JP2014088629A - Elastic electric current distributor for filter tank - Google Patents

Elastic electric current distributor for filter tank Download PDF

Info

Publication number
JP2014088629A
JP2014088629A JP2014027391A JP2014027391A JP2014088629A JP 2014088629 A JP2014088629 A JP 2014088629A JP 2014027391 A JP2014027391 A JP 2014027391A JP 2014027391 A JP2014027391 A JP 2014027391A JP 2014088629 A JP2014088629 A JP 2014088629A
Authority
JP
Japan
Prior art keywords
gas diffusion
diffusion electrode
tank according
sheet
metal sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014027391A
Other languages
Japanese (ja)
Other versions
JP5860075B2 (en
Inventor
Federico Fulvio
フェデリコ,フルヴィオ
Woltering Peter
ヴォルテリング,ペーター
Carrettin Leonello
カレティン,レオネロ
Oldani Dario
オルダニ,ダリオ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ThyssenKrupp Uhde Chlorine Engineers Italia SRL
Original Assignee
Uhdenora SpA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Uhdenora SpA filed Critical Uhdenora SpA
Publication of JP2014088629A publication Critical patent/JP2014088629A/en
Application granted granted Critical
Publication of JP5860075B2 publication Critical patent/JP5860075B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/02Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form
    • C25B11/03Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form perforated or foraminous
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/60Constructional parts of cells
    • C25B9/65Means for supplying current; Electrode connections; Electric inter-cell connections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0232Metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Fuel Cell (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a diaphragm electrolytic cell which comprises a cell of an anode and a cell of cathode separated with an ion exchange membrane, with one or both of the cells provided with a gas diffusion electrode, and allows a process electrolytic solution to flow from one end to the other end of a filter member or an equivalent porous element.SOLUTION: A diaphragm electrolytic cell is provided with a cell of an anode and a cell of a cathode, and one or both of the cells contain a gas diffusion electrode, and a flat porous element which a flow of an electrolytic solution crosses is laid between a diaphragm and the gas diffusion electrode. Current transmission to the gas diffusion electrode is carried out through an electric current distributor, and the electric current distributor is equipped with an elastic conductive protrusion pressing the electrode toward the porous element.

Description

本発明は、工業用電解プロセスの槽に関し、詳細には、イオン交換膜で分離されたアノードの隔室およびカソードの隔室を備え、一方または両方の隔室がガス拡散電極を装備され、プロセス電解液が濾過部材または同等の多孔質要素の端から端まで流れる、槽に関する。 The present invention relates to an industrial electrolysis process bath, in particular comprising an anode compartment and a cathode compartment separated by an ion exchange membrane, wherein one or both compartments are equipped with gas diffusion electrodes, It relates to a tank in which an electrolyte flows from end to end of a filtering member or equivalent porous element.

以下の説明では、減極された塩素アルカリ電気分解に適した槽に言及される。すなわち、例えばEP1033419に開示されているような、ガス拡散カソード上で酸素消費の反応に有利なように水素発生カソード反応が抑制される、アルカリ塩素塩水電気分解のプロセスを参照する。しかし本発明は、塩素アルカリ槽に限定されず、したがってガス拡散電極を使用するどんな工業用電気化学プロセスにも適用可能である。 In the following description, reference is made to a tank suitable for depolarized chlor-alkali electrolysis. That is, reference is made to a process of alkaline chlorine salt electrolysis in which the hydrogen evolution cathode reaction is suppressed in favor of the reaction of oxygen consumption on a gas diffusion cathode, for example as disclosed in EP 1033419. However, the present invention is not limited to chlor-alkali tanks and is therefore applicable to any industrial electrochemical process that uses gas diffusion electrodes.

当技術分野では、引力の作用でプロセス電解液が適切な多孔質平面要素または濾過部材の端から端まで流れる、特に先進型の減極された塩素アルカリ槽が知られており、そのような種類の槽は、例えば国際公開WO/0157290に開示されている。この種類の槽には一般に、アルカリ塩素高濃度塩水が供給され、塩素発生用の触媒の被覆が設けられたチタンアノードを含む、チタン外郭から得られるアノードの隔室と、ニッケルカソード外郭によって画定されたカソードの隔室とが存在し、この2つの隔室は、陽イオン交換膜によって分離される。プロセス内で生成される苛性ソーダは、一方の側面がイオン交換膜に接触し他方の側面がガス拡散カソードに接触する、カソード隔室内に挿入された多孔質要素の端から端まで引力によって流れる。言い換えると、アノードは、当技術分野で周知のものから選択された適切な金属構造物、例えばリブのアレイを用いてアノードの外郭に電気的かつ機械的に接続された剛性の金属要素であるのに対し、カソードは、銀網、炭素布、または他の非自立型の同等構造物から得られる薄い多孔質要素である。このため、カソードの外郭の後壁からガス拡散電極までの電流伝達は、より非局在化した接触を実現するとともに電極を機械的に支持できる構造物を用いて行われなければならない。電気化学的な特徴を改善するために、カソードは、循環する電解液の封じ込めに寄与しながら電気的導通を可能にするように、0.1〜0.5kg/cmで示されるある圧力で濾過部材に押しつけられる必要もある。上記の条件のすべてを満たすために、従来技術の槽には、2つの別個の要素に依拠する電流供給システムが設けられる。すなわち、第1は、アノード側におけるように例えばリブアレイから成るものでよい、カソードの外郭と一体化した剛性の集電体であり、第2は、剛性の集電体とガス拡散電極との間に配置された金属マットレスであり、これは適切な圧縮の状態で、十分な圧力をガス拡散電極に伝達することができ、それによって必要な電気的導通が確保される。同等な解決策は、従来型の塩素アルカリ槽の後付けに適用されて、前述のものを濾過型の減極されたプロセスに、例えば国際特許公開03/102271の図2に示されたように適合させる。すなわちこの場合には、当技術分野で周知のニッケル製または鋼製の水素発生用金属電極である、元来の槽カソードは集電体の役割を果たし、一方、ニッケルマットレス(弾性集電体)は、剛性の集電体とガス拡散電極との間の電流伝達用の介在要素として働く。 In the art, particularly advanced, depolarized chlor-alkali tanks are known, in which the process electrolyte flows through the appropriate porous planar element or the end of the filter element under the action of attractive forces, This tank is disclosed, for example, in International Publication WO / 0157290. This type of tank is generally defined by an anode compartment obtained from a titanium shell and a nickel cathode shell, including a titanium anode fed with a high concentration of alkaline chlorine brine and provided with a catalyst coating for chlorine generation. Cathode compartments, which are separated by a cation exchange membrane. Caustic soda produced in the process flows by attraction from end to end of a porous element inserted into the cathode compartment, one side contacting the ion exchange membrane and the other side contacting the gas diffusion cathode. In other words, the anode is a rigid metal element that is electrically and mechanically connected to the outer shell of the anode using an appropriate metal structure selected from those well known in the art, such as an array of ribs. In contrast, the cathode is a thin porous element obtained from silver mesh, carbon cloth, or other non-self-supporting equivalent structure. For this reason, current transfer from the rear wall of the outer shell of the cathode to the gas diffusion electrode must be performed using a structure that can provide a more delocalized contact and mechanically support the electrode. To improve the electrochemical characteristics, the cathode is at a certain pressure, shown as 0.1-0.5 kg / cm 2 , to allow electrical conduction while contributing to the containment of the circulating electrolyte. It also needs to be pressed against the filter member. In order to meet all of the above conditions, the prior art bath is provided with a current supply system that relies on two separate elements. That is, the first is a rigid current collector integrated with the outer shell of the cathode, which may be composed of, for example, a rib array as on the anode side, and the second is between the rigid current collector and the gas diffusion electrode. The metal mattress is placed in a suitable compression state and can transmit sufficient pressure to the gas diffusion electrode, thereby ensuring the necessary electrical continuity. An equivalent solution is applied to the retrofit of a conventional chlor-alkali tank and adapts the above to a filtration-type depolarized process, for example as shown in FIG. 2 of WO 03/102271 Let That is, in this case, the original cell cathode, which is a nickel or steel metal electrode for hydrogen generation well known in the art, serves as a current collector, while a nickel mattress (elastic current collector) Acts as an intervening element for current transfer between the rigid current collector and the gas diffusion electrode.

しかし上に示した解決策には、この型の槽の実用化を妨げるいくつかの不都合が必然的に伴う。すなわち、2隔室型の電流伝達システムには、マットレスとガス拡散電極の間のものなど、抵抗降下の面で特に好ましくない接触仲介物を追加することはもちろん、それ以外に、実際のところは過大なコストおよび厚さ、マットレスの設置および(特に周辺部での)寸法管理の困難、ならびに変形および弾性力を管理することの困難が伴う。 However, the solution presented above entails several disadvantages that prevent the practical use of this type of tank. In other words, in the two-compartment type current transfer system, a contact mediator that is not particularly preferable in terms of resistance drop, such as that between the mattress and the gas diffusion electrode, is added. With excessive cost and thickness, mattress installation and dimensional management difficulties (especially at the periphery), and difficulty in managing deformation and elastic forces.

本発明の1つの目的は、イオン交換膜によって分離され、従来技術の制限事項を克服するガス拡散電極および電解液循環用濾過部材要素を装備した電解槽を提供することである。 One object of the present invention is to provide an electrolytic cell equipped with a gas diffusion electrode and an electrolyte circulation filter element separated by an ion exchange membrane and overcoming the limitations of the prior art.

別の態様では、本発明の1つの目的は、ガス拡散電極および濾過部材を設けた電解槽用の改善された電流供給システムを提供することである。 In another aspect, one object of the present invention is to provide an improved current supply system for an electrolytic cell provided with a gas diffusion electrode and a filtering member.

本発明は、イオン交換膜で分離されたアノードの隔室およびカソードの隔室を有する電解槽から成り、2つの隔室のうちの少なくとも1つに2つの主表面を有するガス拡散電極が装備され、第1の主表面は、電解液の流れが横切る濾過部材と接触する膜に面し、第1の主表面と反対の第2の主表面は、ガス拡散電極を濾過部材に押しつけるのに適した多数の弾性導電突起を備えた電流分配器と接触する。濾過部材としては、国際特許公開WO/0157290に開示されているような、引力によって液体の流れが横切るのに適した任意の多孔質平面要素であるとする。1つの好ましい実施形態では、従来技術の剛性集電体/弾性集電体組立品に取って代わる電流分配器が、単一の金属シートの切断および成形によって、例えば塩素アルカリ槽用のカソードの集電体の場合ではニッケルシートの切断および成形によって得られる。この場合、ニッケルシートは、通常0.5〜1.5mmに含まれる厚さのシートであり、好ましくは接触抵抗を低減するのに適した被覆を備える。シートのニッケル材料は様々な合金とすることができ、例えば一般に入手可能な製品の組合せから選択することができる。例えば優れた弾性特徴を有する、ばねの製作に適した等級および機械的特性のニッケル材料を選択すると特に有利になる。特に簡素で効果的な一実施形態では、電極に十分な圧力を与えることができる導電突起はばね片であり、これは、2つの隣接するばね片が、それらが得られる金属シートの主平面から反対の方向に突き出るように対の形で配置される。このようにして、電極表面全体のより効果的で均質な支持物が得られる。上に示した解決策は、ほとんどすべてのプロセス条件における最適の槽設計に適するが、高い電流密度における接触要素として従来技術によるマットレスを使用することは、簡単な層状構造では及ばない効果的なガス循環を可能にするという利点を有する(例えば、減極された塩素アルカリ電解の場合では、ガス拡散電極への効果的な酸素の供給)。この場合、特に好ましい一実施形態では、個別タイル状片の形状である導電突起物を提供し、これはそれらの曲がり部に、電気的接触を行うための1つまたは複数のばね片だけでなく、ガス通過に有利なように1つまたは複数の開口も備える。導電突起物は、例えば、電極表面全体に沿って分布した平行な列の形で配置することができる。 The present invention comprises an electrolytic cell having an anode compartment and a cathode compartment separated by an ion exchange membrane, and at least one of the two compartments is equipped with a gas diffusion electrode having two main surfaces. The first main surface faces the membrane in contact with the filtration member through which the electrolyte flow traverses, and the second main surface opposite to the first main surface is suitable for pressing the gas diffusion electrode against the filtration member. In contact with a current distributor having a large number of elastic conductive protrusions. The filtering member is assumed to be any porous planar element suitable for traversing a liquid flow by attractive forces, such as disclosed in International Patent Publication No. WO / 0157290. In one preferred embodiment, a current distributor that replaces the prior art rigid current collector / elastic current collector assembly is formed by cutting and forming a single metal sheet, for example, collecting a cathode for a chlor-alkali cell. In the case of an electric body, it is obtained by cutting and forming a nickel sheet. In this case, the nickel sheet is a sheet with a thickness typically comprised between 0.5 and 1.5 mm, preferably with a coating suitable for reducing contact resistance. The nickel material of the sheet can be a variety of alloys, for example, selected from a combination of commonly available products. It would be particularly advantageous to select a nickel material of grade and mechanical properties suitable for spring production, for example with excellent elastic characteristics. In one particularly simple and effective embodiment, the conductive protrusion that can apply sufficient pressure to the electrodes is a spring piece, which means that two adjacent spring pieces are separated from the main plane of the metal sheet from which they are obtained. They are arranged in pairs so as to protrude in opposite directions. In this way, a more effective and homogeneous support over the entire electrode surface is obtained. The solution presented above is suitable for optimal bath design in almost all process conditions, but the use of prior art mattresses as contact elements at high current densities is an effective gas that is not possible with a simple layered structure. It has the advantage of enabling circulation (for example, in the case of depolarized chlor-alkali electrolysis, an effective supply of oxygen to the gas diffusion electrode). In this case, in a particularly preferred embodiment, conductive projections in the form of individual tile pieces are provided, which are not only one or more spring pieces for making electrical contact to their bends. One or more openings are also provided to favor gas passage. The conductive protrusions can be arranged, for example, in the form of parallel rows distributed along the entire electrode surface.

本発明による電流分配器は、好ましくは0.1〜0.5kg/cmに含まれる圧力でガス拡散電極上に直接、効率的な電気的接触を実現するのに適しており、それにより、剛性の集電体が弾性の集電体に結合される従来技術のシステムと比べて、接触介在物が取り除かれる。他方で、本発明の一実施形態では、例えば薄いメッシュ、展伸シートまたは穿孔シートから成る、機械的圧縮力を分散させるための追加の要素を電流分配器とガス拡散電極の間に挿入することができる。このような場合では、接触介在物の数は従来技術と同等であるが、相応する抵抗は、従来技術のほとんど弾性のない、ガス拡散電極と直接接触するマットレスによって得られるものよりも著しく低くなる。さらに、当業者には容易に理解されるように、槽の全体厚さが著しく小さくなる。 The current distributor according to the invention is suitable for realizing an efficient electrical contact directly on the gas diffusion electrode, preferably at a pressure comprised between 0.1 and 0.5 kg / cm 2 , thereby Compared to prior art systems where a rigid current collector is coupled to an elastic current collector, contact inclusions are eliminated. On the other hand, in one embodiment of the present invention, an additional element for distributing mechanical compressive force, for example consisting of a thin mesh, a stretched sheet or a perforated sheet, is inserted between the current distributor and the gas diffusion electrode. Can do. In such a case, the number of contact inclusions is comparable to the prior art, but the corresponding resistance is significantly lower than that obtained with a mattress in direct contact with the gas diffusion electrode, which is almost inelastic with the prior art. Furthermore, as will be readily appreciated by those skilled in the art, the overall thickness of the vessel is significantly reduced.

従来技術による濾過型の減極された塩素アルカリ槽を示す図である。It is a figure which shows the filtration type | mold depolarized chlor-alkali tank by a prior art. 本発明による濾過型の減極された塩素アルカリ槽を示す図である。FIG. 3 is a diagram showing a filtration type depolarized chlor-alkali tank according to the present invention. 本発明による電流分配器の第1の実施形態を示す図である。It is a figure which shows 1st Embodiment of the current divider | distributor by this invention. 本発明による電流分配器の第2の実施形態を示す図である。It is a figure which shows 2nd Embodiment of the current divider | distributor by this invention. 本発明による電流分配器の第3の実施形態を示す図である。本発明を添付の図面を用いてより詳細に説明するが、図面は例示を目的とするにすぎず、本発明を限定するものではない。It is a figure which shows 3rd Embodiment of the current divider | distributor by this invention. The present invention will be described in more detail with reference to the accompanying drawings, which are for illustrative purposes only and are not intended to limit the present invention.

図1に、イオン交換膜(500)によって分離された、1つのアノードの隔室(区画)および1つのカソードの隔室(区画)を備える、従来技術による濾過型の減極された塩素アルカリ槽を示す。カソードの隔室は、電流供給システムと接触するカソードの後壁(101)によって画定され、この電流供給システムは、それと一体化された剛性の集電体(201)と、例えばニッケル性のマットレスから成る弾性の集電体(210)とである、2つの個別要素に依存する。カソード(301)は、酸素を供給される多孔質のガス拡散電極から成り、一方の側面でマットレス(210)に、他方の側面で濾過部材(400)に接触し、この濾過部材は、引力の作用で電解液の流れが横切る平面多孔質要素から成る。セパレータとして働くイオン交換膜(500)は、濾過部材(400)と接触するカソード面、およびアノード(302)に面するアノード面を有し、このアノード面はアノードと接触してよく、あるいは所定の小さな間隔で保持されてもよい。アノード(302)は通常、メッシュ、展伸シートまたは穿孔シート、あるいは任意選択でそのような2つの要素の並置で構成されるチタン基板から成り、このアノードの基板は、当技術分野で周知の塩素発生用触媒被覆を備える。アノード(302)とアノードの隔室後壁(102)の間の電気的導通は、剛性の集電体(202)によって確保される。カソードの剛性集電体(201)およびアノードの剛性集電体(202)は、リブアレイ、波形シート、適切に間隔がおかれたゴーファー(gopher)を備えたシート、または当業者に周知の他の種類の集電体で構成することができる。 FIG. 1 shows a prior art filtration-type depolarized chlor-alkali cell comprising one anode compartment (compartment) and one cathode compartment (compartment) separated by an ion exchange membrane (500). Indicates. The cathode compartment is defined by the back wall (101) of the cathode in contact with the current supply system, which consists of a rigid current collector (201) integrated with it and a nickel mattress, for example. Relies on two separate elements, an elastic current collector (210). The cathode (301) is composed of a porous gas diffusion electrode to which oxygen is supplied. The cathode (301) contacts the mattress (210) on one side and the filter member (400) on the other side. It consists of a planar porous element that, by action, crosses the flow of electrolyte. The ion exchange membrane (500) acting as a separator has a cathode surface in contact with the filtration member (400) and an anode surface facing the anode (302), which may be in contact with the anode or a predetermined It may be held at small intervals. The anode (302) typically consists of a titanium substrate comprised of a mesh, stretched sheet or perforated sheet, or optionally juxtaposed of two such elements, the substrate of the anode being well known in the art. A generating catalyst coating is provided. Electrical conduction between the anode (302) and the anode back wall (102) of the anode is ensured by a rigid current collector (202). The cathode rigid current collector (201) and the anode rigid current collector (202) can be ribbed arrays, corrugated sheets, sheets with appropriately spaced gophers, or other well known to those skilled in the art. It can be composed of different types of current collectors.

図2に、本発明による濾過型の減極された塩素アルカリ槽を示す。この図で、図1の槽と共通の要素は同じ参照数字で示されている。
電流供給システムは、ガス拡散電極(301)を濾過部材(400)に押しつけるのに適した、例えば、ばねまたは弾性ばね片の集合である多数の導電突起(220)で構成され、導電突起の集合(220)とガス拡散電極(301)との間には、機械的圧縮力を分散させるための、例えば薄いメッシュ、展伸シートまたは穿孔シートである任意選択の要素(230)が挿入される。
FIG. 2 shows a filtration-type depolarized chlor-alkali tank according to the present invention. In this figure, elements common to the tank of FIG. 1 are indicated with the same reference numerals.
The current supply system is composed of a number of conductive protrusions (220), for example a collection of springs or elastic spring pieces, suitable for pressing the gas diffusion electrode (301) against the filtration member (400). An optional element (230), for example a thin mesh, a stretched sheet or a perforated sheet, is inserted between the (220) and the gas diffusion electrode (301) to distribute the mechanical compression force.

図3は、単一の金属シートから得られ、この場合には、くし状の形に従って、平行に配置された弾性ばね片(221)の集合からなる多数の導電突起の一実施形態を示す。ばね片は、元の金属シートの主表面から2つのばね片のそれぞれが反対側の方向に突き出るように、対で配列される。当業者には明らかなように、槽の寸法によっては、単一の列のばね片(221)で全活性表面を覆うことができ、あるいはより多くの列が並行して配置されてもよい。 FIG. 3 shows an embodiment of a multiplicity of conductive protrusions obtained from a single metal sheet, in this case consisting of a collection of elastic spring pieces (221) arranged in parallel according to a comb shape. The spring pieces are arranged in pairs such that each of the two spring pieces protrudes in the opposite direction from the main surface of the original metal sheet. As will be apparent to those skilled in the art, depending on the size of the vessel, a single row of spring pieces (221) can cover the entire active surface, or more rows may be arranged in parallel.

図4は、単一の金属シートから得られる多数の導電突起の好ましい実施形態を示す。この場合、突起は、好ましくは四角形で個別のタイル状片(222)であり、これは金属シートの切断および成形によって得られ、任意選択で剛性の集電体(201)に直接溶接され、それぞれのタイル状片が、別々の機能を果たす要素を含む。例えば、必要な剛性を与えるために、各タイル状片には、適切な折りたたみステップを用いて、約90°の曲率を有する縁部(223)が設けられる。適切に間隔をあけた多数のばね片(224)は、ガス拡散電極(301)との接触要素として働き、多数の孔(225)は、ガスの供給および循環にとって、この場合は特にカソードの反応に必要な酸素に関して、好都合である。剛性の集電体(201)に溶接される様々なタイル状片は、任意選択でオフセットされた平行な列に配置されることが好ましい。 FIG. 4 shows a preferred embodiment of multiple conductive protrusions obtained from a single metal sheet. In this case, the protrusions are preferably square and individual tiled pieces (222), which are obtained by cutting and forming a metal sheet, optionally welded directly to a rigid current collector (201), respectively. Of the tiles include elements that perform separate functions. For example, to provide the necessary stiffness, each tile piece is provided with an edge (223) having a curvature of about 90 ° using a suitable folding step. A number of appropriately spaced springs (224) serve as contact elements with the gas diffusion electrode (301), and a number of holes (225) serve for gas supply and circulation, in this case especially the reaction of the cathode. Convenient with respect to the oxygen required. The various tile pieces that are welded to the rigid current collector (201) are preferably arranged in parallel rows, optionally offset.

図5は、単一の金属シートから得られる多数の導電突起の、図4に示された好ましい実施形態の一変形形態を示す。この場合、元の金属シートは穿孔シートであり、多数の孔(225’)が、ばね片(224)を含めたタイル状片の本体(222)全体に延在する。このようにして、増強したガス供給が実現され、また、ばね片(224)がストロークの端まで圧縮され、ばね片がそこから突き出るシートとばね片とが接触すると効果的にもなる。図4のタイル状片(222)上に示された孔(225)を別個に実施することから成る、わずかではあるが製造段階における節約もまた実現される。このタイル状片の構成はまた、さらなる機械的な利点も提供する。突然の高いカソード反対圧力の場合に(例えば、プロセス条件の制御の誤り、または要素の取扱いおよび組立ての誤りによる)、ばね片は、タイル状片表面全体のGDE(ガス拡散電極)の受面を考慮すれば永久変形を受けることがない。この場合、当業者には明らかなように、穿孔シートからタイル状片が得られることが、どんな場合でも適正なガス供給を保証するのにより一層重要になる。 FIG. 5 shows a variation of the preferred embodiment shown in FIG. 4 of multiple conductive protrusions obtained from a single metal sheet. In this case, the original metal sheet is a perforated sheet, and a number of holes (225 ') extend throughout the body (222) of the tiled piece, including the spring piece (224). In this way, an enhanced gas supply is realized, and it is also effective when the spring piece (224) is compressed to the end of the stroke and the spring piece comes into contact with the spring piece. A slight but manufacturing saving is also realized, consisting of separate implementation of the holes (225) shown on the tile piece (222) of FIG. This tiled piece configuration also provides further mechanical advantages. In the event of a sudden high cathode counter pressure (eg due to incorrect control of process conditions or mishandling and assembly of elements), the spring strips will receive a GDE (gas diffusion electrode) receiving surface across the tiled strip surface. If considered, there will be no permanent deformation. In this case, as will be apparent to those skilled in the art, obtaining tiled pieces from the perforated sheet is more important in any case to ensure proper gas supply.

作用面積0.16mの研究室実験用電解槽に、酸化ルテニウムチタンをベースとした触媒被覆を設けたチタンDSA(商標)アノード(302)と、Dupont/USAから市販のNafion(商標)N982イオン交換膜(500)と、ニッケルフォーム濾過部材と、銀をベースとした触媒で活性化した銀網から成るガス拡散電極とを図2の方式により装備した。 Titanium DSA ™ anode (302) with a catalyst coating based on ruthenium titanium oxide in a laboratory experimental electrolyzer with a working area of 0.16 m 2 and Nafion ™ N982 ion available from Dupont / USA The exchange membrane (500), a nickel foam filtration member, and a gas diffusion electrode made of a silver net activated by a silver-based catalyst were equipped by the method shown in FIG.

電流供給システムは、厚さ1mmのニッケル穿孔シートから得られた、図5に示したタイル状片(222)からそれぞれ成る多数の弾性導電突起で構成した。
槽のアノードの隔室には、4kA/mの電流密度、および90℃の温度で、濃度が210g/lの循環塩化ナトリウム塩水を供給した。カソードの生成物は、濾過部材の端から端まで下方に流れる32重量%の苛性ソーダから成った。これらの条件において、プラントでのプロセス条件を10日間安定化させた後で、2.00〜2.05Vに含まれる槽電圧が検出された。
The current supply system was composed of a number of elastic conductive protrusions each made of a tile-like piece (222) shown in FIG. 5, obtained from a 1 mm thick nickel perforated sheet.
The cell's anode compartment was fed with circulating sodium chloride brine having a concentration of 210 g / l at a current density of 4 kA / m 2 and a temperature of 90 ° C. The cathode product consisted of 32% by weight caustic soda flowing down across the filter element. Under these conditions, the cell voltage included in 2.00 to 2.05 V was detected after the process conditions in the plant were stabilized for 10 days.

実施例1の試験を、従来技術の槽を使用して類似の条件で繰り返した。したがって唯一の実質的な相違はカソードの電流供給システムにあり、このシステムは、市販のニッケルマットレスに結合したカソードの後壁に溶接されたニッケルリブアレイから成る剛性の集電体を含む。 The test of Example 1 was repeated under similar conditions using a prior art bath. Thus, the only substantial difference is in the cathode current supply system, which includes a rigid current collector consisting of a nickel rib array welded to the back wall of the cathode bonded to a commercially available nickel mattress.

実施例1と同じプロセス条件で、10日間の安定化の後、2.10〜2.15Vに含まれる槽電圧が検出された。
以上の説明は本発明を限定するものではなく、本発明は、その範囲から逸脱することなく様々な実施形態に応じて使用することができ、本発明の範囲は、添付の特許請求の範囲によって一義的に規定される。
Under the same process conditions as in Example 1, after 10 days of stabilization, a cell voltage comprised between 2.10 and 2.15 V was detected.
The above description does not limit the present invention, and the present invention can be used according to various embodiments without departing from the scope thereof, and the scope of the present invention is defined by the appended claims. It is uniquely defined.

本出願の明細書および特許請求の範囲全体を通して「備える、含む(comprise)」という語と、「備える、含む(comprising)」および「備える、含む(comprises)」など、その変異とは、他の要素または付加物の存在を排除するものではない。 Throughout the specification and claims of this application, the term “comprising” and its variations, such as “comprising” and “comprising” It does not exclude the presence of elements or adjuncts.

Claims (12)

イオン交換膜によって分離された、アノードの隔室およびカソードの隔室を備える型の電解槽であって、前記隔室の少なくとも1つが、2つの主表面を有するガス拡散電極を装備し、前記ガス拡散電極の第1の主表面が、前記膜に面するとともに、電解液の流れが横切るのに適した平面多孔質要素と接触しており、前記ガス拡散電極の第2の主表面が、電流分配器と接触し、前記電流分配器が、前記ガス拡散電極を前記平面多孔質要素に押しつけるのに適した多数の弾性導電突起を備える、電解槽。 An electrolytic cell of the type comprising an anode compartment and a cathode compartment separated by an ion exchange membrane, wherein at least one of said compartments is equipped with a gas diffusion electrode having two main surfaces, said gas The first major surface of the diffusion electrode faces the membrane and is in contact with a planar porous element suitable for the flow of electrolyte to traverse, the second major surface of the gas diffusion electrode being a current An electrolytic cell in contact with a distributor, wherein the current distributor comprises a number of elastic conductive protrusions suitable for pressing the gas diffusion electrode against the planar porous element. 前記多数の導電突起が、0.1〜0.5kg/cmの圧力を前記ガス拡散電極に及ぼす、請求項1に記載の槽。 The tank according to claim 1, wherein the plurality of conductive protrusions exert a pressure of 0.1 to 0.5 kg / cm 2 on the gas diffusion electrode. 前記複数の導電突起を備える前記電流分配器が、金属シートの切断および成形によって得られる、請求項1または2に記載の槽。 The tank according to claim 1 or 2, wherein the current distributor including the plurality of conductive protrusions is obtained by cutting and forming a metal sheet. 前記導電突起が、くし状の形に従って配列されたばね片である、請求項3に記載の槽。 The tank according to claim 3, wherein the conductive protrusions are spring pieces arranged according to a comb shape. 前記ばね片が、隣接する対の形で配列され、前記対のそれぞれのばね片が、前記金属シートの主平面から反対側の方向に突き出る、請求項4に記載の槽。 5. A vessel according to claim 4, wherein the spring pieces are arranged in adjacent pairs, each spring piece of the pair projecting in an opposite direction from the main plane of the metal sheet. 前記導電突起が、任意選択で四角形の個々のタイル状片であり、前記タイル状片が、多数のばね片と、ガス循環用の少なくとも1つの開口とを備える、請求項3に記載の槽。 4. A vessel according to claim 3, wherein the conductive protrusions are optionally square individual tile pieces, the tile pieces comprising a number of spring pieces and at least one opening for gas circulation. 前記タイル状片が、任意選択でオフセットされた平行な列の形で、剛性の集電体に溶接される、請求項6に記載の槽。 7. A vessel according to claim 6, wherein the tile pieces are welded to a rigid current collector in the form of optionally offset parallel rows. 前記金属シートが0.5〜1.5ミリメートルの厚さである、請求項3乃至7の何れか一項に記載の槽。 The tank according to any one of claims 3 to 7, wherein the metal sheet has a thickness of 0.5 to 1.5 millimeters. 前記金属シートが穿孔シートである、請求項3乃至6の何れか一項に記載の槽。 The tank according to any one of claims 3 to 6, wherein the metal sheet is a perforated sheet. 前記金属シートがニッケル製である、請求項3乃至9の何れか一項に記載の槽。 The tank according to any one of claims 3 to 9, wherein the metal sheet is made of nickel. 前記ニッケルシートが、前記突起に対応して電気接触抵抗を低減するのに適した被覆を備える、請求項10に記載の槽。 11. A vessel according to claim 10, wherein the nickel sheet comprises a coating suitable for reducing electrical contact resistance corresponding to the protrusions. 機械的圧縮力を分散させるための追加の要素を備え、前記追加の要素は、メッシュ、穿孔シート、および展伸シートの群から選択され、前記追加の要素は、前記電流分配器と前記ガス拡散電極との間に挿入される、前記請求項の何れか一項に記載の槽。 An additional element for distributing mechanical compressive force, said additional element being selected from the group of mesh, perforated sheet, and stretched sheet, said additional element comprising said current distributor and said gas diffusion The tank according to any one of the preceding claims, which is inserted between the electrodes.
JP2014027391A 2006-01-16 2014-02-17 Electrolytic cell Expired - Fee Related JP5860075B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ITMI2006A000054 2006-01-16
IT000054A ITMI20060054A1 (en) 2006-01-16 2006-01-16 ELASTIC CURRENT DISTRIBUTOR FOR PERCOLATOR CELLS

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2008549885A Division JP2009523906A (en) 2006-01-16 2007-01-15 Elastic current distributor for filtration tanks

Publications (2)

Publication Number Publication Date
JP2014088629A true JP2014088629A (en) 2014-05-15
JP5860075B2 JP5860075B2 (en) 2016-02-16

Family

ID=38141182

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2008549885A Withdrawn JP2009523906A (en) 2006-01-16 2007-01-15 Elastic current distributor for filtration tanks
JP2014027391A Expired - Fee Related JP5860075B2 (en) 2006-01-16 2014-02-17 Electrolytic cell

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2008549885A Withdrawn JP2009523906A (en) 2006-01-16 2007-01-15 Elastic current distributor for filtration tanks

Country Status (10)

Country Link
US (1) US20090050472A1 (en)
EP (1) EP1977027A2 (en)
JP (2) JP2009523906A (en)
KR (1) KR101362680B1 (en)
CN (1) CN101370966B (en)
BR (1) BRPI0706587A2 (en)
CA (1) CA2635098C (en)
IT (1) ITMI20060054A1 (en)
RU (1) RU2423554C2 (en)
WO (1) WO2007080193A2 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITMI20071375A1 (en) * 2007-07-10 2009-01-11 Uhdenora Spa ELASTIC CURRENT MANIFOLD FOR ELECTROCHEMICAL CELLS
CN102459708A (en) * 2009-05-26 2012-05-16 氯工程公司 Gas diffusion electrode-equipped ion-exchange membrane electrolytic cell
DE102010021833A1 (en) * 2010-05-28 2011-12-01 Uhde Gmbh Electrode for electrolysis cell
ITMI20130563A1 (en) * 2013-04-10 2014-10-11 Uhdenora Spa METHOD OF ADAPTATION OF ELECTROLYTIC CELLS HAVING FINISHED INTERELECTRODUCTS DISTANCES
PT2957659T (en) 2014-06-16 2019-05-31 Siemens Ag Gas diffusion layer, pem electrolysis cell with such a gas diffusion layer and electrolyser
AU2015280334A1 (en) * 2014-06-24 2017-01-05 Chemetics Inc. Narrow gap, undivided electrolysis cell
EP3440241A1 (en) 2016-04-07 2019-02-13 Covestro Deutschland AG Difunctional electrode and electrolysis device for chlor-alkali electrolysis
EP3464683B1 (en) * 2016-05-26 2021-07-07 Calera Corporation Anode assembly, contact strips, electrochemical cell, and methods to use and manufacture thereof
JP6656091B2 (en) * 2016-06-14 2020-03-04 ティッセンクルップ・ウーデ・クロリンエンジニアズ ゲー エム ベー ハー Electrolytic cell
DE102018209520A1 (en) 2018-06-14 2019-12-19 Thyssenkrupp Uhde Chlorine Engineers Gmbh electrolysis cell
JP7298616B2 (en) 2018-07-27 2023-06-27 株式会社大阪ソーダ Conductive elastic body for electrolytic cell and electrolytic cell
CN109786781A (en) * 2019-03-15 2019-05-21 徐州华清京昆能源有限公司 A kind of integral electrode with air flue
ES2927767T3 (en) * 2019-07-26 2022-11-10 Zentrum Fuer Sonnenenergie Und Wasserstoff Forschung Baden Wuerttemberg Electrode packaging unit for a stack assembly of an electrochemical reactor
DE102020206448A1 (en) * 2020-05-25 2021-11-25 Siemens Aktiengesellschaft Device for attaching an electrode
EP4279637A1 (en) 2022-05-18 2023-11-22 Zentrum für Sonnenenergie- und Wasserstoff-Forschung Baden-Württemberg Electrode plate with integrated current transformer structure and electrode package unit
EP4339334A1 (en) * 2022-09-15 2024-03-20 thyssenkrupp nucera AG & Co. KGaA Electrolysis cell with arched support members

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5655578A (en) * 1979-08-03 1981-05-16 Oronzio De Nora Impianti Oronzio de nora impianti
JPS59208087A (en) * 1983-05-02 1984-11-26 オロンジオ・ド・ノラ・イムピアンチ・エレットロキミシ・ソシエタ・ペル・アジオニ Electrolytic cell for halogen generation and method therefor
JPH05306484A (en) * 1992-04-30 1993-11-19 Chlorine Eng Corp Ltd Electrolytic cell
US20020189936A1 (en) * 2001-06-15 2002-12-19 Akzo Nobel N.V. Electrolytic cell
JP2004002993A (en) * 2002-04-05 2004-01-08 Chlorine Eng Corp Ltd Ion exchange membrane electrolytic cell
JP2004244676A (en) * 2003-02-13 2004-09-02 Mitsui Chemicals Inc Ion exchange membrane type electrolytic cell using gas diffusion cathode and its operation method
JP2005509744A (en) * 2001-11-12 2005-04-14 ウデノラ・テクノロジーズ・ソチエタ・ア・レスポンサビリタ・リミタータ Electrolytic cell with gas diffusion electrode

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT8025483A0 (en) * 1980-10-21 1980-10-21 Oronzio De Nora Impianti ELECTROCDES FOR SOLID ELECTROLYTE CELLS APPLIED ON THE SURFACE OF ION EXCHANGE MEMBRANES AND PROCEDURE FOR THE PREPARATION AND USE OF THE SAME.
US4444632A (en) * 1979-08-03 1984-04-24 Oronzio Denora Impianti Elettrochimici S.P.A. Electrolysis cell
DE3439265A1 (en) * 1984-10-26 1986-05-07 Hoechst Ag, 6230 Frankfurt ELECTROLYSIS APPARATUS WITH HORIZONTALLY ARRANGED ELECTRODES
IT1317753B1 (en) * 2000-02-02 2003-07-15 Nora S P A Ora De Nora Impiant ELECTROLYSIS CELL WITH GAS DIFFUSION ELECTRODE.
WO2002103082A1 (en) * 2001-06-15 2002-12-27 Akzo Nobel N.V. Electrolytic cell
DE10138214A1 (en) * 2001-08-03 2003-02-20 Bayer Ag Chlorine generation electrolysis cell, having low operating voltage, has anode frame retained in a flexible array on cathode frame, cation exchange membrane, anode, gas diffusion electrode and current collector
DE10203689A1 (en) * 2002-01-31 2003-08-07 Bayer Ag Cathodic current distributor for electrolytic cells
EP1378589B1 (en) * 2002-04-05 2005-12-07 CHLORINE ENGINEERS CORP., Ltd. Ion exchange membrane electrolyzer

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5655578A (en) * 1979-08-03 1981-05-16 Oronzio De Nora Impianti Oronzio de nora impianti
JPS59208087A (en) * 1983-05-02 1984-11-26 オロンジオ・ド・ノラ・イムピアンチ・エレットロキミシ・ソシエタ・ペル・アジオニ Electrolytic cell for halogen generation and method therefor
JPH05306484A (en) * 1992-04-30 1993-11-19 Chlorine Eng Corp Ltd Electrolytic cell
US20020189936A1 (en) * 2001-06-15 2002-12-19 Akzo Nobel N.V. Electrolytic cell
JP2005509744A (en) * 2001-11-12 2005-04-14 ウデノラ・テクノロジーズ・ソチエタ・ア・レスポンサビリタ・リミタータ Electrolytic cell with gas diffusion electrode
JP2004002993A (en) * 2002-04-05 2004-01-08 Chlorine Eng Corp Ltd Ion exchange membrane electrolytic cell
JP2004244676A (en) * 2003-02-13 2004-09-02 Mitsui Chemicals Inc Ion exchange membrane type electrolytic cell using gas diffusion cathode and its operation method

Also Published As

Publication number Publication date
BRPI0706587A2 (en) 2011-03-29
KR101362680B1 (en) 2014-02-13
JP2009523906A (en) 2009-06-25
CN101370966A (en) 2009-02-18
RU2423554C2 (en) 2011-07-10
CA2635098C (en) 2016-03-08
KR20080087037A (en) 2008-09-29
US20090050472A1 (en) 2009-02-26
WO2007080193A2 (en) 2007-07-19
JP5860075B2 (en) 2016-02-16
RU2008133577A (en) 2010-02-27
CA2635098A1 (en) 2007-07-19
ITMI20060054A1 (en) 2007-07-17
CN101370966B (en) 2013-05-08
WO2007080193A3 (en) 2007-11-29
EP1977027A2 (en) 2008-10-08

Similar Documents

Publication Publication Date Title
JP5860075B2 (en) Electrolytic cell
KR101581730B1 (en) Elastic current collector for electrochemical cells
US4343690A (en) Novel electrolysis cell
RU2041291C1 (en) Electrolyzer
SK363585A3 (en) Membrane electrolytic cell
JP2010533239A5 (en)
WO2004048643A1 (en) Bipolar zero-gap electrolytic cell
JP3707985B2 (en) Alkali metal salt electrolytic cell
EP1464728B1 (en) Electrode for electrolysis and ion exchange membrane electrolytic cell
CA2053278C (en) Electrode structure for an electrolytic cell
JP2001064792A (en) Electrolytic cell
TW202124779A (en) Elastic mat for alkaline water electrolysis vessel
WO2006120002A1 (en) Cathodic finger for diaphragm cell
JP2000178782A (en) Ion-exchange membrane electrolytic cell
CZ279836B6 (en) Membrane electrolytic cell
WO2003095705A1 (en) Bifurcated electrode of use in electrolytic cells

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140313

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140313

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150302

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150821

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151028

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151217

R150 Certificate of patent or registration of utility model

Ref document number: 5860075

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees