JP2014080522A - Heat-conductive resin composition - Google Patents

Heat-conductive resin composition Download PDF

Info

Publication number
JP2014080522A
JP2014080522A JP2012229757A JP2012229757A JP2014080522A JP 2014080522 A JP2014080522 A JP 2014080522A JP 2012229757 A JP2012229757 A JP 2012229757A JP 2012229757 A JP2012229757 A JP 2012229757A JP 2014080522 A JP2014080522 A JP 2014080522A
Authority
JP
Japan
Prior art keywords
group
component
carbon
resin composition
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012229757A
Other languages
Japanese (ja)
Inventor
Keita Kitazawa
啓太 北沢
Kunihiro Yamada
邦弘 山田
Masayuki Ikeno
正行 池野
Eiichi Tabei
栄一 田部井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2012229757A priority Critical patent/JP2014080522A/en
Priority to TW102135512A priority patent/TW201428044A/en
Priority to KR1020130122395A priority patent/KR20140049477A/en
Priority to CN201310486339.2A priority patent/CN103772995A/en
Publication of JP2014080522A publication Critical patent/JP2014080522A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/06Preparatory processes
    • C08G77/08Preparatory processes characterised by the catalysts used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/12Polysiloxanes containing silicon bound to hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/12Compositions of unspecified macromolecular compounds characterised by physical features, e.g. anisotropy, viscosity or electrical conductivity
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L43/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing boron, silicon, phosphorus, selenium, tellurium or a metal; Compositions of derivatives of such polymers
    • C08L43/04Homopolymers or copolymers of monomers containing silicon
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/14Solid materials, e.g. powdery or granular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2296Oxides; Hydroxides of metals of zinc

Abstract

PROBLEM TO BE SOLVED: To provide a heat-conductive resin composition capable of inhibiting warps of a semiconductor package by suppressing, on the one hand, warps of a cured product in the vicinity of room temperature by virtue of the high hardness thereof and by becoming soft and following warps within an action temperature range coinciding with high temperatures.SOLUTION: The provided heat-conductive resin composition includes: (A) an addition reaction product including, as an addition reaction product of (a) a compound having two intramolecular SiH groups expressed by the formula (1) (where R is a monovalent hydrocarbon group or alkoxy group) and (b) a polycyclic hydrocarbon having two intramolecular addition-reactive carbon-carbon double bonds, two intramolecular addition-reactive carbon-carbon double bonds; (B) an inorganic filler selected from the group consisting of metals, metal oxides, metal nitrides, and carbon allotropes; (C) an organohydrodienepolysiloxane having at least two SiH groups; and (D) platinum or platinum compound.

Description

本発明は、半導体チップ等の電子部品の反り抑制が可能な熱伝導性樹脂組成物に関する。   The present invention relates to a thermally conductive resin composition capable of suppressing warpage of an electronic component such as a semiconductor chip.

半導体パッケージ等の電子部品は、使用中の発熱及びそれによる性能の低下が広く知られており、これを解決するための手段として様々な放熱技術が用いられている。一般的な方法としては、発熱部の付近にヒートスプレッダなどの冷却部材を配置し、両者を密接させたうえで冷却部材から効率的に除熱することが挙げられる。その際、発熱部材と冷却部材との間に隙間があると、熱伝導性の悪い空気が介在することにより熱伝導が効率的でなくなるために発熱部材の温度が十分に下がらなくなってしまう。このような現象を防止するために、空気の介在を防ぐ目的として、熱伝導率が良く、部材の表面に追随性のある放熱グリースや放熱シートが用いられている(特許第2938428号公報、特許第2938429号公報、特許第3580366号公報、特許第3952184号公報、特許第4572243号公報、特許第4656340号公報、特許第4913874号公報、特許第4917380号公報、特許第4933094号公報、特開2012−102283号公報、特開2012−96361号公報:特許文献1〜11)。   2. Description of the Related Art Electronic parts such as semiconductor packages are widely known to generate heat during use and performance degradation due thereto, and various heat dissipation techniques are used as means for solving this. As a general method, a cooling member such as a heat spreader is disposed in the vicinity of the heat generating portion, and after the two are brought into close contact with each other, heat is efficiently removed from the cooling member. At this time, if there is a gap between the heat generating member and the cooling member, the heat conduction becomes inefficient due to the presence of air having poor heat conductivity, so that the temperature of the heat generating member cannot be lowered sufficiently. In order to prevent such a phenomenon, heat-dissipating grease or heat-dissipating sheet having good thermal conductivity and following on the surface of the member is used for the purpose of preventing the air from interfering (Patent No. 2938428, Patent Japanese Patent No. 2938429, Japanese Patent No. 3580366, Japanese Patent No. 3952184, Japanese Patent No. 4572243, Japanese Patent No. 4656340, Japanese Patent No. 4913874, Japanese Patent No. 4917380, Japanese Patent No. 4933094, Japanese Unexamined Patent Publication No. 2012 -102283, JP 2012-96361 A: Patent Documents 1 to 11).

一方で、半導体パッケージは熱膨張率の異なる複数の部材からなっているため、温度変化による反りが生じることが不可避であり、特に近年は半導体パッケージの小型化・薄型化が進んだことで、この問題はますます深刻になっている。一般的な放熱グリースや放熱シートを用いた場合には、発熱⇔冷却の熱履歴による反りに十分追従できずに素子とヒートスプレッダが剥離する場合があり、また反りを抑え込むために組成物の硬度や強度を高めた場合には素子にかかる応力が高まり、最悪の場合素子の破損にもつながりかねない。このような反りを抑え込むためには、室温付近においては反りを抑え込むほどの硬度や強度を有する硬化物である一方で、高温域においては軟化することで反りに追随して剥離や素子の破損を防ぐような放熱部材が必要となる。過去には室温では非流動性であるものの、高温域では低粘度化、軟化又は融解する相転移放熱部材が提案されているが、高温域では流動化してしまうため、半導体パッケージの反りを抑え込むことを指向したものではなかった(特許第4054986号公報:特許文献12)。   On the other hand, since the semiconductor package is composed of a plurality of members having different coefficients of thermal expansion, it is inevitable that warpage occurs due to temperature change. In particular, the recent progress in miniaturization and thinning of the semiconductor package The problem is getting more serious. When using general heat-dissipating grease or heat-dissipating sheet, the element and heat spreader may peel off without sufficiently following the warp due to the heat history of heat generation and cooling, and in order to suppress the warp, When the strength is increased, the stress applied to the element increases, and in the worst case, the element may be damaged. In order to suppress such warpage, while it is a cured product having hardness and strength enough to suppress warpage near room temperature, it softens in the high temperature range to follow the warpage and cause peeling or damage to the element. A heat dissipating member is required to prevent this. In the past, phase transition heat radiating members that are non-flowable at room temperature but have low viscosity, softening, or melting at high temperatures have been proposed. (Japanese Patent No. 4054986: Patent Document 12).

特許第2938428号公報Japanese Patent No. 2938428 特許第2938429号公報Japanese Patent No. 2938429 特許第3580366号公報Japanese Patent No. 3580366 特許第3952184号公報Japanese Patent No. 3952184 特許第4572243号公報Japanese Patent No. 4572243 特許第4656340号公報Japanese Patent No. 4656340 特許第4913874号公報Japanese Patent No. 4913874 特許第4917380号公報Japanese Patent No. 4917380 特許第4933094号公報Japanese Patent No. 4933894 特開2012−102283号公報JP 2012-102283 A 特開2012−96361号公報JP 2012-96361 A 特許第4054986号公報Japanese Patent No. 4054986

本発明は、上記問題を解決するためになされたものであり、室温付近においては硬化物の硬度が高く、例えば90以上のショアA硬度を有することで反りを抑え込む一方で、高温となる動作温度域においては軟化して反りに追随することで、半導体パッケージの反り抑制を可能とする熱伝導性樹脂組成物を提供することを目的とする。   The present invention has been made in order to solve the above problems, and the hardness of the cured product is high near room temperature. For example, it has a Shore A hardness of 90 or more, while suppressing warpage, while operating temperature becomes high. An object of the present invention is to provide a thermally conductive resin composition that can suppress warpage of a semiconductor package by softening in the region and following the warpage.

本発明者らは、上記目的を達成するため鋭意検討を行った結果、下記(A)〜(D)成分、必要によりこれに加えて(E)、(F)成分を含有する熱伝導性樹脂組成物が、室温付近においては硬化物の硬度が高く、例えば90以上のショアA硬度を有するものを得ることができ、これにより反りを抑え込む一方で、高温となる動作温度域においては軟化して反りに追随することで、半導体パッケージの反り抑制を可能とすることを見出し、本発明をなすに至った。   As a result of intensive studies in order to achieve the above object, the present inventors have found that the following (A) to (D) components and, if necessary, in addition to these, (E) and (F) thermally conductive resins containing components The composition has a cured product having a high hardness near room temperature, for example, having a Shore A hardness of 90 or more, which suppresses warping, while softening in a high operating temperature range. It has been found that by following the warp, the warp of the semiconductor package can be suppressed, and the present invention has been made.

従って、本発明は、
(A)(a)下記一般式(1)

Figure 2014080522
(式中、Rは独立に非置換又はハロゲン原子、シアノ基もしくはグリシドキシ基で置換された炭素数1〜12の1価炭化水素基又は炭素数1〜6のアルコキシ基である。)
で表されるケイ素原子に結合した水素原子を1分子中に2個有する化合物と、
(b)付加反応性炭素−炭素二重結合を1分子中に2個有する多環式炭化水素との付加反応生成物であって、付加反応性炭素−炭素二重結合を1分子中に2個有する付加反応生成物:100質量部、
(B)金属、金属酸化物、金属窒化物、金属炭化物、炭素の同素体からなる群より選ばれる少なくとも1種の無機充填剤:100〜2,000質量部、
(C)1分子中に2個以上のケイ素原子に結合した水素原子を有するオルガノハイドロジェンポリシロキサン:(ケイ素原子に結合した水素原子の個数の合計)/((A)成分中の付加反応性炭素−炭素二重結合の個数の合計)が0.5〜3.0となる量、
(D)白金及び白金化合物からなる群より選択される触媒:(A)成分100質量部に対して白金原子として0.1〜500ppmとなる量、
更に必要により、
(E)下記一般式(4)
1 aSi(OR24-a (4)
(式中、R1は独立に炭素数1〜20の非置換又はハロゲン置換1価炭化水素基であり、R2は独立に水素原子又は炭素数1〜6のアルキル基であり、aは1〜3の整数である。)
で表されるオルガノシラン及び/又はその(部分)加水分解縮合物:(A)成分100質量部に対して0〜10質量部、特に0.01〜10質量部、及び/又は、
(F)アセチレン化合物、窒素化合物、有機リン化合物、オキシム化合物及び有機クロロ化合物からなる群より選択される制御剤:(A)成分100質量部に対して0〜0.5質量部、特に0.05〜0.5質量部
を含有してなる熱伝導性樹脂組成物を提供する。
この場合、上記組成物の硬化物が25℃以上の温度域に軟化点を有し、かつ室温でのショアA硬度が90以上であることが好ましい。
また、本発明は、有機樹脂と無機充填剤とを主成分として含み、硬化後の組成物が25℃以上の温度域に軟化点を有し、かつ室温でのショアA硬度が90以上であることを特徴とする熱伝導性樹脂組成物を提供する。 Therefore, the present invention
(A) (a) The following general formula (1)
Figure 2014080522
(In the formula, R is independently a monovalent hydrocarbon group having 1 to 12 carbon atoms or an alkoxy group having 1 to 6 carbon atoms which is unsubstituted or substituted with a halogen atom, a cyano group or a glycidoxy group.)
A compound having two hydrogen atoms bonded to a silicon atom represented by
(B) An addition reaction product with a polycyclic hydrocarbon having two addition-reactive carbon-carbon double bonds in one molecule, wherein two addition-reactive carbon-carbon double bonds are present in one molecule. Addition reaction product having: 100 parts by mass,
(B) At least one inorganic filler selected from the group consisting of metals, metal oxides, metal nitrides, metal carbides, and carbon allotropes: 100 to 2,000 parts by mass,
(C) Organohydrogenpolysiloxane having hydrogen atoms bonded to two or more silicon atoms in one molecule: (total number of hydrogen atoms bonded to silicon atoms) / (addition reactivity in component (A)) The total number of carbon-carbon double bonds) is 0.5 to 3.0,
(D) a catalyst selected from the group consisting of platinum and a platinum compound: (A) an amount of 0.1 to 500 ppm as a platinum atom with respect to 100 parts by mass of the component;
If necessary,
(E) The following general formula (4)
R 1 a Si (OR 2 ) 4-a (4)
Wherein R 1 is independently an unsubstituted or halogen-substituted monovalent hydrocarbon group having 1 to 20 carbon atoms, R 2 is independently a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, and a is 1 It is an integer of ~ 3.)
And / or its (partial) hydrolysis condensate: (A) 0 to 10 parts by weight, particularly 0.01 to 10 parts by weight, and / or
(F) A control agent selected from the group consisting of an acetylene compound, a nitrogen compound, an organic phosphorus compound, an oxime compound and an organic chloro compound: (A) 0 to 0.5 parts by mass, particularly 0. A thermally conductive resin composition comprising 05 to 0.5 parts by mass is provided.
In this case, it is preferable that the cured product of the composition has a softening point in a temperature range of 25 ° C. or higher, and the Shore A hardness at room temperature is 90 or higher.
In addition, the present invention includes an organic resin and an inorganic filler as main components, the cured composition has a softening point in a temperature range of 25 ° C. or higher, and a Shore A hardness at room temperature of 90 or higher. A thermally conductive resin composition is provided.

本発明の熱伝導性樹脂組成物は、室温付近においては半導体パッケージの反りを抑え込むほどの硬度や強度を有する一方で、高温となる動作温度域においては軟化して反りに追随することで、反り抑制を可能とする。   While the heat conductive resin composition of the present invention has hardness and strength enough to suppress warpage of the semiconductor package near room temperature, it softens and follows the warpage in the operating temperature range where the temperature becomes high. Allows suppression.

本発明の熱伝導性樹脂組成物は、上記の(A)〜(D)成分を必須成分として含有し、更に必要により(E)、(F)成分を含有する。   The heat conductive resin composition of this invention contains said (A)-(D) component as an essential component, and also contains (E) and (F) component as needed.

(A)成分
本発明の(A)成分は、
(a)下記一般式(1)

Figure 2014080522
(式中、Rは独立に非置換又はハロゲン原子、シアノ基もしくはグリシドキシ基で置換された炭素数1〜12の1価炭化水素基又は炭素数1〜6のアルコキシ基である。)
で表されるケイ素原子に結合した水素原子を1分子中に2個有する化合物と、
(b)付加反応性炭素−炭素二重結合を1分子中に2個有する多環式炭化水素との付加反応生成物であって、付加反応性炭素−炭素二重結合を1分子中に2個有する付加反応生成物である。 (A) component (A) component of this invention is
(A) The following general formula (1)
Figure 2014080522
(In the formula, R is independently a monovalent hydrocarbon group having 1 to 12 carbon atoms or an alkoxy group having 1 to 6 carbon atoms which is unsubstituted or substituted with a halogen atom, a cyano group or a glycidoxy group.)
A compound having two hydrogen atoms bonded to a silicon atom represented by
(B) An addition reaction product with a polycyclic hydrocarbon having two addition-reactive carbon-carbon double bonds in one molecule, wherein two addition-reactive carbon-carbon double bonds are present in one molecule. This is an addition reaction product.

(a)成分
(A)成分の反応原料である、(a)ケイ素原子に結合した水素原子を1分子中に2個有する化合物としては、下記一般式(1)で表される化合物が挙げられる。

Figure 2014080522
Component (a) Component (A) The reaction raw material of component (A) (a) As a compound having two hydrogen atoms bonded to a silicon atom in one molecule, a compound represented by the following general formula (1) may be mentioned. .
Figure 2014080522

式中のRは独立に非置換又はハロゲン原子、シアノ基もしくはグリシドキシ基で置換された炭素数1〜12の1価炭化水素基又は炭素数1〜6のアルコキシ基である。上記一般式(1)中のRとしては、アルケニル基及びアルケニルアリール基等の脂肪族不飽和結合を有さないものであるものが好ましく、特に、その全てがメチル基であるものが好ましい。   R in the formula is independently a monovalent hydrocarbon group having 1 to 12 carbon atoms or an alkoxy group having 1 to 6 carbon atoms which is unsubstituted or substituted with a halogen atom, a cyano group or a glycidoxy group. As R in the general formula (1), those having no aliphatic unsaturated bond such as alkenyl group and alkenylaryl group are preferable, and those in which all of them are methyl groups are particularly preferable.

上記一般式(1)で表される化合物としては、例えば、1,4−ビス(ジメチルシリル)ベンゼン、1,3−ビス(ジメチルシリル)ベンゼン等のシルフェニレン化合物が挙げられる。なお、上記一般式(1)で表される化合物は、1種単独でも2種以上を組み合わせても使用することができる。   Examples of the compound represented by the general formula (1) include silphenylene compounds such as 1,4-bis (dimethylsilyl) benzene and 1,3-bis (dimethylsilyl) benzene. In addition, the compound represented by the said General formula (1) can be used even if single 1 type also combines 2 or more types.

(b)成分
(A)成分の反応原料である(b)付加反応性炭素−炭素二重結合を1分子中に2個有する多環式炭化水素において、前記「付加反応性」とは、ケイ素原子に結合した水素原子と周知のヒドロシリル化反応により付加反応し得る性質を意味する。また、該(b)成分は、(i)多環式炭化水素の骨格を形成している炭素原子のうち、隣接する2つの炭素原子間に付加反応性炭素−炭素二重結合が形成されているもの、(ii)多環式炭化水素の骨格を形成している炭素原子に結合した水素原子が、付加反応性炭素−炭素二重結合含有基によって置換されているもの、又は(iii)多環式炭化水素の骨格を形成している炭素原子のうち、隣接する2つの炭素原子間に付加反応性炭素−炭素二重結合が形成されており、かつ多環式炭化水素の骨格を形成している炭素原子に結合した水素原子が付加反応性炭素−炭素二重結合含有基によって置換されているもの、のいずれであっても差し支えない。
(B) Component (B) Polycyclic hydrocarbon having two addition-reactive carbon-carbon double bonds in one molecule, which is a reaction raw material of component (A), the “addition reactivity” is silicon It means a property capable of undergoing an addition reaction with a hydrogen atom bonded to the atom by a known hydrosilylation reaction. The component (b) includes (i) an addition-reactive carbon-carbon double bond formed between two adjacent carbon atoms among the carbon atoms forming the polycyclic hydrocarbon skeleton. (Ii) a hydrogen atom bonded to a carbon atom forming the skeleton of a polycyclic hydrocarbon is replaced by an addition-reactive carbon-carbon double bond-containing group, or (iii) Among the carbon atoms forming the cyclic hydrocarbon skeleton, an addition-reactive carbon-carbon double bond is formed between two adjacent carbon atoms, and a polycyclic hydrocarbon skeleton is formed. Any of those in which a hydrogen atom bonded to a carbon atom is substituted by an addition-reactive carbon-carbon double bond-containing group can be used.

この(b)成分としては、例えば、下記構造式(x)

Figure 2014080522
で表される5−ビニルビシクロ[2.2.1]ヘプト−2−エン、下記構造式(y)
Figure 2014080522
で表される6−ビニルビシクロ[2.2.1]ヘプト−2−エン、前記両者の組み合わせ(以下、これら3者を区別する必要がない場合は、「ビニルノルボルネン」と総称することがある)が挙げられる。なお、前記ビニルノルボルネンのビニル基の置換位置は、シス配置(エキソ形)又はトランス配置(エンド形)のいずれであってもよく、また、前記配置の相違によって、該成分の反応性等に特段の差異がないことから、前記両配置の異性体の組み合わせであっても差し支えない。 As the component (b), for example, the following structural formula (x)
Figure 2014080522
5-vinylbicyclo [2.2.1] hept-2-ene represented by the following structural formula (y)
Figure 2014080522
6-vinylbicyclo [2.2.1] hept-2-ene represented by the above-mentioned combination of the two (hereinafter referred to as “vinyl norbornene” when there is no need to distinguish these three) ). Note that the vinyl group substitution position of the vinyl norbornene may be either a cis configuration (exo type) or a trans configuration (end type). Since there is no difference in the above, it may be a combination of the isomers in both configurations.

(A)成分の調製
本発明組成物の(A)成分は、ケイ素原子に結合した水素原子を1分子中に2個有する上記(a)成分の1モルに対して、付加反応性炭素−炭素二重結合を1分子中に2個有する上記(b)成分の1モルを超え10モル以下、好ましくは1モルを超え5モル以下の過剰量を、ヒドロシリル化反応触媒の存在下で付加反応させることにより、ケイ素原子に結合した水素原子を有しない付加反応生成物として得ることができる。前記ヒドロシリル化反応触媒としては、従来から公知のものを全て使用することができる。例えば、白金金属を担持したカーボン粉末、白金黒、塩化第2白金、塩化白金酸、塩化白金酸と1価アルコールとの反応生成物、塩化白金酸とオレフィン類との錯体、白金ビスアセトアセテート等の白金系触媒;パラジウム系触媒、ロジウム系触媒等の白金族金属系触媒が挙げられる。また、付加反応条件、溶媒の使用等については、特に限定されず通常の通りとすればよい。前記の通り、(A)成分の調製に際し、上記(a)成分に対して過剰モル量の上記(b)成分を用いることから、該(A)成分は、上記(b)成分の構造に由来する付加反応性炭素−炭素二重結合を1分子中に2個有するものである。更に、上記(a)成分に由来する残基が、上記(b)成分の構造に由来する付加反応性炭素−炭素二重結合を有しない多環式炭化水素の2価の残基によって結合されている構造を含むものであってもよい。
(A) Preparation of Component The component (A) of the composition of the present invention is an addition-reactive carbon-carbon with respect to 1 mole of the component (a) having two hydrogen atoms bonded to a silicon atom in one molecule. An excess of more than 1 mol and less than 10 mol, preferably more than 1 mol and less than 5 mol of the component (b) having two double bonds in one molecule is added in the presence of a hydrosilylation reaction catalyst. Thus, it can be obtained as an addition reaction product having no hydrogen atom bonded to a silicon atom. Any conventionally known hydrosilylation reaction catalyst can be used. For example, carbon powder carrying platinum metal, platinum black, secondary platinum chloride, chloroplatinic acid, reaction product of chloroplatinic acid and monohydric alcohol, complex of chloroplatinic acid and olefins, platinum bisacetoacetate, etc. And platinum group metal catalysts such as palladium catalysts and rhodium catalysts. Moreover, about addition reaction conditions, use of a solvent, etc., it may just be as usual without being specifically limited. As described above, when the component (A) is prepared, an excess molar amount of the component (b) is used with respect to the component (a). Therefore, the component (A) is derived from the structure of the component (b). It has two addition-reactive carbon-carbon double bonds in one molecule. Furthermore, the residue derived from the component (a) is bound by a divalent residue of a polycyclic hydrocarbon not having an addition-reactive carbon-carbon double bond derived from the structure of the component (b). It may include a structure.

即ち、(A)成分としては、例えば、下記一般式(2)
Y−X−(Y’−X)p−Y (2)
(式中、Xは上記(a)成分の化合物の2価の残基であり、Yは上記(b)成分の多環式炭化水素の1価の残基であり、Y’は上記(b)成分の2価の残基であり、pは0〜10、好ましくは0〜5の整数である。)
で表される化合物が挙げられる。
That is, as the component (A), for example, the following general formula (2)
YX- (Y'-X) p- Y (2)
(In the formula, X is a divalent residue of the compound of the component (a), Y is a monovalent residue of the polycyclic hydrocarbon of the component (b), and Y ′ is the above (b ) A divalent residue of the component, and p is an integer of 0 to 10, preferably 0 to 5.)
The compound represented by these is mentioned.

なお、上記(Y’−X)で表される繰り返し単位の数であるpの値については、上記(a)成分1モルに対して反応させる上記(b)成分の過剰モル量を調整することにより設定することが可能である。   In addition, about the value of p which is the number of the repeating units represented by said (Y'-X), adjusting the excess molar amount of said (b) component made to react with respect to 1 mol of said (a) component. It is possible to set by.

上記一般式(2)中のYとしては、具体的には、例えば、下記構造式

Figure 2014080522
で表される1価の残基(以下、前記6者を区別する必要がない場合は、これらを「NB基」と総称し、また、前記6者の構造を区別せずに「NB」と略記することがある)が挙げられる。なお、上記式において、破線は結合手を示す。 As Y in the general formula (2), specifically, for example, the following structural formula
Figure 2014080522
(Hereinafter, when it is not necessary to distinguish the six members, these are collectively referred to as “NB group”, and “NB” without distinguishing the structure of the six members) May be abbreviated). In the above formula, the broken line indicates a bond.

上記一般式(2)中のY’としては、具体的には、例えば、下記構造式

Figure 2014080522
で表される2価の残基が挙げられる。式中、破線は結合手を示す。 As Y ′ in the general formula (2), specifically, for example, the following structural formula
Figure 2014080522
The bivalent residue represented by these is mentioned. In the formula, a broken line indicates a bond.

但し、上記構造式で表される非対称な2価の残基は、その左右方向が上記記載の通りに限定されるものではなく、上記構造式は、実質上、個々の上記構造を紙面上で180度回転させた構造をも含めて示している。   However, the asymmetrical divalent residue represented by the above structural formula is not limited in the left-right direction as described above, and the above structural formula is substantially the same as that on the paper. It also includes a structure rotated 180 degrees.

上記一般式(2)で表される(A)成分の好適な具体例を以下に示すが、これに限定されるものではない(なお、「NB」の意味するところは、上記の通りである)。
NB−Me2Si−p−C64−SiMe2−NB
NB−Me2Si−m−C64−SiMe2−NB
(式中、Meはメチル基を示す。)

Figure 2014080522
(式中、p’は1〜10の整数である。)
更に、本発明の(A)成分は、1種単独でも2種以上を組み合わせても使用することができる。 Preferred specific examples of the component (A) represented by the general formula (2) are shown below, but the invention is not limited thereto (Note that the meaning of “NB” is as described above. ).
NB-Me 2 Si-p- C 6 H 4 -SiMe 2 -NB
NB-Me 2 Si-m- C 6 H 4 -SiMe 2 -NB
(In the formula, Me represents a methyl group.)
Figure 2014080522
(In the formula, p ′ is an integer of 1 to 10.)
Furthermore, the component (A) of the present invention can be used singly or in combination of two or more.

(B)成分
本発明の(B)成分の無機充填剤は、本発明の組成物に熱伝導性を付与するためのものであり、金属、金属酸化物、金属窒化物、金属炭化物、炭素の同素体からなる群より選ばれる少なくとも1種の材料からなるものが好ましく、例えば、アルミニウム、銀、銅、金属ケイ素、アルミナ、酸化亜鉛、酸化マグネシウム、二酸化ケイ素、水酸化アルミニウム、窒化アルミニウム、窒化ホウ素、炭化ケイ素、ダイヤモンド、グラファイト、カーボンナノチューブなどが挙げられ、アルミニウム粉末と酸化亜鉛粉末とを併用したものであることが特に好ましい。
Component (B) The inorganic filler of component (B) of the present invention is for imparting thermal conductivity to the composition of the present invention, and is made of metal, metal oxide, metal nitride, metal carbide, carbon. What consists of at least 1 sort (s) of material chosen from the group which consists of an allotrope, for example, aluminum, silver, copper, metal silicon, alumina, zinc oxide, magnesium oxide, silicon dioxide, aluminum hydroxide, aluminum nitride, boron nitride, Examples thereof include silicon carbide, diamond, graphite, and carbon nanotube, and it is particularly preferable to use aluminum powder and zinc oxide powder in combination.

この場合、アルミニウム粉末の平均粒径は、0.1μmより小さいと得られる組成物の粘度が高くなりすぎ、伸展性の乏しいものとなるおそれがあり、100μmより大きいと得られる組成物が不均一となるおそれがあるため、0.1〜100μmの範囲、好ましくは1〜40μmの範囲がよい。酸化亜鉛粉末の平均粒径は、0.1μmより小さいと得られる組成物の粘度が高くなりすぎ、伸展性の乏しいものとなるおそれがあり、10μmより大きいと得られる組成物が不均一となるおそれがあるため、0.1〜10μmの範囲、好ましくは1〜4μmの範囲がよい。なお、平均粒径は、例えば、レーザー光回折法による粒度分布測定における質量平均値(又はメジアン径)として求めることができる。
また、アルミニウム粉末、酸化亜鉛粉末の形状は、球状、不定形状のいずれでもよい。
In this case, if the average particle size of the aluminum powder is smaller than 0.1 μm, the viscosity of the resulting composition may be too high and the extensibility may be poor. If the average particle size is larger than 100 μm, the resulting composition is uneven. Therefore, the range of 0.1 to 100 μm, preferably 1 to 40 μm is preferable. If the average particle size of the zinc oxide powder is smaller than 0.1 μm, the viscosity of the resulting composition may be too high, and the extensibility may be poor. If the average particle size is larger than 10 μm, the resulting composition becomes non-uniform. Since there exists a possibility, the range of 0.1-10 micrometers, Preferably the range of 1-4 micrometers is good. In addition, an average particle diameter can be calculated | required as a mass average value (or median diameter) in the particle size distribution measurement by a laser beam diffraction method, for example.
Further, the shape of the aluminum powder or zinc oxide powder may be either spherical or indefinite.

これら鉱物の熱伝導率は、アルミニウム粉末、酸化亜鉛粉末はそれぞれ約237W/m・K、約20W/m・Kとアルミニウム粉末単独の方が高い熱伝導率を得るためには有利であるが、アルミニウム粉末単独であると、得られる組成物の安定性が悪くなり、オイル分離等が起こり易くなる。
種々検討した結果、酸化亜鉛粉末と混合することでオイル分離を防ぐことができることを見出した。その割合は、質量比で(アルミニウム粉末)/(酸化亜鉛粉末)が1より小さくなると得られる組成物の熱伝導率の乏しいものとなるし、10より大きいと経時でのオイル分離が激しくなるので1〜10の範囲、好ましくは2〜8の範囲がよい。
The thermal conductivity of these minerals is about 237 W / m · K and about 20 W / m · K for aluminum powder and zinc oxide powder, respectively. When the aluminum powder is used alone, the stability of the resulting composition is deteriorated, and oil separation or the like easily occurs.
As a result of various studies, it was found that oil separation can be prevented by mixing with zinc oxide powder. When the ratio (aluminum powder) / (zinc oxide powder) is less than 1 in terms of mass ratio, the resulting composition has poor thermal conductivity, and when it is greater than 10, oil separation over time becomes severe. The range of 1-10 is preferable, and the range of 2-8 is preferable.

これら(B)成分の配合量、特にアルミニウム粉末と酸化亜鉛粉末との混合物の配合量は、(A)成分100質量部に対し2,000質量部より多いと伸展性の乏しいものとなるし、100質量部より少ないと熱伝導性に乏しいものとなるため、100〜2,000質量部の範囲、好ましくは500〜1,200質量部の範囲とするのがよい。   The blending amount of these components (B), particularly the blending amount of the mixture of aluminum powder and zinc oxide powder, is less than 2,000 parts by mass with respect to 100 parts by mass of component (A), and the extensibility becomes poor. When the amount is less than 100 parts by mass, the thermal conductivity is poor, so the range is from 100 to 2,000 parts by mass, preferably from 500 to 1,200 parts by mass.

(C)成分
本発明の(C)成分のオルガノハイドロジェンポリシロキサンは、例えば、下記平均組成式(3)
3 bcSiO(4-b-c)/2 (3)
(式中、R3は炭素数1〜12、好ましくは1〜10の非置換又は置換の1価炭化水素基である。また、bは0.7〜2.1、好ましくは0.8〜2.05、cは0.001〜1.0、好ましくは0.005〜1.0であり、かつb+cは0.8〜3.0、好ましくは1.0〜2.5を満足する正数である。)
で示されるものを用いることができる。
Component (C) The organohydrogenpolysiloxane of component (C) of the present invention is, for example, the following average composition formula (3)
R 3 b H c SiO (4-bc) / 2 (3)
(Wherein R 3 is an unsubstituted or substituted monovalent hydrocarbon group having 1 to 12 carbon atoms, preferably 1 to 10 carbon atoms, and b is 0.7 to 2.1, preferably 0.8 to 2.05, c is 0.001 to 1.0, preferably 0.005 to 1.0, and b + c is 0.8 to 3.0, preferably 1.0 to 2.5. Number.)
What is shown by can be used.

(C)成分のケイ素原子に結合した水素原子を有するオルガノハイドロジェンポリシロキサンは、架橋により組成物を網状化するためにケイ素原子に結合した水素原子を1分子中に2個以上有することが必要であり、3個以上のケイ素原子に結合した水素原子を有することが好ましい。ケイ素原子に結合する残余の有機基R3としては、メチル基、エチル基、プロピル基、ブチル基、ヘキシル基、ドデシル基等のアルキル基、フェニル基等のアリール基、2−フェニルエチル基、2−フェニルプロピル基等のアラルキル基、クロロメチル基、3,3,3−トリフルオロプロピル基等のハロゲン置換などの置換炭化水素基、また2−グリシドキシエチル基、3−グリシドキシプロピル基、4−グリシドキシブチル基等のエポキシ環含有有機基(グリシジル基又はグリシジルオキシ基置換アルキル基)も例として挙げられる。特に、メチル基とフェニル基であるものが、工業的に製造することが容易であり、入手し易いことから好ましい。また、(A)成分との相溶性の観点から、R3のうち少なくとも1つはフェニル基であることが好ましい。かかるケイ素原子に結合した水素原子を有するオルガノハイドロジェンポリシロキサンは、直鎖状、分岐状及び環状のいずれであってもよく、またこれらの混合物であってもよい。 The organohydrogenpolysiloxane having hydrogen atoms bonded to silicon atoms as component (C) must have at least two hydrogen atoms bonded to silicon atoms in one molecule in order to network the composition by crosslinking. And preferably has a hydrogen atom bonded to three or more silicon atoms. Examples of the remaining organic group R 3 bonded to the silicon atom include methyl groups, ethyl groups, propyl groups, butyl groups, hexyl groups, alkyl groups such as dodecyl groups, aryl groups such as phenyl groups, 2-phenylethyl groups, 2 -Aralkyl groups such as phenylpropyl group, substituted hydrocarbon groups such as halogen substitution such as chloromethyl group, 3,3,3-trifluoropropyl group, 2-glycidoxyethyl group, 3-glycidoxypropyl group An epoxy ring-containing organic group (glycidyl group or glycidyloxy group-substituted alkyl group) such as 4-glycidoxybutyl group is also exemplified. In particular, those having a methyl group and a phenyl group are preferred because they are easy to produce industrially and are easily available. From the viewpoint of compatibility with the component (A), at least one of R 3 is preferably a phenyl group. The organohydrogenpolysiloxane having a hydrogen atom bonded to a silicon atom may be linear, branched or cyclic, or a mixture thereof.

(C)成分の配合量は、(ケイ素原子に結合した水素原子の個数の合計)/((A)成分中の付加反応性炭素−炭素二重結合の個数の合計)が0.5より小さいと十分な硬度を有する組成物が得られず、3.0より大きいと未反応のケイ素原子に結合した水素原子が余剰の架橋反応を引き起こすなどして信頼性の低下を招くので、0.5〜3.0、好ましくは1.0〜2.0の範囲が好ましい。   The amount of component (C) is such that (total number of hydrogen atoms bonded to silicon atoms) / (total number of addition reactive carbon-carbon double bonds in component (A)) is less than 0.5. And a composition having a sufficient hardness cannot be obtained, and if it exceeds 3.0, hydrogen atoms bonded to unreacted silicon atoms cause an excessive crosslinking reaction, leading to a decrease in reliability. The range of ˜3.0, preferably 1.0 to 2.0 is preferred.

(D)成分
本発明の(D)成分の白金及び白金化合物からなる群より選択される触媒は、(A)成分中の付加反応性炭素−炭素二重結合と(C)成分のケイ素原子に結合した水素原子との間の付加反応の促進成分である。この(D)成分は、例えば白金の単体、塩化白金酸、白金−オレフィン錯体、白金−アルコール錯体、白金配位化合物等が挙げられる。
Component (D) The catalyst selected from the group consisting of platinum and platinum compounds of component (D) of the present invention is an addition reactive carbon-carbon double bond in component (A) and silicon atom of component (C). It is a component that promotes the addition reaction between the bonded hydrogen atoms. Examples of the component (D) include platinum alone, chloroplatinic acid, platinum-olefin complexes, platinum-alcohol complexes, platinum coordination compounds, and the like.

(D)成分の配合量は、(A)成分に対して白金原子として0.1ppmより少なくても触媒としての効果がなく、500ppmを超えても効果が増大することがなく、不経済であるので0.1〜500ppmの範囲である。なお、これらは組成物への分散性を良くするためにポリシロキサンやトルエン等で希釈して使用してもよい。   The blending amount of the component (D) is not economical even if it is less than 0.1 ppm as platinum atoms with respect to the component (A), and the effect is not increased even if it exceeds 500 ppm, which is uneconomical. Therefore, it is in the range of 0.1 to 500 ppm. These may be used after being diluted with polysiloxane, toluene or the like in order to improve the dispersibility in the composition.

(E)成分
本発明の(E)成分は、下記一般式(4)で表されるオルガノシラン及び/又はその(部分)加水分解縮合物(部分加水分解縮合物、加水分解縮合物)である。
1 aSi(OR24-a (4)
(式中、R1は独立に炭素数1〜20、好ましくは1〜10の非置換又はハロゲン置換1価炭化水素基であり、R2は独立に水素原子又は炭素数1〜6、好ましくは1〜3のアルキル基であり、aは1〜3の整数である。)
(E) component (E) component of this invention is the organosilane represented by following General formula (4), and / or its (partial) hydrolysis-condensation product (partial hydrolysis-condensation product, hydrolysis-condensation product). .
R 1 a Si (OR 2 ) 4-a (4)
Wherein R 1 is independently an unsubstituted or halogen-substituted monovalent hydrocarbon group having 1 to 20 carbon atoms, preferably 1 to 10 carbon atoms, and R 2 is independently a hydrogen atom or 1 to 6 carbon atoms, preferably 1 to 3 alkyl groups, and a is an integer of 1 to 3)

(E)成分は、(B)成分の熱伝導性無機充填剤の表面を処理するために用いるものであるが、充填剤の高充填化を補助するばかりでなく、充填剤表面を覆うことにより充填剤同士の凝集を起こりにくくし、高温下でもその効果は持続するため、本熱伝導性樹脂組成物の耐熱性を向上させる働きがある。   The component (E) is used for treating the surface of the thermally conductive inorganic filler of the component (B), but not only assists in increasing the filling of the filler but also covers the surface of the filler. Aggregation between the fillers hardly occurs and the effect is maintained even at a high temperature, so that the heat resistance of the thermally conductive resin composition is improved.

上記一般式(4)中、R1としては、アルキル基、シクロアルキル基、アルケニル基等を挙げることができるが、その具体例としては、例えば、メチル基、エチル基、プロピル基、ヘキシル基、オクチル基、デシル基、ドデシル基、テトラデシル基、ヘキサデシル基、オクタデシル基等のアルキル基、シクロペンチル基、シクロヘキシル基等のシクロアルキル基、ビニル基、アリル基等のアルケニル基、フェニル基、トリル基等のアリール基、2−フェニルエチル基、2−メチル−2−フェニルエチル基等のアラルキル基、3,3,3−トリフルオロプロピル基、2−(パーフルオロブチル)エチル基、2−(パーフルオロオクチル)エチル基、p−クロロフェニル基等のハロゲン化炭化水素基が挙げられる。aは1,2又は3であるが、特に1であることが好ましい。R2としては、水素原子又は炭素数1〜6のアルキル基が挙げられる。 In the general formula (4), examples of R 1 include an alkyl group, a cycloalkyl group, and an alkenyl group. Specific examples thereof include, for example, a methyl group, an ethyl group, a propyl group, a hexyl group, Octyl, decyl, dodecyl, tetradecyl, hexadecyl, octadecyl and other alkyl groups, cyclopentyl, cyclohexyl and other cycloalkyl groups, vinyl, allyl and other alkenyl groups, phenyl and tolyl groups, etc. Aralkyl groups such as aryl group, 2-phenylethyl group, 2-methyl-2-phenylethyl group, 3,3,3-trifluoropropyl group, 2- (perfluorobutyl) ethyl group, 2- (perfluorooctyl) ) Halogenated hydrocarbon groups such as ethyl group and p-chlorophenyl group. a is 1, 2 or 3, and is particularly preferably 1. Examples of R 2 include a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.

一般式(4)のオルガノシラン及び/又はその(部分)加水分解縮合物を配合する場合の添加量は、熱伝導性樹脂組成物中、多すぎるとオイルブリードし易くなったり、ボイドの発生を招く場合があるので、(A)成分100質量部に対して0.01〜10質量部の範囲であることが好ましい。   When the organosilane of the general formula (4) and / or its (partial) hydrolysis condensate is added in the heat conductive resin composition, if it is too much, oil bleeding tends to occur or voids are generated. Since it may invite, it is preferable that it is the range of 0.01-10 mass parts with respect to 100 mass parts of (A) component.

(F)成分
本発明の(F)成分の制御剤は、室温でのヒドロシリル化反応の進行を抑え、シェルフライフ、ポットライフを延長させるものである。反応制御剤としては公知のものを使用することができ、アセチレン化合物、各種窒素化合物、有機リン化合物、オキシム化合物、有機クロロ化合物等が利用できる。
(F) Component The control agent of the (F) component of the present invention suppresses the progress of the hydrosilylation reaction at room temperature and extends shelf life and pot life. Known reaction control agents can be used, and acetylene compounds, various nitrogen compounds, organic phosphorus compounds, oxime compounds, organic chloro compounds, and the like can be used.

(F)成分を配合する場合の配合量は、(A)成分100質量部に対して0.05質量部より少ないと十分なシェルフライフ、ポットライフが得られない場合があり、0.5質量部より多いと硬化性が低下する場合があるため0.05〜0.5質量部の範囲が好ましい。これらは組成物への分散性を良くするためにトルエン等で希釈して使用してもよい。   When the blending amount of the component (F) is less than 0.05 parts by mass with respect to 100 parts by mass of the component (A), sufficient shelf life and pot life may not be obtained, and 0.5 mass If it is more than the part, the curability may be lowered, so the range of 0.05 to 0.5 parts by mass is preferable. These may be used after diluted with toluene or the like in order to improve the dispersibility in the composition.

その他の成分
本発明には、上述した(A)〜(F)成分以外に必要に応じて、組成物に接着性を付与する接着助剤や劣化を防ぐための酸化防止剤等を加えてもよい。
Other components In addition to the components (A) to (F) described above, an adhesive aid for imparting adhesiveness to the composition and an antioxidant for preventing deterioration may be added to the present invention as necessary. Good.

本発明の熱伝導性樹脂組成物を製造するには、(A)〜(D)成分、及び必要に応じて(E)、(F)成分、その他の成分をトリミックス、ツウィンミックス、プラネタリーミキサー(いずれも井上製作所(株)製混合機の登録商標)、ウルトラミキサー(みずほ工業(株)製混合機の登録商標)、ハイビスディスパーミックス(特殊機化工業(株)製混合機の登録商標)等の混合機にて混合する方法を採用することができる。   In order to produce the heat conductive resin composition of the present invention, the components (A) to (D) and, if necessary, the components (E) and (F) and other components are mixed with trimix, twin mix, and planetary. Mixer (registered trademark of mixer manufactured by Inoue Seisakusho Co., Ltd.), Ultramixer (registered trademark of mixer manufactured by Mizuho Kogyo Co., Ltd.), registered trademark of Hibis Disper Mix (mixer manufactured by Special Machine Industries Co., Ltd.) ) Etc. can be employed.

本発明の熱伝導性樹脂組成物は、粘度が低すぎたり高すぎたりすると作業性が悪くなるため、その粘度は10〜1,000Pa・sが好ましい。また、本発明において、粘度はマルコム粘度計により測定した25℃の値である(ロータAで10rpm、ズリ速度6[1/s])。   Since the heat conductive resin composition of the present invention has poor workability when the viscosity is too low or too high, the viscosity is preferably 10 to 1,000 Pa · s. Moreover, in this invention, a viscosity is a value of 25 degreeC measured with the Malcolm viscometer (10 rpm with a rotor A, shear rate 6 [1 / s]).

本発明の熱伝導性樹脂組成物は、半導体パッケージ等の電子部品、その他の発熱部材と冷却部材との間に介在させて発熱部材からの熱を冷却部材に伝熱して放熱するために好適に用いることができ、従来の熱伝導性樹脂組成物と同様の方法で使用することができる。   The heat conductive resin composition of the present invention is suitable for interposing between electronic components such as semiconductor packages, other heat generating members and cooling members, and transferring heat from the heat generating members to the cooling members to dissipate the heat. It can be used and can be used by the same method as the conventional heat conductive resin composition.

本発明の熱伝導性樹脂組成物の硬化条件は、150〜200℃で1時間以上加熱する条件であり、特に150℃で1〜3時間加熱する条件が好ましい。
この場合、得られた硬化物は、室温付近においては半導体パッケージの反りを抑え込む一方で、高温となる動作温度域においては軟化して反りに追随するという点から、室温(23℃)でのショアA硬度が90以上であり、また25℃以上、特に25〜40℃、とりわけ30〜40℃の温度域に軟化点を有することが好ましい。なお、軟化点の測定は、本発明では、具体的にMETTLER TOLEDO製TMA/SDTA841eを用いて測定した。
上記した室温でのショアA硬度が90以上で、25℃以上の温度域に軟化点を有するという性状は、上記(A)〜(D)成分を含む樹脂組成物に限らず、有機樹脂と無機充填剤とを主成分として合計で90質量%以上含有する熱伝導性樹脂組成物であっても、その硬化物が上記性状を有すれば、半導体パッケージの反り抑制を可能にするものである。
The curing condition of the heat conductive resin composition of the present invention is a condition of heating at 150 to 200 ° C. for 1 hour or more, particularly preferably a condition of heating at 150 ° C. for 1 to 3 hours.
In this case, the obtained cured product suppresses the warpage of the semiconductor package near the room temperature, but softens and follows the warpage in the operating temperature range where the temperature is high. It is preferable that A hardness is 90 or more, and has a softening point in a temperature range of 25 ° C. or more, particularly 25 to 40 ° C., particularly 30 to 40 ° C. The measurement of softening point, the present invention was measured using a specifically METTLER TOLEDO manufactured TMA / SDTA841 e.
The property that the Shore A hardness at room temperature is 90 or more and has a softening point in a temperature range of 25 ° C. or more is not limited to the resin composition containing the components (A) to (D), but an organic resin and an inorganic resin. Even if it is a heat conductive resin composition which contains 90 mass% or more in total as a main component with a filler, if the hardened | cured material has the said property, the curvature suppression of a semiconductor package will be enabled.

以下、合成例、実施例及び比較例を示し、本発明を具体的に説明するが、本発明は下記の実施例に制限されるものではない。なお、本発明に係わる効果に関する試験は次のように行った。   EXAMPLES Hereinafter, although a synthesis example, an Example, and a comparative example are shown and this invention is demonstrated concretely, this invention is not restrict | limited to the following Example. In addition, the test regarding the effect concerning this invention was done as follows.

[粘度]
グリース組成物の絶対粘度は、マルコム粘度計(タイプPC−1T)を用いて25℃で測定した。
[熱伝導率]
各組成物をキッチンラップで包み、京都電子工業(株)製TPA−501で測定した。
[硬度]
組成物を150℃で60分間硬化させ、(株)島津製作所製デュロメータタイプA硬度計で測定した。
[軟化温度]
組成物を150℃で60分間硬化させ、METTLER TOLEDO製TMA/SDTA841eで測定した。
[viscosity]
The absolute viscosity of the grease composition was measured at 25 ° C. using a Malcolm viscometer (type PC-1T).
[Thermal conductivity]
Each composition was wrapped in a kitchen wrap and measured with TPA-501 manufactured by Kyoto Electronics Industry Co., Ltd.
[hardness]
The composition was cured at 150 ° C. for 60 minutes and measured with a durometer type A hardness meter manufactured by Shimadzu Corporation.
[Softening temperature]
The composition was cured at 150 ° C. for 60 minutes and measured with TMA / SDTA841 e manufactured by METTER TOLEDO.

[反り試験]
各組成物をシリコンウェハ(1mm×1mm)とニッケルプレートに挟み込み、1.8kgfのクリップによって加圧しながら150℃にて60分間加熱・硬化させて試験片を作製した。これを室温又は260℃の環境下にさらした後、試験片の反りを測定した。
[Warp test]
Each composition was sandwiched between a silicon wafer (1 mm × 1 mm) and a nickel plate, and heated and cured at 150 ° C. for 60 minutes while being pressed with a 1.8 kgf clip to prepare a test piece. After exposing this to room temperature or 260 degreeC environment, the curvature of the test piece was measured.

まず、本発明組成物を調製する以下の各成分を用意した。
(A)成分
[合成例1](A)成分の調製
攪拌装置、冷却管、滴下ロート及び温度計を備えた5Lの4つ口フラスコに、ビニルノルボルネン(商品名:V0062、東京化成工業(株)製;5−ビニルビシクロ[2.2.1]ヘプト−2−エンと6−ビニルビシクロ[2.2.1]ヘプト−2−エンとのほぼ等モル量の異性体混合物)1,785g(14.88モル)、及び、トルエン455gを加え、オイルバスを用いて85℃に加熱した。これに、5質量%の白金金属を担持したカーボン粉末3.6gを添加し、攪拌しながら1,4−ビス(ジメチルシリル)ベンゼン1,698g(8.75モル)を180分間かけて滴下した。滴下終了後、更に110℃で加熱攪拌を24時間行った後、室温まで冷却した。その後、白金金属担持カーボンをろ過して除去し、トルエン及び過剰のビニルノルボルネンを減圧留去して、無色透明なオイル状の反応生成物(25℃における粘度:12,820mPa・s)3,362gを得た。反応生成物を、FT−IR、NMR、GPC等により分析した結果、このものは、
A−1:
(1)p−フェニレン基を2個有する化合物:約41モル%(下記に代表的な構造式の一例を示す)、

Figure 2014080522
(2)p−フェニレン基を3個有する化合物:約32モル%、及び
Figure 2014080522
(3)p−フェニレン基を4個以上有する化合物:約27モル%
の混合物であることが判明した。また、前記混合物全体としての付加反応性炭素−炭素二重結合の含有割合は、0.36モル/100gであった。 First, the following components for preparing the composition of the present invention were prepared.
Component (A) [Synthesis Example 1] Preparation of Component (A) Into a 5 L four-necked flask equipped with a stirrer, a condenser, a dropping funnel and a thermometer, vinyl norbornene (trade name: V0062, Tokyo Chemical Industry Co., Ltd.) ); Isomer mixture of approximately equimolar amounts of 5-vinylbicyclo [2.2.1] hept-2-ene and 6-vinylbicyclo [2.2.1] hept-2-ene) 1,785 g (14.88 mol) and 455 g of toluene were added and heated to 85 ° C. using an oil bath. To this was added 3.6 g of carbon powder supporting 5% by mass of platinum metal, and 1,698 g (8.75 mol) of 1,4-bis (dimethylsilyl) benzene was added dropwise over 180 minutes while stirring. . After completion of the dropping, the mixture was further heated and stirred at 110 ° C. for 24 hours, and then cooled to room temperature. Thereafter, the platinum metal-supporting carbon is removed by filtration, and toluene and excess vinylnorbornene are distilled off under reduced pressure to obtain a colorless and transparent oily reaction product (viscosity at 25 ° C .: 12,820 mPa · s) 3,362 g. Got. As a result of analyzing the reaction product by FT-IR, NMR, GPC and the like,
A-1:
(1) Compound having two p-phenylene groups: about 41 mol% (an example of a typical structural formula is shown below),
Figure 2014080522
(2) Compound having 3 p-phenylene groups: about 32 mol%, and
Figure 2014080522
(3) Compound having 4 or more p-phenylene groups: about 27 mol%
It was found to be a mixture of Moreover, the content rate of the addition reactive carbon-carbon double bond as the whole mixture was 0.36 mol / 100 g.

A−2:両末端がジメチルビニルシリル基で封鎖され、25℃における動粘度が600mm2/sのジメチルポリシロキサン
A−3:両末端がジメチルビニルシリル基で封鎖され、25℃における動粘度が30,000mm2/sのジメチルポリシロキサン
A-2: Dimethylpolysiloxane having both ends blocked with dimethylvinylsilyl groups and a kinematic viscosity at 25 ° C. of 600 mm 2 / s A-3: Both ends blocked with dimethylvinylsilyl groups and having a kinematic viscosity at 25 ° C. 30,000 mm 2 / s dimethylpolysiloxane

(B)成分
B−1:平均粒径20.0μmのアルミニウム粉末(熱伝導率:237W/m・K)
B−2:平均粒径2.0μmのアルミニウム粉末(熱伝導率:237W/m・K)
B−3:平均粒径1.0μmの酸化亜鉛粉末(熱伝導率:25W/m・K)
(B) Component B-1: Aluminum powder having an average particle diameter of 20.0 μm (thermal conductivity: 237 W / m · K)
B-2: Aluminum powder having an average particle size of 2.0 μm (thermal conductivity: 237 W / m · K)
B-3: Zinc oxide powder having an average particle size of 1.0 μm (thermal conductivity: 25 W / m · K)

(C)成分
C−1:

Figure 2014080522
C−2:
Figure 2014080522
C−3:
Figure 2014080522
(C) Component C-1:
Figure 2014080522
C-2:
Figure 2014080522
C-3:
Figure 2014080522

(D)成分
D−1:白金−ジビニルテトラメチルジシロキサン錯体のA−2溶液(白金原子として100質量ppm)
(E)成分
E−1:C1021Si(OCH33
(F)成分
F−1:1−エチニル−1−シクロヘキサノール
(D) Component D-1: A-2 solution of platinum-divinyltetramethyldisiloxane complex (100 mass ppm as platinum atom)
(E) Component E-1: C 10 H 21 Si (OCH 3 ) 3
(F) Component F-1: 1-ethynyl-1-cyclohexanol

[実施例1〜6、比較例1〜5]
(A)〜(F)成分を以下のように混合して実施例1〜6及び比較例1〜5の組成物を得た。
即ち、5リットルプラネタリーミキサー(井上製作所(株)製)に表1,2に示す配合量で(A)、(B)、(E)成分を加え、室温で1時間混合した。次に(C)、(D)、(F)成分を加えて、均一になるように混合した。得られた組成物の粘度、熱伝導率、硬度、軟化温度の測定結果及び反り試験の結果を表1,2に併記する。
[Examples 1-6, Comparative Examples 1-5]
(A)-(F) component was mixed as follows and the composition of Examples 1-6 and Comparative Examples 1-5 was obtained.
That is, the components (A), (B), and (E) were added to a 5-liter planetary mixer (manufactured by Inoue Seisakusho Co., Ltd.) in the amounts shown in Tables 1 and 2, and mixed at room temperature for 1 hour. Next, the components (C), (D), and (F) were added and mixed to be uniform. The results of measurement of the viscosity, thermal conductivity, hardness, softening temperature and the result of the warpage test of the obtained composition are shown in Tables 1 and 2.

Figure 2014080522
H/Vi=((C)成分中のケイ素原子に結合した水素原子の個数の合計)/((A)成分中の付加反応性炭素−炭素二重結合の個数の合計)
Figure 2014080522
H / Vi = (total number of hydrogen atoms bonded to silicon atoms in component (C)) / (total number of additional reactive carbon-carbon double bonds in component (A))

Figure 2014080522
H/Vi=((C)成分中のケイ素原子に結合した水素原子の個数の合計)/((A)成分中の付加反応性炭素−炭素二重結合の個数の合計)
Figure 2014080522
H / Vi = (total number of hydrogen atoms bonded to silicon atoms in component (C)) / (total number of additional reactive carbon-carbon double bonds in component (A))

Claims (6)

(A)(a)下記一般式(1)
Figure 2014080522
(式中、Rは独立に非置換又はハロゲン原子、シアノ基もしくはグリシドキシ基で置換された炭素数1〜12の1価炭化水素基又は炭素数1〜6のアルコキシ基である。)
で表されるケイ素原子に結合した水素原子を1分子中に2個有する化合物と、
(b)付加反応性炭素−炭素二重結合を1分子中に2個有する多環式炭化水素との付加反応生成物であって、付加反応性炭素−炭素二重結合を1分子中に2個有する付加反応生成物:100質量部、
(B)金属、金属酸化物、金属窒化物、金属炭化物、炭素の同素体からなる群より選ばれる少なくとも1種の無機充填剤:100〜2,000質量部、
(C)1分子中に2個以上のケイ素原子に結合した水素原子を有するオルガノハイドロジェンポリシロキサン:(ケイ素原子に結合した水素原子の個数の合計)/((A)成分中の付加反応性炭素−炭素二重結合の個数の合計)が0.5〜3.0となる量、
(D)白金及び白金化合物からなる群より選択される触媒:(A)成分100質量部に対して白金原子として0.1〜500ppmとなる量
を含有してなることを特徴とする熱伝導性樹脂組成物。
(A) (a) The following general formula (1)
Figure 2014080522
(In the formula, R is independently a monovalent hydrocarbon group having 1 to 12 carbon atoms or an alkoxy group having 1 to 6 carbon atoms which is unsubstituted or substituted with a halogen atom, a cyano group or a glycidoxy group.)
A compound having two hydrogen atoms bonded to a silicon atom represented by
(B) An addition reaction product with a polycyclic hydrocarbon having two addition-reactive carbon-carbon double bonds in one molecule, wherein two addition-reactive carbon-carbon double bonds are present in one molecule. Addition reaction product having: 100 parts by mass,
(B) At least one inorganic filler selected from the group consisting of metals, metal oxides, metal nitrides, metal carbides, and carbon allotropes: 100 to 2,000 parts by mass,
(C) Organohydrogenpolysiloxane having hydrogen atoms bonded to two or more silicon atoms in one molecule: (total number of hydrogen atoms bonded to silicon atoms) / (addition reactivity in component (A)) The total number of carbon-carbon double bonds) is 0.5 to 3.0,
(D) A catalyst selected from the group consisting of platinum and a platinum compound: (A) Thermal conductivity characterized by containing an amount of 0.1 to 500 ppm as a platinum atom with respect to 100 parts by mass of the component. Resin composition.
前記(B)成分が、平均粒径0.1〜100μmのアルミニウム粉末と平均粒径0.1〜10μmの酸化亜鉛粉末とを質量比として(アルミニウム粉末)/(酸化亜鉛粉末)=1〜10の割合で併用してなる無機充填剤である請求項1に記載の熱伝導性樹脂組成物。   The component (B) is an aluminum powder having an average particle diameter of 0.1 to 100 μm and a zinc oxide powder having an average particle diameter of 0.1 to 10 μm as a mass ratio (aluminum powder) / (zinc oxide powder) = 1 to 10 The thermally conductive resin composition according to claim 1, which is an inorganic filler used in combination at a ratio of 更に、(E)下記一般式(4)
1 aSi(OR24-a (4)
(式中、R1は独立に炭素数1〜20の非置換又はハロゲン置換1価炭化水素基であり、R2は独立に水素原子又は炭素数1〜6のアルキル基であり、aは1〜3の整数である。)
で表されるオルガノシラン及び/又はその(部分)加水分解縮合物:(A)成分100質量部に対して0.01〜10質量部
を含有してなる請求項1又は2に記載の熱伝導性樹脂組成物。
Furthermore, (E) the following general formula (4)
R 1 a Si (OR 2 ) 4-a (4)
Wherein R 1 is independently an unsubstituted or halogen-substituted monovalent hydrocarbon group having 1 to 20 carbon atoms, R 2 is independently a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, and a is 1 It is an integer of ~ 3.)
The heat conduction according to claim 1 or 2, comprising 0.01 to 10 parts by mass with respect to 100 parts by mass of the component (A). Resin composition.
更に、(F)アセチレン化合物、窒素化合物、有機リン化合物、オキシム化合物及び有機クロロ化合物からなる群より選択される制御剤:(A)成分100質量部に対して0.05〜0.5質量部
を含有してなる請求項1〜3のいずれか1項に記載の熱伝導性樹脂組成物。
Furthermore, (F) a control agent selected from the group consisting of an acetylene compound, a nitrogen compound, an organic phosphorus compound, an oxime compound and an organic chloro compound: (A) 0.05 to 0.5 parts by mass with respect to 100 parts by mass of the component The heat conductive resin composition of any one of Claims 1-3 formed by containing.
硬化物が25℃以上の温度域に軟化点を有し、かつ室温でのショアA硬度が90以上である請求項1〜4のいずれか1項に記載の熱伝導性樹脂組成物。   The thermally conductive resin composition according to any one of claims 1 to 4, wherein the cured product has a softening point in a temperature range of 25 ° C or higher and has a Shore A hardness of 90 or higher at room temperature. 有機樹脂と無機充填剤とを主成分として含み、硬化後の組成物が25℃以上の温度域に軟化点を有し、かつ室温でのショアA硬度が90以上であることを特徴とする熱伝導性樹脂組成物。   A heat comprising an organic resin and an inorganic filler as main components, a cured composition having a softening point in a temperature range of 25 ° C. or higher, and a Shore A hardness of 90 or higher at room temperature Conductive resin composition.
JP2012229757A 2012-10-17 2012-10-17 Heat-conductive resin composition Pending JP2014080522A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2012229757A JP2014080522A (en) 2012-10-17 2012-10-17 Heat-conductive resin composition
TW102135512A TW201428044A (en) 2012-10-17 2013-10-01 Thermal conductive resin composition
KR1020130122395A KR20140049477A (en) 2012-10-17 2013-10-15 Thermal conductive resin composition
CN201310486339.2A CN103772995A (en) 2012-10-17 2013-10-17 Thermal conductive resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012229757A JP2014080522A (en) 2012-10-17 2012-10-17 Heat-conductive resin composition

Publications (1)

Publication Number Publication Date
JP2014080522A true JP2014080522A (en) 2014-05-08

Family

ID=50565791

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012229757A Pending JP2014080522A (en) 2012-10-17 2012-10-17 Heat-conductive resin composition

Country Status (4)

Country Link
JP (1) JP2014080522A (en)
KR (1) KR20140049477A (en)
CN (1) CN103772995A (en)
TW (1) TW201428044A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016017159A (en) * 2014-07-10 2016-02-01 信越化学工業株式会社 Thermally conductive silicone composition
WO2017002489A1 (en) * 2015-06-30 2017-01-05 信越化学工業株式会社 Heat dissipation material
JP2018044125A (en) * 2016-09-16 2018-03-22 旭化成株式会社 Curable composition
JP2018044121A (en) * 2016-09-16 2018-03-22 旭化成株式会社 Curable composition

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6908546B2 (en) * 2018-03-05 2021-07-28 信越化学工業株式会社 Curable silicone composition for light reflective materials, silicone resin cured products, reflectors, and LED devices

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002003718A (en) * 2000-06-23 2002-01-09 Shin Etsu Chem Co Ltd Heat conductive silicone composition and semiconductor apparatus
JP2006216824A (en) * 2005-02-04 2006-08-17 Pioneer Electronic Corp Photodetecting semiconductor device
JP2010059237A (en) * 2008-09-01 2010-03-18 Dow Corning Toray Co Ltd Thermally conductive silicone composition and semiconductor device
JP2010202831A (en) * 2009-03-05 2010-09-16 Shin-Etsu Chemical Co Ltd Curable silicone composition, silicone resin cured product and light reflective material
JP2012046604A (en) * 2010-08-26 2012-03-08 Shin-Etsu Chemical Co Ltd Curable silicone-based composition containing polycyclic hydrocarbon skeleton component

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002003718A (en) * 2000-06-23 2002-01-09 Shin Etsu Chem Co Ltd Heat conductive silicone composition and semiconductor apparatus
JP2006216824A (en) * 2005-02-04 2006-08-17 Pioneer Electronic Corp Photodetecting semiconductor device
JP2010059237A (en) * 2008-09-01 2010-03-18 Dow Corning Toray Co Ltd Thermally conductive silicone composition and semiconductor device
JP2010202831A (en) * 2009-03-05 2010-09-16 Shin-Etsu Chemical Co Ltd Curable silicone composition, silicone resin cured product and light reflective material
JP2012046604A (en) * 2010-08-26 2012-03-08 Shin-Etsu Chemical Co Ltd Curable silicone-based composition containing polycyclic hydrocarbon skeleton component

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016017159A (en) * 2014-07-10 2016-02-01 信越化学工業株式会社 Thermally conductive silicone composition
WO2017002489A1 (en) * 2015-06-30 2017-01-05 信越化学工業株式会社 Heat dissipation material
JPWO2017002489A1 (en) * 2015-06-30 2018-03-29 信越化学工業株式会社 Heat dissipation material
US10590322B2 (en) 2015-06-30 2020-03-17 Shin-Etsu Chemical Co., Ltd. Heat dissipation material
JP2018044125A (en) * 2016-09-16 2018-03-22 旭化成株式会社 Curable composition
JP2018044121A (en) * 2016-09-16 2018-03-22 旭化成株式会社 Curable composition
JP2021176968A (en) * 2016-09-16 2021-11-11 旭化成株式会社 Curable composition
JP7043165B2 (en) 2016-09-16 2022-03-29 旭化成株式会社 Curable composition
JP7111872B2 (en) 2016-09-16 2022-08-02 旭化成株式会社 Curable composition

Also Published As

Publication number Publication date
CN103772995A (en) 2014-05-07
TW201428044A (en) 2014-07-16
KR20140049477A (en) 2014-04-25

Similar Documents

Publication Publication Date Title
TWI548699B (en) Thermally conductive silicone oxygen compositions and their hardened products
TWI538996B (en) Thermally conductive silicone grease composition
CN105400207B (en) Silicon-ketone composition
JP5418298B2 (en) Thermally conductive silicone composition and cured product thereof
US9321950B2 (en) Thermally conductive silicone grease composition
JP6042307B2 (en) Curable heat conductive resin composition, method for producing the composition, cured product of the composition, method for using the cured product, semiconductor device having a cured product of the composition, and method for producing the semiconductor device
JP2014080522A (en) Heat-conductive resin composition
JP2013091726A (en) Heat-conductive silicone composition
JP2014080546A (en) Silicone composition
JP6977786B2 (en) Silicone composition
JP2014037460A (en) Heat-conductive composition
TW202020052A (en) Addition curing silicone composition and method for manufacturing same
JP6264307B2 (en) Addition-curing silicone composition
JP2021176945A (en) Thermally conductive silicone composition and cured product thereof
JP6394559B2 (en) Thermally conductive silicone grease composition
KR20230015340A (en) High thermal conductivity silicone composition
JP2018178010A (en) Thermally conductive silicone grease composition and cured product thereof
WO2021241097A1 (en) Thermally conductive addition curing-type silicone composition
WO2020084899A1 (en) Addition-curable silicone composition
WO2019181713A1 (en) Silicone composition
JP7485634B2 (en) Thermally conductive silicone composition and cured product thereof
TWI534255B (en) Heat-conductive silicone grease composition
JP2022174600A (en) Thermally conductive silicone composition and cured product of the same
WO2024024454A1 (en) One-end-modified organopolysiloxane, production method therefor, surface treatment agent, and silicone composition
WO2023021954A1 (en) Thermally conductive silicone composition and thermally conductive silicone cured article

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141023

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150630

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20151208