating and drying. Further, in order to form an inter-diffusion layer between the plated nickel and the alloy and bond them strongly, a heat treatment at about 600 ° C. for 10 minutes was performed under vacuum (a degree of vacuum containing a little inert gas). . On the surface of the Sn—Co—Si alloy powder particles 3 thus produced, nickel particles that are the third metal are scattered in a scattered manner, and are precipitated, bonded or fused. Since the particles do not easily fall off from the surface of the alloy particles, it is considered that they are bonded by mutual diffusion.

次に、この合金粉末粒子3と導電性助剤及びバインダーを実施例1と同じ配合比率で混錬し、銅箔10の表面上に塗工して乾燥及び線圧約50kg/cmで軽プレスした後、コインセルに組み込んだ。作製された電池の充放電試験結果を表3に示す。 Next, the alloy powder particles 3, the conductive auxiliary agent, and the binder were kneaded at the same blending ratio as in Example 1, coated on the surface of the copper foil 10, dried, and lightly pressed at a linear pressure of about 50 kg / cm. Later, it was incorporated into a coin cell. Table 3 shows the charge / discharge test results of the fabricated batteries.

実施例4では、第1の金属である錫粉末粒子を50wt%、平均電圧を高めるためにシリコン粉末粒子を30wt%、第2の金属としてニッケルを20wt%混合して遊星ボールミルを用いて合金粉末を作製した(なお、ガスアトマイジング法又は水アトマイジング法を用いて作製してもよい。)。一部に遊星ボールミル容器壁面に固着した合金部分があったが、それらを除いた粉末粒子を次の工程に使用した。 In Example 4, 50 wt% of tin powder particles as the first metal, 30 wt% of silicon powder particles to increase the average voltage, and 20 wt% of nickel as the second metal were mixed into an alloy powder using a planetary ball mill. (In addition, you may produce using the gas atomizing method or the water atomizing method.). Some of the alloy parts were fixed to the planetary ball mill container wall surface, but the powder particles excluding them were used in the next step.

次に、このSn−Ni−Si合金の微粉末粒子と第3の金属であるニッケル微粉末をメカノフュージョン法により約45分間処理することで、Sn−Ni−Si微粉末粒子表面にNi微粉末粒子を点状に一部結合させた状態の負極活物質粒子3を作製した。さらに、ニッケルと合金との間に相互拡散層を形成させて強く結合させるために、約600℃、10分間の熱処理を真空下(不活性ガスを少し入れた真空度)で行った。このようにして作製されたSn−Ni−Si合金粉末粒子の表面には、散点的に第3の金属であるニッケルの粒子が点在して析出、結合又は融合しており、かかるニッケル粒子が合金粒子の表面から容易に脱落しないことから、相互拡散により結合されているものと考えられる。 Next, the fine powder particles of the Sn-Ni-Si alloy and the fine nickel powder as the third metal are treated for about 45 minutes by the mechano-fusion method, so that the fine Ni powder on the surface of the fine Sn-Ni-Si powder particles. Negative electrode active material particles 3 in a state in which the particles were partially bonded in the form of dots were produced. Further, in order to form an interdiffusion layer between nickel and the alloy and bond them strongly, a heat treatment at about 600 ° C. for 10 minutes was performed under vacuum (degree of vacuum with a little inert gas). On the surface of the Sn—Ni—Si alloy powder particles thus produced, nickel particles that are the third metal are scattered in a scattered manner, and are precipitated, bonded, or fused. Is not easily detached from the surface of the alloy particles, and is considered to be bonded by mutual diffusion.

次に、この合金粉末粒子3と導電性助剤及びバインダーを実施例1と同じ配合比率で混錬し、銅箔10の表面上に塗工して乾燥及び線圧約50kg/cmで軽プレスした後、コインセルに組み込んだ。作製された電池の充放電試験結果を表3に示す。 Next, the alloy powder particles 3, the conductive auxiliary agent, and the binder were kneaded at the same blending ratio as in Example 1, coated on the surface of the copper foil 10, dried, and lightly pressed at a linear pressure of about 50 kg / cm. Later, it was incorporated into a coin cell. Table 3 shows the charge / discharge test results of the fabricated batteries.

負極活物質として第1の金属である錫を主成分とし、これに予めリンを0.09%添加したものに第2の金属であるコバルトとビスマス(又はインジウムであってもよい)を混合し、これらを溶融し合金化したものを粉砕して篩い機により約30μm以下の合金粒子に分級した。次に、これらの粒子をさらに微粉砕したものを分級機により分級して0.1μm〜5μm(平均粒径は1.1μm)の粒子を得た。 As the negative electrode active material, tin, which is the first metal, is used as the main component, and 0.09% of phosphorus is added in advance to this, and then the second metal, cobalt and bismuth (or indium) may be mixed. These were melted and alloyed and pulverized and classified into alloy particles of about 30 μm or less by a sieving machine. Next, the finely pulverized particles were classified by a classifier to obtain particles having a size of 0.1 μm to 5 μm (average particle size was 1.1 μm).

このようにして得られた錫合金粒子は、X線回折で分析するとCoSn、CoSn、CoSn、Sn、Bi(又はIn)などのピークが検出されたが、次に、続いて不活性ガス(又は真空)雰囲気下で約500℃〜600℃の熱処理を施すことにより、合金の主成分としてCoSn結晶に対応するピークが顕著に検出される錫合金粒子が得られた。また、マッピングの結果、コバルト成分、錫成分、ビスマス(又はインジウム)成分は均一に合金粒子中に分散していることが判明した。また、さらに遊星ボールミルで短時間処理した場合は、錫合金粒子の最大粒子径は3μm程度にまで粉砕された。 When the tin alloy particles thus obtained were analyzed by X-ray diffraction, peaks of Co 3 Sn 2 , CoSn, CoSn 2 , Sn, Bi (or In), etc. were detected. By performing heat treatment at about 500 ° C. to 600 ° C. in an active gas (or vacuum) atmosphere, tin alloy particles in which a peak corresponding to the CoSn 2 crystal as a main component of the alloy was significantly detected were obtained. As a result of mapping, it was found that the cobalt component, tin component, and bismuth (or indium) component were uniformly dispersed in the alloy particles. Further, when the planetary ball mill was used for a short time, the maximum particle size of the tin alloy particles was pulverized to about 3 μm.

このように、溶融後に得られた合金粒子は数種類の合金組成からなる混合組成物であったのに対して、冷却後に、粒子同士が溶融したり融着しない温度域で再度熱処理を行うことにより、目的とするCoSn結晶を主成分とする粒子を得ることができた。 In this way, the alloy particles obtained after melting were mixed compositions composed of several kinds of alloy compositions, but after cooling, the particles were melted or heat-treated again in a temperature range in which they were not fused. As a result, it was possible to obtain particles having the target CoSn 2 crystal as a main component.

次に、上記の錫合金粉末粒子を80wt%、リチウムの吸蔵・放出可能なカーボン材としてのMCMB(平均粒径6μm以下)を20wt%の割合で混合した負極活物質混合粒子を91wt%、導電材(例えばアセチレンブラック)を5wt%、バインダーとしてPVdFを1wt%、これに溶剤系SBRを3wt%加えた混合材をNMPで粘度調整しながら混錬して塗液を作製した。 Next, 80 wt% of the above tin alloy powder particles, 91 wt% of negative electrode active material mixed particles in which MCMB (average particle size of 6 μm or less) as a carbon material capable of occluding and releasing lithium was mixed at a ratio of 20 wt%, and conductive A coating material was prepared by kneading a mixed material obtained by adding 5 wt% of a material (for example, acetylene black), 1 wt% of PVdF as a binder, and 3 wt% of solvent-based SBR while adjusting the viscosity with NMP.

この塗液を負極集電体である銅箔10の表面上に塗工して乾燥した後、加熱ロールプレスして、約31μmの負極を得た。次に、正極活物質としてLiNiCoAl(又はLiNiCoMn)を用いて厚さ約90μmの正極を作製し、負極と正極の間に多孔質セパレータ膜を配置して1MのLiClO+EC/DECの電解液を含浸させてアルミラミネートパックセル45mAhを作製した。このアルミラミネートパックセルを23℃の恒温槽内において5時間率で定電流充放電サイクル試験を実施した結果、30サイクル後の放電容量は約43.8mAhで、50サイクル後では43.7mAhであった。また、表3に示すように30サイクル後の放電容量劣化率は2.6%であった。 This coating solution was applied onto the surface of the copper foil 10 as the negative electrode current collector and dried, followed by heating and roll pressing to obtain a negative electrode of about 31 μm. Next, a positive electrode having a thickness of about 90 μm is prepared using LiNi X Co Y Al Z O 2 (or LiNi X Co Y Mn Z O 2 ) as a positive electrode active material, and a porous separator film is formed between the negative electrode and the positive electrode. It was placed and impregnated with 1M LiClO 4 + EC / DEC electrolyte solution to produce an aluminum laminate pack cell 45 mAh. This aluminum laminate pack cell was subjected to a constant current charge / discharge cycle test in a constant temperature bath at 23 ° C. at a rate of 5 hours. As a result, the discharge capacity after 30 cycles was about 43.8 mAh and after 50 cycles was 43.7 mAh. It was. As shown in Table 3, the discharge capacity deterioration rate after 30 cycles was 2.6%.

負極活物質として第1の金属である錫を主成分とし、これに予めリンを0.09%添加したものに第2の金属であるコバルトと数%のインジウム、ホウ素を混合し、これらを溶融して合金化した後、冷却してさらに再熱処理したものを粉砕して約10μm以下の合金粒子に分級した。X線回折分析の結果、上記の合金粒子は主としてCoSn結晶の合金からなることが判明した。また、この時の上記合金粒子の主成分は、重量比率でおおよそ錫80wt%、コバルト20wt%程度になる。 As the negative electrode active material, the main component is tin, which is the first metal, and 0.09% of phosphorus is added in advance to this, and then the second metal, cobalt, several percent of indium and boron are mixed and melted. After alloying, the cooled and reheated product was pulverized and classified into alloy particles of about 10 μm or less. As a result of X-ray diffraction analysis, it has been found that the alloy particles are mainly composed of an alloy of CoSn 2 crystals. At this time, the main components of the alloy particles are approximately 80 wt% tin and 20 wt% cobalt in weight ratio.

次に、金属リチウムのインゴットをアルゴンガス雰囲気中のステンレス坩堝内で溶融した。この溶融状態の金属リチウムと上記錫合金粒子を反応させることで、相互拡散による合金化したリチウム合金粒子を作製した。さらに、前記リチウム合金粒子を水酸化リチウム溶液中でリチウム成分除去処理を行った。この処理した粉末を真空乾燥してSEM観察したところ、不連続な微細孔や連続した微細孔が無数に形成された形状(軽石、珊瑚のような外観で、個々の突起部などの表面は滑らかな形状)を有する不定形粒子(図5参照)や、表面及び内部に達する微小な孔が無数に開いたり空洞があったりヒビ割れ形状を有する海綿状網目組織の微粒子(図6参照)やこれらの粒子が集合し結合したような凝集粒子(あるいは集合体粒子、図7、図8参照)が形成されていた。これは錫合金粉末とリチウムとが相互に拡散して結合し、合金粒子の結晶構造が変化することにより生じたものであると推察され、この結果、充放電を繰り返した後にできる粒子内の構造的な歪が開放された状態に近い形状を有する負極活物質粒子を作製当初から得られるようになった。 Next, an ingot of metallic lithium was melted in a stainless crucible in an argon gas atmosphere. Lithium alloy particles alloyed by mutual diffusion were produced by reacting the molten metal lithium with the tin alloy particles. Further, the lithium alloy particles were subjected to a lithium component removal treatment in a lithium hydroxide solution. When this treated powder was vacuum dried and observed by SEM, it had a shape with countless discontinuous pores and continuous pores (appearance like pumice and coral, and the surface of each protrusion was smooth. Irregular shape particles (see FIG. 5), fine particles of a spongy network structure (see FIG. 6) having numerous cracks that have numerous holes or cavities reaching the surface and inside, and the like. Aggregated particles (or aggregate particles, see FIG. 7 and FIG. 8) were formed. This is presumably caused by the fact that the tin alloy powder and lithium are diffused and bonded to each other, and the crystal structure of the alloy particles is changed. As a result, the structure in the particles formed after repeated charge and discharge From the beginning, negative electrode active material particles having a shape close to a state in which a typical strain is released can be obtained.

得られた粒子は、図5、6、7、8に示されるような粒子やこの粒子が砕けた微細粒子などが混在しており、さらに粉砕(めのう乳鉢、ジェットミル、ボールミル、ビーズミルでも可能)すると大きな粒子は容易に細粒子化して粒子径0.05μm〜1μm(平均粒子径は0.3μm)にまで粒子径を小さくすることができた。なお、微粒子化すると凝集が進み粒度分布も大きめに計測される場合がある。 The obtained particles are mixed with particles such as those shown in FIGS. 5, 6, 7 and 8 and fine particles obtained by pulverizing the particles, and further pulverized (can be used in an agate mortar, jet mill, ball mill, or bead mill). As a result, the large particles were easily made fine and the particle size could be reduced to 0.05 μm to 1 μm (average particle size is 0.3 μm). In addition, when the particles are finely aggregated, the particle size distribution may be measured larger.

次に、上記の合金粒子を導電材(アセチレンブラックなど)及びバインダーと共に混錬し、銅箔面に塗工して負極を作製し(または、作製された負極にアンモニウム塩系イオン性液体を含むイオン導電性電解質を含浸させてもよい)、対極には金属リチウム箔を設けて1MのLiClO+EC/DEC電解液を含浸させて16φコインセルを作製した。このコインセルを0.2C、DOD100%の充放電試験を30サイクル実施した後、コインセルを解体し、負極を洗浄して得られた負極表面の負極活物質粒子を観察した。この場合は、試験前に比べて粒子がさらに微細化している様子は殆ど見られず、僅かに粒子が脱落した微小なクレーター跡が形成されていただけで、粒子全体としては構造変化を吸収できる形状が維持されていることが判明した。すなわち、30サイクル後の放電容量劣化率が初期値に対して約1%と極めて小さかったことからも、予めリチウムを吸蔵させることにより粒子内部の構造を変化させた状態の粒子は、電極を作製した後、改めてリチウムを吸蔵及び放出した場合であっても、合金粒子の構造的な変化が少なく、微細化、脱離などによる電気的なネットワークの欠落が発生し難いことが裏付けられた。なお、上記の粒子のようにあらかじめリチウムを吸蔵させたあとリチウムを除去するのではなく、リチウムを吸蔵させた状態の粒子をそのまま使用する場合は、粒子を取り扱う雰囲気、特に水分管理が十分なされたところで扱う必要がある。 Next, the above alloy particles are kneaded together with a conductive material (acetylene black, etc.) and a binder, and coated on the copper foil surface to produce a negative electrode (or the produced negative electrode contains an ammonium salt ionic liquid). may be impregnated with an ion conducting electrolyte), the counter electrode was prepared 16φ coin cell impregnated with LiClO 4 + EC / DEC electrolyte 1M is provided a metal lithium foil. This coin cell was subjected to a charge / discharge test of 0.2C and DOD 100% for 30 cycles, and then the coin cell was disassembled, and the negative electrode active material particles on the negative electrode surface obtained by washing the negative electrode were observed. In this case, there is almost no appearance that the particles are further miniaturized compared to before the test, and the shape of the particles as a whole can absorb structural changes by forming a minute crater trace with the particles slightly dropped. Was found to be maintained. That is, since the discharge capacity deterioration rate after 30 cycles was as small as about 1% with respect to the initial value, particles in a state where the internal structure of the particles was changed by occlusion of lithium in advance were prepared as electrodes. After that, it was confirmed that even when lithium was occluded and released again, the structural change of the alloy particles was small, and the lack of an electrical network due to miniaturization, desorption, etc. was difficult to occur. In addition, instead of removing lithium after occlusion of lithium in advance as in the case of the above particles, if the particles in the state of occlusion of lithium are used as they are, the atmosphere in which the particles are handled, particularly moisture management is sufficient. It needs to be handled by the way.

比較例Comparative example

比較例としては、正極構造及び電解液組成等は実施例1〜5と同一であり、負極のみを第1の金属である錫と第2の金属であるコバルトのみを合金化して粉砕することにより得られたSn−Co合金粉末粒子に置き換えたものを用いて実験を行った。具体的には、錫80wt%とコバルト20wt%をそのまま電気炉で溶融して石臼で100μm程度に粉砕することによりSn−Co合金粉末粒子を作製し、これを実施例1〜5と同一条件でジェットミルなどを用いて粉砕して分級した後、導電助剤及びバインダーを加えて塗液を作製し、さらに、この塗液を銅箔10の表面上に塗工して乾燥することにより比較例の負極11を完成させた。最後に、この負極を実施例1〜5と同じ方法でコインセルに組み付け、電池の充放電サイクル試験を実施した。その結果を表3に示す。 As a comparative example, the positive electrode structure and the electrolyte composition are the same as those of Examples 1 to 5, and only the negative electrode is alloyed with only the first metal tin and the second metal cobalt and pulverized. Experiments were performed using the obtained Sn—Co alloy powder particles. Specifically, 80 wt% tin and 20 wt% cobalt were melted as they were in an electric furnace and pulverized to about 100 μm with a stone mortar to produce Sn—Co alloy powder particles, which were subjected to the same conditions as in Examples 1 to 5. After pulverizing and classifying using a jet mill or the like, a conductive liquid and a binder are added to prepare a coating liquid, and the coating liquid is further coated on the surface of the copper foil 10 and dried. The negative electrode 11 was completed. Finally, the negative electrode was assembled into a coin cell in the same manner as in Examples 1 to 5, and a battery charge / discharge cycle test was performed. The results are shown in Table 3.

表3からは、本発明によるリチウム二次電池の電池容量の減少率が、充放電サイクル経過によっても従来型の電池である比較例に対して1/20〜1/67と小さいことが判る。この理由は、本発明による負極は、先述したように第1の金属としての錫と第2の金属としてのコバルトを含むCoSnを主な組成とする充放電による粒子の微細化が抑制された負極活物質粒子や予めリチウム吸蔵履歴を経た粒子を使用したり、または、負極活物質粒子の表面及び/又は粒界に電解液に反応し難く且つリチウムを吸蔵及び放出し難い性質を有する第3の金属を析出,結合又は融合させた粒子を使用することにより、各粒子間及び粒子と負極集電体との間で表面電子伝導ネットワークが構築された負極被覆層を形成させていることなどに起因するものである。 From Table 3, it can be seen that the reduction rate of the battery capacity of the lithium secondary battery according to the present invention is as small as 1/20 to 1/67 as compared with the comparative example which is a conventional battery even after the charge / discharge cycle progresses. The reason for this is that, as described above, the negative electrode according to the present invention suppresses particle refinement due to charge / discharge mainly composed of CoSn 2 containing tin as the first metal and cobalt as the second metal. A negative electrode active material particle or a particle that has previously passed through a lithium occlusion history is used, or the surface and / or grain boundary of the negative electrode active material particle has a property that hardly reacts with the electrolyte and does not occlude and release lithium. In other words, by using particles obtained by precipitating, bonding, or fusing metals, a negative electrode coating layer in which a surface electron conduction network is constructed between each particle and between the particles and the negative electrode current collector is formed. It is due.

このように、比較例に示されるような従来型の負極活物質粒子を用いた場合は、塗工などの手段を用いて電極を作製すると充放電サイクルを経るに従って負極活物質粒子表面での不活性な皮膜の形成と電子伝導回路の寸断が進み、ある時点からは、このような現象が加速度的に進行することから電池の容量を著しく劣化させることとなる。また、比較例において第1の金属、第2の金属及び第3の金属を合金化させたとしても、すべての金属が相溶性をもって完全に合金化していれば、本発明に示すような効果を発揮することはなく、従来の引用例に見られるような結果となり、50サイクル経過後の放電容量は、初期の5.6%程度(放電容量劣化率94.4%)にまで劣化する。 As described above, when the conventional negative electrode active material particles as shown in the comparative example are used, when the electrode is produced by means of coating or the like, the surface of the negative electrode active material particles becomes less as the charge / discharge cycle passes. The formation of the active film and the breakage of the electronic conduction circuit proceed, and from a certain point of time, such a phenomenon proceeds at an accelerated rate, so that the capacity of the battery is significantly deteriorated. Further, even if the first metal, the second metal, and the third metal are alloyed in the comparative example, if all the metals are completely alloyed with compatibility, the effects as shown in the present invention can be obtained. The discharge capacity is not exhibited, and the result as shown in the conventional cited example is obtained, and the discharge capacity after 50 cycles has deteriorated to about 5.6% (discharge capacity deterioration rate 94.4%).

これに対して、本発明による負極活物質粒子及びそれが適用された負極は、第3の金属を負極活物質粒子の粒界及び/又は表面の少なくとも一部に析出、結合又は融合させることにより負極内において電気化学反応に左右されない電子伝導回路の形成し、第2の金属を負極活物質である第1の金属に含有させることにより負極活物質の微細化の抑制と第3の金属元素との相溶性による合金粒子表面での結合を強化し、さらには、導電性材料である他の導電性金属、炭化物及びカーボン材による負極活物質粒子の表面改質、熱処理による界面結合層の形成、負極表面への多孔性金属被覆、負極被覆層へのイオン性液体の注入及び空隙率の調整などにより、負極活物質粒子同士及び負極活物質粒子と負極集電体との電気的な繋がりを強化しているため、電池の充放電に伴う負極活物質粒子の膨張・収縮が起こった場合でも、負極内の電気的接続ネットワークが破壊されずに充放電時の電子の十分な移動を確保できるリチウム二次電池用の負極を提供することができる。また、負極に、第1の金属に錫を選択し第2の金属にコバルトを選択したCoSnを主な組成とする負極活物質粒子を適用した場合は、かかる合金粒子の合金組成の均質化が高まり、充放電時のリチウムの吸蔵及び放出に伴う微細化と粒子の孤立化が抑制されることにより、負極活物質粒子としてのサイクル特性を向上させた負極を提供することができる。 On the other hand, the negative electrode active material particles according to the present invention and the negative electrode to which the negative electrode active material particles are applied are obtained by precipitating, bonding, or fusing a third metal to at least part of the grain boundaries and / or surfaces of the negative electrode active material particles. An electronic conduction circuit that is not influenced by an electrochemical reaction is formed in the negative electrode, and the second metal is contained in the first metal that is the negative electrode active material, thereby suppressing the refinement of the negative electrode active material and the third metal element. Strengthening the bonding on the surface of the alloy particles due to the compatibility of, further, surface modification of the negative electrode active material particles with other conductive metals, carbides and carbon materials that are conductive materials, formation of an interface bonding layer by heat treatment, Strengthen the electrical connection between the negative electrode active material particles and between the negative electrode active material particles and the negative electrode current collector by porous metal coating on the negative electrode surface, injection of ionic liquid into the negative electrode coating layer, and adjustment of the porosity. is doing Therefore, even when the negative electrode active material particles expand / contract due to charging / discharging of the battery, the lithium secondary battery can ensure sufficient movement of electrons during charging / discharging without destroying the electrical connection network in the negative electrode A negative electrode can be provided. Further, when negative electrode active material particles mainly composed of CoSn 2 in which tin is selected as the first metal and cobalt is selected as the second metal are applied to the negative electrode, the alloy composition of the alloy particles is homogenized. Thus, the refinement and the isolation of the particles accompanying the occlusion and release of lithium during charging and discharging are suppressed, whereby a negative electrode with improved cycle characteristics as negative electrode active material particles can be provided.

なお、アルミニウム、マグネシウム又は鉄などの微粉末粒子、およびその合金は非常に活性であり、不活性ガス雰囲気中で取り扱われることが好ましい。特に、これらの金属は空気中で取り扱うと急激な酸化反応を起こして発火する場合があるため、使用量を少なくしたり配合比率を調整する必要がある。また、発火しないまでも酸化した微粉末粒子をそのまま電池に適用すると、リチウムが酸化により不動態化して電池容量の低下を招くことになるので注意を要する。例えば、これらの微粉末粒子を空気中で取り扱った場合は、不活性ガス雰囲気中の場合に比べて電池容量が約25%程度少なくなる。 Note that fine powder particles such as aluminum, magnesium or iron, and alloys thereof are very active, and are preferably handled in an inert gas atmosphere. In particular, when these metals are handled in air, they may cause a rapid oxidation reaction and ignite, so it is necessary to reduce the amount used or adjust the blending ratio. In addition, if fine powder particles that have been oxidized even before they are ignited are applied to the battery as they are, lithium is passivated by oxidation, leading to a reduction in battery capacity. For example, when these fine powder particles are handled in the air, the battery capacity is reduced by about 25% compared to the case in an inert gas atmosphere.

本発明による負極活物質粒子を用いたコインセルの断面図を示す。1 is a cross-sectional view of a coin cell using negative electrode active material particles according to the present invention. 本発明による負極活物質粒子の断面図を示す。1 is a cross-sectional view of negative electrode active material particles according to the present invention. 図2に示した負極活物質粒子をさらに表面改質処理した場合の本発明による負極活 物質粒子の断面図を示す。FIG. 3 is a cross-sectional view of the negative electrode active material particles according to the present invention when the negative electrode active material particles shown in FIG. 本発明による負極活物質粒子が塗工された負極の断面図を示す。 の断面が示されている。1 shows a cross-sectional view of a negative electrode coated with negative electrode active material particles according to the present invention. The cross section of is shown. 本発明による不定形状を呈する負極活物質粒子のSEM写真である。It is a SEM photograph of the negative electrode active material particle which exhibits the indefinite shape by this invention. 本発明による海綿状組織を呈する負極活物質粒子のSEM写真である。It is a SEM photograph of the negative electrode active material particle which exhibits the spongy structure by this invention. 本発明による凝集(集合)を呈する負極活物質粒子のSEM写真である。It is a SEM photograph of negative electrode active material particles which present aggregation (aggregation) by the present invention. 本発明による凝集(集合)を呈するいびつな負極活物質粒子のSEM写真である。It is a SEM photograph of an irregular negative electrode active material particle which exhibits aggregation (aggregation) by the present invention.

符号の説明Explanation of symbols

1 コインセル
2 正極
3 負極活物質合金粒子
4 第2の金属
5 VGCF導電材
6 アセチレンブラック導電材
7 フェノール樹脂カーボン層
8 負極活物質粒子
9 負極活物質粒子
10 銅箔
11 負極
DESCRIPTION OF SYMBOLS 1 Coin cell 2 Positive electrode 3 Negative electrode active material alloy particle 4 2nd metal 5 VGCF electrically conductive material 6 Acetylene black electrically conductive material 7 Phenolic resin carbon layer 8 Negative electrode active material particle 9 Negative electrode active material particle 10 Copper foil 11 Negative electrode

Claims (57)

電気化学的にリチウムを吸蔵及び放出するリチウム二次電池用の負極活物質粒子であって、主としてリチウムを吸蔵及び放出する性質を有する第1の金属と、リチウムの吸蔵及び放出時の前記第1の金属の形状変化を安定化させる性質を有する第2の金属とを含み、前記第1の金属と第2の金属からなる合金組成を主成分とすることを特徴とする、リチウム二次電池用負極活物質粒子。   Negative electrode active material particles for a lithium secondary battery that electrochemically occlude and release lithium, the first metal mainly having the property of inserting and extracting lithium, and the first metal at the time of inserting and extracting lithium And a second metal having a property of stabilizing the shape change of the first metal, and an alloy composition composed of the first metal and the second metal as a main component. Negative electrode active material particles. 前記第1の金属は、シリコン、錫又はアルミニウムから選ばれた1種又は2種以上の金属を含むことを特徴とする、請求項1に記載のリチウム二次電池用負極活物質粒子。   2. The negative electrode active material particle for a lithium secondary battery according to claim 1, wherein the first metal includes one or more metals selected from silicon, tin, and aluminum. 前記第1の金属は、さらに鉄、アルミニウム、クロム、マグネシウム、マンガン、アンチモン、鉛、亜鉛及び珪素よりなる群から選ばれた1種又は2種以上の金属を含むことを特徴とする、請求項2に記載のリチウム二次電池用負極活物質粒子。   The first metal further includes one or more metals selected from the group consisting of iron, aluminum, chromium, magnesium, manganese, antimony, lead, zinc, and silicon. 2. Negative electrode active material particles for lithium secondary battery according to 2. 前記第2の金属は、鉄、コバルト、銅、ニッケル、クロム、マグネシウム、鉛、亜鉛、銀、ゲルマニウム、マンガン、チタン、バナジウム、ビスマス、インジウム及びアンチモンよりなる群から選ばれた1種又は2種以上の金属を含むことを特徴とする、請求項1ないし3のいずれかに記載のリチウム二次電池用負極活物質粒子。   The second metal is one or two selected from the group consisting of iron, cobalt, copper, nickel, chromium, magnesium, lead, zinc, silver, germanium, manganese, titanium, vanadium, bismuth, indium and antimony. The negative electrode active material particle for a lithium secondary battery according to any one of claims 1 to 3, comprising the above metal. 前記第1の金属は錫を含み、前記第2の金属はコバルトを含む前記負極活物質粒子であって、その組成は主としてCoSnからなることを特徴とする、請求項1に記載のリチウム二次電池用負極活物質粒子。 2. The lithium secondary battery according to claim 1, wherein the first metal includes tin and the second metal includes the negative electrode active material particles including cobalt, the composition of which is mainly composed of CoSn 2. Negative electrode active material particles for secondary batteries. 電気化学的にリチウムを吸蔵及び放出するリチウム二次電池用の負極活物質粒子であって、リチウムを吸蔵及び放出する性質を有する第1の金属と、リチウムの吸蔵及び放出時の前記第1の金属の形状変化を安定化させる性質を有する第2の金属と、電解液に反応し難く且つリチウムを吸蔵及び放出し難い性質を有する第3の金属とを含み、前記第3の金属は負極活物質粒子の粒界及び/又は外部表面の少なくとも一部に析出、結合又は融合していることを特徴とする、リチウム二次電池用負極活物質粒子。 A negative electrode active material particle for a lithium secondary battery that electrochemically occludes and releases lithium, the first metal having a property of inserting and extracting lithium, and the first metal at the time of occlusion and release of lithium A second metal having a property of stabilizing a change in shape of the metal and a third metal having a property of hardly reacting with the electrolytic solution and difficult to occlude and release lithium. A negative electrode active material particle for a lithium secondary battery, wherein the negative electrode active material particle for a lithium secondary battery is precipitated, bonded or fused to at least a part of a grain boundary and / or an outer surface of the material particle. 前記第1の金属は、シリコン、錫又はアルミニウムから選ばれた1種又は2種以上の金属を含むことを特徴とする、請求項6に記載のリチウム二次電池用負極活物質粒子。   The negative active material particle for a lithium secondary battery according to claim 6, wherein the first metal includes one or more metals selected from silicon, tin, and aluminum. 前記第1の金属は、さらに鉄、アルミニウム、クロム、マグネシウム、マンガン、アンチモン、鉛、亜鉛及び珪素よりなる群から選ばれた1種又は2種以上の金属を含むことを特徴とする、請求項7に記載のリチウム二次電池用負極活物質粒子。   The first metal further includes one or more metals selected from the group consisting of iron, aluminum, chromium, magnesium, manganese, antimony, lead, zinc, and silicon. 8. Negative electrode active material particles for lithium secondary battery according to 7. 前記第2の金属は、鉄、コバルト、銅、ニッケル、クロム、マグネシウム、鉛、亜鉛、銀、ゲルマニウム、マンガン、チタン、バナジウム、ビスマス、インジウム及びアンチモンよりなる群から選ばれた1種又は2種以上の金属を含むことを特徴とする、請求項6ないし8のいずれかに記載のリチウム二次電池用負極活物質粒子。   The second metal is one or two selected from the group consisting of iron, cobalt, copper, nickel, chromium, magnesium, lead, zinc, silver, germanium, manganese, titanium, vanadium, bismuth, indium and antimony. The negative electrode active material particle for a lithium secondary battery according to any one of claims 6 to 8, comprising the above metal. 前記第3の金属は、ニッケル、銀、銅及び鉄よりなる群から選ばれた1種又は2種以上の金属またはそれらの合金を含むことを特徴とする、請求項6ないし9のいずれかに記載のリチウム二次電池用負極活物質粒子。   The third metal according to any one of claims 6 to 9, wherein the third metal includes one or more metals selected from the group consisting of nickel, silver, copper, and iron, or an alloy thereof. The negative electrode active material particle for lithium secondary batteries as described. 前記第3の金属は、さらに前記第1の金属と合金化し難い性質を有する金属を含むことを特徴とする、請求項10に記載のリチウム二次電池用負極活物質粒子。   11. The negative electrode active material particle for a lithium secondary battery according to claim 10, wherein the third metal further includes a metal that is difficult to alloy with the first metal. 前記第1の金属と合金化し難い性質を有する金属は、モリブデン、タングステン、タンタル、タリウム、クロム、テリウム、ベリリウム及びカルシウムよりなる群から選ばれた1種又は2種以上の金属またはそれらの合金を含むことを特徴とする、請求項11に記載のリチウム二次電池用負極活物質粒子。   The metal having the property that it is difficult to alloy with the first metal is one or more metals selected from the group consisting of molybdenum, tungsten, tantalum, thallium, chromium, terium, beryllium and calcium, or alloys thereof. The negative electrode active material particles for a lithium secondary battery according to claim 11, comprising: 前記第3の金属は、負極活物質粒子全体に1wt%以上含まれていることを特徴とする、請求項6ないし12のいずれかに記載のリチウム二次電池用負極活物質粒子。   The negative electrode active material particle for a lithium secondary battery according to any one of claims 6 to 12, wherein the third metal is contained in an amount of 1 wt% or more in the whole negative electrode active material particle. 前記第3の金属は、負極活物質粒子全体に5wt%〜80wt%含まれていることを特徴とする、請求項6ないし13のいずれかに記載のリチウム二次電池用負極活物質粒子。   14. The negative electrode active material particle for a lithium secondary battery according to claim 6, wherein the third metal is contained in an amount of 5 wt% to 80 wt% in the entire negative electrode active material particle. 前記第2及び第3の金属の総量は、負極活物質粒子全体に5wt%以上含まれていることを特徴とする、請求項6ないし13のいずれかに記載のリチウム二次電池用負極活物質粒子。   14. The negative electrode active material for a lithium secondary battery according to claim 6, wherein the total amount of the second and third metals is 5 wt% or more in the whole negative electrode active material particles. particle. 前記第1の金属は錫を含み、前記第2の金属はコバルトを含む前記負極活物質粒子であって、その組成は主としてCoSnからなることを特徴とする、請求項6に記載のリチウム二次電池用負極活物質粒子。 The lithium secondary battery according to claim 6, wherein the first metal includes tin and the second metal includes the negative electrode active material particles including cobalt, the composition of which is mainly composed of CoSn 2. Negative electrode active material particles for secondary batteries. 前記負極活物質粒子の平均粒子径は20μm以下であることを特徴とする、請求項1ないし16のいずれかに記載のリチウム二次電池用負極活物質粒子。   The negative electrode active material particles for a lithium secondary battery according to any one of claims 1 to 16, wherein an average particle size of the negative electrode active material particles is 20 µm or less. 前記負極活物質粒子の平均粒子径は2μm以下であって、粒度分布の90%以上が0.01μm〜10μmの範囲内にあることを特徴とする、請求項1ないし16のいずれかに記載のリチウム二次電池用負極活物質粒子。   The average particle diameter of the negative electrode active material particles is 2 μm or less, and 90% or more of the particle size distribution is in the range of 0.01 μm to 10 μm. Negative electrode active material particles for a lithium secondary battery. 前記負極活物質粒子の外表面の少なくとも一部には、ジルコニア酸化物、チタン酸化物、チタン酸リチウム、硫化物、リン化物又は窒化物のいずれか1つの化合物が結合されていることを特徴とする、請求項1ないし18のいずれかに記載のリチウム二次電池用負極活物質粒子。   One or more compounds of zirconia oxide, titanium oxide, lithium titanate, sulfide, phosphide or nitride are bonded to at least a part of the outer surface of the negative electrode active material particles. The negative electrode active material particles for a lithium secondary battery according to any one of claims 1 to 18. 前記負極活物質粒子は、負極活物質としてのカーボンとの混合物に対して重量割合で30wt%以上になるように混合されていることを特徴とする、請求項1ないし19のいずれかに記載のリチウム二次電池用負極活物質粒子。 20. The negative electrode active material particles according to claim 1, wherein the negative electrode active material particles are mixed so as to be 30 wt% or more by weight with respect to a mixture with carbon as a negative electrode active material. Negative electrode active material particles for a lithium secondary battery. 前記負極活物質粒子は、連続及び/又は不連続な微細孔を有する海綿状網目組織の粒子及び/又はこれらの粒子が集合して結合した凝集粒子からなることを特徴とする、請求項1ないし20のいずれかに記載のリチウム二次電池用負極活物質粒子。 The negative electrode active material particles are composed of particles of a spongy network structure having continuous and / or discontinuous fine pores and / or aggregated particles in which these particles are aggregated and bonded. The negative electrode active material particle for lithium secondary batteries according to any one of 20. 前記負極活物質粒子の表面は、導電性金属、金属炭化物又はカーボンから選ばれた1種又は2種以上の導電性材料で固着、被覆及び/又は配位されていることを特徴とする、請求項1ないし21のいずれかに記載のリチウム二次電池用負極活物質粒子。   The surface of the negative electrode active material particles is fixed, covered and / or coordinated with one or more conductive materials selected from conductive metals, metal carbides or carbons. Item 22. The negative electrode active material particle for a lithium secondary battery according to any one of Items 1 to 21. 前記導電性金属は、電解液に反応し難く且つリチウムを電気化学的に吸蔵し難い性質を有する金属であることを特徴とする、請求項22に記載のリチウム二次電池用負極活物質粒子。   23. The negative electrode active material particle for a lithium secondary battery according to claim 22, wherein the conductive metal is a metal that does not easily react with an electrolyte and does not occlude lithium electrochemically. 前記導電性金属は、ニッケル、鉄、銅、クロム、ニオブ、銀、タンタル、バナジウム、モリブデン、タングステン及びチタンよりなる群から選ばれた1種又は2種以上の金属またはそれらの合金を含むことを特徴とする、請求項23に記載のリチウム二次電池用負極活物質粒子。   The conductive metal includes one or more metals selected from the group consisting of nickel, iron, copper, chromium, niobium, silver, tantalum, vanadium, molybdenum, tungsten, and titanium, or alloys thereof. The negative electrode active material particles for a lithium secondary battery according to claim 23, wherein 前記炭化物は、CoC、CrC、FeC、MoC、WC、TiC、TaC及びZrCよりなる群から選ばれた1種又は2種以上の炭化物を含むことを特徴とする、請求項22ないし24のいずれかに記載のリチウム二次電池用負極活物質粒子。   25. The carbide according to any one of claims 22 to 24, wherein the carbide includes one or more carbides selected from the group consisting of CoC, CrC, FeC, MoC, WC, TiC, TaC, and ZrC. Negative electrode active material particles for lithium secondary batteries according to 1. 前記カーボンは、低温焼成カーボン、非晶質カーボン、ケッチェンブラック、アセチレンブラック、ナノチューブ、ナノフォーン、繊維状カーボン及び黒鉛よりなる群から選ばれた1種又は2種以上のカーボンを含むことを特徴とする、請求項22ないし25のいずれかに記載のリチウム二次電池用負極活物質粒子。   The carbon includes one or more carbons selected from the group consisting of low-temperature calcined carbon, amorphous carbon, ketjen black, acetylene black, nanotubes, nanophones, fibrous carbon, and graphite. The negative electrode active material particles for a lithium secondary battery according to any one of claims 22 to 25. 負極集電体表面が、請求項1ないし26のいずれかに記載のリチウム二次電池用負極活物質を含む被覆材料を用いて表面処理されていることを特徴とする、リチウム二次電池用の負極。   A surface for a negative electrode current collector is surface-treated with a coating material containing the negative electrode active material for a lithium secondary battery according to any one of claims 1 to 26, and the surface for a lithium secondary battery is characterized in that Negative electrode. 前記表面処理層は、多孔質層又はマトリックスネットワークを形成していることを特徴とする、請求項27に記載のリチウム二次電池用の負極。   The negative electrode for a lithium secondary battery according to claim 27, wherein the surface treatment layer forms a porous layer or a matrix network. 前記表面処理層の空隙率は、40%〜65%の範囲内であることを特徴とする、請求項27又は28に記載のリチウム二次電池用の負極。   29. The negative electrode for a lithium secondary battery according to claim 27 or 28, wherein the porosity of the surface treatment layer is in the range of 40% to 65%. 前記表面処理層は、さらにケッチェンブラック、アセチレンブラック、ナノチューブ又はナノフォーンからなる導電性助剤であって、前記表面処理層における重量換算で1wt%〜15wt%含有されていることを特徴とする、請求項27ないし29のいずれかに記載のリチウム二次電池用の負極。 The surface treatment layer is further a conductive auxiliary comprising ketjen black, acetylene black, nanotubes or nanophones, and is contained in an amount of 1 wt% to 15 wt% in terms of weight in the surface treatment layer. A negative electrode for a lithium secondary battery according to any one of claims 27 to 29. 前記表面処理層の表面は、さらにニッケル、銀、銅又は鉄から選ばれた1種又は2種以上の金属により多孔質層又はマトリックスネットワークを形成するように表面処理されていることを特徴とする、請求項27ないし30のいずれかに記載のリチウム二次電池用の負極。 The surface of the surface treatment layer is further surface-treated so as to form a porous layer or a matrix network with one or more metals selected from nickel, silver, copper or iron. The negative electrode for a lithium secondary battery according to any one of claims 27 to 30. 前記負極の内部には、イオン性液体が含まれていることを特徴とする、請求項27ないし31のいずれかに記載のリチウム二次電池用の負極。   32. The negative electrode for a lithium secondary battery according to claim 27, wherein the negative electrode contains an ionic liquid. 電気化学的にリチウムを吸蔵及び放出するリチウム二次電池用の負極活物質粒子を製造するための方法であって、
リチウムを吸蔵及び放出する性質を有する第1の金属と前記第1の金属の形状変化を安定化させる性質を有する第2の金属と電解液に反応し難く且つリチウムを吸蔵及び放出し難い性質を有する第3の金属とを準備する第1のステップと、
前期第1の金属に前記第2の金属と前記第3の金属とを合金化させて、前記第3の金属が合金粒子の粒界及び/又は外部表面の少なくとも一部に析出、結合又は融合した負極活物質粒子を作製する第2のステップと、そして
導電性金属、金属炭化物及びカーボンから選ばれた1種又は2種以上の導電性材料を準備して、前記導電性材料を前記負極活物質粒子表面の少なくとも一部に固着、被覆及び/又は配位させる第3のステップと、
を含むことを特徴とする、リチウム二次電池用負極活物質粒子の製造方法。
A method for producing negative electrode active material particles for lithium secondary batteries that electrochemically occlude and release lithium,
A first metal having a property of absorbing and desorbing lithium, a second metal having a property of stabilizing the shape change of the first metal, and a property of being difficult to react with the electrolyte and difficult to occlude and release lithium. Providing a third metal having a first step;
The first metal is alloyed with the second metal and the third metal, and the third metal is precipitated, bonded or fused at least at a part of the grain boundary and / or outer surface of the alloy particle. And preparing one or more conductive materials selected from conductive metals, metal carbides, and carbon, and preparing the negative electrode active material particles for the negative electrode active material particles. A third step of fixing, coating and / or coordinating to at least part of the surface of the substance particles;
The manufacturing method of the negative electrode active material particle for lithium secondary batteries characterized by including.
前記第2のステップは、予め前記第2及び第3の金属を合金化させた後に前記第1の金属と合金化させることを特徴とする、請求項33に記載のリチウム二次電池用負極活物質粒子の製造方法。   34. The negative electrode active for a lithium secondary battery according to claim 33, wherein in the second step, the second and third metals are pre-alloyed and then alloyed with the first metal. Method for producing substance particles. 前記第2のステップは、前記第1、第2及び第3の金属を同時に合金化させることを特徴とする、請求項33に記載のリチウム二次電池用負極活物質粒子の製造方法。   34. The method for producing negative electrode active material particles for a lithium secondary battery according to claim 33, wherein the second step comprises alloying the first, second and third metals simultaneously. 前記第2のステップは、少なくともメカニカルアロイング法、メカニカルグライディング法、溶融法、ガスアトマイジング法、水アトマイジング法、メカノフュージョン法、ハイブリダイジング法、メッキ法、スパッタリング法、蒸着法、気相法、液体急冷法又は気体急冷法から選ばれた1又は2以上の方法による合金化により、析出、結合又は融合することを特徴とする、請求項33ないし35のいずれかに記載のリチウム二次電池用負極活物質粒子の製造方法。   The second step includes at least a mechanical alloying method, a mechanical gliding method, a melting method, a gas atomizing method, a water atomizing method, a mechanofusion method, a hybridizing method, a plating method, a sputtering method, a vapor deposition method, and a vapor phase. The lithium secondary according to any one of claims 33 to 35, wherein the lithium secondary is precipitated, bonded or fused by alloying by one or more methods selected from a method, a liquid quenching method or a gas quenching method. A method for producing negative electrode active material particles for a battery. 前記第2のステップは、合金化された粒子を粉砕して微粒子化するステップをさらに含んでいることを特徴とする、請求項33ないし36のいずれかに記載のリチウム二次電池用負極活物質粒子の製造方法。   37. The negative electrode active material for a lithium secondary battery according to claim 33, wherein the second step further includes a step of pulverizing the alloyed particles into fine particles. Particle production method. 前記第2のステップは、第1、第2及び第3の金属の合金化後、不活性ガス雰囲気中又は真空下で100℃以上の温度で熱処理するステップをさらに含んでいることを特徴とする、請求項33ないし37のいずれかに記載のリチウム二次電池用負極活物質粒子の製造方法。   The second step further includes a step of heat-treating at a temperature of 100 ° C. or higher in an inert gas atmosphere or under vacuum after alloying the first, second, and third metals. A method for producing negative electrode active material particles for a lithium secondary battery according to any one of claims 33 to 37. 前記第1の金属は、シリコン、錫又はアルミニウムから選ばれた1種又は2種以上の金属を含んでいることを特徴とする、請求項33ないし38のいずれかに記載のリチウム二次電池用負極活物質粒子の製造方法。   The lithium secondary battery according to any one of claims 33 to 38, wherein the first metal includes one or more metals selected from silicon, tin, and aluminum. A method for producing negative electrode active material particles. 前記第1の金属は、さらに鉄、クロム、マグネシウム、マンガン、アンチモン、鉛及び亜鉛よりなる群から選ばれた1種又は2種以上の金属を含んでいることを特徴とする、請求項33ないし39のいずれかに記載のリチウム二次電池用負極活物質粒子の製造方法。   The first metal further includes one or more metals selected from the group consisting of iron, chromium, magnesium, manganese, antimony, lead, and zinc. 40. A method for producing negative electrode active material particles for a lithium secondary battery according to any of 39. 前記第2の金属は、鉄、コバルト、銅、ニッケル、クロム、マグネシウム、鉛、亜鉛、銀、ゲルマニウム、マンガン、チタン、バナジウム、ビスマス、インジウム及びアンチモンよりなる群から選ばれた1種又は2種以上の金属を含んでいることを特徴とする、請求項33ないし40のいずれかに記載のリチウム二次電池用負極活物質粒子の製造方法。   The second metal is one or two selected from the group consisting of iron, cobalt, copper, nickel, chromium, magnesium, lead, zinc, silver, germanium, manganese, titanium, vanadium, bismuth, indium and antimony. The method for producing negative electrode active material particles for a lithium secondary battery according to any one of claims 33 to 40, comprising the above metal. 前記第3の金属は、モリブデン、タングステン、タンタル、タリウム、クロム、テリウム、ベリリウム、カルシウム、ニッケル、銀、銅及び鉄よりなる群から選ばれた1種又は2種以上の金属またはそれらの合金を含んでいることを特徴とする、請求項33ないし41のいずれかに記載のリチウム二次電池用負極活物質粒子の製造方法。   The third metal is one or more metals selected from the group consisting of molybdenum, tungsten, tantalum, thallium, chromium, therium, beryllium, calcium, nickel, silver, copper, and iron, or an alloy thereof. 42. The method for producing negative electrode active material particles for a lithium secondary battery according to any one of claims 33 to 41, comprising: 前記導電性金属は、電解液に反応し難く且つリチウムを電気化学的に吸蔵及び放出し難い性質を有する金属を含んでいることを特徴とする、請求項33ないし42のいずれかに記載のリチウム二次電池用負極活物質粒子の製造方法。   43. The lithium according to any one of claims 33 to 42, wherein the conductive metal includes a metal that has a property that is difficult to react with an electrolytic solution and is difficult to electrochemically occlude and release lithium. The manufacturing method of the negative electrode active material particle for secondary batteries. 前記導電性金属は、ニッケル、鉄、銅、クロム、ニオブ、銀、タンタル、バナジウム、モリブデン、タングステン及びチタンよりなる群から選ばれた1種又は2種以上の金属またはそれらの合金を含んでいることを特徴とする、請求項43に記載のリチウム二次電池用負極活物質粒子の製造方法。 The conductive metal includes one or more metals selected from the group consisting of nickel, iron, copper, chromium, niobium, silver, tantalum, vanadium, molybdenum, tungsten, and titanium, or an alloy thereof. The method for producing negative electrode active material particles for a lithium secondary battery according to claim 43, wherein: 前記導電性金属は、少なくともメカノフュージョン法、ハイブリダイジング法、メッキ法、スパッタリング法、蒸着法、溶射法、噴霧法、塗工法、浸漬法、静電法、焼成法、焼結法、ゾルゲル法、気相法、遊星ボールミル法、マイクロウェーブ法又はプラズマ照射法から選ばれた1又は2以上の方法により、負極活物質粒子表面への固着、被覆及び/又は配位することを特徴とする、請求項44に記載のリチウム二次電池用負極活物質粒子の製造方法。   The conductive metal is at least a mechanofusion method, a hybridizing method, a plating method, a sputtering method, a vapor deposition method, a spraying method, a spraying method, a coating method, a dipping method, an electrostatic method, a firing method, a sintering method, a sol-gel method. , Fixing to the surface of the negative electrode active material particles, coating and / or coordination by one or more methods selected from vapor phase method, planetary ball mill method, microwave method or plasma irradiation method, The manufacturing method of the negative electrode active material particle for lithium secondary batteries of Claim 44. 前記マイクロウェーブ法又はプラズマ照射法は、芳香族溶媒(ベンゼン、トルエン、ザイレン=BTX)気流中で照射して負極活物質粒子表面に直接スパッタリングすることによって行われることを特徴とする、請求項45に記載のリチウム二次電池用負極活物質粒子の製造方法。   The microwave method or the plasma irradiation method is performed by irradiating in a stream of an aromatic solvent (benzene, toluene, xylen = BTX) and directly sputtering the surface of the negative electrode active material particles. The manufacturing method of the negative electrode active material particle for lithium secondary batteries as described in any one of. 前記導電性金属は、負極活物質粒子表面への固着、被覆及び/又は配位後、不活性ガス雰囲気中又は真空下で100℃以上の温度で熱処理するステップをさらに含んでいることを特徴とする、請求項33ないし46のいずれかに記載のリチウム二次電池用負極活物質粒子の製造方法。   The conductive metal further includes a step of heat treatment at a temperature of 100 ° C. or higher in an inert gas atmosphere or in a vacuum after fixing, coating and / or coordination to the surface of the negative electrode active material particles. The method for producing negative electrode active material particles for a lithium secondary battery according to any one of claims 33 to 46. 前記炭化物は、CoC、CrC、FeC、MoC、WC、TiC、TaC及びZrCよりなる群から選ばれた1種又は2種以上の炭化物を含んでいることを特徴とする、請求項33ないし42のいずれかに記載のリチウム二次電池用負極活物質粒子の製造方法。   43. The carbide according to claim 33, wherein the carbide includes one or more carbides selected from the group consisting of CoC, CrC, FeC, MoC, WC, TiC, TaC, and ZrC. The manufacturing method of the negative electrode active material particle for lithium secondary batteries in any one. 前記カーボンは、低温焼成カーボン、非晶質カーボン、ケッチェンブラック、アセチレンブラック、ナノチューブ、ナノフォーン、繊維状カーボン及び黒鉛よりなる群から選ばれた1種又は2種以上のカーボンを含んでいることを特徴とする、請求項33ないし42のいずれかに記載のリチウム二次電池用負極活物質粒子の製造方法。   The carbon includes one or more carbons selected from the group consisting of low-temperature calcined carbon, amorphous carbon, ketjen black, acetylene black, nanotubes, nanophones, fibrous carbon, and graphite. 43. The method for producing negative electrode active material particles for a lithium secondary battery according to any one of claims 33 to 42, wherein: 前記カーボンは、有機化合物を単独で又は有機化合物に前記カーボンを添加したものを負極活物質粒子表面に被覆して焼成することにより、負極活物質粒子表面への固着、被覆及び/又は配位することを特徴とする、請求項49に記載のリチウム二次電池用負極活物質粒子の製造方法。   The carbon is fixed to the surface of the negative electrode active material particles, coated and / or coordinated by coating the surface of the negative electrode active material particles with the organic compound alone or by adding the carbon to the organic compound and firing it. The manufacturing method of the negative electrode active material particle for lithium secondary batteries of Claim 49 characterized by the above-mentioned. 前記カーボンは、バインダーを用いて負極活物質粒子表面への固着、被覆及び/又は配位することを特徴とする、請求項49に記載のリチウム二次電池用負極活物質粒子の製造方法。   The method for producing negative electrode active material particles for a lithium secondary battery according to claim 49, wherein the carbon is fixed, coated and / or coordinated on the surface of the negative electrode active material particles using a binder. 前記バインダーは、PVdF又はSBRを含んでいることを特徴とする、請求項51に記載のリチウム二次電池用負極活物質粒子の製造方法。   52. The method for producing negative electrode active material particles for a lithium secondary battery according to claim 51, wherein the binder contains PVdF or SBR. 請求項33ないし52のいずれかに記載の二次電池用負極活物質粒子の製造方法に加えて、前記負極活物質粒子を作製後、前記負極活物質粒子と導電性助剤及びバインダーを含む被覆材料を準備するステップと、そして
前記被覆材料を負極集電体上に表面処理して負極を形成させるステップと、
をさらに含んでいることを特徴とする、リチウム二次電池用負極の製造方法。
In addition to the method for producing negative electrode active material particles for a secondary battery according to any one of claims 33 to 52, a coating containing the negative electrode active material particles, a conductive auxiliary agent, and a binder after the negative electrode active material particles are produced. Preparing a material; and surface-treating the coating material on a negative electrode current collector to form a negative electrode;
The method for producing a negative electrode for a lithium secondary battery, further comprising:
前記被覆材料は、少なくともメッキ法、スパッタリング法、蒸着法、溶射法、噴霧法、塗工法、浸漬法、気相法又は静電法から選ばれた1又は2以上の方法により、負極集電体上へ表面処理することを特徴とする、請求項53に記載のリチウム二次電池用負極の製造方法。   The coating material comprises at least one method selected from a plating method, a sputtering method, a vapor deposition method, a spraying method, a spraying method, a coating method, a dipping method, a gas phase method or an electrostatic method, and a negative electrode current collector. 54. The method for producing a negative electrode for a lithium secondary battery according to claim 53, wherein the surface treatment is performed upward. 前記負極を作製後、前記負極表面にニッケル、銅、銀又は鉄から選ばれた1種又は2種以上の金属が多孔質層又はマトリックスネットワークを形成するように表面処理するステップをさらに含んでいることを特徴とする、請求項53又は54に記載のリチウム二次電池用負極の製造方法。   After the production of the negative electrode, the method further includes a step of performing a surface treatment on the negative electrode surface such that one or more metals selected from nickel, copper, silver, or iron form a porous layer or a matrix network. The manufacturing method of the negative electrode for lithium secondary batteries of Claim 53 or 54 characterized by the above-mentioned. 前記多孔質層又はマトリックスネットワークは、少なくともメッキ法、スパッタリング法、気相法又は蒸着法から選ばれた1又は2以上の方法により形成されることを特徴とする、請求項55に記載のリチウム二次電池用負極の製造方法。   56. The lithium layer according to claim 55, wherein the porous layer or matrix network is formed by one or more methods selected from at least a plating method, a sputtering method, a vapor phase method, or a vapor deposition method. The manufacturing method of the negative electrode for secondary batteries. 前記負極内部に、イオン性液体を注入するステップをさらに含んでいることを特徴とする、請求項53ないし56のいずれかに記載のリチウム二次電池用負極の製造方法。   57. The method for producing a negative electrode for a lithium secondary battery according to any one of claims 53 to 56, further comprising a step of injecting an ionic liquid into the negative electrode.
JP2005082997A 2004-09-06 2005-03-23 Negative electrode active material particles for lithium secondary battery, negative electrode, and production method thereof Expired - Fee Related JP5256403B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2005082997A JP5256403B2 (en) 2004-09-06 2005-03-23 Negative electrode active material particles for lithium secondary battery, negative electrode, and production method thereof
CNA200680017853XA CN101180753A (en) 2005-03-23 2006-02-03 Negative electrode active material particle for lithium secondary battery, negative electrode and manufacturing method thereof
PCT/JP2006/301827 WO2006100837A1 (en) 2005-03-23 2006-02-03 Negative electrode active material particle for lithium secondary battery, negative electrode and methods for producing those
KR1020077024368A KR101281277B1 (en) 2005-03-23 2006-02-03 Methods for producing negative electrode active material particle for lithium secondary battery and negative electrode
EP06712970A EP1873846A4 (en) 2005-03-23 2006-02-03 Negative electrode active material particle for lithium secondary battery, negative electrode and methods for producing those

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004258000 2004-09-06
JP2004258000 2004-09-06
JP2005082997A JP5256403B2 (en) 2004-09-06 2005-03-23 Negative electrode active material particles for lithium secondary battery, negative electrode, and production method thereof

Publications (2)

Publication Number Publication Date
JP2006100244A true JP2006100244A (en) 2006-04-13
JP5256403B2 JP5256403B2 (en) 2013-08-07

Family

ID=36239825

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005082997A Expired - Fee Related JP5256403B2 (en) 2004-09-06 2005-03-23 Negative electrode active material particles for lithium secondary battery, negative electrode, and production method thereof

Country Status (1)

Country Link
JP (1) JP5256403B2 (en)

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007317461A (en) * 2006-05-25 2007-12-06 Sony Corp Secondary battery
KR100856898B1 (en) * 2007-09-10 2008-09-05 금오공과대학교 산학협력단 Negative active material for rechargeable lithium battery, and rechargeable lithium battery comprising the same
WO2008120413A1 (en) * 2007-03-29 2008-10-09 Mitsui Mining & Smelting Co., Ltd. Negative electrode for nonaqueous-electrolytic-solution secondary battery
WO2010013487A1 (en) * 2008-07-31 2010-02-04 昭和電工株式会社 Method for manufacturing negative electrode layer for electrochemical capacitor
KR100998618B1 (en) 2007-06-29 2010-12-07 (주)넥센나노텍 Anode electrode material hybridizing carbon nanofiber for lithium secondary battery
JP2010282901A (en) * 2009-06-05 2010-12-16 Kobe Steel Ltd Negative electrode material for lithium ion secondary battery, method of manufacturing the same, and lithium ion secondary battery
KR101018659B1 (en) * 2008-03-19 2011-03-08 금호석유화학 주식회사 Silicon anode active material for lithium secondary battery
WO2011132793A1 (en) 2010-04-23 2011-10-27 住友金属工業株式会社 Anode material of non-aqueous electrolyte secondary battery and method for producing same
JP2012104281A (en) * 2010-11-08 2012-05-31 Fukuda Metal Foil & Powder Co Ltd Anode material for lithium secondary battery and method for producing the same
US8354194B2 (en) 2008-02-01 2013-01-15 Toyota Jidosha Kabushiki Kaisha Negative electrode active material, lithium secondary battery using the same, and method of manufacturing negative electrode active material
WO2013094404A1 (en) 2011-12-20 2013-06-27 ソニー株式会社 Active material for secondary batteries, secondary battery, and electronic device
JP5348706B2 (en) * 2008-12-19 2013-11-20 Necエナジーデバイス株式会社 Negative electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery using the same, and method for producing negative electrode for nonaqueous electrolyte secondary battery
JP2013239448A (en) * 2011-06-27 2013-11-28 Mitsui Mining & Smelting Co Ltd Method for manufacturing negative-electrode active material for nonaqueous electrolyte secondary battery
JP2014063714A (en) * 2012-03-02 2014-04-10 Shinshu Univ Negative electrode material for lithium ion battery and method of manufacturing the same
WO2014054792A1 (en) * 2012-10-05 2014-04-10 ソニー株式会社 Active material, process for manufacturing active material, electrode, and secondary battery
JP2014120286A (en) * 2012-12-14 2014-06-30 Showa Denko Kk Negative electrode material for lithium battery, method for producing the same, electrode and battery
JP2014139920A (en) * 2012-12-18 2014-07-31 Shin Etsu Chem Co Ltd Negative electrode for nonaqueous electrolyte secondary battery and method for manufacturing the same, and lithium ion secondary battery
WO2014171337A1 (en) * 2013-04-19 2014-10-23 Semiconductor Energy Laboratory Co., Ltd. Secondary battery and a method for fabricating the same
JP2015125816A (en) * 2013-12-25 2015-07-06 株式会社豊田自動織機 Composite negative electrode active material body, negative electrode for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
US9105925B2 (en) 2008-11-10 2015-08-11 Samsung Electronics Co., Ltd. Anode active material comprising a porous transition metal oxide, anode comprising the anode active material, lithium battery comprising the anode, and method of preparing the anode active material
US9548489B2 (en) 2012-01-30 2017-01-17 Nexeon Ltd. Composition of SI/C electro active material
KR20170078203A (en) * 2015-12-29 2017-07-07 한국과학기술연구원 Silicon type active material for lithium secondary battery and manufacturing method therof
WO2017135323A1 (en) 2016-02-01 2017-08-10 株式会社 東芝 Secondary battery, assembled battery, battery pack, and vehicle
US10008716B2 (en) 2012-11-02 2018-06-26 Nexeon Limited Device and method of forming a device
JP2018517266A (en) * 2015-08-25 2018-06-28 エルジー・ケム・リミテッド Negative electrode for secondary battery and secondary battery including the same
US10077506B2 (en) 2011-06-24 2018-09-18 Nexeon Limited Structured particles
US10090513B2 (en) 2012-06-01 2018-10-02 Nexeon Limited Method of forming silicon
US10103379B2 (en) 2012-02-28 2018-10-16 Nexeon Limited Structured silicon particles
KR20190021416A (en) * 2016-06-28 2019-03-05 도와 일렉트로닉스 가부시키가이샤 Solution, a process for producing the same, and a process for producing an active material for a secondary battery
US10396355B2 (en) 2014-04-09 2019-08-27 Nexeon Ltd. Negative electrode active material for secondary battery and method for manufacturing same
US10476072B2 (en) 2014-12-12 2019-11-12 Nexeon Limited Electrodes for metal-ion batteries
US10522824B2 (en) 2014-07-23 2019-12-31 Nexeon Ltd Method for preparing silicon-based active material particles for secondary battery and silicon-based active material particles
US10586976B2 (en) 2014-04-22 2020-03-10 Nexeon Ltd Negative electrode active material and lithium secondary battery comprising same
US10644310B2 (en) 2016-06-27 2020-05-05 Panasonic Intellectual Property Management Co., Ltd. Negative electrode material including composite particles, and method for producing the same
US10727540B2 (en) 2016-02-01 2020-07-28 Kabushiki Kaisha Toshiba Secondary battery, battery module, battery pack and vehicle
US10797341B2 (en) 2018-03-16 2020-10-06 Kabushiki Kaisha Toshiba Battery module, battery pack, vehicle, and stationary power supply
JP2021044195A (en) * 2019-09-13 2021-03-18 Tdk株式会社 Negative electrode for lithium ion secondary battery and lithium ion secondary battery
US11127945B2 (en) 2016-06-14 2021-09-21 Nexeon Limited Electrodes for metal-ion batteries
CN114054306A (en) * 2020-08-03 2022-02-18 天津中能锂业有限公司 Microporous lithium foil production method and device
CN115304108A (en) * 2022-07-13 2022-11-08 合肥国轩电池材料有限公司 Preparation method and device of tungsten-coated ternary cathode material

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08171901A (en) * 1994-10-21 1996-07-02 Canon Inc Negative electrode for secondary battery, and manufacture of secondary battery employing the negative electrode and of the electrode
JPH10321226A (en) * 1997-05-21 1998-12-04 Asahi Chem Ind Co Ltd Secondary battery
JP2000311681A (en) * 1998-09-18 2000-11-07 Canon Inc Negative electrode material for secondary battery, electrode structural body, secondary battery and their manufacture
JP2001068096A (en) * 1999-08-30 2001-03-16 Matsushita Electric Ind Co Ltd Negative electrode for nonaqueous electrolyte secondary battery, manufacture thereof and nonaqueous electrolyte secondary battery
JP2001338646A (en) * 2000-05-26 2001-12-07 Sanyo Electric Co Ltd Lithium secondary battery negative electrode
JP2002042788A (en) * 2000-07-31 2002-02-08 Sanyo Electric Co Ltd Lithium secondary battery and manufacturing method for it
JP2002075332A (en) * 2000-09-01 2002-03-15 Sanyo Electric Co Ltd Negative electrode for lithium secondary battery and method of manufacturing the same
JP2002260637A (en) * 2000-09-01 2002-09-13 Sanyo Electric Co Ltd Negative electrode for lithium secondary battery, and its manufacturing method
JP2004178922A (en) * 2002-11-26 2004-06-24 Showa Denko Kk Negative electrode material and secondary battery using the same
JP2004349253A (en) * 2003-05-21 2004-12-09 Samsung Sdi Co Ltd Negative electrode active material for lithium secondary battery, its manufacturing method, and lithium secondary battery containing it
JP2005071772A (en) * 2003-08-22 2005-03-17 Samsung Sdi Co Ltd Negative electrode active material for lithium secondary battery, its manufacturing method, and lithium secondary battery

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08171901A (en) * 1994-10-21 1996-07-02 Canon Inc Negative electrode for secondary battery, and manufacture of secondary battery employing the negative electrode and of the electrode
JPH10321226A (en) * 1997-05-21 1998-12-04 Asahi Chem Ind Co Ltd Secondary battery
JP2000311681A (en) * 1998-09-18 2000-11-07 Canon Inc Negative electrode material for secondary battery, electrode structural body, secondary battery and their manufacture
JP2001068096A (en) * 1999-08-30 2001-03-16 Matsushita Electric Ind Co Ltd Negative electrode for nonaqueous electrolyte secondary battery, manufacture thereof and nonaqueous electrolyte secondary battery
JP2001338646A (en) * 2000-05-26 2001-12-07 Sanyo Electric Co Ltd Lithium secondary battery negative electrode
JP2002042788A (en) * 2000-07-31 2002-02-08 Sanyo Electric Co Ltd Lithium secondary battery and manufacturing method for it
JP2002075332A (en) * 2000-09-01 2002-03-15 Sanyo Electric Co Ltd Negative electrode for lithium secondary battery and method of manufacturing the same
JP2002260637A (en) * 2000-09-01 2002-09-13 Sanyo Electric Co Ltd Negative electrode for lithium secondary battery, and its manufacturing method
JP2004178922A (en) * 2002-11-26 2004-06-24 Showa Denko Kk Negative electrode material and secondary battery using the same
JP2004349253A (en) * 2003-05-21 2004-12-09 Samsung Sdi Co Ltd Negative electrode active material for lithium secondary battery, its manufacturing method, and lithium secondary battery containing it
JP2005071772A (en) * 2003-08-22 2005-03-17 Samsung Sdi Co Ltd Negative electrode active material for lithium secondary battery, its manufacturing method, and lithium secondary battery

Cited By (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007317461A (en) * 2006-05-25 2007-12-06 Sony Corp Secondary battery
WO2008120413A1 (en) * 2007-03-29 2008-10-09 Mitsui Mining & Smelting Co., Ltd. Negative electrode for nonaqueous-electrolytic-solution secondary battery
KR100998618B1 (en) 2007-06-29 2010-12-07 (주)넥센나노텍 Anode electrode material hybridizing carbon nanofiber for lithium secondary battery
KR100856898B1 (en) * 2007-09-10 2008-09-05 금오공과대학교 산학협력단 Negative active material for rechargeable lithium battery, and rechargeable lithium battery comprising the same
US8354194B2 (en) 2008-02-01 2013-01-15 Toyota Jidosha Kabushiki Kaisha Negative electrode active material, lithium secondary battery using the same, and method of manufacturing negative electrode active material
KR101018659B1 (en) * 2008-03-19 2011-03-08 금호석유화학 주식회사 Silicon anode active material for lithium secondary battery
WO2010013487A1 (en) * 2008-07-31 2010-02-04 昭和電工株式会社 Method for manufacturing negative electrode layer for electrochemical capacitor
US9105925B2 (en) 2008-11-10 2015-08-11 Samsung Electronics Co., Ltd. Anode active material comprising a porous transition metal oxide, anode comprising the anode active material, lithium battery comprising the anode, and method of preparing the anode active material
US9263741B2 (en) 2008-12-19 2016-02-16 Nec Energy Devices, Ltd. Negative electrode for nanaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery using the same, and method for manufacturing negative electrode for nonaqueous electrolyte secondary battery
JP5348706B2 (en) * 2008-12-19 2013-11-20 Necエナジーデバイス株式会社 Negative electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery using the same, and method for producing negative electrode for nonaqueous electrolyte secondary battery
JP2010282901A (en) * 2009-06-05 2010-12-16 Kobe Steel Ltd Negative electrode material for lithium ion secondary battery, method of manufacturing the same, and lithium ion secondary battery
WO2011132793A1 (en) 2010-04-23 2011-10-27 住友金属工業株式会社 Anode material of non-aqueous electrolyte secondary battery and method for producing same
US9028711B2 (en) 2010-04-23 2015-05-12 Nippon Steel & Sumitomo Metal Corporation Negative electrode material for a nonaqueous electrolyte secondary battery and a method for its manufacture
JP2012104281A (en) * 2010-11-08 2012-05-31 Fukuda Metal Foil & Powder Co Ltd Anode material for lithium secondary battery and method for producing the same
US10822713B2 (en) 2011-06-24 2020-11-03 Nexeon Limited Structured particles
US10077506B2 (en) 2011-06-24 2018-09-18 Nexeon Limited Structured particles
JP2013239448A (en) * 2011-06-27 2013-11-28 Mitsui Mining & Smelting Co Ltd Method for manufacturing negative-electrode active material for nonaqueous electrolyte secondary battery
US9761873B2 (en) 2011-06-27 2017-09-12 Mitsui Mining & Smelting Co., Ltd. Negative electrode active material for nonaqueous electrolyte secondary batteries
JP5367921B2 (en) * 2011-06-27 2013-12-11 三井金属鉱業株式会社 Anode active material for non-aqueous electrolyte secondary battery
JP2016149376A (en) * 2011-06-27 2016-08-18 三井金属鉱業株式会社 Method for manufacturing negative-electrode active material for nonaqueous electrolyte secondary battery
KR20140105460A (en) 2011-12-20 2014-09-01 소니 주식회사 Active material for secondary batteries, secondary battery, and electronic device
WO2013094404A1 (en) 2011-12-20 2013-06-27 ソニー株式会社 Active material for secondary batteries, secondary battery, and electronic device
US9548489B2 (en) 2012-01-30 2017-01-17 Nexeon Ltd. Composition of SI/C electro active material
US10388948B2 (en) 2012-01-30 2019-08-20 Nexeon Limited Composition of SI/C electro active material
US10103379B2 (en) 2012-02-28 2018-10-16 Nexeon Limited Structured silicon particles
JP2014063714A (en) * 2012-03-02 2014-04-10 Shinshu Univ Negative electrode material for lithium ion battery and method of manufacturing the same
US10090513B2 (en) 2012-06-01 2018-10-02 Nexeon Limited Method of forming silicon
JPWO2014054792A1 (en) * 2012-10-05 2016-08-25 ソニー株式会社 Active material, method for producing active material, electrode and secondary battery
US10665855B2 (en) 2012-10-05 2020-05-26 Murata Manufacturing Co., Ltd. Active material, method of manufacturing active material, electrode, and secondary battery
WO2014054792A1 (en) * 2012-10-05 2014-04-10 ソニー株式会社 Active material, process for manufacturing active material, electrode, and secondary battery
US10008716B2 (en) 2012-11-02 2018-06-26 Nexeon Limited Device and method of forming a device
JP2014120286A (en) * 2012-12-14 2014-06-30 Showa Denko Kk Negative electrode material for lithium battery, method for producing the same, electrode and battery
JP2014139920A (en) * 2012-12-18 2014-07-31 Shin Etsu Chem Co Ltd Negative electrode for nonaqueous electrolyte secondary battery and method for manufacturing the same, and lithium ion secondary battery
US11005123B2 (en) 2013-04-19 2021-05-11 Semiconductor Energy Laboratory Co., Ltd. Secondary battery and a method for fabricating the same
US9768467B2 (en) 2013-04-19 2017-09-19 Semiconductor Energy Laboratory Co., Ltd. Secondary battery and a method for fabricating the same
US11594752B2 (en) 2013-04-19 2023-02-28 Semiconductor Energy Laboratory Co., Ltd. Secondary battery and a method for fabricating the same
WO2014171337A1 (en) * 2013-04-19 2014-10-23 Semiconductor Energy Laboratory Co., Ltd. Secondary battery and a method for fabricating the same
US11923499B2 (en) 2013-04-19 2024-03-05 Semiconductor Energy Laboratory Co., Ltd. Secondary battery and a method for fabricating the same
JP2015125816A (en) * 2013-12-25 2015-07-06 株式会社豊田自動織機 Composite negative electrode active material body, negative electrode for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
US10693134B2 (en) 2014-04-09 2020-06-23 Nexeon Ltd. Negative electrode active material for secondary battery and method for manufacturing same
US10396355B2 (en) 2014-04-09 2019-08-27 Nexeon Ltd. Negative electrode active material for secondary battery and method for manufacturing same
US10586976B2 (en) 2014-04-22 2020-03-10 Nexeon Ltd Negative electrode active material and lithium secondary battery comprising same
US11196042B2 (en) 2014-07-23 2021-12-07 Nexeon Ltd Method for preparing silicon-based active material particles for secondary battery and silicon-based active material particles
US10522824B2 (en) 2014-07-23 2019-12-31 Nexeon Ltd Method for preparing silicon-based active material particles for secondary battery and silicon-based active material particles
US10476072B2 (en) 2014-12-12 2019-11-12 Nexeon Limited Electrodes for metal-ion batteries
US10497929B2 (en) 2015-08-25 2019-12-03 Lg Chem, Ltd. Anode for secondary battery and secondary battery including the same
EP3282504A4 (en) * 2015-08-25 2018-08-22 LG Chem, Ltd. Negative electrode for secondary battery, and secondary battery comprising same
JP2018517266A (en) * 2015-08-25 2018-06-28 エルジー・ケム・リミテッド Negative electrode for secondary battery and secondary battery including the same
KR101908524B1 (en) * 2015-12-29 2018-10-16 한국과학기술연구원 Silicon type active material for lithium secondary battery and manufacturing method therof
KR20170078203A (en) * 2015-12-29 2017-07-07 한국과학기술연구원 Silicon type active material for lithium secondary battery and manufacturing method therof
WO2017135323A1 (en) 2016-02-01 2017-08-10 株式会社 東芝 Secondary battery, assembled battery, battery pack, and vehicle
US10727540B2 (en) 2016-02-01 2020-07-28 Kabushiki Kaisha Toshiba Secondary battery, battery module, battery pack and vehicle
KR20180101701A (en) 2016-02-01 2018-09-13 가부시끼가이샤 도시바 Secondary battery, battery module, battery pack and vehicle
US11127945B2 (en) 2016-06-14 2021-09-21 Nexeon Limited Electrodes for metal-ion batteries
US10644310B2 (en) 2016-06-27 2020-05-05 Panasonic Intellectual Property Management Co., Ltd. Negative electrode material including composite particles, and method for producing the same
KR20190021416A (en) * 2016-06-28 2019-03-05 도와 일렉트로닉스 가부시키가이샤 Solution, a process for producing the same, and a process for producing an active material for a secondary battery
KR102332583B1 (en) 2016-06-28 2021-11-30 도와 일렉트로닉스 가부시키가이샤 Solution and method for preparing same, and method for preparing active material for secondary battery
US10797341B2 (en) 2018-03-16 2020-10-06 Kabushiki Kaisha Toshiba Battery module, battery pack, vehicle, and stationary power supply
JP2021044195A (en) * 2019-09-13 2021-03-18 Tdk株式会社 Negative electrode for lithium ion secondary battery and lithium ion secondary battery
CN114054306A (en) * 2020-08-03 2022-02-18 天津中能锂业有限公司 Microporous lithium foil production method and device
CN115304108A (en) * 2022-07-13 2022-11-08 合肥国轩电池材料有限公司 Preparation method and device of tungsten-coated ternary cathode material
CN115304108B (en) * 2022-07-13 2023-10-27 合肥国轩电池材料有限公司 Preparation method and device of tungsten-coated ternary cathode material

Also Published As

Publication number Publication date
JP5256403B2 (en) 2013-08-07

Similar Documents

Publication Publication Date Title
JP5256403B2 (en) Negative electrode active material particles for lithium secondary battery, negative electrode, and production method thereof
KR101281277B1 (en) Methods for producing negative electrode active material particle for lithium secondary battery and negative electrode
JP5124975B2 (en) Negative electrode material for lithium ion secondary battery and method for producing the same
JP4992128B2 (en) Negative electrode active material particles for lithium secondary battery and method for producing negative electrode
TWI569497B (en) Negative electrode active material for lithium ion battery, and negative electrode for lithium ion battery using the same
JP5790282B2 (en) Negative electrode active material for lithium secondary battery and negative electrode for lithium secondary battery
JP5448555B2 (en) Negative electrode for lithium ion secondary battery, lithium ion secondary battery using the same, slurry for preparing negative electrode for lithium ion secondary battery, and method for producing negative electrode for lithium ion secondary battery
JP6808988B2 (en) Negative electrode active material for lithium-ion batteries and lithium-ion batteries
JP2011159421A (en) Positive electrode active material and nonaqueous electrolyte secondary battery
JP7375569B2 (en) Negative active material for lithium ion batteries
JP2012014866A (en) Negative electrode active substance for lithium secondary battery, and method of manufacturing the same
JP4752996B2 (en) Method for producing negative electrode active material particles for lithium secondary battery
WO2007055007A1 (en) Particle of negative electrode active material for lithium secondary battery, negative electrode making use of the same and process for producing them
JP4789032B2 (en) Negative electrode active material particles for lithium secondary battery and method for producing negative electrode
JP7106702B2 (en) Positive electrode for all-solid secondary battery, and all-solid secondary battery including the same
JP7130911B2 (en) Positive electrode for all-solid secondary battery, and all-solid secondary battery including the same
JP2002075332A (en) Negative electrode for lithium secondary battery and method of manufacturing the same
JP2015133320A (en) Negative electrode material for secondary battery, and secondary battery using the same
JPH0969362A (en) Secondary battery and power source using it
JP7337580B2 (en) Anode materials for lithium-ion batteries containing multicomponent silicides and silicon
JP6264407B2 (en) Lithium ion secondary battery
JP7443851B2 (en) Powder material for negative electrode of lithium ion battery and its manufacturing method
JP4029265B2 (en) Negative electrode material for lithium battery and manufacturing method thereof
JP6090497B1 (en) Positive electrode material for lithium ion secondary battery
JP2024018915A (en) Si alloy powder for lithium ion battery negative electrode

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070918

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080516

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080605

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120814

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120924

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130122

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20130213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130220

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160502

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5256403

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees