JP2014088287A - Composite film composed of antireflection film and diffusion suppression film, and method for manufacturing glass substrate comprising composite film - Google Patents

Composite film composed of antireflection film and diffusion suppression film, and method for manufacturing glass substrate comprising composite film Download PDF

Info

Publication number
JP2014088287A
JP2014088287A JP2012239662A JP2012239662A JP2014088287A JP 2014088287 A JP2014088287 A JP 2014088287A JP 2012239662 A JP2012239662 A JP 2012239662A JP 2012239662 A JP2012239662 A JP 2012239662A JP 2014088287 A JP2014088287 A JP 2014088287A
Authority
JP
Japan
Prior art keywords
film
composite film
glass substrate
composite
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012239662A
Other languages
Japanese (ja)
Inventor
Reiko Hyugano
怜子 日向野
Reiko Izumi
礼子 泉
Yoshimasa Hayashi
芳昌 林
Kazuhiko Yamazaki
和彦 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2012239662A priority Critical patent/JP2014088287A/en
Priority to CN201310418297.9A priority patent/CN103787588A/en
Priority to TW102133668A priority patent/TW201418006A/en
Priority to KR1020130128812A priority patent/KR20140057162A/en
Publication of JP2014088287A publication Critical patent/JP2014088287A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Surface Treatment Of Glass (AREA)
  • Laminated Bodies (AREA)
  • Glass Compositions (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a composite film that enables using a general-purpose glass such as a soda-lime glass containing Na and Ca as an antireflection glass substrate having high durability.SOLUTION: The composite film comprises a diffusion suppression film containing 1.0-12.0 atom% of P, and an antireflection film containing 0.1-0.7 atom% of P, based on 100 atom% of the total of Si, P and O, as determined by a quantitative analysis by an energy dispersion type X-ray spectroscopic analyzer attached to a transmission electron microscope. The composite film has the diffusion suppression film and the antireflection film in this order formed on the surface of a glass substrate containing at least one kind selected from the group consisting of Na and Ca.

Description

本発明は、反射防止膜および拡散抑制膜からなる複合膜、およびこの複合膜を備えるガラス基材の製造方法に関する。さらに詳しくは、高耐久性の反射防止膜および拡散抑制膜からなる複合膜、およびこの複合膜を備えるガラス基材の製造方法に関する。   The present invention relates to a composite film composed of an antireflection film and a diffusion suppressing film, and a method for producing a glass substrate provided with the composite film. More specifically, the present invention relates to a composite film composed of a highly durable antireflection film and a diffusion suppressing film, and a method for producing a glass substrate provided with the composite film.

ガラスやプラスチック等の基材の表面に、薄膜を形成し、新たな機能を付与する種々の表面処理技術が開発されており、表面にシリコンアルコキシドを用いて形成したシリカ薄膜からなる反射防止膜が報告されている(特許文献1)。   Various surface treatment technologies have been developed to form a thin film on the surface of a substrate such as glass or plastic and to add a new function. An antireflection film made of a silica thin film formed using silicon alkoxide on the surface has been developed. It has been reported (Patent Document 1).

ここで、反射防止性の高い反射防止膜を有する基材が求められている用途に、薄膜太陽電池が挙げられる。図1に、反射防止膜付き基材を使用する薄膜太陽電池の断面の模式図の一例を示す。図1は、スーパーストレート型薄膜太陽電池の例である。薄膜太陽電池10は、反射防止膜11、ガラス基材12、透明電極層13、光電変換層14、透明導電膜15、導電性反射膜16の順に備えており、反射防止膜11側から太陽光が入射する。ここで、ガラス基材12の太陽光の入射面で、太陽光が反射すると、光電変換層14に到達する太陽光が減少し、薄膜太陽電池の変換効率を低下させてしまう。このため、ガラス基材12の太陽光の入射面上に、反射防止性の高い反射防止膜11を形成し、光電変換層14に入射する太陽光の透過量を増加させる必要がある。   Here, a thin film solar cell is mentioned as the use for which the base material which has an antireflection film with high antireflection property is calculated | required. In FIG. 1, an example of the schematic diagram of the cross section of the thin film solar cell which uses the base material with an antireflection film is shown. FIG. 1 is an example of a super straight type thin film solar cell. The thin film solar cell 10 includes an antireflection film 11, a glass substrate 12, a transparent electrode layer 13, a photoelectric conversion layer 14, a transparent conductive film 15, and a conductive reflection film 16 in this order, and sunlight from the antireflection film 11 side. Is incident. Here, when sunlight reflects on the sunlight incident surface of the glass substrate 12, the sunlight reaching the photoelectric conversion layer 14 is reduced, and the conversion efficiency of the thin-film solar cell is lowered. For this reason, it is necessary to form the antireflection film 11 having high antireflection properties on the sunlight incident surface of the glass substrate 12 to increase the amount of sunlight transmitted to the photoelectric conversion layer 14.

現在、最も使用されているソーダ石灰ガラス等の汎用ガラスは、Na、Caを含有している。ここで、薄膜太陽電池は、外気に曝される環境で使用されるため、薄膜太陽電池のガラス基材に用いられる反射防止膜には、外気の温度差や天候による高温かつ高湿度下での耐久性が必須である。薄膜太陽電池が、このような環境下で長期に曝されると、下地のガラス基材から、NaやCaが、反射防止膜表面に拡散する傾向があり、反射防止膜表面を白濁させ、可視光透過率を下げてしまい、薄膜太陽電池の変換効率を低下させる問題があった。   Currently, general-purpose glass such as soda-lime glass most used contains Na and Ca. Here, since the thin film solar cell is used in an environment exposed to the outside air, the antireflection film used for the glass substrate of the thin film solar cell has a high temperature and high humidity due to the temperature difference of the outside air or the weather. Durability is essential. When a thin-film solar cell is exposed to such an environment for a long time, Na or Ca tends to diffuse from the underlying glass substrate to the antireflection film surface, causing the antireflection film surface to become cloudy and visible. There was a problem that the light transmittance was lowered and the conversion efficiency of the thin film solar cell was lowered.

よって、薄膜太陽電池のガラス基材には、反射防止膜機能を付与させることにより、入射する太陽光の透過量を増加させると同時に、高温高湿下でのNaやCaの反射防止膜表面への拡散を抑える機能を持つことが求められる。   Therefore, the glass substrate of the thin film solar cell is given an antireflection film function to increase the amount of incident sunlight, and at the same time, to the antireflection film surface of Na or Ca under high temperature and high humidity. It is required to have a function to suppress the diffusion of

特開2002―161262号公報Japanese Patent Laid-Open No. 2002-161262

しかしながら、上記表面にシリコンアルコキシドを用いて形成したシリカ薄膜からなる反射防止膜は、下地のガラス基材から、NaやCaが、反射防止膜表面に拡散し、反射防止膜表面を白濁させてしまうため、薄膜太陽電池等の外気にさらされる環境での使用に適していない、という問題がある。   However, in the antireflection film made of a silica thin film formed using silicon alkoxide on the surface, Na or Ca diffuses from the underlying glass substrate to the antireflection film surface, causing the antireflection film surface to become cloudy. Therefore, there is a problem that it is not suitable for use in an environment exposed to outside air such as a thin film solar cell.

本発明は、上記問題を解決したものである。本発明は、Na、Caを含有するソーダ石灰ガラス等の汎用ガラスを、高耐久性の反射防止性ガラス基材として利用することを可能とする製造方法を提供することを目的とする。すなわち、高温高湿下でのガラス基材中のNaやCaの反射防止膜表面への拡散を抑え、反射防止膜の白濁を抑制することができ、かつ透過率の高い反射防止膜を含む複合膜、およびこの複合膜を備えるガラス基材の製造方法を提供することを目的とする。   The present invention solves the above problems. An object of this invention is to provide the manufacturing method which makes it possible to utilize general purpose glass, such as soda-lime glass containing Na and Ca, as a highly durable antireflection glass substrate. That is, a composite containing an antireflection film that can suppress diffusion of Na and Ca in the glass substrate under high temperature and high humidity to the surface of the antireflection film, suppress white turbidity of the antireflection film, and has a high transmittance. It aims at providing the manufacturing method of a film | membrane and a glass substrate provided with this composite film.

本発明者らは、鋭意研究を行い、ガラス基材に、特定範囲でPを含有する反射防止膜と、特定範囲でPを含有する拡散抑制膜とからなる複合膜を形成することにより、高温高湿下でのガラス基材中のNaやCaの反射防止膜表面への拡散を抑え、反射防止膜の白濁を抑制することができ、かつ透過率の高い反射防止膜を含むガラス基材を製造することができることを見出した。本発明は、以下に示す構成によって上記課題を解決した反射防止膜および拡散抑制膜からなる複合膜、およびこの複合膜を備えるガラス基材の製造方法に関する。
〔1〕透過電子顕微鏡付属のエネルギー分散型X線分光分析装置による定量分析で、Si、PおよびOの合計100原子%に対して、Pを1.0〜12.0原子%含有する拡散抑制膜、およびPを0.1〜0.7原子%含有する反射防止膜からなり、
NaおよびCaからなる群より選択される少なくとも1種を含有するガラス基材表面に、拡散抑制膜、反射防止膜の順に形成されることを特徴とする、複合膜。
〔2〕反射防止膜が、さらに、コロイダルシリカ粒子を含む、上記〔1〕記載の複合膜。
〔3〕(1)NaおよびCaからなる群より選択される少なくとも1種を含有するガラス基材に、
(A)シリコンアルコキシド、またはシリコンアルコキシドの加水分解物もしくは脱水物と、(B)オルトリン酸およびピロリン酸からなる群より選択される少なくとも1種のリン酸と、を含み、かつ(B)成分が、反射防止膜および拡散抑制膜からなる複合膜用組成物:100質量部に対して、0.02〜0.28質量部である、反射防止膜および拡散抑制膜からなる複合膜用組成物を、
湿式塗工法により塗布する工程、ならびに
(2)反射防止膜および拡散抑制膜からなる複合膜用組成物の塗膜を有するガラス基材を、100〜500℃で、30〜60分焼成して、ガラス基材に、透過電子顕微鏡付属のエネルギー分散型X線分光分析装置による定量分析で、Si、PおよびOの合計100原子%に対して、Pを1.0〜12.0原子%含有する拡散抑制膜と、Pを0.1〜0.7原子%含有する反射防止膜とを、この順に形成した複合膜を得る工程、
を、この順で含むことを特徴とする、反射防止膜および拡散抑制膜からなる複合膜を備えるガラス基材の製造方法。
〔4〕(1)工程で塗布される反射防止膜および拡散抑制膜からなる複合膜用組成物が、さらに、(C)コロイダルシリカ粒子を含む、上記〔3〕記載の反射防止膜および拡散抑制膜からなる複合膜を備えるガラス基材の製造方法。
The inventors have conducted intensive research and formed a composite film composed of an antireflective film containing P in a specific range and a diffusion suppression film containing P in a specific range on a glass substrate. A glass substrate including an antireflection film having high transmittance, which can suppress diffusion of Na and Ca in the glass substrate under high humidity to the antireflection film surface, suppress white turbidity of the antireflection film, and It has been found that it can be manufactured. The present invention relates to a composite film composed of an antireflection film and a diffusion suppressing film that solves the above-described problems with the following configuration, and a method for producing a glass substrate including the composite film.
[1] Diffusion suppression containing 1.0 to 12.0 atomic percent of P with respect to a total of 100 atomic percent of Si, P, and O by quantitative analysis using an energy dispersive X-ray spectrometer attached to a transmission electron microscope A film, and an antireflection film containing 0.1 to 0.7 atomic% of P,
A composite film, wherein a diffusion suppressing film and an antireflection film are formed in this order on the surface of a glass substrate containing at least one selected from the group consisting of Na and Ca.
[2] The composite film according to [1], wherein the antireflection film further contains colloidal silica particles.
[3] (1) A glass substrate containing at least one selected from the group consisting of Na and Ca,
(A) silicon alkoxide, or a hydrolyzate or dehydration product of silicon alkoxide, and (B) at least one phosphoric acid selected from the group consisting of orthophosphoric acid and pyrophosphoric acid, and component (B) A composition for a composite film consisting of an antireflection film and a diffusion suppression film: A composition for a composite film consisting of an antireflection film and a diffusion suppression film that is 0.02 to 0.28 parts by mass with respect to 100 parts by mass ,
A step of applying by a wet coating method, and (2) firing a glass substrate having a coating film of a composite film composition comprising an antireflection film and a diffusion suppressing film at 100 to 500 ° C. for 30 to 60 minutes, The glass substrate contains 1.0 to 12.0 atomic% of P with respect to a total of 100 atomic% of Si, P and O by quantitative analysis using an energy dispersive X-ray spectrometer attached to the transmission electron microscope. A step of obtaining a composite film in which a diffusion suppressing film and an antireflection film containing 0.1 to 0.7 atomic% of P are formed in this order;
In this order, a method for producing a glass substrate provided with a composite film comprising an antireflection film and a diffusion suppressing film.
[4] The antireflection film and the diffusion suppression according to the above [3], wherein the composite film composition comprising the antireflection film and the diffusion suppression film applied in the step (1) further comprises (C) colloidal silica particles. A method for producing a glass substrate comprising a composite film comprising a film.

本発明〔1〕によれば、従来、高温高湿下では、ガラス基材中のNa、Caが、反射防止膜表面に拡散し、反射防止膜表面を白濁化させてしまうため使用することができなかったNa、Caを含有するソーダ石灰ガラス等の汎用ガラスを、高耐久性の反射防止性ガラス基材として利用することができる。具体的には、特定範囲でPを含有する反射防止膜により入射光の透過量を増加させると同時に、特定範囲でPを含有する拡散抑制膜により高温高湿下でのガラス基材中のNaやCaの表面拡散を抑え、反射防止膜の白濁を抑制する、反射防止膜および拡散抑制膜からなる複合膜を提供することができる。本発明〔2〕によれば、硬度が高い反射防止膜を有する複合膜を提供することができる。   According to the present invention [1], conventionally, under high temperature and high humidity, Na and Ca in the glass base material diffuse into the surface of the antireflection film and cause the antireflection film surface to become cloudy. General-purpose glass such as soda lime glass containing Na and Ca that could not be used can be used as a highly durable antireflection glass substrate. Specifically, the amount of incident light transmitted is increased by an antireflection film containing P in a specific range, and at the same time, Na in a glass substrate at high temperature and high humidity by a diffusion suppression film containing P in a specific range. It is possible to provide a composite film composed of an antireflection film and a diffusion suppression film that suppresses surface diffusion of Ca and Ca and suppresses white turbidity of the antireflection film. According to the present invention [2], a composite film having an antireflection film having high hardness can be provided.

本発明〔3〕によれば、本発明〔1〕の複合膜を備えるガラス基材を簡便に製造することができる。ここで、反射防止膜および拡散抑制膜からなる複合膜用組成物に含まれるリン酸は、拡散抑制膜の形成時に、ガラス基材中のNaやCaを、リン酸ナトリウム(NaPO、Na、NaPO等)、リン酸カルシウム(Ca(PO、Ca、Ca(PO等)等のリン酸塩化合物として取り込み、ガラス基材中のNaやCaの反射防止膜への拡散を抑制する、と考えられる。また、複合膜用組成物中にリン酸が含まれ、液状の複合膜用組成物がガラス基材に塗布された際に、ガラス基材中のNaやCaと反応し、リン酸塩化合物が瞬時に形成されるため、上記複合膜用組成物から、反射防止膜と拡散抑制膜の2層が形成される、と考えられる。本発明〔4〕によれば、硬度が高く、耐久性が高い反射防止膜および拡散抑制膜からなる複合膜を備えるガラス基材を提供することができる。 According to the present invention [3], a glass substrate comprising the composite film of the present invention [1] can be easily produced. Here, phosphoric acid contained in the composite film composition composed of the antireflection film and the diffusion suppressing film converts Na and Ca in the glass substrate into sodium phosphate (NaPO 3 , Na 4) when the diffusion suppressing film is formed. P 2 O 7 , Na 3 PO 4 etc.), calcium phosphate (Ca (PO 3 ) 2 , Ca 2 P 2 O 7 , Ca 3 (PO 4 ) 2 etc.) etc. It is considered that the diffusion of Na and Ca into the antireflection film is suppressed. In addition, when the composite film composition contains phosphoric acid and the liquid composite film composition is applied to the glass substrate, it reacts with Na or Ca in the glass substrate, and the phosphate compound Since it is formed instantaneously, it is considered that two layers of an antireflection film and a diffusion suppression film are formed from the composite film composition. According to the present invention [4], it is possible to provide a glass substrate having a composite film composed of an antireflection film and a diffusion suppressing film having high hardness and high durability.

反射防止膜付き基材を使用する薄膜太陽電池の断面の模式図の一例である。It is an example of the schematic diagram of the cross section of the thin film solar cell which uses a base material with an antireflection film. 本発明の反射防止膜および拡散抑制膜からなる複合膜を備えるガラス基材の断面の一例である。It is an example of the cross section of a glass substrate provided with the composite film which consists of an antireflection film and a diffusion suppression film of the present invention. 本発明の反射防止膜および拡散抑制膜からなる複合膜を備えるガラス基材の断面の透過電子顕微鏡写真の一例である。It is an example of the transmission electron micrograph of the cross section of the glass substrate provided with the composite film which consists of an antireflection film and a diffusion suppression film of the present invention. 本発明の反射防止膜および拡散抑制膜からなる複合膜を備えるガラス基材を使用する薄膜太陽電池の断面の模式図の一例である。It is an example of the schematic diagram of the cross section of the thin film solar cell which uses the glass base material provided with the composite film which consists of an antireflection film and a diffusion suppression film of the present invention.

以下、本発明を実施形態に基づいて具体的に説明する。なお、%は特に示さない限り、また数値固有の場合を除いて質量%である。   Hereinafter, the present invention will be specifically described based on embodiments. Unless otherwise indicated, “%” means “% by mass” unless otherwise specified.

〔複合膜〕
本発明の複合膜は、 透過電子顕微鏡付属のエネルギー分散型X線分光分析装置による定量分析で、Si、PおよびOの合計100原子%に対して、Pを1.0〜12.0原子%含有する拡散抑制膜、およびPを0.1〜0.7原子%含有する反射防止膜からなり、
NaおよびCaからなる群より選択される少なくとも1種を含有するガラス基材表面に、拡散抑制膜、反射防止膜の順に形成されることを特徴とする。
[Composite membrane]
The composite film of the present invention is obtained by quantitative analysis using an energy dispersive X-ray spectrometer attached to a transmission electron microscope, and P is 1.0 to 12.0 atomic% with respect to a total of 100 atomic% of Si, P and O. A diffusion suppressing film containing, and an antireflection film containing 0.1 to 0.7 atomic% of P,
A diffusion suppression film and an antireflection film are formed in this order on the surface of a glass substrate containing at least one selected from the group consisting of Na and Ca.

まず、図2に、本発明の反射防止膜および拡散抑制膜からなる複合膜(以下、複合膜という)を備えるガラス基材の断面の一例を示す。複合膜を備えるガラス基材1は、ガラス基材2の表面に、Pを1.0〜12.0原子%含有する拡散抑制膜4と、Pを0.1〜0.7原子%含有する反射防止膜3とが、この順に形成された複合膜5を備える。以下、拡散抑制膜、反射防止膜の順に、説明する。   First, FIG. 2 shows an example of a cross section of a glass substrate provided with a composite film (hereinafter referred to as a composite film) composed of the antireflection film and the diffusion suppressing film of the present invention. The glass substrate 1 provided with the composite film contains, on the surface of the glass substrate 2, a diffusion suppression film 4 containing 1.0 to 12.0 atomic% of P, and 0.1 to 0.7 atomic% of P. The antireflection film 3 includes a composite film 5 formed in this order. Hereinafter, the diffusion suppressing film and the antireflection film will be described in this order.

拡散抑制膜は、高温高湿下でのガラス基材の白濁を防止するため、ガラス基材表面と反射防止膜との界面に存在し、透過電子顕微鏡付属のエネルギー分散型X線分光分析装置による定量分析で、Si、PおよびOの合計100原子%に対して、Pを1.0〜12.0原子%含有する。1.0原子%未満では、P添加の効果が十分ではなく、12.0原子%を超えると、入射光の透過率が低下する。Pは、ガラス基材中のNaやCaを、リン酸ナトリウム(NaPO、Na、NaPO等)、リン酸カルシウム(Ca(PO、Ca、Ca(PO等)等のリン酸塩化合物として取り込み、ガラス基材中のNaやCaの反射防止膜への拡散を抑制する、と考えられる。ここで、Si、PおよびOの定量分析は、日本電子(株)製電界放射型透過電子顕微鏡(型番:JEM−2010F)に付属のエネルギー分散型X線分光分析装置(EDS)により、加速電圧:200kV、プローブ径:1nmの測定条件で行い、5回測定での平均値とする。図3の複合膜を備えるガラス基材の断面の透過電子顕微鏡写真の一例を示す。図3の「×」は、定量分析を行ったポイントを示し、「×」の右の数字はポイントを示す。ポイント1〜3は、反射防止膜の分析ポイント、ポイント4は、拡散抑制膜の分析ポイント、ポイント5〜7は、ガラス基材の分析ポイントである。次に、表1に、ポイント1〜7の定量分析結果(単位:原子%)を示す。表1からわかるように、Si、PおよびOの合計100原子%に対して、反射防止膜中のポイント1〜3では、Pが0.1〜0.5原子%と、0.1〜0.7原子%の範囲内であり、拡散抑制膜中のポイント4では、5.1原子%と、1.0〜12.0原子%の範囲内であり、ガラス基材中のポイント5〜7では、Pが0原子%であった。 The diffusion suppression film is present at the interface between the glass substrate surface and the antireflection film in order to prevent white turbidity of the glass substrate under high temperature and high humidity, and is based on the energy dispersive X-ray spectrometer attached to the transmission electron microscope. In the quantitative analysis, P is contained in an amount of 1.0 to 12.0 atomic% with respect to 100 atomic% in total of Si, P and O. If it is less than 1.0 atomic%, the effect of adding P is not sufficient, and if it exceeds 12.0 atomic%, the transmittance of incident light decreases. P represents Na or Ca in the glass substrate, such as sodium phosphate (NaPO 3 , Na 4 P 2 O 7 , Na 3 PO 4, etc.), calcium phosphate (Ca (PO 3 ) 2 , Ca 2 P 2 O 7 , Ca 3 (PO 4) 2, etc.) incorporation as phosphate compounds such as, for suppressing the diffusion of the anti-reflection film of Na and Ca in the glass substrate, is considered. Here, the quantitative analysis of Si, P, and O was performed using an energy dispersive X-ray spectrometer (EDS) attached to a field emission transmission electron microscope (model number: JEM-2010F) manufactured by JEOL Ltd. : 200 kV, probe diameter: 1 nm, and the average value of five measurements. An example of the transmission electron micrograph of the cross section of a glass base material provided with the composite film of FIG. 3 is shown. “X” in FIG. 3 indicates a point where the quantitative analysis is performed, and the number on the right side of “X” indicates the point. Points 1 to 3 are analysis points of the antireflection film, point 4 is an analysis point of the diffusion suppressing film, and points 5 to 7 are analysis points of the glass substrate. Next, Table 1 shows the results of quantitative analysis of points 1 to 7 (unit: atomic%). As can be seen from Table 1, with respect to the total of 100 atomic% of Si, P and O, at points 1 to 3 in the antireflection film, P is 0.1 to 0.5 atomic% and 0.1 to 0. It is within the range of 0.7 atomic%, and at point 4 in the diffusion suppressing film, it is within the range of 5.1 atomic% and 1.0 to 12.0 atomic%, and points 5 to 7 in the glass substrate. Then, P was 0 atomic%.

また、拡散抑制膜は、厚さが3〜10nmであると好ましく、厚さが3nm未満では、高温高湿下でのガラス基材中のNa、Caの表面拡散を十分に抑制できないため、ガラス基材の白濁を防止できない場合があり、厚さが10nmを超えると、光の干渉が起こり、反射防止性が低下し易い。   The diffusion suppressing film preferably has a thickness of 3 to 10 nm. If the thickness is less than 3 nm, the surface diffusion of Na and Ca in the glass substrate under high temperature and high humidity cannot be sufficiently suppressed. In some cases, the white turbidity of the substrate cannot be prevented. When the thickness exceeds 10 nm, light interference occurs and the antireflection property tends to decrease.

反射防止膜は、SiOおよびリン含有化合物を含有し、透過電子顕微鏡付属のエネルギー分散型X線分光分析装置による定量分析で、Si、PおよびOの合計100原子%に対して、Pを0.1〜0.7原子%含有する。Pが0.1原子%未満では、拡散抑制膜の形成が不十分になり、0.7原子%を超えると、反射防止膜の反射防止性を低下させる。また、SiOは、屈折率の観点から、反射防止膜:100質量部に対して、95.0〜99.9質量部であると好ましい。リン含有化合物としては、リン酸等が挙げられる。反射防止膜の屈折率は、反射防止性の観点から、1.35〜1.50であると好ましく、反射防止膜の透過率は90%以上、複合膜付きガラス基材の透過率は92%以上であると、好ましい。反射防止膜の好ましい厚さは、ガラス基材の屈折率により変化するが、例えば、ガラス基材の屈折率が1.55程度の場合には、70〜130nmである。 The antireflection film contains SiO 2 and a phosphorus-containing compound, and P is 0 for 100 atomic% in total of Si, P and O by quantitative analysis using an energy dispersive X-ray spectrometer attached to the transmission electron microscope. .1 to 0.7 atomic%. When P is less than 0.1 atomic%, the formation of the diffusion suppressing film becomes insufficient, and when it exceeds 0.7 atomic%, the antireflection property of the antireflection film is lowered. Further, SiO 2, from the viewpoint of refractive index, antireflection film with respect to 100 parts by mass, if it is from 95.0 to 99.9 parts by weight preferred. Examples of the phosphorus-containing compound include phosphoric acid. The refractive index of the antireflection film is preferably 1.35 to 1.50 from the viewpoint of antireflection properties, the transmittance of the antireflection film is 90% or more, and the transmittance of the glass substrate with a composite film is 92%. The above is preferable. The preferred thickness of the antireflection film varies depending on the refractive index of the glass substrate. For example, when the refractive index of the glass substrate is about 1.55, it is 70 to 130 nm.

さらに、反射防止膜は、コロイダルシリカ粒子を含有すると、硬度が向上するため、好ましい。コロイダルシリカ粒子については、後述する。   Furthermore, it is preferable that the antireflection film contains colloidal silica particles because the hardness is improved. The colloidal silica particles will be described later.

このように、本発明の複合膜を備えるガラス基材は、反射防止膜により入射光の透過量を増加させると同時に、拡散抑制膜により高温高湿下でのガラス基材中のNaやCaの表面拡散を抑え、反射防止膜の白濁を抑制する。   Thus, the glass substrate provided with the composite film of the present invention increases the amount of incident light transmitted by the antireflection film, and at the same time, Na and Ca in the glass substrate under high temperature and high humidity by the diffusion suppression film. Suppresses surface diffusion and suppresses cloudiness of the antireflection film.

〔複合膜を備えるガラス基材の製造方法〕
本発明の複合膜を備えるガラス基材の製造方法(以下、本発明の製造方法という)は、(1)NaおよびCaからなる群より選択される少なくとも1種を含有するガラス基材に、
(A)シリコンアルコキシド、またはシリコンアルコキシドの加水分解物もしくは脱水物と、(B)オルトリン酸およびピロリン酸からなる群より選択される少なくとも1種のリン酸と、を含み、かつ(B)成分が、反射防止膜および拡散抑制膜からなる複合膜用組成物:100質量部に対して、0.02〜0.28質量部である、反射防止膜および拡散抑制膜からなる複合膜用組成物を、
湿式塗工法により塗布する工程、ならびに
(2)反射防止膜および拡散抑制膜からなる複合膜用組成物の塗膜を有するガラス基材を、100〜500℃で、30〜60分焼成して、ガラス基材に、透過電子顕微鏡付属のエネルギー分散型X線分光分析装置による定量分析で、Si、PおよびOの合計100原子%に対して、Pを1.0〜12.0原子%含有する拡散抑制膜と、Pを0.1〜0.7原子%含有する反射防止膜とを、この順に形成した複合膜を得る工程、
を、この順で含むことを特徴とする。この複合膜用組成物中にリン酸が含まれ、液体状である組成物が、ガラス基材に塗布された際に、ガラス基材に含まれるNaやCaと反応し、リン酸塩化合物が瞬時に形成されるため、反射防止膜と拡散抑制膜の2層が形成される、と考えられる。
[Method for producing glass substrate provided with composite film]
The manufacturing method of a glass substrate provided with the composite film of the present invention (hereinafter referred to as the manufacturing method of the present invention) is (1) a glass substrate containing at least one selected from the group consisting of Na and Ca.
(A) silicon alkoxide, or a hydrolyzate or dehydration product of silicon alkoxide, and (B) at least one phosphoric acid selected from the group consisting of orthophosphoric acid and pyrophosphoric acid, and component (B) A composition for a composite film consisting of an antireflection film and a diffusion suppression film: A composition for a composite film consisting of an antireflection film and a diffusion suppression film that is 0.02 to 0.28 parts by mass with respect to 100 parts by mass ,
A step of applying by a wet coating method, and (2) firing a glass substrate having a coating film of a composite film composition comprising an antireflection film and a diffusion suppressing film at 100 to 500 ° C. for 30 to 60 minutes, The glass substrate contains 1.0 to 12.0 atomic% of P with respect to a total of 100 atomic% of Si, P and O by quantitative analysis using an energy dispersive X-ray spectrometer attached to the transmission electron microscope. A step of obtaining a composite film in which a diffusion suppressing film and an antireflection film containing 0.1 to 0.7 atomic% of P are formed in this order;
Are included in this order. In the composite film composition, phosphoric acid is contained, and when the liquid composition is applied to the glass substrate, it reacts with Na and Ca contained in the glass substrate, and the phosphate compound Since it is formed instantaneously, it is considered that two layers of an antireflection film and a diffusion suppression film are formed.

《反射防止膜および拡散抑制膜からなる複合膜用組成物》
上述のように、本発明の製造方法の(1)工程で塗布される反射防止膜および拡散抑制膜からなる複合膜用組成物(以下、複合膜用組成物という)は、(A)シリコンアルコキシド、またはシリコンアルコキシドの加水分解物もしくは脱水物と、(B)オルトリン酸(HPO)およびピロリン酸(H)からなる群より選択される少なくとも1種のリン酸と、を含む。(B)成分のリン酸としては、入手し易さの観点から、オルトリン酸が、好ましい。(B)成分は、シリコンアルコキシドの加水分解反応性および拡散抑制膜形成の観点から、複合膜用組成物:100質量部に対して、0.02〜0.28質量部である。(B)成分が、0.02質量部未満であると、形成される拡散抑制膜の厚さが十分ではないため、複合膜用組成物により得られるガラス基材が高温高湿下で白濁してしまい、(B)成分が、0.28質量部を超えると、形成される反射防止膜の反射防止性が低下してしまう。また、(B)成分として、85%オルトリン酸を使用する場合には、複合膜用組成物:100質量部に対して、0.024〜0.329質量部になる。
<< Composition for composite film comprising antireflection film and diffusion suppressing film >>
As described above, the composite film composition (hereinafter referred to as the composite film composition) composed of the antireflection film and the diffusion suppressing film applied in the step (1) of the production method of the present invention is referred to as (A) silicon alkoxide. Or a hydrolyzate or dehydration product of silicon alkoxide, and (B) at least one phosphoric acid selected from the group consisting of orthophosphoric acid (H 3 PO 4 ) and pyrophosphoric acid (H 4 P 2 O 7 ), including. (B) As a phosphoric acid of a component, orthophosphoric acid is preferable from a viewpoint of availability. The component (B) is 0.02 to 0.28 parts by mass with respect to 100 parts by mass of the composite film composition from the viewpoint of hydrolysis reactivity of silicon alkoxide and formation of a diffusion suppressing film. When the component (B) is less than 0.02 parts by mass, the thickness of the diffusion suppressing film to be formed is not sufficient, so that the glass substrate obtained from the composite film composition becomes cloudy under high temperature and high humidity. Therefore, when the component (B) exceeds 0.28 parts by mass, the antireflection property of the formed antireflection film is deteriorated. Moreover, when using 85% orthophosphoric acid as (B) component, it will be 0.024-0.329 mass part with respect to 100 mass parts of compositions for composite films.

(A)成分のシリコンアルコキシドとしては、テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン、テトラブトキシシラン、トリメチルメトキシシラン等が挙げられ、反応制御のし易さ、反射防止膜とした際の膜硬さの観点からテトラエトキシシランが好ましい。   Examples of the silicon alkoxide of component (A) include tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, tetrabutoxysilane, trimethylmethoxysilane, and the like. Ease of reaction control, film hardness when used as an antireflection film From this viewpoint, tetraethoxysilane is preferable.

シリコンアルコキシドの加水分解物と脱水物について、シリコンアルコキシドがテトラエトキシシランの場合について説明する。テトラエトキシシランの加水分解物は、例えば、反応式(1):
Si(OC+4HO →Si(OH)+4COH (1)
により生成するSi(OH)等である。また、テトラエトキシシランの脱水物は、上記加水分解物の脱水物で、例えば、反応式(2):
Si(OH) → SiO(OH)+HO (2)
により生成するSiO(OH)等であり、この脱水物は、複合膜用組成物の焼成後には、例えば、反応式(3):
SiO(OH) → SiO+HO (3)
の反応により、SiO等となる。また、(A)成分は、複合膜用組成物:100質量部に対して、シリコンアルコキシドとして5〜20質量部であると、反射防止膜の硬さの観点から好ましい。
The case where the silicon alkoxide is tetraethoxysilane will be described with respect to the hydrolyzate and dehydrated product of silicon alkoxide. Examples of the hydrolyzate of tetraethoxysilane include reaction formula (1):
Si (OC 2 H 5 ) 4 + 4H 2 O → Si (OH) 4 + 4C 2 H 5 OH (1)
Si (OH) 4 produced by the above. Further, the dehydrated product of tetraethoxysilane is a dehydrated product of the above hydrolyzate, for example, reaction formula (2):
Si (OH) 4 → SiO (OH) 2 + H 2 O (2)
SiO (OH) 2 and the like produced by the above, and this dehydrated product is, for example, reaction formula (3):
SiO (OH) 2 → SiO 2 + H 2 O (3)
By this reaction, it becomes SiO 2 or the like. Moreover, (A) component is preferable from a viewpoint of the hardness of an antireflection film as it is 5-20 mass parts as a silicon alkoxide with respect to 100 mass parts of compositions for composite films.

また、複合膜用組成物は、分散媒を含み、分散媒は、全ての分散媒100質量%に対して、1質量%以上の水と、2質量%以上の水と相溶する溶剤、例えば、アルコール類とを含有することが好適である。例えば、分散媒が水およびアルコール類のみからなる場合、水を2質量%含有するときはアルコール類を98質量%含有し、アルコール類を2質量%含有するときは水を98質量%含有する。水の含有量が1質量%未満、またはアルコール類の含有量が2質量%未満では、複合膜用組成物を湿式塗工法により塗工して得られた膜を低温で焼結し難くなり、反射防止膜に、硬化不足の不具合が生じやすくなるからである。アルコール類としては、メタノール、エタノール等が挙げられ、これらを混合して用いてもよい。分散媒の含有量は、良好な成膜性を得るために、複合膜用組成物:100質量部に対して、63.5〜95質量部であると好ましい。   The composite film composition includes a dispersion medium, and the dispersion medium is a solvent compatible with 1% by mass or more of water and 2% by mass or more of water with respect to 100% by mass of all the dispersion media, for example, It is preferable to contain alcohols. For example, when the dispersion medium is composed of only water and alcohols, it contains 98% by mass of alcohol when it contains 2% by mass of water, and 98% by mass of water when it contains 2% by mass of alcohol. When the water content is less than 1% by mass or the alcohol content is less than 2% by mass, it becomes difficult to sinter the film obtained by applying the composite film composition by the wet coating method at a low temperature, This is because a problem of insufficient curing tends to occur in the antireflection film. Examples of alcohols include methanol, ethanol and the like, and these may be used in combination. In order to obtain good film formability, the content of the dispersion medium is preferably 63.5 to 95 parts by mass with respect to 100 parts by mass of the composite film composition.

さらに、複合膜組成物は、(C)成分として、コロイダルシリカ粒子を含有すると、反射防止膜の硬度が向上するため、好ましい。コロイダルシリカ粒子としては、球状コロイダルシリカ粒子、異方性コロイダルシリカ粒子が挙げられる。   Furthermore, it is preferable that the composite film composition contains colloidal silica particles as the component (C) because the hardness of the antireflection film is improved. Examples of the colloidal silica particles include spherical colloidal silica particles and anisotropic colloidal silica particles.

球状コロイダルシリカ粒子は、平均粒径:6〜40nmであると好ましく、6〜30nmであると、より好ましい。平均粒径が、6nmより小さいと粒子が二次凝集を引き起こしやすく、複合膜用組成物の作製が困難になり、40nmより大きいと反射防止膜の平坦性を阻害するからである。ここで、平均粒径は、QUANTACHROME社製 AUTOSORB−1を用いた比表面積測定から、球状コロイダルシリカ粒子が真球であると仮定して換算する。   Spherical colloidal silica particles preferably have an average particle size of 6 to 40 nm, and more preferably 6 to 30 nm. This is because if the average particle size is less than 6 nm, the particles are likely to cause secondary aggregation, making it difficult to produce a composite film composition, and if it is more than 40 nm, the flatness of the antireflection film is hindered. Here, the average particle diameter is converted from the specific surface area measurement using AUTOSORB-1 manufactured by QUANTACHROME, assuming that the spherical colloidal silica particles are true spheres.

異方性コロイダルシリカ粒子は、平均粒径:5〜50nmであると好ましく、12〜40nmであると、より好ましい。平均粒径が、5nmより小さいと粒子が二次凝集を引き起こしやすく、複合膜用組成物作製が困難になり、50nmより大きいと反射防止膜の平坦性を阻害するからである。ここで、異方性コロイダルシリカ粒子の平均粒径とは、レーザー回折/散乱式粒度分布測定装置(堀場製作所(株)製/LA−950)により測定し、粒子径基準を個数として演算した50%平均粒径(D50)をいい、異方性コロイダルシリカ粒子の長径の平均値になる。異方性コロイダルシリカ粒子のアスペクト比(長径/短径)は1.5〜5の範囲であることが好ましい。なお、異方性形状であるか、球状であるかは、上記走査型電子顕微鏡で観察した像で、識別したアスペクト比(長径/短径)が1.5以上のものを異方性形状と識別する。 The anisotropic colloidal silica particles preferably have an average particle size of 5 to 50 nm, and more preferably 12 to 40 nm. This is because if the average particle size is smaller than 5 nm, the particles are likely to cause secondary aggregation, making it difficult to produce a composite film composition, and if larger than 50 nm, the flatness of the antireflection film is hindered. Here, the average particle size of the anisotropic colloidal silica particles is measured by a laser diffraction / scattering particle size distribution measuring device (manufactured by Horiba, Ltd./LA-950), and the particle size reference is calculated as the number 50. % Average particle diameter (D 50 ), which is the average value of the major axis of anisotropic colloidal silica particles. The aspect ratio (major axis / minor axis) of the anisotropic colloidal silica particles is preferably in the range of 1.5 to 5. Whether the shape is anisotropic or spherical is an image observed with the above-mentioned scanning electron microscope, and the identified aspect ratio (major axis / minor axis) is 1.5 or more. Identify.

(C)成分は、複合膜用組成物:100質量部に対して、5〜15質量部であると好ましく、10〜15質量部であると、より好ましい。   Component (C) is preferably 5 to 15 parts by mass and more preferably 10 to 15 parts by mass with respect to 100 parts by mass of the composite membrane composition.

複合膜用組成物は、本発明の目的を損なわない範囲で、さらに必要に応じ、酸化防止剤、レベリング剤、揺変剤、フィラー、応力緩和剤、導電性ポリマー、その他の添加剤等を配合することができる。   The composition for the composite film is blended with an antioxidant, a leveling agent, a thixotropic agent, a filler, a stress relaxation agent, a conductive polymer, other additives, etc., as necessary, as long as the object of the present invention is not impaired. can do.

複合膜用組成物は、所望の成分を、常法により、ペイントシェーカー、ボールミル、サンドミル、セントリミル、三本ロール等によって混合して、製造することができる。無論、通常の攪拌操作によって製造することもできる。   The composite film composition can be produced by mixing desired components with a paint shaker, a ball mill, a sand mill, a centrimill, a three-roll mill, or the like by a conventional method. Of course, it can also be produced by a normal stirring operation.

このようにして得られた複合膜用組成物は、本発明の複合膜を備えるガラス基材の製造に使用することができる。   The composite film composition thus obtained can be used for the production of a glass substrate provided with the composite film of the present invention.

《(1)工程》
(1)工程での複合膜用組成物の湿式塗工法としては、スプレーコーティング法、ディスペンサーコーティング法、スピンコーティング法、ナイフコーティング法、スリットコーティング法、インクジェットコーティング法、スクリーン印刷法、オフセット印刷法、またはダイコーティング法のいずれかであることが好ましいが、これらに限られるものではなく、あらゆる方法を利用できる。
<< (1) Process >>
(1) As a wet coating method of the composite film composition in the process, spray coating method, dispenser coating method, spin coating method, knife coating method, slit coating method, inkjet coating method, screen printing method, offset printing method, Alternatively, any one of the die coating methods is preferable, but the present invention is not limited thereto, and any method can be used.

《(2)工程》
(2)工程で、複合膜用組成物の塗膜を有するガラス基材を焼成する焼成条件は、大気中または窒素やアルゴンなどの不活性ガス雰囲気中で、100〜500℃で、30〜60分である。
<< (2) Process >>
In the step (2), the firing conditions for firing the glass substrate having the coating film of the composite film composition are 100 to 500 ° C. and 30 to 60 in the air or in an inert gas atmosphere such as nitrogen or argon. Minutes.

塗膜を有するガラス基材の焼成温度が、100〜500℃の範囲であるのは、100℃未満では、拡散抑制膜中のP濃度が低くなることにより、高温高湿下でのガラス基材の白濁の抑制が十分ではなくなることに加えて、反射防止膜に硬化不足の不具合が生じるからである。また、500℃を越えると、低温プロセスという生産上のメリットを生かせない、すなわち、製造コストが増大し、生産性が低下してしまう。さらに、焼成温度が550℃以上になると、ガラス基材に反りが発生してしまうおそれがある。   The glass substrate having a coating film has a firing temperature in the range of 100 to 500 ° C. When the temperature is less than 100 ° C., the P concentration in the diffusion-inhibiting film is reduced, so that the glass substrate is subjected to high temperature and high humidity. This is because the problem of insufficient curing occurs in the antireflection film in addition to insufficient suppression of white turbidity. On the other hand, if the temperature exceeds 500 ° C., the production merit of the low temperature process cannot be utilized, that is, the manufacturing cost increases and the productivity decreases. Furthermore, if the firing temperature is 550 ° C. or higher, the glass substrate may be warped.

塗膜を有するガラス基材の焼成時間が、30〜60分間の範囲であるのは、焼成時間が30分未満では、反射防止膜に焼成が十分でない不具合が生じるからである。焼成時間が60分を越えると、必要以上に製造コストが増大して生産性が低下してしまうためである。   The reason why the firing time of the glass substrate having the coating film is in the range of 30 to 60 minutes is that when the firing time is less than 30 minutes, the antireflection film is not fired sufficiently. This is because if the firing time exceeds 60 minutes, the production cost is increased more than necessary and the productivity is lowered.

拡散抑制膜形成のメカニズムは、複合膜用組成物の塗膜を焼成するときに、複合膜用組成物中のリン酸が、ガラス基材中のNaやCaと反応し、ガラス基材と反射防止膜との間に、拡散抑制膜を形成し、高温高湿下でのガラス基材の白濁を防止する、と考えられる。   When the coating film of the composite film composition is baked, the diffusion suppression film formation mechanism is such that phosphoric acid in the composite film composition reacts with Na and Ca in the glass base material, and reflects the glass base material and the reflection. It is considered that a diffusion suppression film is formed between the protective film and the white turbidity of the glass substrate under high temperature and high humidity.

以上により、反射防止膜と、高温高湿下でのガラス基材の白濁を防止する拡散抑制膜とからなる複合膜を備えるガラス基材を製造することができる。このように、本発明の製造方法は、複合膜の形成に湿式塗工法を使用することにより、真空蒸着法やスパッタ法などの真空プロセスを可能な限り排除できるため、より安価に複合膜を備えるガラス基材を製造できる。   By the above, a glass base material provided with the composite film which consists of an antireflection film and the diffusion suppression film | membrane which prevents the cloudiness of the glass base material under high temperature and high humidity can be manufactured. As described above, the manufacturing method of the present invention can eliminate the vacuum process such as the vacuum deposition method and the sputtering method as much as possible by using the wet coating method for forming the composite film, and therefore includes the composite film at a lower cost. A glass substrate can be produced.

〔反射防止膜および拡散抑制膜からなる複合膜を備えるガラス基材の応用〕
次に、本発明の複合膜を備えるガラス基材の応用について説明する。図4に、本発明の複合膜を備えるガラス基材を使用する薄膜太陽電池の断面の模式図の一例を示す。図4は、スーパーストレート型薄膜太陽電池の例である。薄膜太陽電池20は、反射防止膜21Aおよび拡散抑制膜21Bからなる複合膜21、ガラス基材22、透明電極層23、光電変換層24、透明導電膜25、導電性反射膜26の順に備えており、反射防止膜21A側から太陽光が入射する。この薄膜太陽電池20は、反射防止膜21Aを備えるので、入射した太陽光の光電変換層24への透過量が多く、高温高湿下で長時間使用しても、拡散抑制膜21Bにより、ガラス基材22中のNaやCaの反射防止膜21A表面への拡散を抑え、反射防止膜21Aの白濁を抑制するため、高温高湿下でも光電変換効率が低下しない薄膜太陽電池20を提供することができる。
[Application of glass substrate provided with composite film consisting of antireflection film and diffusion suppression film]
Next, application of the glass substrate provided with the composite film of the present invention will be described. In FIG. 4, an example of the schematic diagram of the cross section of the thin film solar cell which uses the glass base material provided with the composite film of this invention is shown. FIG. 4 is an example of a super straight type thin film solar cell. The thin film solar cell 20 includes a composite film 21 including an antireflection film 21A and a diffusion suppression film 21B, a glass substrate 22, a transparent electrode layer 23, a photoelectric conversion layer 24, a transparent conductive film 25, and a conductive reflection film 26 in this order. Sunlight enters from the antireflection film 21A side. Since the thin-film solar cell 20 includes the antireflection film 21A, the amount of incident sunlight transmitted through the photoelectric conversion layer 24 is large, and even if it is used for a long time under high temperature and high humidity, the diffusion suppression film 21B causes the glass to To suppress the diffusion of Na or Ca in the base material 22 to the surface of the antireflection film 21A and suppress the white turbidity of the antireflection film 21A. Can do.

この薄膜太陽電池20を製造する方法としては、光電変換層24等を形成する前に、予め、ガラス基材22に複合膜21を形成する方が、複合膜用組成物の塗膜焼成時での光電変換層24の劣化を避けることができるため、好ましい。しかしながら、光電変換層22〜導電性反射膜26が形成されたガラス基材22上に、複合膜21を形成することもできる。この場合には、複合膜用組成物の塗膜焼成温度が、好ましくは100〜400℃、より好ましくは100〜300℃である。アモルファスシリコン、微結晶シリコン、またはこれらを用いたハイブリッド型シリコン太陽電池は比較的熱に弱く、焼成工程によって変換効率が低下するからである。   As a method of manufacturing the thin film solar cell 20, it is more preferable to form the composite film 21 on the glass substrate 22 in advance before the photoelectric conversion layer 24 and the like are formed at the time of baking the coating film of the composite film composition. This is preferable because deterioration of the photoelectric conversion layer 24 can be avoided. However, the composite film 21 can also be formed on the glass substrate 22 on which the photoelectric conversion layer 22 to the conductive reflective film 26 are formed. In this case, the coating film baking temperature of the composite film composition is preferably 100 to 400 ° C, more preferably 100 to 300 ° C. This is because amorphous silicon, microcrystalline silicon, or a hybrid silicon solar cell using these is relatively weak against heat, and conversion efficiency is lowered by a firing process.

以下に、実施例により、本発明を詳細に説明するが、本発明はこれらに限定されるものではない。   Hereinafter, the present invention will be described in detail by way of examples, but the present invention is not limited thereto.

表2〜4で示す組成(数値は、質量部を示す)になるように、合計が60gで、200cmのガラス瓶中に入れ、直径:0.3mmのジルコニアビーズ(ミクロハイカ、昭和シェル石油製):100gを用いて、ペイントシェーカーで6時間分散することにより、実施例1〜24、比較例2〜9で使用する複合膜用組成物を作製した。複合膜用組成物の作製に使用する複合膜用組成物原料は、以下のようにして作製した。 Zirconia beads (microhaika, manufactured by Showa Shell Sekiyu KK) with a total diameter of 60 g and placed in a 200 cm 3 glass bottle so as to have the compositions shown in Tables 2 to 4 (numbers indicate parts by mass). : The composition for composite films used in Examples 1-24 and Comparative Examples 2-9 was produced by dispersing for 100 hours with a paint shaker using 100 g. The composite film composition raw material used for preparation of the composite film composition was prepared as follows.

〔複合膜用組成物原料1〕
500cmのガラス製の4つ口フラスコを用い、140gのテトラエトキシシランと、140gのエチルアルコールを加え、攪拌しながら、1.5gの85%オルトリン酸(以下、リン酸という)を120gの純水に溶解した溶液を、一度に加え、その後50℃で3時間反応させることにより作製した。
[Composition raw material for composite film 1]
Using a 500 cm 3 glass four-necked flask, 140 g of tetraethoxysilane and 140 g of ethyl alcohol were added, and 1.5 g of 85% orthophosphoric acid (hereinafter referred to as phosphoric acid) was added to 120 g of pure water while stirring. A solution dissolved in water was added at once, and then reacted at 50 ° C. for 3 hours.

〔複合膜用組成物原料2〕
500cmのガラス製の4つ口フラスコを用い、115gのテトラエトキシシランと、175gのエチルアルコールを加え、攪拌しながら、1.0gの85%リン酸を110gの純水に溶解した溶液を、一度に加え、その後50℃で3時間反応させることにより作製した。
[Composition raw material 2 for composite film]
Using a 500 cm 3 glass four-necked flask, 115 g of tetraethoxysilane and 175 g of ethyl alcohol were added, and a solution of 1.0 g of 85% phosphoric acid dissolved in 110 g of pure water was stirred. It was prepared by adding all at once and then reacting at 50 ° C. for 3 hours.

〔複合膜用組成物原料3〕
500cmのガラス製の4つ口フラスコを用い、130gのテトラエトキシシランと、145gのエチルアルコールを加え、攪拌しながら、4.5gの85%リン酸を125gの純水に溶解した溶液を、一度に加え、その後45℃で3時間反応させることにより作製した。
[Composition raw material 3 for composite film]
Using a 500 cm 3 glass four-necked flask, adding 130 g of tetraethoxysilane and 145 g of ethyl alcohol, stirring, a solution of 4.5 g of 85% phosphoric acid dissolved in 125 g of pure water, It was prepared by adding all at once and then reacting at 45 ° C. for 3 hours.

〔複合膜用組成物原料4〕
500cmのガラス製の4つ口フラスコを用い、125gのテトラエトキシシランと、160gのエチルアルコールを加え、攪拌しながら、2.1gの85%リン酸を115gの純水に溶解した溶液を、一度に加え、その後60℃で2時間反応させることにより作製した。
[Composition raw material 4 for composite film]
Using a 500 cm 3 glass four-necked flask, 125 g of tetraethoxysilane and 160 g of ethyl alcohol were added, and while stirring, a solution of 2.1 g of 85% phosphoric acid dissolved in 115 g of pure water, It was prepared by adding at once and then reacting at 60 ° C. for 2 hours.

〔複合膜用組成物原料5〕
500cmのガラス製の4つ口フラスコを用い、145gのテトラエトキシシランと、140gのエチルアルコールを加え、攪拌しながら、0.5gの85%リン酸を115gの純水に溶解した溶液を、一度に加え、その後55℃で3時間反応させることにより作製した。
[Composition raw material 5 for composite film]
Using a 500 cm 3 glass four-necked flask, 145 g of tetraethoxysilane and 140 g of ethyl alcohol were added, and a solution of 0.5 g of 85% phosphoric acid dissolved in 115 g of pure water was stirred. It was prepared by adding all at once and then reacting at 55 ° C. for 3 hours.

〔複合膜用組成物原料6〕
500cmのガラス製の4つ口フラスコを用い、140gのトリメチルメトキシシランと、140gのメチルアルコールを加え、攪拌しながら、2.0gの85%リン酸を120gの純水に溶解した溶液を、一度に加え、その後50℃で3時間反応させることにより作製した。
[Composition material 6 for composite film]
Using a 500 cm 3 glass four-necked flask, 140 g of trimethylmethoxysilane and 140 g of methyl alcohol were added, and a solution of 2.0 g of 85% phosphoric acid dissolved in 120 g of pure water was stirred. It was prepared by adding all at once and then reacting at 50 ° C. for 3 hours.

〔複合膜用組成物原料7〕
500cmのガラス製の4つ口フラスコを用い、140gのテトラエトキシシランと、140gのエチルアルコールを加え、攪拌しながら、1.5gの60%硝酸を120gの純水に溶解した溶液を、一度に加え、その後50℃で3時間反応させることにより作製した。
[Composition raw material 7 for composite film]
Using a four-necked flask made of 500 cm 3 glass, add 140 g of tetraethoxysilane and 140 g of ethyl alcohol, and while stirring, add a solution of 1.5 g of 60% nitric acid in 120 g of pure water. And then reacted at 50 ° C. for 3 hours.

〔複合膜用組成物原料8〕
500cmのガラス製の4つ口フラスコを用い、140gのテトラエトキシシランと、140gのエチルアルコールを加え、攪拌しながら、1.5gの35%塩酸を120gの純水に溶解した溶液を、一度に加え、その後50℃で3時間反応させることにより作製した。
[Composition raw material for composite film 8]
Using a four-necked flask made of glass of 500 cm 3 , add 140 g of tetraethoxysilane and 140 g of ethyl alcohol, and stir a solution of 1.5 g of 35% hydrochloric acid in 120 g of pure water once. And then reacted at 50 ° C. for 3 hours.

〔複合膜用組成物原料9〕
500cmのガラス製の4つ口フラスコを用い、140gのテトラエトキシシランと、140gのエチルアルコールを加え、攪拌しながら、1.5gのピロリン酸を120gの純水に溶解した溶液を、一度に加え、その後50℃で3時間反応させることにより作製した。
[Composition raw material 9 for composite film]
Using a four-necked flask made of 500 cm 3 glass, add 140 g of tetraethoxysilane and 140 g of ethyl alcohol, and stir a solution of 1.5 g of pyrophosphoric acid in 120 g of pure water at a time. In addition, it was then prepared by reacting at 50 ° C. for 3 hours.

〔複合膜用組成物原料10〕
500cmのガラス製の4つ口フラスコを用い、140gのテトラエトキシシランと、140gのエチルアルコールを加え、攪拌しながら、0.2gの85%オルトリン酸を120gの純水に溶解した溶液を、一度に加え、その後50℃で3時間反応させることにより作製した。
[Composition Raw Material 10 for Composite Film]
Using a 500 cm 3 glass four-necked flask, 140 g of tetraethoxysilane and 140 g of ethyl alcohol were added, and a solution obtained by dissolving 0.2 g of 85% orthophosphoric acid in 120 g of pure water was stirred. It was prepared by adding all at once and then reacting at 50 ° C. for 3 hours.

〔混合溶媒〕
混合溶媒1には、イソプロパノール、エタノール及びN,N−ジメチルホルムアミドの混合液(質量比4:2:1)を、混合溶媒2には、エタノール、ブタノールの混合液(質量比98:2)を用いた。
[Mixed solvent]
The mixed solvent 1 is a mixture of isopropanol, ethanol and N, N-dimethylformamide (mass ratio 4: 2: 1), and the mixed solvent 2 is a mixture of ethanol and butanol (mass ratio 98: 2). Using.

〔実施例1〜24〕
実施例1では、複合膜用組成物原料1を、分散媒となるIPAで希釈混合し、複合膜用組成物を作製した。(1)ガラス基材として用いた屈折率が1.55のガラス基板に対して、複合膜用組成物を、湿式塗工法により成膜後、(2)複合膜用組成物の塗膜を有するガラス基板を、大気中、200℃で30分焼成することにより、複合膜付きガラス基材を製造した。
[Examples 1 to 24]
In Example 1, the composite film composition raw material 1 was diluted and mixed with IPA serving as a dispersion medium to prepare a composite film composition. (1) A composite film composition is formed by a wet coating method on a glass substrate having a refractive index of 1.55 used as a glass substrate, and (2) has a coating film of the composite film composition. A glass substrate with a composite film was produced by firing the glass substrate at 200 ° C. for 30 minutes in the air.

実施例2では、複合膜用組成物原料2を、分散媒となるエタノールで希釈混合した。さらに、平均粒径40nmの日産化学工業(株)製異方性コロイダルシリカ粒子(製品名:ST−OUP)を、複合膜用組成物に対して10質量%の比率で添加し、混合し、複合膜用組成物を作製した。複合膜用組成物の塗膜を有するガラス基板を、150℃で30分焼成したこと以外は、実施例1と同様にして、複合膜付きガラス基材を製造した。   In Example 2, the composite film composition raw material 2 was diluted and mixed with ethanol as a dispersion medium. Furthermore, an anisotropic colloidal silica particle (product name: ST-OUP) manufactured by Nissan Chemical Industries, Ltd. having an average particle diameter of 40 nm was added at a ratio of 10% by mass with respect to the composite film composition, and mixed. A composite film composition was prepared. A glass substrate with a composite film was produced in the same manner as in Example 1 except that a glass substrate having a coating film of the composite film composition was baked at 150 ° C. for 30 minutes.

実施例3では、複合膜用組成物原料4を、分散媒となるIPAで希釈混合し、複合膜用組成物を作製した。実施例1と同様にして、複合膜付きガラス基材を製造した。   In Example 3, the composite film composition raw material 4 was diluted and mixed with IPA serving as a dispersion medium to prepare a composite film composition. A glass substrate with a composite film was produced in the same manner as in Example 1.

実施例4では、複合膜用組成物原料6を、分散媒となるエタノールで希釈混合し、複合膜用組成物を作製した。複合膜用組成物の塗膜を有するガラス基板を、120℃で60分焼成したこと以外は、実施例1と同様にして、複合膜付きガラス基材を製造した。   In Example 4, the composite film composition raw material 6 was diluted and mixed with ethanol as a dispersion medium to prepare a composite film composition. A glass substrate with a composite film was produced in the same manner as in Example 1 except that a glass substrate having a coating film of the composite film composition was baked at 120 ° C. for 60 minutes.

実施例5では、複合膜用組成物原料3を、分散媒となる混合溶媒1で希釈混合した。さらに、平均粒径12nmの日産化学工業(株)製異方性コロイダルシリカ粒子(製品名:IPA−ST−UP)を、複合膜用組成物に対して10質量%の比率で添加し、混合し、複合膜用組成物を作製した。実施例1と同様にして、複合膜付きガラス基材を製造した。   In Example 5, the composite film composition raw material 3 was diluted and mixed with the mixed solvent 1 serving as a dispersion medium. Furthermore, an anisotropic colloidal silica particle (product name: IPA-ST-UP) manufactured by Nissan Chemical Industries, Ltd. having an average particle diameter of 12 nm was added at a ratio of 10% by mass with respect to the composite film composition, and mixed. And the composition for composite films was produced. A glass substrate with a composite film was produced in the same manner as in Example 1.

実施例6では、複合膜用組成物原料5を、分散媒となるエタノールで希釈混合し、複合膜用組成物を作製した。複合膜用組成物の塗膜を有するガラス基板を、150℃で30分焼成したこと以外は、実施例1と同様にして、複合膜付きガラス基材を製造した。   In Example 6, the composite film composition raw material 5 was diluted and mixed with ethanol serving as a dispersion medium to prepare a composite film composition. A glass substrate with a composite film was produced in the same manner as in Example 1 except that a glass substrate having a coating film of the composite film composition was baked at 150 ° C. for 30 minutes.

実施例7では、複合膜用組成物原料6を、分散媒となるエタノールで希釈混合した。さらに、平均粒径12nmの日産化学工業(株)製異方性コロイダルシリカ粒子(製品名:IPA−ST−UP)を、複合膜用組成物に対して15質量%の比率で添加し、混合し、複合膜用組成物を作製した。実施例1と同様にして、複合膜付きガラス基材を製造した。   In Example 7, the composite film composition raw material 6 was diluted and mixed with ethanol as a dispersion medium. Furthermore, an anisotropic colloidal silica particle (product name: IPA-ST-UP) manufactured by Nissan Chemical Industries, Ltd. having an average particle diameter of 12 nm was added at a ratio of 15 mass% with respect to the composite film composition, and mixed. And the composition for composite films was produced. A glass substrate with a composite film was produced in the same manner as in Example 1.

実施例8では、複合膜用組成物原料1を、分散媒となる混合溶媒2で希釈混合し、複合膜用組成物を作製した。複合膜用組成物の塗膜を有するガラス基板を、120℃で30分焼成したこと以外は、実施例1と同様にして、複合膜付きガラス基材を製造した。   In Example 8, the composite film composition raw material 1 was diluted and mixed with the mixed solvent 2 serving as a dispersion medium to prepare a composite film composition. A glass substrate with a composite film was produced in the same manner as in Example 1 except that a glass substrate having a coating film of the composite film composition was baked at 120 ° C. for 30 minutes.

実施例9では、複合膜用組成物原料4を、分散媒となる混合溶媒1で希釈混合した。さらに平均粒径30nmの日産化学工業(株)製異方性コロイダルシリカ粒子(製品名:ST−OUP)を、複合膜用組成物に対して5質量%の比率で混合し、複合膜用組成物を作製した。複合膜用組成物の塗膜を有するガラス基板を、180℃で30分焼成したこと以外は、実施例1と同様にして、複合膜付きガラス基材を製造した。   In Example 9, the composite film composition raw material 4 was diluted and mixed with the mixed solvent 1 serving as a dispersion medium. Furthermore, an anisotropic colloidal silica particle (product name: ST-OUP) manufactured by Nissan Chemical Industries, Ltd. having an average particle diameter of 30 nm was mixed at a ratio of 5% by mass with respect to the composite film composition, and the composite film composition was then mixed. A product was made. A glass substrate with a composite film was produced in the same manner as in Example 1 except that a glass substrate having a coating film of the composite film composition was baked at 180 ° C. for 30 minutes.

実施例10では、複合膜用組成物原料5を、分散媒となる混合溶媒2で希釈混合した。さらに平均粒径10nmの日産化学工業(株)製球状コロイダルシリカ粒子(製品名:ST−O)を、複合膜用組成物に対して10質量%の比率で混合し、複合膜用組成物を作製した。複合膜用組成物の塗膜を有するガラス基板を、180℃で30分焼成したこと以外は、実施例1と同様にして、複合膜付きガラス基材を製造した。   In Example 10, the composite film composition raw material 5 was diluted and mixed with the mixed solvent 2 serving as a dispersion medium. Further, spherical colloidal silica particles (product name: ST-O) manufactured by Nissan Chemical Industries, Ltd. having an average particle diameter of 10 nm are mixed at a ratio of 10% by mass with respect to the composite membrane composition, and the composite membrane composition is obtained. Produced. A glass substrate with a composite film was produced in the same manner as in Example 1 except that a glass substrate having a coating film of the composite film composition was baked at 180 ° C. for 30 minutes.

実施例11では、複合膜用組成物原料3を、分散媒となる混合溶媒2で希釈混合し、複合膜用組成物を作製した。複合膜用組成物の塗膜を有するガラス基板を、150℃で30分焼成したこと以外は、実施例1と同様にして、複合膜付きガラス基材を製造した。   In Example 11, the composite film composition raw material 3 was diluted and mixed with the mixed solvent 2 serving as a dispersion medium to prepare a composite film composition. A glass substrate with a composite film was produced in the same manner as in Example 1 except that a glass substrate having a coating film of the composite film composition was baked at 150 ° C. for 30 minutes.

実施例12では、複合膜用組成物原料1を、分散媒となるエタノールで希釈混合した。さらに平均粒径6nmの日産化学工業(株)製球状コロイダルシリカ粒子(製品名:ST−OXS)を、複合膜用組成物に対して10質量%の比率で混合し、複合膜用組成物を作製した。複合膜用組成物の塗膜を有するガラス基板を、200℃で60分焼成したこと以外は、実施例1と同様にして、複合膜付きガラス基材を製造した。   In Example 12, the composite film composition raw material 1 was diluted and mixed with ethanol as a dispersion medium. Further, spherical colloidal silica particles (product name: ST-OXS) manufactured by Nissan Chemical Industries, Ltd. having an average particle diameter of 6 nm are mixed at a ratio of 10% by mass with respect to the composite membrane composition, and the composite membrane composition is obtained. Produced. A glass substrate with a composite film was produced in the same manner as in Example 1 except that a glass substrate having a coating film of the composite film composition was baked at 200 ° C. for 60 minutes.

実施例13では、複合膜用組成物原料2を、分散媒となるIPAで希釈混合し、複合膜用組成物を作製した。複合膜用組成物の塗膜を有するガラス基板を、150℃で30分焼成したこと以外は、実施例1と同様にして、複合膜付きガラス基材を製造した。   In Example 13, the composite film composition raw material 2 was diluted and mixed with IPA serving as a dispersion medium to prepare a composite film composition. A glass substrate with a composite film was produced in the same manner as in Example 1 except that a glass substrate having a coating film of the composite film composition was baked at 150 ° C. for 30 minutes.

実施例14では、複合膜用組成物原料6を、分散媒となるブタノールで希釈混合し、複合膜用組成物を作製した。複合膜用組成物の塗膜を有するガラス基板を、180℃で30分焼成したこと以外は、実施例1と同様にして、複合膜付きガラス基材を製造した。   In Example 14, the composite film composition raw material 6 was diluted and mixed with butanol as a dispersion medium to prepare a composite film composition. A glass substrate with a composite film was produced in the same manner as in Example 1 except that a glass substrate having a coating film of the composite film composition was baked at 180 ° C. for 30 minutes.

実施例15では、複合膜用組成物原料4を、分散媒となるIPAで希釈混合した。さらに平均粒径10nmの日産化学工業(株)製球状コロイダルシリカ粒子(製品名:IPA−ST)を、複合膜用組成物に対して15質量%の比率で混合し、複合膜用組成物を作製した。実施例1と同様にして、複合膜付きガラス基材を製造した。   In Example 15, the composite film composition raw material 4 was diluted and mixed with IPA serving as a dispersion medium. Further, spherical colloidal silica particles (product name: IPA-ST) manufactured by Nissan Chemical Industries, Ltd. having an average particle diameter of 10 nm are mixed at a ratio of 15% by mass with respect to the composite membrane composition, and the composite membrane composition is obtained. Produced. A glass substrate with a composite film was produced in the same manner as in Example 1.

実施例16では、複合膜用組成物原料6を、分散媒となる混合溶媒2で希釈混合した。さらに平均粒径10nmの日産化学工業(株)製球状コロイダルシリカ粒子(製品名:IPA−ST)を、複合膜用組成物に対して10質量%の比率で混合し、複合膜用組成物を作製した。複合膜用組成物の塗膜を有するガラス基板を、100℃で60分焼成したこと以外は、実施例1と同様にして、複合膜付きガラス基材を製造した。   In Example 16, the composite film composition raw material 6 was diluted and mixed with the mixed solvent 2 serving as a dispersion medium. Further, spherical colloidal silica particles (product name: IPA-ST) manufactured by Nissan Chemical Industries, Ltd. having an average particle diameter of 10 nm are mixed at a ratio of 10% by mass with respect to the composite membrane composition, and the composite membrane composition is obtained. Produced. A glass substrate with a composite film was produced in the same manner as in Example 1 except that a glass substrate having a coating film of the composite film composition was baked at 100 ° C. for 60 minutes.

実施例17では、複合膜用組成物原料5を、分散媒となる混合溶媒1で希釈混合した。さらに平均粒径40nmの日産化学工業(株)製異方性コロイダルシリカ粒子(製品名:ST−OUP)を、複合膜用組成物に対して15質量%の比率で混合し、複合膜用組成物を作製した。複合膜用組成物の塗膜を有するガラス基板を、150℃で30分焼成したこと以外は、実施例1と同様にして、複合膜付きガラス基材を製造した。   In Example 17, the composite film composition raw material 5 was diluted and mixed with the mixed solvent 1 serving as a dispersion medium. Furthermore, an anisotropic colloidal silica particle (product name: ST-OUP) manufactured by Nissan Chemical Industries, Ltd. having an average particle size of 40 nm was mixed at a ratio of 15% by mass with respect to the composite membrane composition, and the composite membrane composition was obtained. A product was made. A glass substrate with a composite film was produced in the same manner as in Example 1 except that a glass substrate having a coating film of the composite film composition was baked at 150 ° C. for 30 minutes.

実施例18では、複合膜用組成物原料6を、分散媒となるIPAで希釈混合した。さらに平均粒径6nmの日産化学工業(株)製球状コロイダルシリカ粒子(製品名:ST−OXS)を、複合膜用組成物に対して10質量%の比率で混合し、複合膜用組成物を作製した。実施例1と同様にして、複合膜付きガラス基材を製造した。   In Example 18, the composite film composition raw material 6 was diluted and mixed with IPA serving as a dispersion medium. Further, spherical colloidal silica particles (product name: ST-OXS) manufactured by Nissan Chemical Industries, Ltd. having an average particle diameter of 6 nm are mixed at a ratio of 10% by mass with respect to the composite membrane composition, and the composite membrane composition is obtained. Produced. A glass substrate with a composite film was produced in the same manner as in Example 1.

実施例19では、複合膜用組成物原料3を、分散媒となる混合溶媒1で希釈混合した。さらに平均粒径30nmの日産化学工業(株)製異方性コロイダルシリカ粒子(製品名:ST−OUP)を、複合膜用組成物に対して10質量%の比率で混合し、複合膜用組成物を作製した。実施例1と同様にして、複合膜付きガラス基材を製造した。   In Example 19, the composite film composition raw material 3 was diluted and mixed with the mixed solvent 1 serving as a dispersion medium. Furthermore, an anisotropic colloidal silica particle (product name: ST-OUP) manufactured by Nissan Chemical Industries, Ltd. having an average particle size of 30 nm was mixed at a ratio of 10% by mass with respect to the composite membrane composition, and the composite membrane composition was obtained. A product was made. A glass substrate with a composite film was produced in the same manner as in Example 1.

実施例20では、複合膜用組成物原料1を、分散媒となるIPAで希釈混合した。さらに平均粒径45nmの日産化学工業(株)製球状コロイダルシリカ粒子(製品名:IPA−ST−L)を、複合膜用組成物に対して15質量%の比率で混合し、複合膜用組成物を作製した。実施例1と同様にして、複合膜付きガラス基材を製造した。   In Example 20, the composite film composition raw material 1 was diluted and mixed with IPA serving as a dispersion medium. Further, spherical colloidal silica particles (product name: IPA-ST-L) manufactured by Nissan Chemical Industries, Ltd. with an average particle size of 45 nm were mixed at a ratio of 15% by mass with respect to the composite membrane composition, and the composite membrane composition was obtained. A product was made. A glass substrate with a composite film was produced in the same manner as in Example 1.

実施例21では、複合膜用組成物原料1を、分散媒となるIPAで希釈混合した。さらに平均粒径30nmの日産化学工業(株)製異方性コロイダルシリカ粒子(製品名:ST−OUP)を、複合膜用組成物に対して40質量%の比率で混合し、複合膜用組成物を作製した。実施例1と同様にして、複合膜付きガラス基材を製造した。   In Example 21, the composite film composition raw material 1 was diluted and mixed with IPA serving as a dispersion medium. Furthermore, an anisotropic colloidal silica particle (product name: ST-OUP) manufactured by Nissan Chemical Industries, Ltd. with an average particle size of 30 nm was mixed at a ratio of 40% by mass with respect to the composite membrane composition, and the composite membrane composition was obtained. A product was made. A glass substrate with a composite film was produced in the same manner as in Example 1.

実施例22では、複合膜用組成物原料9を、分散媒となるIPAで希釈混合し、複合膜用組成物を作製した。実施例1と同様にして、複合膜付きガラス基材を製造した。   In Example 22, the composite film composition raw material 9 was diluted and mixed with IPA serving as a dispersion medium to produce a composite film composition. A glass substrate with a composite film was produced in the same manner as in Example 1.

実施例23では、複合膜用組成物原料1を、分散媒となるエタノールで希釈混合し、複合膜用組成物を作製した。複合膜用組成物の塗膜を有するガラス基板を、120℃で40分焼成したこと以外は、実施例1と同様にして、複合膜付きガラス基材を製造した。   In Example 23, the composite film composition raw material 1 was diluted and mixed with ethanol as a dispersion medium to prepare a composite film composition. A glass substrate with a composite film was produced in the same manner as in Example 1 except that a glass substrate having a coating film of the composite film composition was baked at 120 ° C. for 40 minutes.

実施例24では、複合膜用組成物原料1を、分散媒となるIPAで希釈混合し、複合膜用組成物を作製した。複合膜用組成物の塗膜を有するガラス基板を、500℃で30分焼成したこと以外は、実施例1と同様にして、複合膜付きガラス基材を製造した。   In Example 24, the composite film composition raw material 1 was diluted and mixed with IPA serving as a dispersion medium to prepare a composite film composition. A glass substrate with a composite film was produced in the same manner as in Example 1 except that a glass substrate having a coating film of the composite film composition was baked at 500 ° C. for 30 minutes.

〔比較例1〜9〕
比較例1では、複合膜用組成物を成膜しない、ガラス単体の評価を実施した。
[Comparative Examples 1-9]
In Comparative Example 1, evaluation of a single glass without forming a composite film composition was performed.

比較例2では、複合膜用組成物原料7を、分散媒となるIPAで希釈混合し、複合膜用組成物を作製した。実施例1と同様にして、複合膜付きガラス基材を製造した。   In Comparative Example 2, the composite film composition raw material 7 was diluted and mixed with IPA serving as a dispersion medium to prepare a composite film composition. A glass substrate with a composite film was produced in the same manner as in Example 1.

比較例3では、複合膜用組成物原料8を、分散媒となるIPAで希釈混合し、複合膜用組成物を作製した。実施例1と同様にして、複合膜付きガラス基材を製造した。   In Comparative Example 3, the composite film composition raw material 8 was diluted and mixed with IPA serving as a dispersion medium to prepare a composite film composition. A glass substrate with a composite film was produced in the same manner as in Example 1.

比較例4では、複合膜用組成物原料10を、分散媒となるIPAで希釈混合し、複合膜用組成物を作製した。実施例1と同様にして、複合膜付きガラス基材を製造した。   In Comparative Example 4, the composite film composition raw material 10 was diluted and mixed with IPA serving as a dispersion medium to prepare a composite film composition. A glass substrate with a composite film was produced in the same manner as in Example 1.

比較例5では、複合膜用組成物原料3を、分散媒となるIPAで希釈混合し、複合膜用組成物を作製した。実施例1と同様にして、複合膜付きガラス基材を製造した。   In Comparative Example 5, the composite film composition raw material 3 was diluted and mixed with IPA serving as a dispersion medium to prepare a composite film composition. A glass substrate with a composite film was produced in the same manner as in Example 1.

比較例6では、複合膜用組成物原料5を、分散媒となるIPAで希釈混合し、複合膜用組成物を作製した。複合膜用組成物の塗膜を有するガラス基板を、100℃で20分焼成したこと以外は、実施例1と同様にして、複合膜付きガラス基材を製造した。   In Comparative Example 6, the composite film composition raw material 5 was diluted and mixed with IPA serving as a dispersion medium to prepare a composite film composition. A glass substrate with a composite film was produced in the same manner as in Example 1 except that a glass substrate having a coating film of the composite film composition was baked at 100 ° C. for 20 minutes.

比較例7では、複合膜用組成物原料3を、分散媒となるIPAで希釈混合し、複合膜用組成物を作製した。複合膜用組成物の塗膜を有するガラス基板を、200℃で70分焼成したこと以外は、実施例1と同様にして、複合膜付きガラス基材を製造した。   In Comparative Example 7, the composite film composition raw material 3 was diluted and mixed with IPA serving as a dispersion medium to prepare a composite film composition. A glass substrate with a composite film was produced in the same manner as in Example 1 except that a glass substrate having a coating film of the composite film composition was baked at 200 ° C. for 70 minutes.

比較例8では、複合膜用組成物原料1を、分散媒となるIPAで希釈混合し、複合膜用組成物を作製した。複合膜用組成物の塗膜を有するガラス基板を、80℃で30分焼成したこと以外は、実施例1と同様にして、複合膜付きガラス基材を製造した。   In Comparative Example 8, the composite film composition raw material 1 was diluted and mixed with IPA serving as a dispersion medium to prepare a composite film composition. A glass substrate with a composite film was produced in the same manner as in Example 1 except that a glass substrate having a coating film of the composite film composition was baked at 80 ° C. for 30 minutes.

比較例9では、複合膜用組成物原料1を、分散媒となるIPAで希釈混合し、複合膜用組成物を作製した。複合膜用組成物の塗膜を有するガラス基板を、550℃で30分焼成したこと以外は、実施例1と同様にして、複合膜付きガラス基材を製造した。   In Comparative Example 9, the composite film composition raw material 1 was diluted and mixed with IPA serving as a dispersion medium to prepare a composite film composition. A glass substrate with a composite film was produced in the same manner as in Example 1 except that a glass substrate having a coating film of the composite film composition was baked at 550 ° C. for 30 minutes.

〔ガラス基材のNa、Ca含有量の測定〕
Na、Caの定量分析は、以下のように行った。まず、(株)リガク製波長分散型蛍光X線分析装置(型番:ZSX−PrimusII)で、検出可能な元素を確認した。次に、検出された各元素について定量分析を行い、SiはSiO、NaはNaO、CaはCaO、KはKO、AlはAl、FeはFe、BはB、PbはPbO、TiはTiO、ZnはZnO、SbはSb、BaはBaO、MnはMnO、SrはSrOであるとして、これら以外の元素については、自然界に最も多く存在する酸化物であるとして、計算した。表2〜4に、NaとCaのガラス基材に対する含有量を示す。
[Measurement of Na and Ca content of glass substrate]
The quantitative analysis of Na and Ca was performed as follows. First, detectable elements were confirmed with a wavelength dispersive X-ray fluorescence spectrometer (model number: ZSX-Primus II) manufactured by Rigaku Corporation. Next, each detected element is quantitatively analyzed. Si is SiO 2 , Na is Na 2 O, Ca is CaO, K is K 2 O, Al is Al 2 O 3 , Fe is Fe 2 O 3 , B Is B 2 O 3 , Pb is PbO, Ti is TiO 2 , Zn is ZnO, Sb is Sb 2 O 3 , Ba is BaO, Mn is MnO, and Sr is SrO. It was calculated as the most abundant oxide. In Tables 2-4, content with respect to the glass base material of Na and Ca is shown.

〔拡散抑制膜および反射防止膜中のPの分析〕
ガラス基材、拡散抑制膜、反射防止膜の界面部分を含む断面を観察用に加工し、日本電子(株)製電界放射型透過電子顕微鏡(型番:JEM−2010F)により、拡散抑制膜および反射防止膜を観察した。同時に、拡散抑制膜および反射防止膜中のPの定量分析を、日本電子(株)製電界放射型透過電子顕微鏡(型番:JEM−2010F)に付属のエネルギー分散型X線分光分析装置により、加速電圧:200kV、プローブ径:1nmの測定条件で行い、5回測定での平均値から求めた。表2〜4に、これらの結果を示す。
[Analysis of P in diffusion suppressing film and antireflection film]
A cross section including the interface portion of the glass substrate, diffusion suppressing film, and antireflection film is processed for observation, and the diffusion suppressing film and reflection are processed by a field emission transmission electron microscope (model number: JEM-2010F) manufactured by JEOL Ltd. The prevention film was observed. At the same time, the quantitative analysis of P in the diffusion suppression film and the antireflection film is accelerated by the energy dispersive X-ray spectroscopic analyzer attached to the field emission transmission electron microscope (model number: JEM-2010F) manufactured by JEOL Ltd. The measurement was performed under the conditions of voltage: 200 kV and probe diameter: 1 nm, and the average value was obtained from five measurements. Tables 2 to 4 show these results.

〔拡散抑制膜と反射防止膜の膜厚の測定〕
拡散抑制膜の膜厚を、日本電子製電界放射型透過電子顕微鏡(型番:JEM−2010F)による断面観察により測定した。また、反射防止膜(以下、AR膜という)の膜厚を、日立ハイテクノロジーズ(株)製走査型電子顕微鏡(型番:S−4300、SU−8000)による断面観察により測定した。表2〜4に、これらの結果を示す。
[Measurement of film thickness of diffusion suppression film and antireflection film]
The film thickness of the diffusion suppressing film was measured by cross-sectional observation with a field emission transmission electron microscope (model number: JEM-2010F) manufactured by JEOL. Moreover, the film thickness of the antireflection film (hereinafter referred to as AR film) was measured by cross-sectional observation using a scanning electron microscope (model number: S-4300, SU-8000) manufactured by Hitachi High-Technologies Corporation. Tables 2 to 4 show these results.

〔複合膜の初期のヘーズ、高温高湿試験後のヘーズ〕
複合膜のヘーズ(曇りの度合い)を、プラスチックおよび透明材料の一般試験方法である、JIS K 7136に規定されているヘーズの求め方試験、及びJIS K 7361−1に規定されている全光線透過率の試験として、スガ試験機(株)製ヘーズメーター(型番:HZ−2)を用いて測定した。ヘーズ(単位:%)とは次式:
ヘーズ=Td / Tt × 100
(式中、Tdは、拡散透過率(単位:%)であり、Ttは、全光線透過率(単位:%)である)で表される透明材料の濁度(曇り度合い)を示す値である。上記ヘーズメーターを用いて、拡散透過率、全光線透過率およびヘーズを、同時に測定することができる。初期のサンプルと、上述の高温高湿試験1000時間後のサンプルについて、上記ヘーズメーターで測定した。表2〜4に、これらの結果を示す。
[Initial haze of composite membrane, haze after high temperature and high humidity test]
The haze (degree of haze) of the composite film is determined by JIS K 7136, which is a general test method for plastics and transparent materials, and the total light transmission specified by JIS K 7361-1. As a rate test, the haze meter (model number: HZ-2) manufactured by Suga Test Instruments Co., Ltd. was used. Haze (unit:%) is the following formula:
Haze = Td / Tt × 100
(Where Td is the diffuse transmittance (unit:%), and Tt is the total light transmittance (unit:%)), which is a value indicating the turbidity (cloudiness) of the transparent material. is there. Using the haze meter, diffuse transmittance, total light transmittance, and haze can be measured simultaneously. The initial sample and the sample after 1000 hours of the high-temperature and high-humidity test were measured with the haze meter. Tables 2 to 4 show these results.

〔複合膜の屈折率、初期透過率の評価〕
複合膜の屈折率は、分光エリプソメトリー装置(J.A.Woollam Japan(株)製 M−2000)を用いて測定し、解析した光学定数における633nmの値とした。また、複合膜付きガラス基材の初期透過率は、日立ハイテクノロジーズ(株)製分光光度計(型番:U−4100)を用いて測定し、太陽電池用途において、透過率が重要となる340〜750nmの範囲のうち、中央値となる550nmの透過率(単位:%)の値で評価した。表2〜4に、これらの結果を示す。
[Evaluation of refractive index and initial transmittance of composite film]
The refractive index of the composite film was measured using a spectroscopic ellipsometry apparatus (JA Woollam Japan Co., Ltd. M-2000), and the value was 633 nm in the analyzed optical constant. Moreover, the initial transmittance of the glass substrate with a composite film is measured using a spectrophotometer (model number: U-4100) manufactured by Hitachi High-Technologies Corporation, and the transmittance is important for solar cell applications. In the range of 750 nm, the median value of 550 nm transmittance (unit:%) was evaluated. Tables 2 to 4 show these results.

〔高温高湿試験後の透過率〕
また、太陽電池の寿命評価方法としてJIS C 8938に規定されている高温高湿試験として、85℃かつ85%RHの温湿度条件下に一定保持したエスペック(株)製恒温恒湿機(型番:PL−1KP)中に、1000時間サンプルを保持した後、恒温恒湿機から出して室温に戻したサンプルの550nmの透過率を、上述の分光光度計で測定し、〔(高温高湿試験後の透過率)/(初期透過率)〕を算出した。また、表2〜4に、これらの結果を示す。なお、表2〜4には、〔(高温高湿試験後の透過率)/(初期透過率)〕は、高温高湿試験後/初期と記載した。
[Transmittance after high temperature and high humidity test]
In addition, as a high-temperature and high-humidity test specified in JIS C 8938 as a method for evaluating the life of solar cells, a constant temperature and humidity machine manufactured by Espec Co., Ltd. (model number: model number: maintained at 85 ° C. and 85% RH) PL-1KP), after holding the sample for 1000 hours, the transmittance at 550 nm of the sample taken out of the thermo-hygrostat and returned to room temperature was measured with the above spectrophotometer, [(After high-temperature and high-humidity test) Of transmittance) / (initial transmittance)]. Tables 2 to 4 show these results. In Tables 2 to 4, [(transmittance after high-temperature and high-humidity test) / (initial transmittance)] is described as after high-temperature and high-humidity test / initial.

〔AR膜の硬度〕
AR膜の硬度を、塗膜の一般評価法としてJIS K 5600に規定されている引っかき硬度(鉛筆法)試験として、コーティングテスター工業製手動式鉛筆引っかき試験器を用いて、荷重750g、角度45°で三菱鉛筆製引っかき試験用えんぴつで測定した。表2〜4に、これらの結果を示す。
[Hardness of AR film]
The hardness of the AR film was measured using a manual pencil scratch tester manufactured by Coating Tester Industry as a scratch hardness (pencil method) test specified in JIS K 5600 as a general evaluation method for coating films. Measured with a pencil for pencil test made by Mitsubishi Pencil. Tables 2 to 4 show these results.

表2〜4からわかるように、実施例1〜24で作製した全ての複合膜において、Pを0.1〜0.7原子%含有する反射防止膜と、Pを1.0〜12.0原子%含有する拡散抑制膜が形成されており、初期ヘーズが0.01〜0.04%であり、高温高湿試験後にも反射防止膜が白濁せず、高温高湿試験後のヘーズが0.04〜0.14%であった。また、実施例1〜24で作製した全ての複合膜は、初期透過率が92.5〜94.7%と高く、かつ高温高湿試験後に反射防止膜が白濁しないため、〔(高温高湿試験後の透過率)/(初期透過率)〕も98.4〜99.9%と高く、高耐久性であった。また、平均粒径が6〜40nmの(C)成分を、複合膜用組成物に対して、10〜15質量部含有する実施例2、5、7、10、12、15〜19の複合膜用組成物から作製したAR膜の硬度は、9Hと高かった。これに対して、複合膜を形成しない比較例1では、高温高湿試験後に反射防止膜が白濁し、高温高湿試験後のヘーズが10%以上であり、初期透過率が91.0%と低く、高温高湿試験後に反射防止膜が白濁したため、〔(高温高湿試験後の透過率)/(初期透過率)〕も96.7%と低かった。(B)成分の代わりに硝酸を用いた複合膜用組成物から作製した比較例2では、拡散抑制膜を形成しなかったため、複合膜にならず、高温高湿試験後に反射防止膜が白濁し、高温高湿試験後のヘーズが1.47%、〔(高温高湿試験後の透過率)/(初期透過率)〕が96.8%と、高耐久性ではなかった。(B)成分の代わりに塩酸を用いた複合膜用組成物から作製した比較例3では、拡散抑制膜を形成しなかったため、複合膜にならず、高温高湿試験後に反射防止膜が白濁し、高温高湿試験後のヘーズが1.07%、〔(高温高湿試験後の透過率)/(初期透過率)〕が97.9%と、高耐久性ではなかった。(B)成分の含有量が低過ぎる複合膜用組成物から作製した比較例4では、拡散抑制膜を形成しなかったため、複合膜にならず、高温高湿試験後に反射防止膜が白濁し、高温高湿試験後のヘーズが0.91%、〔(高温高湿試験後の透過率)/(初期透過率)〕が97.3%と、高耐久性ではなかった。(B)成分の含有量が高過ぎる複合膜用組成物から作製した比較例5の複合膜は、初期透過率が90.8%と低かった。また、焼成時間が短く、拡散抑制膜のPの含有量が1原子%未満である比較例6の複合膜は、高温高湿試験後に反射防止膜が僅かに白濁し、高温高湿試験後のヘーズが0.33%、〔(高温高湿試験後の透過率)/(初期透過率)〕が97.7%と高耐久性ではなかった。一方、拡散抑制膜のPの含有量が12原子%より多い比較例7の複合膜は、初期の透過率が91.3%と低かった。焼成温度が80℃の比較例8では、拡散抑制膜中のP含有量が低く、また高温高湿試験後に反射防止膜に僅かな白濁が見られ、高温高湿試験後のヘーズが0.20%、〔(高温高湿試験後の透過率)/(初期透過率)〕が98.2%であり、さらに、複合膜の硬度が十分ではなかった。焼成温度が550℃の比較例9では、ガラス基板に僅かな反りが発生した。   As can be seen from Tables 2 to 4, in all the composite films prepared in Examples 1 to 24, an antireflection film containing 0.1 to 0.7 atomic% of P, and P of 1.0 to 12.0 A diffusion suppression film containing atomic% is formed, the initial haze is 0.01 to 0.04%, the antireflection film does not become cloudy even after the high temperature and high humidity test, and the haze after the high temperature and high humidity test is 0 0.04 to 0.14%. Moreover, since all the composite films produced in Examples 1 to 24 have a high initial transmittance of 92.5 to 94.7% and the antireflection film does not become cloudy after the high temperature and high humidity test, [(high temperature and high humidity The transmittance after the test / (initial transmittance)] was as high as 98.4 to 99.9% and was highly durable. Moreover, the composite film of Example 2, 5, 7, 10, 12, 15-19 which contains 10-15 mass parts of (C) component with an average particle diameter of 6-40 nm with respect to the composition for composite films The hardness of the AR film prepared from the composition for use was as high as 9H. On the other hand, in Comparative Example 1 in which no composite film is formed, the antireflection film becomes clouded after the high temperature and high humidity test, the haze after the high temperature and high humidity test is 10% or more, and the initial transmittance is 91.0%. Since the antireflection film became cloudy after the high temperature and high humidity test, [(transmittance after the high temperature and high humidity test) / (initial transmittance)] was also low at 96.7%. In Comparative Example 2 produced from the composite film composition using nitric acid instead of the component (B), the diffusion suppression film was not formed, so the composite film was not formed, and the antireflection film became cloudy after the high temperature and high humidity test. The haze after the high-temperature and high-humidity test was 1.47%, and [(transmittance after the high-temperature and high-humidity test) / (initial transmittance)] was 96.8%, which was not high durability. In Comparative Example 3 prepared from the composite film composition using hydrochloric acid instead of the component (B), the diffusion suppression film was not formed, so the composite film was not formed, and the antireflection film became cloudy after the high temperature and high humidity test. The haze after the high-temperature and high-humidity test was 1.07%, and [(transmittance after the high-temperature and high-humidity test) / (initial transmittance)] was 97.9%, which was not high durability. In Comparative Example 4 produced from the composition for composite film in which the content of the component (B) is too low, since the diffusion suppressing film was not formed, the composite film was not formed, and the antireflection film became cloudy after the high temperature and high humidity test, The haze after the high-temperature and high-humidity test was 0.91%, and [(transmittance after the high-temperature and high-humidity test) / (initial transmittance)] was 97.3%. The composite membrane of Comparative Example 5 produced from the composite membrane composition having an excessively high content of component (B) had a low initial transmittance of 90.8%. Further, in the composite film of Comparative Example 6 in which the baking time is short and the P content of the diffusion suppression film is less than 1 atomic%, the antireflection film becomes slightly cloudy after the high temperature and high humidity test, The haze was 0.33% and [(transmittance after high temperature and high humidity test) / (initial transmittance)] was 97.7%, which was not high durability. On the other hand, the composite film of Comparative Example 7 in which the P content in the diffusion suppression film is more than 12 atomic% has an initial transmittance as low as 91.3%. In Comparative Example 8 where the baking temperature is 80 ° C., the P content in the diffusion suppressing film is low, and a slight cloudiness is observed in the antireflection film after the high temperature and high humidity test, and the haze after the high temperature and high humidity test is 0.20. %, [(Transmittance after high-temperature and high-humidity test) / (initial transmittance)] was 98.2%, and the hardness of the composite film was not sufficient. In Comparative Example 9 where the firing temperature was 550 ° C., slight warpage occurred in the glass substrate.

1 複合膜を備えるガラス基材
2 ガラス基材
3 反射防止膜
4 拡散抑制膜
5 複合膜
10、20 薄膜太陽電池
11、21A 反射防止膜
21B 拡散抑制膜
21 複合膜
12、22 ガラス基材
13、23 透明電極層
14、24 光電変換層
15、25 透明導電膜
16、26 導電性反射膜
DESCRIPTION OF SYMBOLS 1 Glass base material provided with composite film 2 Glass base material 3 Antireflection film 4 Diffusion suppression film 5 Composite film 10, 20 Thin film solar cell 11, 21A Antireflection film 21B Diffusion suppression film 21 Composite film 12, 22 Glass base material 13, 23 Transparent electrode layer 14, 24 Photoelectric conversion layer 15, 25 Transparent conductive film 16, 26 Conductive reflective film

Claims (4)

透過電子顕微鏡付属のエネルギー分散型X線分光分析装置による定量分析で、Si、PおよびOの合計100原子%に対して、Pを1.0〜12.0原子%含有する拡散抑制膜、およびPを0.1〜0.7原子%含有する反射防止膜からなり、
NaおよびCaからなる群より選択される少なくとも1種を含有するガラス基材表面に、拡散抑制膜、反射防止膜の順に形成されることを特徴とする、複合膜。
A diffusion suppressing film containing 1.0 to 12.0 atomic percent of P with respect to a total of 100 atomic percent of Si, P and O by quantitative analysis using an energy dispersive X-ray spectrometer attached to a transmission electron microscope; and It consists of an antireflection film containing 0.1 to 0.7 atomic% of P,
A composite film, wherein a diffusion suppressing film and an antireflection film are formed in this order on the surface of a glass substrate containing at least one selected from the group consisting of Na and Ca.
反射防止膜が、さらに、コロイダルシリカ粒子を含む、請求項1記載の複合膜。   The composite film according to claim 1, wherein the antireflection film further contains colloidal silica particles. (1)NaおよびCaからなる群より選択される少なくとも1種を含有するガラス基材に、
(A)シリコンアルコキシド、またはシリコンアルコキシドの加水分解物もしくは脱水物と、(B)オルトリン酸およびピロリン酸からなる群より選択される少なくとも1種のリン酸と、を含み、かつ(B)成分が、反射防止膜および拡散抑制膜からなる複合膜用組成物:100質量部に対して、0.02〜0.28質量部である、反射防止膜および拡散抑制膜からなる複合膜用組成物を、
湿式塗工法により塗布する工程、ならびに
(2)反射防止膜および拡散抑制膜からなる複合膜用組成物の塗膜を有するガラス基材を、100〜500℃で、30〜60分焼成して、ガラス基材に、透過電子顕微鏡付属のエネルギー分散型X線分光分析装置による定量分析で、Si、PおよびOの合計100原子%に対して、Pを1.0〜12.0原子%含有する拡散抑制膜と、Pを0.1〜0.7原子%含有する反射防止膜とを、この順に形成した複合膜を得る工程、
を、この順で含むことを特徴とする、反射防止膜および拡散抑制膜からなる複合膜を備えるガラス基材の製造方法。
(1) To a glass substrate containing at least one selected from the group consisting of Na and Ca,
(A) silicon alkoxide, or a hydrolyzate or dehydration product of silicon alkoxide, and (B) at least one phosphoric acid selected from the group consisting of orthophosphoric acid and pyrophosphoric acid, and component (B) A composition for a composite film consisting of an antireflection film and a diffusion suppression film: A composition for a composite film consisting of an antireflection film and a diffusion suppression film that is 0.02 to 0.28 parts by mass with respect to 100 parts by mass ,
A step of applying by a wet coating method, and (2) firing a glass substrate having a coating film of a composite film composition comprising an antireflection film and a diffusion suppressing film at 100 to 500 ° C. for 30 to 60 minutes, The glass substrate contains 1.0 to 12.0 atomic% of P with respect to a total of 100 atomic% of Si, P and O by quantitative analysis using an energy dispersive X-ray spectrometer attached to the transmission electron microscope. A step of obtaining a composite film in which a diffusion suppressing film and an antireflection film containing 0.1 to 0.7 atomic% of P are formed in this order;
In this order, a method for producing a glass substrate provided with a composite film comprising an antireflection film and a diffusion suppressing film.
(1)工程で塗布される反射防止膜および拡散抑制膜からなる複合膜用組成物が、さらに、(C)コロイダルシリカ粒子を含む、請求項3記載の反射防止膜および拡散抑制膜からなる複合膜を備えるガラス基材の製造方法。   The composite comprising the antireflection film and the diffusion suppressing film according to claim 3, wherein the composite film composition comprising the antireflection film and the diffusion suppressing film applied in the step (1) further comprises (C) colloidal silica particles. A manufacturing method of a glass substrate provided with a film.
JP2012239662A 2012-10-30 2012-10-30 Composite film composed of antireflection film and diffusion suppression film, and method for manufacturing glass substrate comprising composite film Pending JP2014088287A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2012239662A JP2014088287A (en) 2012-10-30 2012-10-30 Composite film composed of antireflection film and diffusion suppression film, and method for manufacturing glass substrate comprising composite film
CN201310418297.9A CN103787588A (en) 2012-10-30 2013-09-13 Composite film, and method of manufacturing glass substrate with composite film
TW102133668A TW201418006A (en) 2012-10-30 2013-09-17 Composite film consisting of antireflective film and diffusion suppression film, and manufacturing method of glass substrate having composite film
KR1020130128812A KR20140057162A (en) 2012-10-30 2013-10-28 Composite film consisting of antireflective film and diffusion suppression film, and method of producing glass substrate including the composite film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012239662A JP2014088287A (en) 2012-10-30 2012-10-30 Composite film composed of antireflection film and diffusion suppression film, and method for manufacturing glass substrate comprising composite film

Publications (1)

Publication Number Publication Date
JP2014088287A true JP2014088287A (en) 2014-05-15

Family

ID=50663709

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012239662A Pending JP2014088287A (en) 2012-10-30 2012-10-30 Composite film composed of antireflection film and diffusion suppression film, and method for manufacturing glass substrate comprising composite film

Country Status (4)

Country Link
JP (1) JP2014088287A (en)
KR (1) KR20140057162A (en)
CN (1) CN103787588A (en)
TW (1) TW201418006A (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2759362B1 (en) * 1997-02-10 1999-03-12 Saint Gobain Vitrage TRANSPARENT SUBSTRATE EQUIPPED WITH AT LEAST ONE THIN LAYER BASED ON SILICON NITRIDE OR OXYNITRIDE AND ITS PROCESS FOR OBTAINING IT
CN100447583C (en) * 2007-03-30 2008-12-31 厦门大学 Double-layer anti-reflection film for ultraviolet detector and its preparation method

Also Published As

Publication number Publication date
CN103787588A (en) 2014-05-14
TW201418006A (en) 2014-05-16
KR20140057162A (en) 2014-05-12

Similar Documents

Publication Publication Date Title
EP2881765B1 (en) Cover glass for photoelectric conversion device
EP2511738B1 (en) Cover glass for photoelectric converter and process for producing same
EP2468694B1 (en) Glass article provided with photocatalyst film
TWI753154B (en) Coating and coating formulation
CN104164099B (en) Improved silica particle and its manufacturing method, the coating fluid of film formation, membrane base material and photovoltaic element
JP6586897B2 (en) Base material with antiglare film, coating liquid for film formation and method for producing the same
JP5903848B2 (en) Glass substrate with antireflection film
WO2016051750A1 (en) Low reflection coating, glass plate, glass substrate and photoelectric conversion device
JP6233136B2 (en) Liquid composition for film formation
CN105273622B (en) Low refractive index film, which is formed, uses composition and its preparation method, the formation method of low refractive index film
JP2014088287A (en) Composite film composed of antireflection film and diffusion suppression film, and method for manufacturing glass substrate comprising composite film
JP6560210B2 (en) Low reflection coating, substrate with low reflection coating and photoelectric conversion device
JP6348276B2 (en) Coating liquid for forming antireflection film, substrate with antireflection film, production method thereof, and use thereof
Kong et al. Mechanically Robust Hybrid Coatings for Antifogging, Antireflection, and Self‐Cleaning Applications
JP5136832B2 (en) Heat ray / ultraviolet shielding film forming coating solution, heat ray / ultraviolet shielding film, and heat ray / ultraviolet shielding substrate
CN103298902B (en) Infrared cut material, infrared cut material dispersion liquid, composition for forming infrared cut film, and infrared cut film
JP6455142B2 (en) Silica sol dispersion and silica porous film forming composition
JP2013043791A (en) Modified hollow silica microparticle
Buskens et al. Innovation at DSM: state of the art single layer anti-reflective coatings for solar cell cover glass
US20210317034A1 (en) Coating and coating formulation
JPH06119816A (en) Transparent conductive film and manufacture thereof
JP2012246201A (en) Composition for forming antireflection film, the antireflection film, and laminate including the antireflection film
JP2007115659A (en) Manufacturing method of transparent conductive film and application liquid for transparent conductive film formation as well as transparent conductive film
JP2003165912A (en) Resin composition, and organic electroluminescent display solar cell, touch panel, and plasma display panel all using the same