JP2014088275A - Method for producing polycrystalline silicon - Google Patents

Method for producing polycrystalline silicon Download PDF

Info

Publication number
JP2014088275A
JP2014088275A JP2012238288A JP2012238288A JP2014088275A JP 2014088275 A JP2014088275 A JP 2014088275A JP 2012238288 A JP2012238288 A JP 2012238288A JP 2012238288 A JP2012238288 A JP 2012238288A JP 2014088275 A JP2014088275 A JP 2014088275A
Authority
JP
Japan
Prior art keywords
silicon
gas
reaction tube
polycrystalline silicon
vertical reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012238288A
Other languages
Japanese (ja)
Inventor
Masayoshi Nishikawa
正芳 西川
Manabu Sakida
学 崎田
Satoshi Wakamatsu
智 若松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP2012238288A priority Critical patent/JP2014088275A/en
Publication of JP2014088275A publication Critical patent/JP2014088275A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing polycrystalline silicon capable of stably producing polycrystalline silicon having a density extremely close to a true density in a melting deposition process.SOLUTION: When silicon deposited on a vertical reaction tube 1 is melted and dropt so as to be recovered in a receiving vessel 8 installed in the directly lower part of the vertical reaction tube, in a meanwhile in which the recovered silicon is present in a melted state in the receiving vessel, the ratio of an inert gas hard to be solved to the molten silicon is controlled to 50 vol.% or higher.

Description

本発明は多結晶シリコンの新規な製造方法に関する。詳しくは、密閉型の反応容器内で、水素ガスとクロロシラン類を含む原料ガスを使用して析出させたシリコンを溶融落下させ、受容容器に多結晶シリコンとして回収する方法において、回収される多結晶シリコンの密度を安定して高く維持することが可能な多結晶シリコンの製造方法に関する。   The present invention relates to a novel method for producing polycrystalline silicon. Specifically, in the method of melting and dropping silicon deposited using a source gas containing hydrogen gas and chlorosilanes in a sealed reaction vessel, and recovering it as polycrystalline silicon in a receiving vessel, the recovered polycrystal The present invention relates to a method for producing polycrystalline silicon that can stably maintain a high density of silicon.

半導体或いは太陽電池の原料として使用される高純度の多結晶シリコンを製造する方法は種々知られており、そのうちいくつかは既に工業的に利用されている。   Various methods for producing high-purity polycrystalline silicon used as a raw material for semiconductors or solar cells are known, some of which have already been industrially utilized.

たとえば、そのひとつは溶融析出法とよばれる方法であり、密閉型の反応容器内において、トリクロロシランと水素などの還元性ガスとを含む原料ガスを、シリコンの析出温度以上に加熱してシリコン析出させ、次いで、析出したシリコンをシリコンの融点以上に加熱することにより溶融落下させて多結晶シリコンとして回収する方法である。   For example, one of the methods is called a melt precipitation method. In a sealed reaction vessel, a raw material gas containing trichlorosilane and a reducing gas such as hydrogen is heated to a temperature equal to or higher than the silicon deposition temperature to deposit silicon. Next, the deposited silicon is melted and dropped by heating it to a melting point of silicon or higher and recovered as polycrystalline silicon.

上記溶融析出法により製造された多結晶シリコンは、主に結晶型の太陽電池用途に使用される。一般に、結晶型の太陽電池製造には、インゴット化工程があり、この工程では、シリコン原料をるつぼに充填し、坩堝外周部から加熱エネルギーを供給して充填物を溶融後、再凝固させた後、インゴットとして取り出す方法が実施されている。   Polycrystalline silicon produced by the melt precipitation method is mainly used for crystalline solar cell applications. In general, in order to manufacture a crystalline solar cell, there is an ingot process. In this process, a silicon raw material is filled in a crucible, and heating energy is supplied from the outer periphery of the crucible to melt the filler and resolidify it. The method of taking out as an ingot is implemented.

従来、上記シリコンインゴット生産工程の効率化の一つとして、シリコン原料の溶融時間の短縮が要求される時期があり、そのために、溶融速度の速い多結晶シリコン原料を得るための方法が開発されてきた。例えば、前記溶融析出法において、溶融落下時における落下速度の制御や溶融落下時の雰囲気ガスの選択により、内部に気泡を内包する発泡性のシリコンの製造方法(特許文献1、2参照)が提案されている。   Conventionally, there is a time when shortening the melting time of the silicon raw material is required as one of the efficiency improvement of the silicon ingot production process, and for this reason, a method for obtaining a polycrystalline silicon raw material having a high melting rate has been developed. It was. For example, in the melt deposition method, a foaming silicon manufacturing method (see Patent Documents 1 and 2) in which bubbles are included is proposed by controlling the dropping speed at the time of melting and selecting the atmosphere gas at the time of melting and dropping. Has been.

ところが、近年では、シリコンインゴット生産工程におけるインゴットの大型化の流れにより、多結晶シリコンの溶融速度よりも坩堝へ充填量が多くすることにより、生産効率を高める方向に技術の要求が変化し、より多量に坩堝に充填できる高密度の多結晶シリコンの需要が高まってきた。   However, in recent years, due to the trend of increasing the size of ingots in the silicon ingot production process, the amount of technology charged in the direction of increasing production efficiency has changed by increasing the filling amount into the crucible rather than the melting rate of polycrystalline silicon. The demand for high-density polycrystalline silicon that can fill a crucible in large quantities has increased.

しかしながら、前記溶融析出法は、積極的に気泡を含有させる特許文献1、2に依らない場合であっても、得られる多結晶シリコン中にある程度の気泡が存在することを防ぐことができず、また、その気泡の量、即ち、密度においてもバラツキがあることがあった。かかる現象は、析出量を増大させ、一度の溶融落下量を増加した場合に起こり易い。   However, the melt precipitation method cannot prevent the presence of a certain amount of bubbles in the obtained polycrystalline silicon even if it does not depend on Patent Documents 1 and 2 that actively contain bubbles, In addition, the amount of bubbles, that is, the density may vary. Such a phenomenon is likely to occur when the amount of precipitation is increased and the amount of melting and dropping at one time is increased.

特開2002−316813号公報Japanese Patent Laid-Open No. 2002-316813 WO2005−113436号公報WO2005-113436

したがって、本発明の目的は、前記溶融析出法において、真密度に極めて近い密度を有する多結晶シリコンを安定して製造することが可能な多結晶シリコンを製造する方法を提案することにある。   Accordingly, an object of the present invention is to propose a method for producing polycrystalline silicon that can stably produce polycrystalline silicon having a density very close to the true density in the melt precipitation method.

本発明者等は、上記課題を達成すべく鋭意研究を重ねた。その結果、溶融析出法により製造される多結晶シリコンにおいて、その密度低下の原因となる、多結晶シリコンに内包される気泡は、溶融したシリコンが接触する雰囲気ガス中に存在する水素ガスやトリクロロシラン等の溶融シリコンに溶解可能なガス(以下可溶ガスという)が、溶融落下時に溶解することにより生成する場合もあるが、受容容器に回収された溶融シリコンが凝固するまでの間、可溶ガスが溶融状態のシリコンと接触することによって溶解することが大きな要因となり得るとの知見を得た。しかも、前記シリコンが溶融落下する時間と、受容容器に回収された溶融シリコンが凝固するまでの時間とを比較すると、後者の時間の方が格段に長く、密度低下の原因となる多結晶シリコンに内包された気泡の多くは、主に溶融シリコンが受容容器に回収された後に生成しているとの知見を得た。   The inventors of the present invention have made extensive studies to achieve the above-mentioned problems. As a result, in the polycrystalline silicon produced by the melt precipitation method, the bubbles included in the polycrystalline silicon, which cause the density reduction, are hydrogen gas or trichlorosilane present in the atmospheric gas in contact with the molten silicon. Gas that can be dissolved in molten silicon such as soluble gas (hereinafter referred to as soluble gas) may be generated by melting at the time of melting and dropping, but it is soluble gas until the molten silicon recovered in the receiving container solidifies. It has been found that melting can be a major factor when it comes into contact with molten silicon. Moreover, when the time for melting and dropping the silicon is compared with the time until the molten silicon recovered in the receiving container is solidified, the latter time is much longer, and the polycrystalline silicon that causes the density reduction is reduced. It was found that most of the encapsulated bubbles were generated mainly after the molten silicon was collected in the receiving container.

これら知見に基づき、本発明者等は、前記受容容器内で溶融シリコンと接する雰囲気ガス中に占める可溶ガスの濃度を、溶融シリコンに対して難溶解性で且つ不活性のガス(以下、「難溶解不活性ガス」ともいう。)を供給して特定の範囲内に調整することにより、受容容器内での溶融シリコンへの可溶ガスの溶解が抑制され、更に、溶融落下時に溶解した可溶ガス等、溶融シリコン中に含まれていた可溶ガスが抜け易くなることにより、高密度の多結晶シリコンが得られることを見出した。しかも、上記操作により、得られる多結晶シリコンにおける密度のバラツキをも極めて低く抑えることができることを見出し、本発明を完成するに至った。   Based on these findings, the present inventors have determined the concentration of the soluble gas in the atmospheric gas in contact with the molten silicon in the receiving container, the gas that is hardly soluble and inert to the molten silicon (hereinafter referred to as `` By supplying and adjusting the gas within a specific range, the dissolution of the soluble gas into the molten silicon in the receiving container is suppressed, and the dissolved gas can be dissolved at the time of melting and dropping. It has been found that high-density polycrystalline silicon can be obtained by making it easier for the soluble gas contained in the molten silicon, such as dissolved gas, to escape. Moreover, it has been found that, by the above operation, the density variation in the obtained polycrystalline silicon can be suppressed to an extremely low level, and the present invention has been completed.

即ち本発明は、密閉型の反応容器の上部にシリコン析出用の縦型反応管を、下部に受容容器を備え、更に、上記縦型反応管の内壁を加熱する加熱手段を有する装置を使用し、該縦型反応管を加熱すると共に上部開口部よりクロロシラン類及び水素を供給してその内壁にシリコンを析出せしめ、次いで、該内壁をシリコンの溶融温度に加熱することにより、上記析出したシリコンを溶融せしめて、縦型反応管の下部開口部より前記受容容器に落下させてシリコンを回収する方法であって、
前記受容容器に回収されたシリコンが溶融状態で存在する間、該受容容器内空間の雰囲気ガスに占める、溶融シリコンに対して難溶解性で且つ不活性のガスの割合を、50容量%以上とすることを特徴とする多結晶シリコンの製造方法である。
That is, the present invention uses an apparatus having a vertical reaction tube for silicon deposition at the top of a sealed reaction vessel, a receiving vessel at the bottom, and a heating means for heating the inner wall of the vertical reaction tube. The vertical reaction tube is heated and chlorosilanes and hydrogen are supplied from the upper opening to deposit silicon on the inner wall, and then the inner wall is heated to the melting temperature of silicon to A method of recovering silicon by melting and dropping from the lower opening of a vertical reaction tube into the receiving container,
While the silicon recovered in the receiving vessel exists in a molten state, the proportion of the gas that is hardly soluble and inert with respect to the molten silicon in the atmospheric gas in the inner space of the receiving vessel is 50% by volume or more. A method for producing polycrystalline silicon.

前記縦型反応管の下部開口部より排出される反応排ガスは、前記受容容器より高い位置にガス排出管を設けて、反応容器より排出すると共に、前記難溶解不活性ガスの分子量が、反応排ガスの平均分子量よりも大きいことが好ましい。   The reaction exhaust gas discharged from the lower opening of the vertical reaction tube is discharged from the reaction vessel by providing a gas discharge tube at a position higher than the receiving vessel, and the molecular weight of the hardly soluble inert gas is the reaction exhaust gas. It is preferable that it is larger than the average molecular weight.

また、前記難溶解不活性ガスとしてアルゴンを用いることが好ましい。   Moreover, it is preferable to use argon as the hardly soluble inert gas.

更に、前記受容容器内空間の雰囲気ガスに占める、難溶解不活性ガスの割合が、70容量%以上であることが好ましい。   Furthermore, it is preferable that the ratio of the hardly-dissolved inert gas to the atmospheric gas in the space in the receiving container is 70% by volume or more.

本発明の方法によれば、溶融析出法により製造された多結晶シリコンであっても、前述のシリコンインゴットの大型化に対応可能な高密度の多結晶シリコンの製造が可能となる。また、真密度に近い高密度化された多結晶シリコンを安定して製造することができる。   According to the method of the present invention, it is possible to produce high-density polycrystalline silicon that can cope with the increase in size of the silicon ingot described above, even if it is polycrystalline silicon produced by the melt precipitation method. In addition, it is possible to stably produce a polycrystalline silicon having a density close to the true density.

シリコン製造装置の概略構造を示した側断面図Side sectional view showing schematic structure of silicon manufacturing equipment

以下、上記製造方法を実施するための製造装置の好適な一態様について、その概略構造を示す図1に基づいて、本発明の方法を詳細に説明するが、本発明は図1に示す態様に限定されるものではない。   Hereinafter, the preferred embodiment of the production apparatus for carrying out the production method will be described in detail with reference to FIG. 1 showing the schematic structure of the present invention. It is not limited.

本発明の多結晶シリコンの製造方法に使用するシリコン製造装置は、密閉型の反応容器A内に、下端側にシリコン取出口となる開口部2を有する縦型反応管1と該縦型反応管下端側開口の下方に受容容器8が設置されている。上記縦型反応管1には、縦型反応管の内壁に囲まれた空洞部5にクロロシラン類と水素とを含む原料ガスを供給する原料ガス供給管4が、縦型反応管内に下方に向かって開口するよう設置されている。また、シリコンの析出反応時及び析出したシリコンの溶融時に縦型反応管1を加熱するための加熱装置3が該縦型反応管の下端から任意の高さまで設置されている。   The silicon production apparatus used in the method for producing polycrystalline silicon according to the present invention includes a vertical reaction tube 1 having an opening 2 serving as a silicon outlet at the lower end in a sealed reaction vessel A and the vertical reaction tube. A receiving container 8 is installed below the lower end side opening. In the vertical reaction tube 1, a raw material gas supply tube 4 for supplying a raw material gas containing chlorosilanes and hydrogen into a cavity 5 surrounded by the inner wall of the vertical reaction tube extends downward into the vertical reaction tube. It is installed to open. Further, a heating device 3 for heating the vertical reaction tube 1 at the time of silicon precipitation reaction and at the time of melting of the deposited silicon is installed from the lower end of the vertical reaction tube to an arbitrary height.

上記縦型反応管の形状は、上端にクロロシラン類及び水素等原料ガスの供給口となる上部開口部、下端に溶融したシリコンの取り出し口となる下部開口部を有していれば特に制限されないが、析出表面の加熱効率、または、ガスの接触効率等の観点から筒状であることが好ましく、容器内壁での析出効率を考慮すれば、更に円柱型筒状であることが好ましい。   The shape of the vertical reaction tube is not particularly limited as long as it has an upper opening serving as a supply port for a source gas such as chlorosilanes and hydrogen at the upper end and a lower opening serving as a take-out port for molten silicon at the lower end. From the viewpoint of the heating efficiency of the deposition surface, the gas contact efficiency, and the like, a cylindrical shape is preferable. In consideration of the deposition efficiency on the inner wall of the container, a cylindrical cylindrical shape is further preferable.

上記縦型反応管の材質は特に制限されないが、シリコンの溶融温度以上の高温に対して耐熱性があり、且つ、その内部は後述の原料ガス、反応排ガスやシリコン融液に接するため、これら接触物に対して十分耐え得る材質を選択することが好ましい。かかる材質として、具体的には、上記ガスに対して耐腐食性のある、例えば、グラファイト製の炭素材料、炭化ケイ素、窒化ケイ素、窒化ホウ素及び窒化アルミ等セラミックス材料の単独材料または複合材料が好適に使用される。   The material of the vertical reaction tube is not particularly limited, but it is heat resistant to high temperatures not lower than the melting temperature of silicon, and the inside thereof is in contact with the raw material gas, reaction exhaust gas and silicon melt described later, so these contacts It is preferable to select a material that can sufficiently withstand an object. Specifically, the material is preferably a single material or a composite material of a ceramic material such as carbon material made of graphite, silicon carbide, silicon nitride, boron nitride, and aluminum nitride, which has corrosion resistance to the gas. Used for.

上記縦型反応管はその内壁を加熱する加熱手段を具備している。該加熱手段は、上記縦型反応管内壁の表面温度をシリコンの溶融温度以上に加熱できれば良いのであって、公知の方法が特に制限なく使用され、例えば、高周波コイル等を用いて縦型反応管の外側面から加熱する態様が好適に使用される。   The vertical reaction tube has heating means for heating the inner wall thereof. The heating means only needs to be able to heat the surface temperature of the inner wall of the vertical reaction tube to be equal to or higher than the melting temperature of silicon, and any known method can be used without particular limitation. For example, a vertical reaction tube using a high-frequency coil or the like is used. A mode in which heating is performed from the outer side surface of is preferably used.

また、本発明の反応容器は下部に受容容器を備えており、縦型反応管内壁に析出し高温で溶融されたシリコンは、縦型反応管の下部開口部より落下し、縦型反応管の直下方に設けられた該受容容器に回収される。   The reaction vessel of the present invention has a receiving vessel at the bottom, and silicon deposited on the inner wall of the vertical reaction tube and melted at a high temperature falls from the lower opening of the vertical reaction tube, and the vertical reaction tube It is collected in the receiving container provided immediately below.

本発明における受容容器8は、シリコン取り出し口となる縦型反応管下部開口部から溶融落下するシリコンの落下線を考慮して下方に設けられればよく、縦型反応管下部開口部の大きさと受容容器の上部開口部の大きさは、溶融シリコンの、落下線、落下後の流動性、及び、単位時間あたりの落下量等とを考慮し、相対的に決定されればよい。   The receiving container 8 in the present invention may be provided below in consideration of the drop line of silicon that melts and drops from the lower opening of the vertical reaction tube serving as the silicon outlet, and the size and receiving capacity of the lower opening of the vertical reaction tube. The size of the upper opening of the container may be determined relatively in consideration of the drop line of molten silicon, the fluidity after dropping, the amount of dropping per unit time, and the like.

上記受容容器8の材質は、シリコンへの汚染を防止できるものであれば特に制限されないが、溶融シリコンを受容するのに十分な耐熱性があり、且つその内部はシリコン融液や、高温下で未反応ガスであるクロロシラン類や、副生成物である塩化水素等の腐食性ガスに曝されるため、耐熱性に加え接触物に対して十分耐え得る材質を選択することが好ましく、耐熱セラミックス、石英ガラス、カーボンおよびシリコン材料、炭化ケイ素、窒化ケイ素、窒化ホウ素等から選択された単独材料もしくは上記材料より複数選択された複合材料が挙げられる。なかでもシリコン若しくはカーボンが好適に使用される。なお、受容容器のうちシリコンと接触する部分が上記材料であればよいのであって、同一の素材からなる容器であっても、容器内壁に上記材料の内ばりが施されていているものであってもよい。また、該受容容器の形状は、特に制限されないが、回収後の後工程でるつぼに充填する際の空隙を考慮すれば、るつぼと同じ形状とすることが好ましい。   The material of the receiving container 8 is not particularly limited as long as it can prevent contamination to silicon, but has sufficient heat resistance to receive molten silicon, and the inside thereof is a silicon melt or under high temperature. Since it is exposed to corrosive gases such as chlorosilanes that are unreacted gas and hydrogen chloride that is a by-product, it is preferable to select a material that can sufficiently withstand contact objects in addition to heat resistance, Examples thereof include a single material selected from quartz glass, carbon and silicon materials, silicon carbide, silicon nitride, boron nitride and the like, or a composite material selected from a plurality of the above materials. Of these, silicon or carbon is preferably used. It should be noted that the portion of the receiving container that comes into contact with the silicon may be made of the above material, and even if the container is made of the same material, the inner wall of the container is provided with the inner material. May be. Further, the shape of the receiving container is not particularly limited, but preferably takes the same shape as the crucible in consideration of the gap when filling the crucible in a post-process after collection.

また、本発明において、前記反応容器Aは、シリコン析出反応後に上記縦型反応管より排出される反応排ガスを外部に排出するガス排出管6を備えている。上記ガス排出管6の設置は、受容容器よりも高く、縦型反応管の下部開口部よりも低い位置であればよい。   In the present invention, the reaction vessel A includes a gas discharge pipe 6 for discharging reaction exhaust gas discharged from the vertical reaction pipe after the silicon precipitation reaction to the outside. The gas discharge pipe 6 may be installed at a position higher than the receiving container and lower than the lower opening of the vertical reaction pipe.

本発明の多結晶シリコンの製造方法において、前記原料ガスの一成分であるクロロシラン類は、分子内に水素を含むクロロシラン類であれば特に制限されないが、一般にはトリクロロシランが好適に使用される。上記クロロシラン類は水素ガスと共に原料ガスとして縦型反応管内に供給されるが、水素ガスとクロロシラン類の混合割合は、公知の割合が特に制限なく採用されるが、反応効率を向上させる目的でクロロシラン類に対して水素ガスが過剰となる混合割合とすることが、一般的である。   In the method for producing polycrystalline silicon of the present invention, the chlorosilanes that are one component of the raw material gas are not particularly limited as long as they are chlorosilanes containing hydrogen in the molecule, but in general, trichlorosilane is preferably used. The chlorosilanes are supplied into the vertical reaction tube as a raw material gas together with hydrogen gas, and the mixing ratio of hydrogen gas and chlorosilanes is not particularly limited, but chlorosilane is used for the purpose of improving the reaction efficiency. Generally, the mixing ratio is such that hydrogen gas is excessive relative to the kind.

また、本発明のポリシリコンの製造方法において、該縦型反応管にシリコンを析出させる態様には、大きく分けてシリコンの析出と溶融を交互に行う方法と同時に行う方法とがある。   In the method for producing polysilicon according to the present invention, the mode of depositing silicon in the vertical reaction tube is roughly divided into a method in which silicon is deposited and melted alternately.

例えば、該縦型反応管内壁をシリコンの析出温度以上(具体的には600℃以上)に加熱し、該縦型反応管空洞部に上記原料ガスを供給し、該縦型反応管内壁面にシリコンを析出させ、次に、該縦型反応管内壁をシリコンの融点以上(具体的には1450℃以上1700℃以下)に維持し、析出したシリコンを溶融落下させる方法であり、該縦型反応管をシリコンの融点以上(具体的には1450℃以上1700℃以下)に維持し、該縦型反応管内部に原料ガス供給管より上記原料ガスを供給し、縦型反応管内壁面でシリコンを析出させると共に溶融落下させる方法である。   For example, the inner wall of the vertical reaction tube is heated to a temperature equal to or higher than the deposition temperature of silicon (specifically, 600 ° C. or higher), and the source gas is supplied to the cavity of the vertical reaction tube. And then maintaining the inner wall of the vertical reaction tube above the melting point of silicon (specifically, 1450 ° C. or higher and 1700 ° C. or lower) to melt and drop the deposited silicon. Is maintained above the melting point of silicon (specifically, 1450 ° C. or higher and 1700 ° C. or lower), and the source gas is supplied from the source gas supply pipe into the vertical reaction tube to deposit silicon on the inner wall of the vertical reaction tube. It is a method of melting and dropping together.

上記方法において溶融落下するシリコンは、縦型反応管下方に設けられた受容容器に溶融状態で回収される。   Silicon melted and dropped in the above method is recovered in a molten state in a receiving container provided below the vertical reaction tube.

本発明の多結晶シリコンの製造方法の最大の特徴は、上述の装置を使用し、前記受容容器8に回収されたシリコンが溶融状態で存在する間、該受容容器内空間の雰囲気ガスの組成を調整することにある。   The greatest feature of the method for producing polycrystalline silicon according to the present invention is that the above-mentioned apparatus is used, and the composition of the atmospheric gas in the inner space of the receiving vessel is adjusted while the silicon recovered in the receiving vessel 8 exists in the molten state. It is to adjust.

一般に、前記ガス排出管より排出される反応排ガスは、未反応ガスである水素とクロロシラン類の他に、副生ガスである、塩化水素、クロロシラン類、そして、四塩化ケイ素等が含まれ、従来の方法によれば、かかる反応排ガスが、反応容器A内の全ての雰囲気ガスを構成していた。この場合、雰囲気ガス中の難溶解不活性ガスの割合は、10〜30容量%であり、残部が可溶ガスで構成される。そのため、縦型反応管より溶融落下して受容容器に回収された溶融状態のシリコンは、上記可溶ガスを含む反応排ガスと接触し、可溶ガスがその内部に溶解して気泡を生成することにより、得られる多結晶シリコンの密度を十分上げることができなかった。   In general, the reaction exhaust gas discharged from the gas discharge pipe includes hydrogen chloride, chlorosilanes, silicon tetrachloride, and the like, which are by-product gases, in addition to unreacted hydrogen and chlorosilanes. According to the method, the reaction exhaust gas constitutes all the atmospheric gases in the reaction vessel A. In this case, the ratio of the hardly-dissolved inert gas in the atmospheric gas is 10 to 30% by volume, and the remainder is composed of a soluble gas. Therefore, the molten silicon melted and dropped from the vertical reaction tube and collected in the receiving container comes into contact with the reaction exhaust gas containing the above-mentioned soluble gas, and the soluble gas dissolves in the interior to generate bubbles. Thus, the density of the obtained polycrystalline silicon could not be sufficiently increased.

これに対して、本発明は、前記受容容器8に回収されたシリコンが溶融状態で存在する間、該受容容器内空間の雰囲気ガスに占める、溶融シリコンに対して難溶解性で且つ不活性のガスの割合を、50容量%以上とすることにより非常に密度の高い多結晶シリコンを製造する画期的な方法を提案するものである。   On the other hand, in the present invention, while the silicon recovered in the receiving container 8 exists in a molten state, it is hardly soluble and inert with respect to the molten silicon that occupies the atmospheric gas in the inner space of the receiving container. The present invention proposes an epoch-making method for producing highly dense polycrystalline silicon by setting the gas ratio to 50% by volume or more.

即ち、上記受容容器内空間の雰囲気ガスに占める難溶解不活性ガスの割合が、50容量%より低い場合、可溶ガスによる気泡の生成の影響により、得られる多結晶シリコンの密度を十分上げることが困難となる。上記難溶解不活性ガスの割合は、好ましくは、70容量%以上、特に、90容量%以上とすることが好ましい。   That is, when the ratio of the hardly-dissolved inert gas to the atmospheric gas in the receiving container space is lower than 50% by volume, the density of the obtained polycrystalline silicon is sufficiently increased due to the influence of the generation of bubbles by the soluble gas. It becomes difficult. The ratio of the hardly soluble inert gas is preferably 70% by volume or more, particularly 90% by volume or more.

本発明において、上記受容容器に回収されたシリコンが溶融状態で存在する間とは、回収されたシリコンの少なくとも一部が溶融状態で存在する間すべてをいう。具体的には、回収されたシリコンが難溶解不活性ガスと接触する上部表面の少なくとも一部が溶融状態で存在している状態をいうが、上記上部表面において、溶融状態で存在しているシリコンの占める面積割合が大きければ大きいほど、接触する難溶解不活性ガスの効果が発揮されるため、上記面積割合が回収シリコン上部表面積の5%以上、好ましくは30%以上、更に好ましくは50%以上で保持されることが効果的である。   In the present invention, the term “while the silicon recovered in the receiving container exists in the molten state” refers to the entire period when at least a part of the recovered silicon exists in the molten state. Specifically, the recovered silicon refers to a state in which at least a part of the upper surface in contact with the hardly soluble inert gas exists in a molten state, but the silicon existing in the molten state on the upper surface. The larger the area ratio occupied by, the more effective the effect of the hardly soluble inert gas that comes into contact is exhibited. Therefore, the area ratio is 5% or more, preferably 30% or more, more preferably 50% or more of the recovered silicon upper surface area. It is effective to be held at.

また、本発明において、前記難溶解不活性ガスは、1450℃の溶融シリコンへの溶解度が10ppma以下であって、好ましくは1ppma以下であって、シリコン析出反応における未反応ガスおよび副生ガスと反応しないものであれば特に制限されない。具体的には希ガス、四塩化ケイ素、塩酸ガス等が挙げられ、中でも、アルゴン等の希ガスが好適に使用される。   In the present invention, the hardly soluble inert gas has a solubility in molten silicon at 1450 ° C. of 10 ppma or less, preferably 1 ppma or less, and reacts with unreacted gas and by-product gas in silicon deposition reaction. There is no particular limitation as long as it does not. Specific examples include noble gas, silicon tetrachloride, hydrochloric acid gas, etc. Among them, noble gas such as argon is preferably used.

そして、生産効率の観点から述べれば、上記供給する難溶解不活性ガスはシリコン析出反応後に縦型反応管より排出される反応排ガスの平均分子量よりも分子量の大きいガスを使用することが好ましい。即ち、反応排ガスより比重の大きい難溶解不活性ガスを供給することにより、該難溶解不活性ガスは、反応容器の下部に留まり、受容容器内空間を含む雰囲気を選択的に難溶解不活性ガスでガス置換することができ、難溶解不活性ガスの使用量を低く抑えることが可能となる。   From the viewpoint of production efficiency, it is preferable to use a gas having a molecular weight larger than the average molecular weight of the reaction exhaust gas discharged from the vertical reaction tube after the silicon precipitation reaction as the hardly dissolved inert gas to be supplied. That is, by supplying a hardly-soluble inert gas having a specific gravity greater than that of the reaction exhaust gas, the hardly-soluble inert gas stays at the lower part of the reaction vessel, and the atmosphere including the inner space of the receiving vessel is selectively reduced. Thus, it is possible to replace the gas, and the amount of the hardly soluble inert gas used can be kept low.

尚、反応排ガスに含まれる四塩化ケイ素、塩酸ガス等は、難溶解不活性ガスの条件を満足するため、該受容容器内の雰囲気中の難溶解不活性ガスの割合を調整する場合には、かかる量を勘案して供給する難溶解不活性ガスの量を調整すればよい。但し、上記比重の大きい難溶解不活性ガスを使用する場合、受容容器内の雰囲気は、該ガスにより全量置換されるため、反応排ガス中の難溶解不活性ガスの濃度を考慮する必要はない。   In addition, since silicon tetrachloride, hydrochloric acid gas, etc. contained in the reaction exhaust gas satisfy the condition of the hardly soluble inert gas, when adjusting the ratio of the hardly soluble inert gas in the atmosphere in the receiving container, What is necessary is just to adjust the quantity of the hardly soluble inert gas supplied in consideration of this quantity. However, when the above-mentioned hardly soluble inert gas having a large specific gravity is used, the atmosphere in the receiving container is completely replaced by the gas, so that it is not necessary to consider the concentration of the hardly soluble inert gas in the reaction exhaust gas.

本発明において、上記溶融落下したシリコンと接触する、受容容器内空間の雰囲気ガスの組成を調整は、具体的には、図1に示すように、受容容器8に対して、反応容器Aに、難溶解不活性ガスを供給する難溶解不活性ガス供給管10を設けて難溶解不活性ガスを供給するとこにより行うことが好ましい。   In the present invention, the adjustment of the composition of the atmospheric gas in the receiving container internal space that is in contact with the melted and dropped silicon, specifically, as shown in FIG. It is preferable to carry out by supplying the hardly soluble inert gas by providing the hardly soluble inert gas supply pipe 10 for supplying the hardly soluble inert gas.

その際、難溶解不活性ガス供給管10は、反応容器のあまり高い位置に設けると、反応排ガスと混合されてガス排出管6より取り出される排ガスを希釈するため、ガス排出管より下部に設けることが好ましく、更に好ましくは、前記受容容器8の空間に直接供給することが好ましい。   At that time, the hardly-dissolved inert gas supply pipe 10 is provided below the gas discharge pipe in order to dilute the exhaust gas mixed with the reaction exhaust gas and taken out from the gas discharge pipe 6 when provided at a very high position in the reaction vessel. It is preferable to supply directly to the space of the receiving container 8.

本発明において、受容容器内のシリコンが溶融状態で存在する間、その空間を難溶解不活性ガスの濃度が前記特定の範囲に調整された雰囲気とすればよいが、該シリコン中に溶け込んだ可溶ガスや界面に生成した気泡をより効果的に排出せしめ、得られる多結晶シリコンの密度をより高くするためには、該受容容器内においてシリコンが融液として存在する時間(以下、融液保持時間という)を調整することが効果的である。   In the present invention, while the silicon in the receiving container exists in a molten state, the space may be an atmosphere in which the concentration of the hardly-dissolved inert gas is adjusted to the specific range, but it may be dissolved in the silicon. In order to discharge the dissolved gas and bubbles generated at the interface more effectively and to increase the density of the obtained polycrystalline silicon, the time during which the silicon exists as a melt in the receiving vessel (hereinafter referred to as melt holding) It is effective to adjust the time).

上記溶融シリコンの融液保持時間を延長させるためには、受容容器からの放熱を抑制する方法、縦型反応管より溶融落下させるシリコンの量を増やす方法、難溶解不活性ガスを加熱して供給する方法、受容容器を外部加熱する方法などが挙げられる。   In order to extend the molten silicon melt retention time, a method of suppressing heat release from the receiving vessel, a method of increasing the amount of silicon melted and dropped from the vertical reaction tube, and heating and supplying a hardly soluble inert gas And a method of externally heating the receiving container.

そのうち受容容器からの放熱を抑制する方法は、効果的であり、受容容器内外の雰囲気を熱伝導率の小さいガスで満たしてやることが、好適な態様として挙げられる。この場合、前記難溶解不活性ガスとして使用される希ガス、特に、アルゴンは、熱伝導率の小さいガスであり、前記受容容器の雰囲気ガスとして存在させると共に、受容容器の周囲の雰囲気ガスとしても存在せしめることにより、別途他のガスを供給することなくかかる効果を発揮させることができる。   Among them, a method for suppressing heat radiation from the receiving container is effective, and it is preferable to fill the atmosphere inside and outside the receiving container with a gas having a low thermal conductivity. In this case, the rare gas used as the hardly-dissolved inert gas, particularly argon, is a gas having a low thermal conductivity and is present as the atmosphere gas of the receiving container, and also as the atmosphere gas around the receiving container. By making it exist, this effect can be exhibited without supplying another gas separately.

以下、本発明を実施例により更に詳しく説明するが、本発明はこれらの実施例になんら限定されるものではない
なお、多結晶シリコンの見かけ密度の評価は、多結晶シリコンを破砕後1cm以上の体積を有する破砕物をランダムに10個抽出し、個々の見かけ密度をアルキメデス法により測定算出(式1参照)した後、その平均値を用いた。
Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to these examples. The evaluation of the apparent density of polycrystalline silicon is 1 cm 3 or more after crushing polycrystalline silicon. Ten pieces of crushed material having a volume of 1 were extracted at random, and the individual apparent density was measured and calculated by the Archimedes method (see Equation 1), and then the average value was used.

Figure 2014088275
Figure 2014088275

実施例1
図1に示す装置を使用し、カーボンを基材とした縦型反応管の内壁を加熱装置である高周波コイルにより1400℃に加熱した後、トリクロロシランと水素を縦型反応管1の空洞部5に導入し、該縦型反応管内表面にシリコンを析出させ、その後縦型反応管1を1500℃に昇温し、析出したシリコンを溶融させ、該溶融シリコンを縦型反応管の開口部から溶融落下させて受容容器に回収した。
Example 1
The apparatus shown in FIG. 1 is used, and the inner wall of a vertical reaction tube made of carbon is heated to 1400 ° C. by a high-frequency coil as a heating device, and then trichlorosilane and hydrogen are added to the cavity 5 of the vertical reaction tube 1. The vertical reaction tube 1 is heated to 1500 ° C. to melt the deposited silicon, and the molten silicon is melted from the opening of the vertical reaction tube. Dropped and collected in a receiving container.

析出したシリコンを溶融落下させる間、難溶解不活性ガス供給管よりアルゴンガスを供給し、受容容器内の雰囲気中の難溶解不活性ガスの割合を約90容量%とした。このときの可溶ガス(クロロシラン類と水素)の割合は約10容量%であった。受容容器に回収された多結晶シリコンを破砕したところ、いずれの破砕塊にも目視による気泡は観察されなかった。該多結晶シリコンの見かけ密度を測定した結果、見かけ密度は2.32g/cmであった。 While the deposited silicon was melted and dropped, argon gas was supplied from the hardly soluble inert gas supply pipe, and the ratio of the hardly soluble inert gas in the atmosphere in the receiving container was about 90% by volume. The ratio of soluble gases (chlorosilanes and hydrogen) at this time was about 10% by volume. When the polycrystalline silicon recovered in the receiving container was crushed, no bubbles were observed in any crushed lump. As a result of measuring the apparent density of the polycrystalline silicon, the apparent density was 2.32 g / cm 3 .

さらに、この多結晶シリコンに僅かに存在する気泡内部のガス組成を分析した結果、主成分はアルゴンであることが確認された。即ち、水素ガス等可溶ガスの溶融シリコンへの溶解は十分に抑制された。   Furthermore, as a result of analyzing the gas composition inside the bubbles slightly present in the polycrystalline silicon, it was confirmed that the main component was argon. That is, the dissolution of a soluble gas such as hydrogen gas into molten silicon was sufficiently suppressed.

比較例1
実施例1において受容容器にアルゴンガスを供給しないこと以外はすべて実施例1と同じ条件で操作して多結晶シリコンを得た。析出シリコンを溶融落下させる間、受容容器内の雰囲気中の難溶解不活性ガスの割合は約20容量%、可溶ガス(クロロシラン類と水素)の割合が約80容量%であった。得られた多結晶シリコンを破砕したところ、破砕塊に気泡があることを目視で確認した。該多結晶シリコンの見かけ密度を測定した結果、見かけ密度は2.07g/cmであった。
Comparative Example 1
In Example 1, polycrystalline silicon was obtained by operating under the same conditions as in Example 1 except that argon gas was not supplied to the receiving container. While the deposited silicon was melted and dropped, the ratio of the hardly soluble inert gas in the atmosphere in the receiving container was about 20% by volume, and the ratio of the soluble gases (chlorosilanes and hydrogen) was about 80% by volume. When the obtained polycrystalline silicon was crushed, it was visually confirmed that there were bubbles in the crushed lump. As a result of measuring the apparent density of the polycrystalline silicon, the apparent density was 2.07 g / cm 3 .

A 反応容器
1 縦型反応管
2 開口部
3 加熱装置
4 原料ガス供給管
5 空洞部
6 ガス排出管
7 溶融シリコン落下ライン
8 受容容器
9 難溶解不活性ガス供給管
10多結晶シリコン
A Reaction vessel 1 Vertical reaction tube 2 Opening 3 Heating device 4 Raw material gas supply tube 5 Cavity 6 Gas discharge tube 7 Molten silicon falling line 8 Receiving vessel 9 Slightly soluble inert gas supply tube 10 Polycrystalline silicon

Claims (4)

密閉型の反応容器の上部にシリコン析出用の縦型反応管を、下部に受容容器を備え、更に、上記縦型反応管の内壁を加熱する加熱手段を有する装置を使用し、該縦型反応管を加熱すると共に上部開口部よりクロロシラン類及び水素を供給して、その内壁にシリコンを析出せしめると同時、或いは、析出後に、該内壁をシリコンの溶融温度に加熱することにより、上記析出したシリコンを溶融せしめて、縦型反応管の下部開口部より前記受容容器に落下させてシリコンを回収する方法であって、
前記受容容器に回収されたシリコンが溶融状態で存在する間、該受容容器内空間の雰囲気ガスに占める、溶融シリコンに対して難溶解性で且つ不活性のガスの割合を、50容量%以上とすることを特徴とする多結晶シリコンの製造方法。
A vertical reaction tube for silicon deposition is provided in the upper part of the sealed reaction vessel, a receiving vessel is provided in the lower part, and a device having heating means for heating the inner wall of the vertical reaction tube is used. The deposited silicon is heated by heating the tube and supplying chlorosilanes and hydrogen from the upper opening so that silicon is deposited on the inner wall, or after the deposition, by heating the inner wall to the melting temperature of silicon. And recovering silicon by dropping it into the receiving vessel from the lower opening of the vertical reaction tube,
While the silicon recovered in the receiving vessel exists in a molten state, the proportion of the gas that is hardly soluble and inert with respect to the molten silicon in the atmospheric gas in the inner space of the receiving vessel is 50% by volume or more. A method for producing polycrystalline silicon, comprising:
前記縦型反応管の下部開口部より排出される反応排ガスを排出するガス排出管が、前記受容容器より高い位置に設けられ、且つ、前記溶融シリコンに対して難溶解性で且つ不活性のガスの分子量が、前記反応排ガスの平均分子量よりも大きい、請求項1記載の多結晶シリコンの製造方法。   A gas discharge pipe for discharging reaction exhaust gas discharged from the lower opening of the vertical reaction pipe is provided at a position higher than the receiving container, and is a gas that is hardly soluble and inert with respect to the molten silicon. The method for producing polycrystalline silicon according to claim 1, wherein the molecular weight of is larger than the average molecular weight of the reaction exhaust gas. 前記溶融シリコンに対して難溶解性で且つ不活性のガスとしてアルゴンを用いる、請求項1又は2記載の多結晶シリコンの製造方法。 The method for producing polycrystalline silicon according to claim 1, wherein argon is used as an inert gas that is hardly soluble in the molten silicon. 前記受容容器内空間の雰囲気ガスに占める、溶融シリコンに対して難溶解性で且つ不活性のガスの割合が70容量%以上である、請求項1〜3のいずれか一項に記載の多結晶シリコンの製造方法。 The polycrystal according to any one of claims 1 to 3, wherein a ratio of a gas that is hardly soluble and inert with respect to molten silicon in the atmospheric gas in the receiving container space is 70% by volume or more. Silicon manufacturing method.
JP2012238288A 2012-10-29 2012-10-29 Method for producing polycrystalline silicon Pending JP2014088275A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012238288A JP2014088275A (en) 2012-10-29 2012-10-29 Method for producing polycrystalline silicon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012238288A JP2014088275A (en) 2012-10-29 2012-10-29 Method for producing polycrystalline silicon

Publications (1)

Publication Number Publication Date
JP2014088275A true JP2014088275A (en) 2014-05-15

Family

ID=50790546

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012238288A Pending JP2014088275A (en) 2012-10-29 2012-10-29 Method for producing polycrystalline silicon

Country Status (1)

Country Link
JP (1) JP2014088275A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160124519A (en) * 2015-04-20 2016-10-28 주식회사 엘지화학 Horizontal Type Reactor For Producing Polycrystalline Silicon
JP2017530077A (en) * 2014-09-29 2017-10-12 エルジー・ケム・リミテッド Polysilicon production apparatus and production method using high efficiency hybrid horizontal reactor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002316813A (en) * 2001-04-16 2002-10-31 Tokuyama Corp Polycrystalline silicon foamed body and method for producing the same
JP2003002628A (en) * 2001-06-21 2003-01-08 Tokuyama Corp Apparatus and method for manufacturing silicon
WO2005113436A1 (en) * 2004-05-21 2005-12-01 Tokuyama Corporation Cooled lump from molten silicon and process for producing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002316813A (en) * 2001-04-16 2002-10-31 Tokuyama Corp Polycrystalline silicon foamed body and method for producing the same
JP2003002628A (en) * 2001-06-21 2003-01-08 Tokuyama Corp Apparatus and method for manufacturing silicon
WO2005113436A1 (en) * 2004-05-21 2005-12-01 Tokuyama Corporation Cooled lump from molten silicon and process for producing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017530077A (en) * 2014-09-29 2017-10-12 エルジー・ケム・リミテッド Polysilicon production apparatus and production method using high efficiency hybrid horizontal reactor
KR20160124519A (en) * 2015-04-20 2016-10-28 주식회사 엘지화학 Horizontal Type Reactor For Producing Polycrystalline Silicon
KR101955287B1 (en) 2015-04-20 2019-03-08 주식회사 엘지화학 Horizontal Type Reactor For Producing Polycrystalline Silicon

Similar Documents

Publication Publication Date Title
JP5311930B2 (en) Method for producing silicon
TWI386526B (en) Production process for high purity polycrystal silicon and production apparatus for the same
JP5507512B2 (en) Method for producing polycrystalline silicon
JP5530351B2 (en) Precipitation of high-purity silicon using a high surface area gas-solid or gas-liquid interface and recovery from the liquid phase
WO2005123583A1 (en) Method for producing polycrystalline silicon and polycrystalline silicon for solar cell produced by the method
JP4692247B2 (en) Method for producing high-purity polycrystalline silicon
CN101680111A (en) Method and apparatus for manufacturing silicon ingot
TWI417241B (en) Apparatus and method for manufacturing high purity polycrystalline silicon
JP2012515129A (en) Silicon purification method and apparatus
JP2004284935A (en) Apparatus and method for manufacturing silicon
JP2014088275A (en) Method for producing polycrystalline silicon
TWI429792B (en) Method and apparatus for producing solid product
JP4804348B2 (en) Cooled lump of molten silicon and method for producing the same
CN101555010A (en) Carborundum
TW200948714A (en) Process for producing boron added purified silicon
JP6337389B2 (en) Method for producing silicon carbide powder
JP5217162B2 (en) Method for producing polycrystalline silicon
CN103193233B (en) Device and method for preparing solar-grade polycrystalline silicon by reducing silicon tetrafluoride with sodium
JP4791558B2 (en) Method for melting polycrystalline silicon
JP5335074B2 (en) Method for producing polycrystalline silicon and reactor for producing polycrystalline silicon
JP5372729B2 (en) Method and apparatus for preventing clogging of discharge pipe of reactor for producing polycrystalline silicon
JP5584712B2 (en) Silicon purification method
JP2008063172A (en) Crucible for pretreating raw material
Øvreli et al. Feedstock
JP2015020917A (en) Method for producing silanes

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151006

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160628

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170124