JP2014088054A - 倒立型移動体及びその制御方法 - Google Patents

倒立型移動体及びその制御方法 Download PDF

Info

Publication number
JP2014088054A
JP2014088054A JP2012237630A JP2012237630A JP2014088054A JP 2014088054 A JP2014088054 A JP 2014088054A JP 2012237630 A JP2012237630 A JP 2012237630A JP 2012237630 A JP2012237630 A JP 2012237630A JP 2014088054 A JP2014088054 A JP 2014088054A
Authority
JP
Japan
Prior art keywords
target posture
vehicle body
unit
inverted
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012237630A
Other languages
English (en)
Inventor
Kazumasa Nakajima
一誠 中島
Minoru Yamauchi
実 山内
Takuma Nakamura
卓磨 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2012237630A priority Critical patent/JP2014088054A/ja
Publication of JP2014088054A publication Critical patent/JP2014088054A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Motorcycle And Bicycle Frame (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

【課題】ユーザが容易に搭乗することができる倒立型移動体及びその制御方法を提供すること。
【解決手段】本発明にかかる移動体1は、車体の搭乗部に設けられ、搭乗者の一方及び他方の足の載置を個別検出するステップセンサ部132と、倒立制御により、車体が移動したことを検出する車両状態演算部140と、搭乗者の一方の足の載置が検出されているときに、車体の移動が検出された場合、車体の移動が検出されたときの目標姿勢に対して車体の移動方向に傾斜した姿勢が新たな目標姿勢となるように、目標姿勢を補正する倒立制御演算部103と、を備える。
【選択図】図2

Description

本発明は、倒立型移動体及びその制御方法に関する。
車輪に対して本体部が起立した状態を維持して走行可能に構成された車両(以下、倒立型移動体と呼ぶこともある)は、コンパクト構成であることに加えて、搭乗の容易さ・迅速さを利点とする。この利点を更に進展させるため、従来から、倒立移動体に対する搭乗者の搭乗手順を改良し、よりユーザ志向の製品を提供することが求められている。
例えば、特許文献1には、搭乗者の搭乗の前後において、倒立制御のゲインを調整する車両が開示されている。具体的には、車両は、搭乗者の片足が車両に載置したことを検知して、始動制御を開始する。そして、車両は、搭乗者の両足が車両に載置したことを検知して、始動制御時よりも大きなゲインで車輪を制御する。これにより、車両始動時においては、両足が載置した状態よりも小さいゲインで車両が制御されるため、車両が搭乗者に接近することを抑制できる。
特開2012−250848号公報
特許文献1の技術においては、車両始動時において、両足が載置した状態よりも小さいゲインで車両が制御される。しかし、搭乗動作中のユーザが予め定められた範囲を超えてハンドルを傾けた場合には、車両がユーザに接近し続ける可能性がある。そのため、搭乗に不慣れなユーザにとっては、車両への搭乗(車両に両足を載置すること)が難しいという問題があった。
本発明はこのような問題を解決するためになされたものであり、ユーザが容易に搭乗することができる倒立型移動体及びその制御方法を提供することを目的としている。
本発明の一態様にかかる倒立型移動体は、車輪と、前記車輪に支持され、搭乗者が搭乗可能な車体と、前記車体の搭乗部に設けられ、前記搭乗者の一方又は他方の足の一方が前記搭乗部に載置されたことを検出する載置検出手段と、予め設定された目標姿勢に対して前記車体が傾斜した方向に、前記車体を移動させることで、前記車体の倒立状態を維持する倒立制御手段と、前記倒立制御手段の倒立制御により、前記車体が移動したことを検出する移動検出手段と、前記搭乗者の一方又は他方の足の一方の載置が検出されているときに、前記車体の移動が検出された場合、前記車体の移動が検出されたときの前記目標姿勢に対して前記車体の移動方向に傾斜した姿勢が新たな目標姿勢となるように、前記目標姿勢を補正する目標姿勢補正手段と、を備えるものである。これにより、搭乗時に車体が傾いていても、倒立型移動体は、バランスが取れている状態であると認識する。その結果、倒立型移動体は静止するため、搭乗者は容易に搭乗することができる。
また、前記目標姿勢補正手段は、前記目標姿勢の補正処理として、少なくとも前記車体のピッチ角の目標値の補正を行ってもよい。
また、前記目標姿勢補正手段は、前記搭乗者の両方の足の載置が検出されるまで、前記目標姿勢の補正処理を行ってもよい。これにより、搭乗者の搭乗が完了するまでは、目標姿勢の補正処理が行われる。
また、前記目標姿勢補正手段は、前記搭乗者の両方の足の載置が検出された場合、補正後の前記目標姿勢を、前記予め設定された目標姿勢に変化させてもよい。これにより、倒立型移動体は、搭乗完了後において、予め設定された目標姿勢に基づく倒立走行を実現できる。
また、前記目標姿勢補正手段は、前記目標姿勢を前記予め設定された目標姿勢まで変化させた場合、前記目標姿勢を固定してもよい。これにより、移動体1は、安定した倒立走行を実現できる。
また、前記予め設定された目標姿勢は、前記車体の軸が鉛直方向の軸と略平行な姿勢であってもよい。これにより、車体軸線が鉛直方向を向くため、安定した倒立状態を維持できる。
また、前記移動検出手段は、前記車輪の角速度を検出し、検出した前記車輪の角速度の変化に基づいて、前記車体の移動を検出してもよい。
また、前記目標姿勢補正手段は、前記車輪の現在の角速度と目標角速度の差に応じて、前記目標姿勢の補正量を決定してもよい。これにより、車体姿勢に対して最適な補正量を用いて補正処理を行うことができる。
前記目標姿勢の補正量には、上限が設定されていてもよい。これにより、目標姿勢の急な変化を抑制し、倒立型移動体の不安定な動作を抑制できる。
本発明の一態様にかかる倒立型移動体の制御方法は、車輪と、前記車輪に支持され、搭乗者が搭乗可能な車体と、予め設定された目標姿勢に対して前記車体が傾斜した方向に、前記車体を移動させることで、前記車体の倒立状態を維持する倒立制御手段と、を備える倒立型移動体の制御方法であって、前記車体の搭乗部に、前記搭乗者の一方又は他方の足の一方が載置されたことを検出しているときに、前記倒立制御手段の倒立制御により、前記車体が移動したことを検出した場合、前記車体が移動したことを検出したときの前記目標姿勢に対して前記車体の移動方向に傾斜した姿勢が新たな目標姿勢となるように、前記目標姿勢を補正するものである。これにより、搭乗時に車体が傾いていても、倒立型移動体は、バランスが取れている状態であると認識する。その結果、倒立型移動体は静止するため、搭乗者は容易に搭乗することができる。
本発明によれば、ユーザが容易に搭乗することができる倒立型移動体及びその制御方法を提供することができる。
実施の形態にかかる倒立型移動体の概略斜視図である。 実施の形態にかかる倒立型移動体内部のブロック図である。 実施の形態にかかる演算ユニットのブロック図である。 実施の形態にかかる倒立型移動体への搭乗手順を示す模式図である。 実施の形態にかかる倒立型移動体の動作を示すフローチャートである。 実施の形態にかかる倒立型移動体の動作を説明するための模式図である。 参考例にかかる倒立型移動体の動作を説明するための模式図である。 変形例にかかる演算ユニットのブロック図である。
<移動体1の構成>
以下、図面を参照して本発明の実施の形態について説明する。始めに、図1を参照して、本実施の形態にかかる移動体1の構成について説明する。図1は、移動体1の外観斜視図である。なお、移動体1の具体的外観構成は任意であり、図1に示すものに限定されるものではない。
図1に示すように、移動体1は、ハンドル部301と、支柱部302と、ベース収容部303と、ステップ部304と、車輪305と、を備える。ハンドル部301は、搭乗者200によって自由な把持が可能となるように略三角形状の輪状体で構成される。支柱部302は、起立状態の搭乗者200の足から胴部付近まで延在するように構成される。支柱部302の下端は、ベース収容部303に対して連結している。支柱部302の上端には、ハンドル部301が取り付けられている。ベース収容部303は、バッテリ、モータ、コンピュータ、ロジック回路、センサ、配線、機械機構等(図示省略)を内蔵する。ステップ部304(搭乗部)は、搭乗者200の両足に対応して、左足用ステップ部304a、右足用ステップ部304bを有する。ステップ部304は、内側から外側へ、車輪305上まで延在する。一組の車輪305は、左車輪305a及び右車輪305bを有する。車輪305は、車体(ハンドル部301、支柱部302、ベース収容部303、及びステップ部304)を支持する。
搭乗者200は、ハンドル部301を両手で把持した状態で重心移動する。これに応じて移動体1は平面移動する。例えば、搭乗者200が前方に重心をかけると、ハンドル部301は前方に押され、支柱部302は前方へ傾斜する。移動体1は、支柱部302の前方への傾きに応じて、前方への移動指令を生成し、これに応じて前方へ移動する。つまり、移動体1は、目標姿勢に対して車体が傾斜した方向に、車体を移動させることで、移動体1の倒立状態を維持する倒立型移動体である。なお、目標姿勢とは、移動体1の車体が目標とする姿勢であり、予め設定されている。目標姿勢は、例えば、予め設定された車体のピッチ角の目標値(目標姿勢角度)を用いて設定される。
次に、図2に示したブロック図を参照して、移動体1の内部構成について説明する。図2に示すように、移動体1は、指令生成部101、加算部102、倒立制御演算部103、駆動/センサ系110、車両状態演算部140、及び情報入出力部150を有する。加算部102は、加算部102a〜102dを備える。駆動/センサ系110は、駆動系120、およびセンサ系130を有する。駆動系120は、アンプ部121、モータ部122、アンプ部123、 及びモータ部124を有する。なお、アンプ部121、モータ部122は、右車輪駆動系を構成する。アンプ部123、モータ部124は、左車輪駆動系を構成する。センサ系130は、電源スイッチ部131、ステップセンサ部132、回転量検出部133、及び角速度検出部134を有する。
上述の各機能部の接続関係について説明する。指令生成部101の第1出力は、加算部102aの第1入力に接続される。指令生成部101の第2出力は、加算部102bの第1入力に接続される。指令生成部101の第3出力は、加算部102cの第1入力に接続される。加算部102aの出力は、倒立制御演算部103の第1入力に接続される。加算部102bの出力は、倒立制御演算部103の第2入力に接続される。加算部102cの出力は、倒立制御演算部103の第3入力に接続される。加算部102dの出力は、倒立制御演算部103の第4入力に接続される。倒立制御演算部103の第1出力は、アンプ部121に接続される。倒立制御演算部103の第2出力は、アンプ部123に接続される。倒立制御演算部103の第3出力は、指令生成部101に接続される。アンプ部121の出力は、モータ部122に接続される。アンプ部123の出力は、モータ部124に接続される。
電源スイッチ部131の出力は、情報入出力部150に接続される。ステップセンサ部132の出力は、情報入出力部150に接続される。回転量検出部133の出力は、車両状態演算部140に接続される。角速度検出部134の出力は、車両状態演算部140に接続される。車両状態演算部140の第1出力は、加算部102aの第2入力に接続される。車両状態演算部140の第2出力は、加算部102bの第2入力に接続される。車両状態演算部140の第3出力は、加算部102cの第2入力に接続される。車両状態演算部140の第4出力は、加算部102dの第2入力に接続される。
なお、図2では、図示の便宜上、電源スイッチ部131とステップセンサ部132の出力を結線させているが、実際は、各出力が個別に情報入出力部150へ供給されるものとする。回転量検出部133の出力と角速度検出部134の出力間の結線についても同様である。
指令生成部101(目標姿勢補正手段)は、移動体1に具備された入力装置を介して入力される搭乗者200の入力指示を処理し、車体の姿勢角度の目標値(V1)、車***置の目標値(V2)、車体の姿勢角速度の目標値(V3)、及び車輪305の角速度の目標値(V11)を生成する。すなわち、指令生成部101は、移動体1の目標姿勢を生成する。
加算部102は、指令生成部101から供給された各目標値を車両状態演算部140から供給される補正値を加算し、実質的に、目標値から補正値を減算する処理をする(例えば、目標値が正の値であれば、補正値が負の値であるため)。加算部102aは、目標値V1から補正値V4を減算し、倒立制御演算部103に出力する。加算部102bは、目標値V2から補正値V5を減算し、倒立制御演算部103に出力する。加算部102cは、目標値V3から補正値V6を減算し、倒立制御演算部103に出力する。加算部102dは、目標値V11から補正値V12を減算し、倒立制御演算部103に出力する。なお、各補正値については後述する。
倒立制御演算部103(倒立制御手段、目標姿勢補正手段)は、加算部102から供給される各出力値に基づいて、トルク値V20、トルク値V21、及び車体角度(ピッチ角)の目標値を補正するための値V13(以下、補正目標姿勢角度と称す場合もある)を生成する。
ここで、加算部102と倒立制御演算部103とが協調してトルク値を演算する工程について説明する。以下、加算部102と倒立制御演算部103とを演算ユニットと呼ぶ。演算ユニットは、適宜、次の数1〜数3にてトルクを算出し、算出したトルクを合算する。
以下に示す数1は、倒立状態を維持するためのピッチ角制御を規定する。数2は、接地面上の車体の位置を制御するためのX軸制御を規定する。数3は、接地面上における車体の旋回を制御するためのヨー軸制御を規定する。数4は、数1〜3にて個別に算出したトルクを合算して出力トルクを算出する際に用いられる。なお、搭乗時(搭乗者200が片足乗車してから両足乗車するまでの期間)には数1に基づく制御(車体のピッチ角の制御)で必要十分のため、演算ユニットは、搭乗時、数2、数3に基づく制御は実行しない。
数1〜4に含まれる記号、Kpp、Kdp、Kip、Kpx、Kdx、Kix、Kpy、Kdy、Kiyは、ゲイン係数である。θrefは、目標ピッチ角である(その微分値は、目標角速度である)。θは、車両状態演算部140から供給される現在のピッチ角である(その微分値は、現在のピッチ角である)。Xrefは、進行方向における目標位置である(その微分値は、目標車両速度である)。Xは、車両状態演算部140から供給される現在の位置である(その微分値は、現在の車体速度である)。γrefは、目標ヨー角である(その微分値は、目標ヨー角速度である)。γは、車両状態演算部140から供給される現在のヨー角である(その微分値は、現在のヨー角速度である)。
Figure 2014088054
Figure 2014088054
Figure 2014088054
Figure 2014088054
上記した数式及び図2のブロック図から明らかなように、各式1〜3に含まれる()内の減算処理は、加算部102で実行されている。
また、加算部102と倒立制御演算部103とが協調して補正目標姿勢角度を演算する工程について説明する。図3に補正目標姿勢角度を算出する演算ユニット400のブロック図を示す。演算ユニット400は、積分演算部401と、微分演算部402と、Pゲイン演算部403と、Iゲイン演算部404と、Dゲイン演算部405と、加算部406と、を有する。図3に示す演算ユニット400は、次の数5を用いて補正目標姿勢角度を算出し、算出した値を指令生成部101に出力する。
数5に含まれる記号P、I、Dは、補正目標姿勢角度を算出する際のゲイン係数である。Δθrefは、補正目標姿勢角度(V13)である。θrefは、目標車輪角である(その微分値は、目標車輪角速度である(V11))。θは、車両状態演算部140から供給される現在の車輪角度(実車輪角度)である(その微分値は、現在の車輪角速度(V12)である)。
Figure 2014088054
具体的には、加算部102dは、指令生成部101から入力されたθrefの微分値(目標車輪角速度V11)からθの微分値(現在の車輪角速度V12)を減算し、その計算結果を倒立制御演算部103に出力する。倒立制御演算部103では、Pゲイン演算部403が、目標車輪角速度と現在の車輪角速度の差分にゲイン係数Pを乗算し、加算部406に出力する。また、積分演算部401が、目標車輪角速度と現在の車輪角速度の差分を積分し、Iゲイン演算部404に出力する。Iゲイン演算部404は、入力された値にゲイン係数Iを乗算して、加算部406に出力する。さらに、微分演算部402は、目標車輪角速度と現在の車輪角速度の差分を微分し、Dゲイン演算部404に出力する。Dゲイン演算部405は、入力された値にゲイン係数Dを乗算して、加算部406に出力する。加算部406は入力された3つの値を合計する。これにより、倒立制御演算部103は、補正目標姿勢角度V13を算出する。
アンプ部121は、倒立制御演算部103から供給されるトルク値V20を増幅し、モータ部122へ出力する。アンプ部123は、倒立制御演算部103から供給されるトルク値V21を増幅し、モータ部124へ出力する。モータ部122は、アンプ部121から供給された駆動電圧波形に応じて、その回転軸を回転させる。モータ部124は、アンプ部123から供給された駆動電圧波形に応じて、その回転軸を回転させる。モータ部122の駆動に応じて、右車輪が回転し、モータ部124の駆動に応じて、左車輪が回転する。
センサ系130は、車体の現動作状態を検出し、この検出結果を移動体1の駆動にフィードバックさせるために設けられている。
電源スイッチ部131は、移動体1をオン/オフ切り替えするためのスイッチである。電源スイッチ部131をオンとすることで、移動体1がオン状態(移動体1に電力が供給された状態)となる。電源スイッチ部131をオフとすることで、移動体1がオフ状態(移動体1に電力が供給されていない状態)となる。
ステップセンサ部132(載置検出手段)は、搭乗者200の足がステップ部304に載置を個別検出する。つまり、ステップセンサ部132は、搭乗者200の一方又は他方の足の一方がステップ部304に載置されたことを検出する。例えば、ステップセンサ部132は、搭乗者200の片方の足がステップ部304に載った時、検出値"00"を情報入出力部150に出力する。ステップセンサ部132は、搭乗者200の両方の足がステップ部304に載った時、検出値"01"を情報入出力部150に出力する。つまり、ステップセンサ部132は、搭乗者200が片足乗車(一方の足がステップ部304に載置された状態)または両足乗車(両方の足がステップ部304に載置された状態)を検出できる。なお、ステップセンサ部132は、光学的、磁気的、電気的等の様々な手法にて構成することが可能であり、その具体的な構成は任意である。
回転量検出部133は、一組の車輪305に個別に設けられており、各車輪305a、305bの回転量を検出する。例えば、ロータリーエンコーダを採用すれば良い。ロータリーエンコーダの種類は任意である。
角速度検出部134は、移動体1の車体部分(例えば、ハンドル部301、支柱部302等)に設けられ、センサ自身の空間変位を検出する。角速度検出部134は、x軸方向における角速度を検出するユニット、y軸方向における角速度を検出するユニット、およびz軸方向における角速度を検出するユニットを有する。角速度検出部134は、各軸方向における角速度を検出し、これを車両状態演算部140へ出力する。
角速度検出部134は、機械式、ガス式、光学式等のタイプがある。角速度検出部134は、例えば、MEMS(Micro-Electro Mechanical Systems)を活用したジャイロセンサから構成される。
車両状態演算部140(移動検出手段)は、様々な入力に応じて車体の状態を示す値を演算する。例えば、車両状態演算部140は、角速度検出部134から入力される角速度を積分して現在の姿勢角度を算出する。車両状態演算部140は、回転量検出部133から入力する回転量の単位時間当たりの変化量を算出し、現在の車輪の角速度を算出する。なお、時間計測方法は任意であり、例えば、車輪の回転と同時にカウント動作を開始するタイマー等を活用すれば良い。また、車両状態演算部140は、算出した移動速度を積分し、移動距離(現状の位置)も算出する。
車両状態演算部140は、現在の車体の姿勢角度を補正値V4として加算部102aに出力する。車両状態演算部140は、現在の車体の位置を補正値V5として加算部102bに出力する。車両状態演算部140は、現在の車体の角速度(ピッチ方向の角速度)を補正値V6として加算部102cに出力する。車両状態演算部140は、現在の車輪305の角速度を補正値V12として加算部102dに出力する。
情報入出力部150は、I/O(Input/Output)を制御する機能部であり、上述のように各種センサの出力が入力される。ステップセンサ部132の出力値は、情報入出力部150を介して、倒立制御演算部103へ伝送される。
<移動体1の動作>
続いて、本実施の形態にかかる移動体1の動作について説明する。始めに、移動体1への搭乗動作について、図4(a)〜(d)を参照して説明する。図4(a)〜(d)は、搭乗者200が移動体1に搭乗する際の模式図である。なお、図4(a)〜(d)においては、移動体1の車両軸線X2が鉛直軸線X1に対して成すピッチ角度(姿勢角度)をθとする。このとき、鉛直軸線X1は、鉛直方向に対して平行な軸線である。車両軸線X2は、移動体1が備える車輪305の回転軸に対して略直交し、かつ支柱部302に沿って延在する軸線である。言い換えると、車両軸線X2は、ステップ部304のステップ面141に対して略直交する。
まず、図4(a)に示すように、搭乗者200は、停車中(姿勢角度が略0°の状態)の移動体1のハンドル部301を把持する。このとき、車両軸線X2は、鉛直軸線X1に対して略平行である。なお、図4(a)においては、未だ移動体1の倒立制御は開始されていない。
次に、図4(b)に示すように、搭乗者200は、移動体1を自らに近づけようと、移動体1を自らの方向に傾ける。つまり、姿勢角度θが0°から変化する。なお、図4(b)においても、未だ移動体1の倒立制御は開始されていない。
その後、図4(c)に示すように、搭乗者200は、いずれか一方の足をステップ部304に載せる。ステップ部304に足が載ると、ステップセンサ部132は、搭乗者200の足の一方がステップ部304に載置したことを検出する。これにより、移動体1のサーボ系がON状態となり、倒立制御が開始される。
最後に、図4(d)に示すように、搭乗者200は、他方の足もステップ部304に載せ、ステップ部304上に起立する。そして、移動体1の倒立制御によって、移動体1の姿勢角度は略0°になる。
なお、搭乗者200の搭乗手順は、図4(a)〜(d)に示した手順に限られない。搭乗者200が、姿勢角度θが0°の状態で、一方の足を載せ、その後、ハンドル部301を手前に引いて、移動体1を傾ける場合もある。また、図4(a)〜(d)においては、搭乗者200は、ハンドル部301を手前に引きつつ搭乗しているが、これに限られるものではない。搭乗者200が、ハンドル部301を前方に押しつつ(移動体1を前方に傾けつつ)搭乗する場合もある。
続いて、本実施の形態にかかる移動体1の具体的な動作例について、図5に示すフローチャートを参照して説明する。初期状態として、移動体1のサーボ系はOFF状態である(ステップS101)。つまり、図2に示した倒立制御演算部103や駆動系120はOFF状態となっており、移動体1の倒立制御は行われない。
次に、移動体1は搭乗者200が片足乗車したか否かを判定する(ステップS102)。具体的には、ステップセンサ部132が、移動体1のステップ部304に搭乗者200の足のいずれか一方が載置されたか否かを検出する。搭乗者200が片足乗車していない場合(ステップS102:No)、移動体1のサーボ系はOFF状態を維持する。
一方、搭乗者200が片足乗車した場合(ステップS102:Yes)、ステップセンサ部132は、ステップ部304に搭乗者200の足のいずれか一方が載置されたことを示す検出値を情報入出力部150に出力する。これにより、倒立制御演算部103は、OFF状態からON状態に切り替わる。それと共に、駆動系120もOFF状態からON状態に切り替わる。これにより、移動体1のサーボ系がOFF状態からON状態になる(ステップS103)。つまり、ステップ部304に搭乗者200の足のいずれか一方が載置されたことに応じて、移動体1のサーボ系がON状態となる。
サーボ系がON状態となると、移動体1は、倒立制御を実行する。つまり、回転量検出部133及び角速度検出部134の検出値に基づいて、車両状態演算部140が、車体の現在の姿勢角度を算出する。そして、現在の姿勢角度が目標姿勢角度に近づくように、倒立制御演算部103は、モータ部122、124を駆動させるトルクを算出し、モータ部122、124を駆動させる。これにより、移動体1は倒立状態を維持する。
なお、移動体1の目標姿勢角度(姿勢角度の目標値)は、初期値として予め0°に設定されているものとする。姿勢角度が0°とは、車両軸線X2が鉛直軸線X1に対して平行になる状態である。つまり、移動体1の目標姿勢は、車両軸線X2が鉛直軸線X1と平行になる姿勢に予め設定されている。
このとき、図4(c)に示したように、搭乗者200は片足をステップ部304に載せた状態で、移動体1を手前に傾ける。つまり、現在の姿勢角度が0°(目標姿勢角度の初期値)ではない状態でサーボ系がON状態となる。このため、移動体1は、現在の姿勢角度を目標姿勢角度(0°)に近づけようと、車輪305を駆動させて、搭乗者200の方向へ移動する。
ここで、ステップセンサ部132は、ステップ部304に搭乗者の両足が載置したか否かを検出する(ステップS104)。ステップ部304に搭乗者の両足が載置していない場合(ステップS104:No)、車両状態演算部140は、移動体1が移動したか否かを判定する(ステップS105)。例えば、車両状態演算部140は、車輪305の回転量や現在の角速度に基づいて、移動体1が移動したか否かを判定する。このとき、車両状態演算部140は、車輪305の回転方向(移動体1の移動方向)を取得する。そして、車両状態演算部140は、移動体1の移動の有無及び移動方向を倒立制御演算部103に出力する。
移動体1が移動していない場合(ステップS105:No)、ステップセンサ部132は、再度ステップ部304に搭乗者の両足が載置したか否かを検出する(ステップS104)。
移動体1が移動した場合(ステップS105:Yes)、倒立制御演算部103は、車輪305の現在の角速度及び目標角速度に基づいて、上記した数5を用いて補正目標姿勢角度を計算する(ステップS106)。倒立制御演算部103は、算出した補正目標姿勢角度を、指令生成部101に出力する。
なお、搭乗時においては、移動体1が静止していることが好ましい。このため、目標車輪角速度(数5のθrefの微分値)は予め0に設定されている。また、数5の式から明らかなように、現在の車輪角速度と目標車輪角速度(=0)との差が大きい程、補正目標姿勢角度Δθrefも大きくなる。逆に、現在の車輪角速度と目標車輪角速度(=0)との差が小さい程、補正目標姿勢角度Δθrefも小さくなる。つまり、倒立制御演算部103は、現在の車輪角速度と目標車輪角速度との差に応じて、補正目標姿勢角速度(目標姿勢の補正量)を決定する。
指令生成部101は、入力された補正目標姿勢角度を用いて、目標姿勢角度を補正する(ステップS107)。具体的には、指令生成部101は、入力された補正目標姿勢角度Δθrefを予め設定された目標姿勢角度θrefから減算する。そして、指令生成部101は、Δθrefを減算した値を新たな目標姿勢角度θrefとして設定する。例えば、最初の補正処理の場合、指令生成部101は、目標姿勢角度の初期値である0°から補正目標姿勢角度を減算する。これにより、新たな目標となる車両軸線は、鉛直軸線に対して傾いた線となる。そして、ステップセンサ部132は、再度ステップ部304に搭乗者の両足が載置したか否かを検出する(ステップS104)。つまり、搭乗者の両足がステップ部304に載置するまで、目標姿勢角度の補正処理(ステップS105〜S107)が繰り返される。なお、2回目以降の補正処理の場合、指令生成部101は、既に補正された目標姿勢角度に補正目標姿勢角度を加算する。
一方、移動体1のステップ部304に搭乗者の両足が載置した場合(ステップS104:Yes)、倒立制御演算部103は、ステップS107において補正した目標姿勢角度を初期値(0°)に戻す(ステップS108)。このとき、目標姿勢角度を補正後の値から初期値へ一気に戻すと、急に目標姿勢角度が変化してしまうため、倒立制御が不安定になるおそれがある。そのため、倒立制御演算部103は、一定の速度で(例えば、所定時間毎に1°ずつ)目標姿勢角度を補正後の値から初期値に戻すことが好ましい。
その後、倒立制御演算部103は、目標姿勢角度が初期値と一致したか否かを判定する(ステップS109)。未だ目標姿勢角度が初期値と一致していない場合(ステップS109:No)、倒立制御演算部103は、継続して目標姿勢角度を一定速度で初期値に近づける(ステップS108)。
一方、目標姿勢角度が初期値と一致した場合(ステップS109:Yes)、倒立制御演算部103は、倒立走行状態へと移行する。具体的には、目標姿勢角度を初期値に固定したまま、倒立走行制御を実行する。
ここで、図6(a)〜(d)を参照して、目標姿勢角度の補正処理の一例を説明する。まず、図6(a)に示す状態は、搭乗者200がステップ部304に片足を載せて移動体1を−10°傾けた状態で、サーボ系がONになった場合を示している(図4(c)に示した搭乗過程に対応する)。このとき、移動体1の目標姿勢角度は0°である。つまり、目標とする車両軸線X3(目標姿勢)は鉛直方向の軸線であるである。しかし、搭乗者200により移動体1の車両軸線X2は目標車両軸線X3に対して搭乗者200側に、10°傾いている。つまり、移動体1の現在の姿勢角度は−10°である。
そのため、移動体1は、現在の姿勢角度を目標姿勢角度である0°にするために、車輪305を駆動させて搭乗者200の方向へ移動しようとする。これにより、図6(b)に示すように、移動体1は、搭乗者200の方向へわずかに移動する。つまり、車輪305が図6(b)の矢印dで示した方向にわずかに回転する。
倒立制御演算部103は、移動体1の移動方向に移動体1の目標車両軸線X3(目標姿勢)が傾くように、補正目標姿勢角度を算出する。つまり、図6(b)に示すように、移動体1の目標車両軸線X3が、鉛直方向に対して移動体1の移動方向に傾くように、倒立制御演算部103は、補正目標姿勢角度を算出する。
より詳細には、回転量検出部133は、回転した車輪305の回転量を検出する。車両状態演算部140は、車輪305の回転量に基づいて、現在の車輪角速度を算出する。そして、倒立制御演算部103は、目標車輪角速度と現在の車輪角速度との差を用いて、数5により補正目標姿勢角度を計算する。本例においては、倒立制御演算部103は、補正目標姿勢角度として10°を算出したとする。倒立制御演算部103は、算出した補正目標姿勢角度を、指令生成部101に出力する。つまり、倒立制御演算部103は、移動体1の移動が検出されたときの目標姿勢角度(0°)に対して移動体1の移動方向に傾斜した姿勢角度が新たな目標姿勢角度(−10°)となるように、補正目標姿勢角度(10°)を算出する。
指令生成部101は、予め設定された目標姿勢角度(0°)から、入力された補正目標姿勢角度を減算して、新たな目標姿勢角度を生成する。つまり、図6(c)に示すように、新たな目標姿勢角度は、0°−10°=−10°となる。言い換えると、目標車両軸線X3(目標姿勢)は、鉛直方向に対して、搭乗者200側に10°傾いた軸線となる。
そして、倒立制御演算部103は、移動体1の姿勢角度が新たな目標姿勢角度になるように、モータ部122、124を制御する。このとき、図6(c)に示すように、移動体1の車両軸線X2は、鉛直方向に対して−10°傾いている。つまり、移動体1の車両軸線X2は、目標車両軸線X3と一致する。言い換えると、移動体1の現在の姿勢角度は、新たな目標姿勢角度と一致する。そのため、倒立制御演算部103は、移動体1の現在の姿勢がバランスのとれた状態であると認識し、車輪305を駆動させない。したがって、移動体1はその場に静止する。
その後、搭乗者200がステップ部304に両足を載せると、図6(d)に示すように、倒立制御演算部103は、補正後の目標姿勢角度(−10°)を、目標姿勢角度の初期値(0°)に一定の速度で戻す。目標姿勢角度が0°に戻ると(目標車両軸線X3が鉛直方向に戻ると)、移動体1は、倒立制御演算部103は、目標姿勢角度を0°に固定する。そして、移動体1は、倒立走行状態(車体の傾斜方向に走行する状態)に移行する。
以上のように、本実施の形態にかかる移動体1の構成によれば、車両状態演算部140が移動体1の移動を検出する。また、ステップセンサ部132が、搭乗者の搭乗動作の開始(一方の足の載置)を検出する。そして、倒立制御演算部103は、搭乗者の一方の足の載置が検出されているときに、車体の移動が検出された場合、車体の移動が検出されたときの目標姿勢に対して車体の移動方向に傾斜した姿勢が新たな目標姿勢となるように、補正目標姿勢を算出する。指令生成部101は、算出された補正目標姿勢に基づいて、目標姿勢を補正する。これにより、移動体1は移動方向側に傾いた姿勢でバランスをとろうとする。その結果、搭乗時にサーボ系がONになった状態で搭乗者が移動体1を傾けた場合であっても、移動体1が移動することを抑制することができる。したがって、搭乗者は容易に移動体1に搭乗することができる。
<参考例>
ここで、図7(a)〜(c)を参照して参考例について説明する。図7(a)〜(c)は、参考例にかかる移動体9の搭乗手順を説明するための模式図である。なお、図7(a)〜(c)に示す移動体9は、搭乗動作の開始(一方の足の載置)が検出された場合でも、目標姿勢角度を初期値(0°)から変化させない。つまり、移動体9の目標姿勢は常に固定されている。
まず、図7(a)に示すように、搭乗者200は、移動体9を手前に傾ける。そして、図7(b)に示すように、搭乗者200は、片足を移動体9に載せる。これにより、移動体9のサーボ系がON状態となる。
サーボ系がON状態となり、かつ、移動体9が搭乗者200側に傾いているため、図7(b)に示すように、移動体9は、現在の姿勢角度を目標姿勢角度に近づけようと、搭乗者200の方向へ移動する。つまり、移動体9は、現在の車両軸線X2を目標車両軸線X3に近づけようと、搭乗者200の方向へ移動する。このとき、目標姿勢角度(目標車両軸線X3)は変化しない。このため、図7(c)に示すように、移動体9は、搭乗者200への接近を続ける。その結果、搭乗者200が移動体9に搭乗することが困難となる。
これに対して、上述の実施の形態では、図6(a)〜(d)に示した手順によって搭乗者200が移動体1に搭乗する。したがって、参考例のように、移動体が搭乗者200に近づいてくることを抑制できる。その結果、搭乗者200は、容易に移動体1に搭乗することができる。
<変形例>
本実施の形態の変形例について説明する。変形例にかかる移動体においては、補正目標姿勢角度の算出方法が上述した実施の形態とは異なる。なお、その他の構成、動作については、上記の移動体1と同様であるため、説明を省略する。
補正目標姿勢角度の算出に用いられる演算ユニットのブロック図を図8に示す。変形例にかかる演算ユニット400は、図3に示したブロック図の構成に加えて、Iゲイン演算部404の後段及び加算部406の後段にリミッタ407、408を有する。リミッタ407は、Iゲイン演算部404の出力に上限を設ける。リミッタ408は、加算部406の出力に上限を設ける。
このような構成により、補正目標姿勢角度の大きな変動を抑制することができる。したがって、目標姿勢角度が急激に変化すること抑制することができる。その結果、移動体の不安定な動作を抑制でき、より安定した搭乗動作が可能となる。
なお、本発明は上記実施の形態に限られたものではなく、趣旨を逸脱しない範囲で適宜変更することが可能である。倒立二輪型車両の具体的な構成は任意である。ソフトウェア制御に代えて、ワイヤードロジックにより機能部を具現化させても良い。また、目標姿勢を示す値として移動体1のピッチ角を用いて説明したが、移動体1のピッチ軸回りの姿勢を特定する値であれば、他のパラメータを用いてもよい。
1 移動体
101 指令生成部
102 加算部
103 倒立制御演算部
110 センサ系
120 駆動系
121 アンプ部
122 モータ部
123 アンプ部
124 モータ部
130 センサ系
131 電源スイッチ部
132 ステップセンサ部
133 回転量検出部
134 角速度検出部
140 車両状態演算部
150 情報入出力部
200 搭乗者
301 ハンドル部
302 支柱部
303 ベース収容部
304 ステップ
305 車輪

Claims (10)

  1. 車輪と、
    前記車輪に支持され、搭乗者が搭乗可能な車体と、
    前記車体の搭乗部に設けられ、前記搭乗者の一方又は他方の足の一方が前記搭乗部に載置されたことを検出する載置検出手段と、
    予め設定された目標姿勢に対して前記車体が傾斜した方向に、前記車体を移動させることで、前記車体の倒立状態を維持する倒立制御手段と、
    前記倒立制御手段の倒立制御により、前記車体が移動したことを検出する移動検出手段と、
    前記搭乗者の一方又は他方の足の一方の載置が検出されているときに、前記車体の移動が検出された場合、前記車体の移動が検出されたときの前記目標姿勢に対して前記車体の移動方向に傾斜した姿勢が新たな目標姿勢となるように、前記目標姿勢を補正する目標姿勢補正手段と、
    を備える倒立型移動体。
  2. 前記目標姿勢補正手段は、前記目標姿勢の補正処理として、少なくとも前記車体のピッチ角の目標値の補正を行う請求項1に記載の倒立型移動体。
  3. 前記目標姿勢補正手段は、前記搭乗者の両方の足の載置が検出されるまで、前記目標姿勢の補正処理を行う請求項1または2に記載の倒立型移動体。
  4. 前記目標姿勢補正手段は、前記搭乗者の両方の足の載置が検出された場合、補正後の前記目標姿勢を、前記予め設定された目標姿勢に変化させる請求項1〜3のいずれか一項に記載の倒立型移動体。
  5. 前記目標姿勢補正手段は、前記目標姿勢を前記予め設定された目標姿勢まで変化させた場合、前記目標姿勢を固定する請求項4に記載の倒立型移動体。
  6. 前記予め設定された目標姿勢は、前記車体の軸が鉛直方向の軸と略平行な姿勢である請求項4または5に記載の倒立型移動体。
  7. 前記移動検出手段は、前記車輪の角速度を検出し、
    検出した前記車輪の角速度の変化に基づいて、前記車体の移動を検出する請求項1〜6のいずれか一項に記載の倒立型移動体。
  8. 前記目標姿勢補正手段は、前記車輪の現在の角速度と目標角速度の差に応じて、前記目標姿勢の補正量を決定する請求項1〜7のいずれか一項に記載の倒立型移動体。
  9. 前記目標姿勢の補正量には、上限が設定されている請求項8に記載の倒立型移動体。
  10. 車輪と、前記車輪に支持され、搭乗者が搭乗可能な車体と、予め設定された目標姿勢に対して前記車体が傾斜した方向に、前記車体を移動させることで、前記車体の倒立状態を維持する倒立制御手段と、を備える倒立型移動体の制御方法であって、
    前記車体の搭乗部に、前記搭乗者の一方又は他方の足の一方が載置されたことを検出しているときに、前記倒立制御手段の倒立制御により、前記車体が移動したことを検出した場合、
    前記車体が移動したことを検出したときの前記目標姿勢に対して前記車体の移動方向に傾斜した姿勢が新たな目標姿勢となるように、前記目標姿勢を補正する倒立型移動体の制御方法。
JP2012237630A 2012-10-29 2012-10-29 倒立型移動体及びその制御方法 Pending JP2014088054A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012237630A JP2014088054A (ja) 2012-10-29 2012-10-29 倒立型移動体及びその制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012237630A JP2014088054A (ja) 2012-10-29 2012-10-29 倒立型移動体及びその制御方法

Publications (1)

Publication Number Publication Date
JP2014088054A true JP2014088054A (ja) 2014-05-15

Family

ID=50790381

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012237630A Pending JP2014088054A (ja) 2012-10-29 2012-10-29 倒立型移動体及びその制御方法

Country Status (1)

Country Link
JP (1) JP2014088054A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016113133A (ja) * 2014-12-18 2016-06-23 トヨタ自動車株式会社 倒立台車、倒立台車の制御方法及びプログラム
JP2016113118A (ja) * 2014-12-17 2016-06-23 トヨタ自動車株式会社 倒立二輪台車

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009101760A (ja) * 2007-10-22 2009-05-14 Toyota Motor Corp 同軸二輪車及びその制御方法
JP2010023705A (ja) * 2008-07-22 2010-02-04 Toyota Motor Corp 平行二輪車制御装置及び方法
JP2011068165A (ja) * 2009-09-23 2011-04-07 Honda Motor Co Ltd 倒立振子型車両の制御装置
JP2012101637A (ja) * 2010-11-09 2012-05-31 Toyota Motor Corp 車両

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009101760A (ja) * 2007-10-22 2009-05-14 Toyota Motor Corp 同軸二輪車及びその制御方法
JP2010023705A (ja) * 2008-07-22 2010-02-04 Toyota Motor Corp 平行二輪車制御装置及び方法
JP2011068165A (ja) * 2009-09-23 2011-04-07 Honda Motor Co Ltd 倒立振子型車両の制御装置
JP2012101637A (ja) * 2010-11-09 2012-05-31 Toyota Motor Corp 車両

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016113118A (ja) * 2014-12-17 2016-06-23 トヨタ自動車株式会社 倒立二輪台車
JP2016113133A (ja) * 2014-12-18 2016-06-23 トヨタ自動車株式会社 倒立台車、倒立台車の制御方法及びプログラム

Similar Documents

Publication Publication Date Title
US8825254B2 (en) Inverted pendulum type vehicle, and control method of inverted pendulum type vehicle
KR20130127372A (ko) 도립진자형 차량
JP6220763B2 (ja) 倒立振子型車両
US9423795B2 (en) Inverted pendulum type vehicle
JP5959928B2 (ja) 倒立振子型車両
JP2013237326A (ja) 倒立振子型車両
JP5652578B2 (ja) 手押し車
JP2017200784A (ja) 走行装置、走行装置の制御方法および走行装置の制御プログラム
US20100023248A1 (en) Two-wheeled vehicle control apparatus and two-wheeled vehicle control method
US8949010B2 (en) Inverted pendulum type vehicle
JP5659710B2 (ja) 車両
US20140291044A1 (en) Inverted pendulum type vehicle
US10981617B2 (en) Inverted pendulum type vehicle
JP2014088054A (ja) 倒立型移動体及びその制御方法
US8678124B2 (en) Inverted pendulum type vehicle
EP2597022B1 (en) Inverted pendulum type vehicle
JP5358371B2 (ja) 全方向移動車両
JP5861651B2 (ja) 移動装置、移動装置の制御方法、及びプログラム
JP6020386B2 (ja) 移動体及び制御方法、制御プログラム
US20130304320A1 (en) Inverted pendulum type vehicle
JP2016078719A (ja) 倒立型移動体
JP2016088307A (ja) 倒立二輪型移動体
JPWO2014045823A1 (ja) 手押し車

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151201

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160329