JP2022174600A - Thermally conductive silicone composition and cured product of the same - Google Patents

Thermally conductive silicone composition and cured product of the same Download PDF

Info

Publication number
JP2022174600A
JP2022174600A JP2021080505A JP2021080505A JP2022174600A JP 2022174600 A JP2022174600 A JP 2022174600A JP 2021080505 A JP2021080505 A JP 2021080505A JP 2021080505 A JP2021080505 A JP 2021080505A JP 2022174600 A JP2022174600 A JP 2022174600A
Authority
JP
Japan
Prior art keywords
thermally conductive
group
conductive silicone
mass
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021080505A
Other languages
Japanese (ja)
Other versions
JP7485634B2 (en
Inventor
俊晴 森村
Toshiharu Morimura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2021080505A priority Critical patent/JP7485634B2/en
Priority claimed from JP2021080505A external-priority patent/JP7485634B2/en
Priority to PCT/JP2022/014213 priority patent/WO2022239519A1/en
Priority to TW111112987A priority patent/TW202311486A/en
Publication of JP2022174600A publication Critical patent/JP2022174600A/en
Application granted granted Critical
Publication of JP7485634B2 publication Critical patent/JP7485634B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/10Metal compounds
    • C08K3/11Compounds containing metals of Groups 4 to 10 or Groups 14 to 16 of the Periodic system
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes

Abstract

To provide: a thermally conductive silicone composition which has excellent compressibility, insulation properties, thermal conductivity and workability; and a cured product thereof.SOLUTION: A thermally conductive silicone composition contains: (A) an organopolysiloxane that has at least two alkenyl groups in each molecule thereof; (B) an organohydrogen polysiloxane that has at least two hydrogen atoms, each of which is directly bonded to a silicon atom, (C) a thermally conductive filler material comprising (C-1) a spherical alumina filler which has an average particle diameter of more than 65 μm and 135 μm or less, (C-2) a spherical alumina filler which has an average particle diameter of more than 30 μm and 65 μm or less, (C-3) a spherical alumina filler which has an average particle diameter of more than 4 μm and 30 μm or less, and (C-4) an amorphous alumina filler which has an average particle diameter of more than 0.4 μm and 4 μm or less; (D) a platinum group metal-based curing catalyst; and (E) an addition reaction control agent.SELECTED DRAWING: None

Description

本発明は、熱伝導性シリコーン組成物及びその硬化物に関する。 The present invention relates to a thermally conductive silicone composition and its cured product.

パーソナルコンピューター、デジタルビデオディスク、携帯電話等の電子機器に使用されるCPU、ドライバICやメモリー等のLSIチップは、高性能化・高速化・小型化・高集積化に伴い、それ自身が大量の熱を発生するようになり、その熱によるチップの温度上昇はチップの動作不良、破壊を引き起こす。そのため、動作中のチップの温度上昇を抑制するための多くの熱放散方法及びそれに使用する熱放散部材が提案されている。 LSI chips such as CPUs, driver ICs, and memories used in electronic devices such as personal computers, digital video discs, and mobile phones are becoming more sophisticated, faster, smaller, and more highly integrated. Heat is generated, and the temperature rise of the chip due to the heat causes malfunction and destruction of the chip. Therefore, many heat dissipation methods and heat dissipation members used therefor have been proposed to suppress the temperature rise of chips during operation.

従来、電子機器等においては、動作中のチップの温度上昇を抑えるために、アルミニウムや銅等の熱伝導率の高い金属板を用いたヒートシンクが使用されている。このヒートシンクは、そのチップが発生する熱を伝導し、その熱を外気との温度差によって表面から放出する。
チップから発生する熱をヒートシンクに効率よく伝えるために、ヒートシンクをチップに密着させる必要があるが、各チップの高さの違いや組み付け加工による公差があるため、柔軟性を有するシートや、グリースをチップとヒートシンクとの間に介装させ、これらの部材を介してチップからヒートシンクへの熱伝導を実現している。
2. Description of the Related Art Conventionally, in electronic equipment and the like, a heat sink using a metal plate with high thermal conductivity such as aluminum or copper is used in order to suppress temperature rise of chips during operation. The heat sink conducts the heat generated by the chip and dissipates the heat through the surface due to the temperature difference with the ambient air.
In order to efficiently transfer the heat generated from the chip to the heat sink, it is necessary to adhere the heat sink to the chip. However, due to differences in the height of each chip and tolerances due to assembly processing, it is necessary to use a flexible sheet or grease. It is interposed between the chip and the heat sink, and realizes heat conduction from the chip to the heat sink through these members.

シートはグリースに比べ、取り扱い性に優れており、熱伝導性シリコーンゴム等で形成された熱伝導性シート(熱伝導性シリコーンゴムシート)は様々な分野に用いられている。
例えば、シリコーンゴム等の合成ゴム100質量部に酸化ベリリウム、酸化アルミニウム、水和酸化アルミニウム、酸化マグネシウム、酸化亜鉛から選ばれる少なくとも1種以上の金属酸化物を配合した絶縁性組成物が開示されている(特許文献1)。
Sheets are easier to handle than grease, and thermally conductive sheets (thermally conductive silicone rubber sheets) made of thermally conductive silicone rubber or the like are used in various fields.
For example, an insulating composition is disclosed in which at least one metal oxide selected from beryllium oxide, aluminum oxide, aluminum oxide hydrate, magnesium oxide, and zinc oxide is blended with 100 parts by mass of synthetic rubber such as silicone rubber. (Patent Document 1).

一方、電子機器の高集積化が進み、装置内の集積回路素子の発熱量が増加したため、従来の冷却方法では不十分な場合がある。特に、モバイルノートパソコンやタブレットの場合、機器内部の空間が狭いため大きなヒートシンクや冷却ファンを取り付けることができない。更に、これらの機器では、プリント基板上に集積回路素子が搭載されており、基板の材質に熱伝導性の悪いガラス補強エポキシ樹脂やポリイミド樹脂が用いられているので、従来のように放熱絶縁シートを介して基板に熱を逃がすことができない。 On the other hand, as electronic devices become more highly integrated, the amount of heat generated by integrated circuit elements in the devices increases, so conventional cooling methods may not be sufficient. Especially in the case of mobile laptops and tablets, the space inside the device is narrow, so it is not possible to install a large heat sink or cooling fan. Furthermore, in these devices, integrated circuit elements are mounted on printed circuit boards, and glass-reinforced epoxy resins and polyimide resins, which have poor thermal conductivity, are used as the material for the boards. heat cannot escape to the substrate through

そこで、このような場合には、集積回路素子の近傍に自然冷却タイプあるいは強制冷却タイプの放熱部品を設置し、素子で発生した熱を放熱部品に伝える方式が用いられる。この方式で素子と放熱部品を直接接触させると、表面の凹凸のため熱の伝わりが悪くなる。更に、放熱絶縁シートを介して取り付けても放熱絶縁シートの柔軟性がやや劣るため、熱膨張により素子と基板との間に応力がかかり、破損するおそれがある。
また、各回路素子に放熱部品を取り付けるには、広いスペースが必要となり、機器の小型化が難しくなる。そこで、いくつかの素子を1つの放熱部品に組み合わせて冷却する方式が採られることもある。
Therefore, in such a case, a system is used in which a natural cooling type or forced cooling type heat radiating component is installed in the vicinity of the integrated circuit element, and the heat generated in the element is transferred to the heat radiating component. If the element and the heat dissipation component are brought into direct contact with each other using this method, the heat transfer will be poor due to the unevenness of the surface. Furthermore, even if the element is attached via the heat radiation insulating sheet, the flexibility of the heat radiation insulating sheet is slightly inferior, so that stress is applied between the element and the substrate due to thermal expansion, and there is a risk of damage.
Moreover, a large space is required to attach the heat dissipation component to each circuit element, which makes it difficult to miniaturize the device. Therefore, in some cases, a system is adopted in which several elements are combined into one heat radiating component for cooling.

そこで、素子ごとに高さが異なることにより生じる種々の隙間を埋めることができる低硬度の高熱伝導性材が必要になる。このような課題に対して、熱伝導性に優れ、柔軟性があり、種々の隙間に対応できる熱伝導性シートが要望される。
この場合、シリコーン樹脂に金属酸化物等の熱伝導性材料を混入したものを成形したシートで、強度を持たせたシリコーン樹脂層の上に、変形し易いシリコーン層が積層されたシートが開示されている(特許文献2)。また、熱伝導性充填材を含有し、アスカーC硬度が5~50であるシリコーンゴム層と、直径0.3mm以上の孔を有する多孔性補強材層を組み合わせた熱伝導性複合シートが開示されている(特許文献3)。また、可とう性の三次元網状体又はフォーム体の骨格格子表面を熱伝導性シリコーンゴムで被覆したシートも提案されている(特許文献4)。さらに、補強性を有したシートあるいはクロスを内蔵し、少なくとも一方の面が粘着性を有しているような、アスカーC硬度が5~50で、厚さ0.4mm以下の熱伝導性複合シリコーンシートが開示されている(特許文献5)。そして、付加反応型液状シリコーンゴムと熱伝導性絶縁性セラミック粉末を含有し、その硬化物のアスカーC硬度が25以下で熱抵抗が3.0℃/W以下である放熱スペーサーも開示されている(特許文献6)。
Therefore, there is a need for a low-hardness, high-thermal-conductivity material that can fill various gaps caused by the different heights of the elements. In order to solve such problems, there is a demand for a thermally conductive sheet that is excellent in thermal conductivity, flexible, and capable of coping with various gaps.
In this case, a sheet formed by mixing a thermally conductive material such as a metal oxide into a silicone resin is disclosed, in which an easily deformable silicone layer is laminated on a strong silicone resin layer. (Patent Document 2). Also disclosed is a thermally conductive composite sheet in which a silicone rubber layer containing a thermally conductive filler and having an Asker C hardness of 5 to 50 and a porous reinforcing material layer having pores with a diameter of 0.3 mm or more are combined. (Patent Document 3). Also proposed is a sheet in which the skeletal lattice surface of a flexible three-dimensional network or foam is coated with thermally conductive silicone rubber (Patent Document 4). Furthermore, a thermally conductive composite silicone having an Asker C hardness of 5 to 50 and a thickness of 0.4 mm or less, which contains a reinforcing sheet or cloth and has adhesiveness on at least one surface. A seat is disclosed (Patent Document 5). Also disclosed is a heat dissipating spacer containing an addition reaction type liquid silicone rubber and a thermally conductive insulating ceramic powder, the cured product of which has an Asker C hardness of 25 or less and a thermal resistance of 3.0° C./W or less. (Patent Document 6).

これら熱伝導性シリコーン硬化物は、絶縁性も要求されることが多いため、熱伝導性充填材として酸化アルミニウム(アルミナ)が用いられることが多い。一般的に、不定形のアルミナは球状のアルミナに比べ、熱伝導率を向上させる効果が高い。しかし、シリコーンに対する充填性が悪く、充填率を上げると材料粘度が上昇し、加工性が悪くなるという欠点がある。また、アルミナはモース硬度が9と非常に硬い。そのために、特に粒子径が10μm以上である不定形アルミナを用いた熱伝導性シリコーン組成物は、製造時に反応釜の内壁や撹拌羽根を削ってしまうという問題があった。それにより、熱伝導性シリコーン組成物に反応釜や撹拌羽根の成分が混入し、熱伝導性シリコーン組成物、及びこれを用いた硬化物の絶縁性が低下する。また、反応釜と撹拌羽のクリアランスが広がるため、撹拌効率が落ちてしまい、同条件で製造しても一定の品質が得られなくなる。また、それを防ぐためには部品を頻繁に交換する必要がある、というような問題があった。 Since these cured thermally conductive silicone products are often required to have insulating properties, aluminum oxide (alumina) is often used as a thermally conductive filler. In general, amorphous alumina is more effective in improving thermal conductivity than spherical alumina. However, it has a drawback that it has a poor filling property with silicone, and when the filling rate is increased, the viscosity of the material increases and the processability deteriorates. Alumina has a Mohs hardness of 9, which is very hard. For this reason, a thermally conductive silicone composition using amorphous alumina with a particle size of 10 μm or more has the problem that the inner wall of the reactor and the stirring blades are scraped during production. As a result, the components of the reaction vessel and stirring blades are mixed into the thermally conductive silicone composition, and the insulating properties of the thermally conductive silicone composition and the cured product using the same are lowered. In addition, since the clearance between the reactor and the stirring blades is widened, the stirring efficiency is lowered, and constant quality cannot be obtained even if the product is manufactured under the same conditions. Moreover, in order to prevent this, there is a problem that it is necessary to frequently replace the parts.

この問題を解決するために、球状アルミナ粉のみを使用する方法もあるが、高熱伝導化のためには、不定形アルミナに比べ、大量に充填する必要があり、組成物の粘度が上昇し、加工性が悪化する。また、相対的に組成物及びその硬化物におけるシリコーンの存在量が減少するため、硬度が上昇してしまい、圧縮性に劣るものになる。大粒径の球状アルミナを用いることで、充填量に対する熱伝導率向上効果を改善する方法もあるが、球状アルミナの粒子径が大きすぎると、プレス成形時に球状アルミナと樹脂の分離が発生し、シート端部がフィラーリッチ部となり脆化してしまう問題があった。この場合、シート成形における材料収率が大きく低下してしまう。
また、熱伝導率を上げるためには、一般的に熱伝導率の高い熱伝導性充填材、例えば窒化アルミニウムや窒化ホウ素等の熱伝導性充填材を使用する方法があるが、コストが高く、加工も難しい、というような問題があった。
また、シリコーン硬化物中のアルミナ粉の充填量が高くなると、高温で長時間使用した時に、硬化物の硬度が顕著に低下する傾向があり、振動が強いモジュール等、用途によっては復元性が不足することで密着不良が発生し、経時で熱抵抗が上昇する問題があった。
In order to solve this problem, there is a method of using only spherical alumina powder, but in order to achieve high thermal conductivity, it is necessary to fill a large amount compared to amorphous alumina powder, which increases the viscosity of the composition, Machinability deteriorates. In addition, since the amount of silicone present in the composition and its cured product is relatively reduced, the hardness increases and the compressibility becomes poor. There is also a method of improving the thermal conductivity improvement effect with respect to the filling amount by using spherical alumina with a large particle size. There is a problem that the edge of the sheet becomes a filler-rich portion and becomes embrittled. In this case, the material yield in sheet molding is greatly reduced.
In addition, in order to increase the thermal conductivity, there is generally a method of using a thermally conductive filler with a high thermal conductivity, such as a thermally conductive filler such as aluminum nitride or boron nitride, but the cost is high, There was a problem that processing was also difficult.
In addition, when the amount of alumina powder in the cured silicone product increases, the hardness of the cured product tends to decrease significantly when used at high temperatures for a long time. As a result, poor adhesion occurs, and there is a problem that thermal resistance increases over time.

特開昭47-032400号公報JP-A-47-032400 特開平02-196453号公報JP-A-02-196453 特開平07-266356号公報JP-A-07-266356 特開平08-238707号公報JP-A-08-238707 特開平09-001738号公報JP-A-09-001738 特開平09-296114号公報JP-A-09-296114

本発明は、上記事情に鑑みなされたもので、圧縮性、絶縁性、熱伝導性、加工性に優れた熱伝導性シリコーン組成物及びその硬化物を提供することを目的とする。特に、5.5W/m・K以上の熱伝導率を有し、熱伝導性シリコーン組成物及びその硬化物を提供することを目的とする。このような熱伝導性シリコーン組成物であれば、例えば電子機器内の発熱部品と放熱部品の間に設置されて放熱に用いられる熱伝導性樹脂成形体として好適に用いられる。 SUMMARY OF THE INVENTION It is an object of the present invention to provide a thermally conductive silicone composition excellent in compressibility, insulation, thermal conductivity and workability, and a cured product thereof. In particular, it has a thermal conductivity of 5.5 W/m·K or more, and an object thereof is to provide a thermally conductive silicone composition and a cured product thereof. Such a thermally conductive silicone composition can be suitably used as a thermally conductive resin molding that is placed between a heat-generating component and a heat-radiating component in an electronic device and used for heat radiation.

上記課題を解決するために、本発明では、熱伝導性シリコーン組成物であって、
(A)1分子中に少なくとも2個のアルケニル基を有するオルガノポリシロキサン:100質量部、
(B)ケイ素原子に直接結合した水素原子を少なくとも2個有するオルガノハイドロジェンポリシロキサン:ケイ素原子に直接結合した水素原子のモル数が前記(A)成分由来のアルケニル基のモル数の0.1~5.0倍量となる量、
(C)下記(C-1)~(C-4)成分からなる熱伝導性充填材:3,900~6,000質量部、
(C-1)平均粒径が65μmを超えて135μm以下である球状アルミナフィラー:1,400~3,000質量部、
(C-2)平均粒径が30μmを超えて65μm以下である球状アルミナフィラー:500~1,500質量部、
(C-3)平均粒径が4μmを超えて30μm以下である球状アルミナフィラー:300~900質量部、
(C-4)平均粒径が0.4μmを超えて4μm以下である不定形アルミナフィラー:1,000~1,900質量部、
(D)白金族金属系硬化触媒:前記(A)成分に対して白金族金属元素質量換算で0.1~2,000ppm、及び
(E)付加反応制御剤:0.01~2.0質量部、
を含むものである熱伝導性シリコーン組成物を提供する。
In order to solve the above problems, the present invention provides a thermally conductive silicone composition,
(A) an organopolysiloxane having at least two alkenyl groups in one molecule: 100 parts by mass;
(B) Organohydrogenpolysiloxane having at least two hydrogen atoms directly bonded to silicon atoms: the number of moles of hydrogen atoms directly bonded to silicon atoms is 0.1 of the number of moles of alkenyl groups derived from component (A) ~ 5.0 times the amount,
(C) a thermally conductive filler comprising the following components (C-1) to (C-4): 3,900 to 6,000 parts by mass;
(C-1) spherical alumina filler having an average particle size of more than 65 μm and 135 μm or less: 1,400 to 3,000 parts by mass;
(C-2) a spherical alumina filler having an average particle size of more than 30 μm and 65 μm or less: 500 to 1,500 parts by mass;
(C-3) spherical alumina filler having an average particle size of more than 4 μm and 30 μm or less: 300 to 900 parts by mass;
(C-4) Amorphous alumina filler having an average particle size of more than 0.4 μm and 4 μm or less: 1,000 to 1,900 parts by mass,
(D) platinum group metal-based curing catalyst: 0.1 to 2,000 ppm in terms of platinum group metal element mass with respect to component (A), and (E) addition reaction controller: 0.01 to 2.0 mass part,
A thermally conductive silicone composition is provided comprising:

このような熱伝導性シリコーン組成物であれば、圧縮性、絶縁性、熱伝導性、加工性に優れた熱伝導性シリコーン硬化物を与えるものとなる。 Such a thermally conductive silicone composition provides a cured thermally conductive silicone product excellent in compressibility, insulation, thermal conductivity and workability.

また、本発明では、23℃における粘度が2,000Pa・s以下のものであることが好ましい。 Further, in the present invention, the viscosity at 23° C. is preferably 2,000 Pa·s or less.

このような熱伝導シリコーン組成物であれば、成形性(加工性)に優れる。 Such a thermally conductive silicone composition is excellent in moldability (workability).

また、本発明では、更に、(F)成分として、
(F-1)下記一般式(1)で表されるアルコキシシラン化合物、及び
Si(OR4-a-b (1)
(式中、Rは独立に炭素原子数6~15のアルキル基であり、Rは独立に非置換又は置換の炭素原子数1~12の1価炭化水素基であり、Rは独立に炭素原子数1~6のアルキル基であり、aは1~3の整数、bは0~2の整数であり、但しa+bは1~3の整数である。)
(F-2)下記一般式(2)で表される分子鎖片末端がトリアルコキシシリル基で封鎖されたジメチルポリシロキサン、

Figure 2022174600000001
(式中、Rは独立に炭素原子数1~6のアルキル基であり、cは5~100の整数である。)
からなる群から選ばれる少なくとも1種を前記(A)成分の100質量部に対して0.01~300質量部を含むものであることが好ましい。 Further, in the present invention, as the component (F),
(F-1) an alkoxysilane compound represented by the following general formula (1), and R 1 a R 2 b Si(OR 3 ) 4-ab (1)
(wherein R 1 is independently an alkyl group having 6 to 15 carbon atoms, R 2 is independently an unsubstituted or substituted monovalent hydrocarbon group having 1 to 12 carbon atoms, and R 3 is independently is an alkyl group having 1 to 6 carbon atoms, a is an integer of 1 to 3, b is an integer of 0 to 2, provided that a+b is an integer of 1 to 3.)
(F-2) a dimethylpolysiloxane having one molecular chain end blocked with a trialkoxysilyl group represented by the following general formula (2);
Figure 2022174600000001
(Wherein, R 4 is independently an alkyl group having 1 to 6 carbon atoms, and c is an integer of 5 to 100.)
0.01 to 300 parts by mass of at least one selected from the group consisting of component (A) per 100 parts by mass of component (A).

このような熱伝導シリコーン組成物であれば、オイル分離を誘発しない。 Such thermally conductive silicone compositions do not induce oil separation.

また、本発明では、更に、(G)成分として、酸化セリウムを前記(A)成分の100質量部に対して6.5~25.0質量部を含有するものであることが好ましい。 Further, in the present invention, it is preferable that 6.5 to 25.0 parts by mass of cerium oxide is contained as component (G) with respect to 100 parts by mass of component (A).

このような熱伝導シリコーン組成物であれば、耐熱性が向上する。 Such a thermally conductive silicone composition has improved heat resistance.

また、本発明では、上記熱伝導性シリコーン組成物の硬化物である熱伝導性シリコーン硬化物を提供する。 The present invention also provides a cured thermally conductive silicone product, which is a cured product of the above thermally conductive silicone composition.

このような熱伝導性シリコーン硬化物であれば、圧縮性、絶縁性、熱伝導性、加工性に優れたものとなる。 Such a thermally conductive silicone cured product is excellent in compressibility, insulation, thermal conductivity and workability.

また、本発明では、上記熱伝導性シリコーン硬化物であって、アスカーC硬度計で測定した硬さにおいて、150℃で500時間保管後の硬さが、保管前の硬さに対して、-5ポイント以上、40ポイント以下のものであることが好ましい。 In addition, in the present invention, the hardness of the heat-conductive silicone cured product measured with an Asker C hardness tester after storage at 150° C. for 500 hours is - A score of 5 points or more and 40 points or less is preferable.

このような熱伝導性シリコーン硬化物であれば、高温で長時間使用しても高度の低下が小さいものとなる。 With such a cured thermally conductive silicone product, even if it is used at a high temperature for a long time, the degree of deterioration is small.

また、本発明では、23℃における熱伝導率が、5.5W/m・K以上のものであることが好ましい。 Further, in the present invention, the thermal conductivity at 23° C. is preferably 5.5 W/m·K or more.

このような熱伝導性シリコーン硬化物であれば、熱伝導性に優れる。 Such a cured thermally conductive silicone has excellent thermal conductivity.

また、本発明では、1mm厚における絶縁破壊電圧が10kV/mm以上のものであることが好ましい。 Moreover, in the present invention, it is preferable that the dielectric breakdown voltage at a thickness of 1 mm is 10 kV/mm or more.

このような熱伝導性シリコーン硬化物であれば、使用時に安定的に絶縁を確保することができる。 With such a cured thermally conductive silicone, it is possible to stably secure insulation during use.

また、本発明では、形状がシート状のものであることができる。 Further, in the present invention, the shape can be sheet-like.

このような熱伝導性シリコーン硬化物であれば、取り扱い性に優れる。 Such a thermally conductive silicone cured product is excellent in handleability.

本発明の熱伝導性シリコーン組成物は、平均粒径が65μmを超えて135μm以下である球状アルミナフィラー、平均粒径が30μmを超えて65μm以下である球状アルミナフィラー、平均粒径が4μmを超えて30μm以下である球状アルミナフィラー及び平均粒径が0.4μmを超えて4μm以下である不定形アルミナフィラーを特定の配合量で併用することで、粒径が小さい球状アルミナの欠点を大粒径球状アルミナが補い、大粒径球状アルミナの欠点を粒径が小さい球状アルミナが補うことで、圧縮性、絶縁性、熱伝導性、加工性に優れた、特に5.5W/m・K以上の熱伝導率を有する熱伝導性シリコーン硬化物を与える熱伝導性シリコーン組成物を提供することができる。
また、酸化セリウムの添加により、高温保存時における硬化物の硬度低下を抑制した熱伝導性シリコーン硬化物を与える熱伝導性シリコーン組成物を提供することができる。
The thermally conductive silicone composition of the present invention comprises a spherical alumina filler having an average particle size of more than 65 μm and not more than 135 μm, a spherical alumina filler having an average particle size of more than 30 μm and not more than 65 μm, and a spherical alumina filler having an average particle size of more than 4 μm. By using together a spherical alumina filler having an average particle size of 30 μm or less and an amorphous alumina filler having an average particle size of more than 0.4 μm and 4 μm or less in a specific blending amount, the drawback of spherical alumina having a small particle size is replaced by a large particle size. Spherical alumina compensates for the shortcomings of large particle size spherical alumina with small particle size spherical alumina. It is possible to provide a thermally conductive silicone composition that gives a cured thermally conductive silicone product having thermal conductivity.
Further, by adding cerium oxide, it is possible to provide a thermally conductive silicone composition that gives a thermally conductive silicone cured product in which the decrease in hardness of the cured product is suppressed when stored at high temperatures.

上述のように、圧縮性、絶縁性、熱伝導性、加工性に優れた熱伝導性シリコーン組成物及び硬化物の開発が求められていた。 As described above, there has been a demand for the development of thermally conductive silicone compositions and cured products that are excellent in compressibility, insulation, thermal conductivity, and workability.

本発明者らは、上記目的を達成するため鋭意検討を行った結果、平均粒径が0.4を超え65μm以下の球状アルミナ及び不定形アルミナと、平均粒径が65を超え135μm以下の球状アルミナとを特定割合で併用することで上記課題を解決することができることを見出した。即ち、比表面積が小さい平均粒径が65を超え135μm以下の球状アルミナを特定の配合量とすることで、効果的に熱伝導性を向上させることが可能であり、かつ粘度が低く加工性に優れたシリコーン組成物及びその硬化物を提供できる。
また、30μm以下の平均粒径を有する球状アルミナ及び不定形アルミナを併用することにより、組成物の流動性が向上し、加工性が改善する。更に平均粒径が4μmを超えた粒子には球状アルミナを使用するため、反応釜や撹拌羽の磨耗が抑えられ、絶縁性が向上する。
As a result of intensive studies to achieve the above object, the present inventors have found that spherical alumina and amorphous alumina having an average particle size of more than 0.4 to 65 μm and spherical alumina having an average particle size of more than 65 to 135 μm and not more than 135 μm The inventors have found that the above problems can be solved by using together with alumina in a specific ratio. That is, by setting a specific blending amount of spherical alumina having a small specific surface area and an average particle size of more than 65 and 135 μm or less, it is possible to effectively improve the thermal conductivity, and the viscosity is low and workability is improved. An excellent silicone composition and its cured product can be provided.
Further, by using both spherical alumina and amorphous alumina having an average particle size of 30 μm or less, the fluidity of the composition is improved and the workability is improved. Furthermore, since spherical alumina is used for particles having an average particle diameter exceeding 4 μm, abrasion of the reactor and stirring blades is suppressed, and insulation is improved.

つまり、粒径が小さい球状アルミナ及び不定形アルミナの欠点を大粒径球状アルミナが補い、大粒径球状アルミナの欠点を粒径が小さい球状アルミナ及び不定形アルミナが補うことで、圧縮性、絶縁性、熱伝導性、加工性に優れた、特に5.5W/m・K以上の熱伝導率を有するコストの低い熱伝導性シリコーン組成物及び硬化物を与えることができることを見出した。 In other words, the drawbacks of the spherical alumina with a small particle size and the amorphous alumina are compensated for by the spherical alumina with a large particle size, and the drawbacks of the spherical alumina with a large particle size are compensated by the spherical alumina with a small particle size and the amorphous alumina, thereby improving compressibility and insulation. It has been found that a low-cost thermally conductive silicone composition and a cured product having excellent heat resistance, thermal conductivity, and workability, particularly having a thermal conductivity of 5.5 W/m·K or more can be obtained.

更に、上記熱伝導性シリコーン組成物に酸化セリウムを添加することにより、高温保存時における硬化物の硬度低下を抑制できることも見出した。 Furthermore, the inventors have also found that the addition of cerium oxide to the thermally conductive silicone composition suppresses a decrease in the hardness of the cured product during storage at high temperature.

即ち、本発明は、熱伝導性シリコーン組成物であって、
(A)1分子中に少なくとも2個のアルケニル基を有するオルガノポリシロキサン:100質量部、
(B)ケイ素原子に直接結合した水素原子を少なくとも2個有するオルガノハイドロジェンポリシロキサン:ケイ素原子に直接結合した水素原子のモル数が前記(A)成分由来のアルケニル基のモル数の0.1~5.0倍量となる量、
(C)下記(C-1)~(C-4)成分からなる熱伝導性充填材:3,900~6,000質量部、
(C-1)平均粒径が65μmを超えて135μm以下である球状アルミナフィラー:1,400~3,000質量部、
(C-2)平均粒径が30μmを超えて65μm以下である球状アルミナフィラー:500~1,500質量部、
(C-3)平均粒径が4μmを超えて30μm以下である球状アルミナフィラー:300~900質量部、
(C-4)平均粒径が0.4μmを超えて4μm以下である不定形アルミナフィラー:1,000~1,900質量部、
(D)白金族金属系硬化触媒:前記(A)成分に対して白金族金属元素質量換算で0.1~2,000ppm、及び
(E)付加反応制御剤:0.01~2.0質量部、
を含むものである熱伝導性シリコーン組成物である。
That is, the present invention is a thermally conductive silicone composition,
(A) an organopolysiloxane having at least two alkenyl groups in one molecule: 100 parts by mass;
(B) Organohydrogenpolysiloxane having at least two hydrogen atoms directly bonded to silicon atoms: the number of moles of hydrogen atoms directly bonded to silicon atoms is 0.1 of the number of moles of alkenyl groups derived from component (A) ~ 5.0 times the amount,
(C) a thermally conductive filler comprising the following components (C-1) to (C-4): 3,900 to 6,000 parts by mass;
(C-1) spherical alumina filler having an average particle size of more than 65 μm and 135 μm or less: 1,400 to 3,000 parts by mass;
(C-2) a spherical alumina filler having an average particle size of more than 30 μm and 65 μm or less: 500 to 1,500 parts by mass;
(C-3) spherical alumina filler having an average particle size of more than 4 μm and 30 μm or less: 300 to 900 parts by mass;
(C-4) Amorphous alumina filler having an average particle size of more than 0.4 μm and 4 μm or less: 1,000 to 1,900 parts by mass,
(D) platinum group metal-based curing catalyst: 0.1 to 2,000 ppm in terms of platinum group metal element mass with respect to component (A), and (E) addition reaction controller: 0.01 to 2.0 mass part,
A thermally conductive silicone composition comprising

以下、本発明について詳細に説明するが、本発明はこれらに限定されるものではない。 Although the present invention will be described in detail below, the present invention is not limited thereto.

本発明の熱伝導性シリコーン組成物は、
(A)1分子中に少なくとも2個のアルケニル基を有するオルガノポリシロキサン、
(B)ケイ素原子に直接結合した水素原子を少なくとも2個有するオルガノハイドロジェンポリシロキサン、
(C)下記(C-1)~(C-4)成分からなる熱伝導性充填材、
(C-1)平均粒径が65μmを超えて135μm以下である球状アルミナフィラー、
(C-2)平均粒径が30μmを超えて65μm以下である球状アルミナフィラー、
(C-3)平均粒径が4μmを超えて30μm以下である球状アルミナフィラー、
(C-4)平均粒径が0.4μmを超えて4μm以下である不定形アルミナフィラー、
(D)白金族金属系硬化触媒、
(E)付加反応制御剤、
を必須成分として含有する。また、この他に、(F)表面処理剤、(G)酸化セリウム、(H)オルガノポリシロキサン等の成分を含むことができる。以下、各成分について詳述する。
The thermally conductive silicone composition of the present invention is
(A) an organopolysiloxane having at least two alkenyl groups per molecule;
(B) an organohydrogenpolysiloxane having at least two hydrogen atoms directly bonded to silicon atoms;
(C) a thermally conductive filler comprising the following components (C-1) to (C-4);
(C-1) a spherical alumina filler having an average particle size of more than 65 μm and 135 μm or less;
(C-2) a spherical alumina filler having an average particle size of more than 30 μm and 65 μm or less;
(C-3) a spherical alumina filler having an average particle size of more than 4 μm and 30 μm or less;
(C-4) an amorphous alumina filler having an average particle size of more than 0.4 μm and 4 μm or less;
(D) a platinum group metal-based curing catalyst;
(E) an addition reaction control agent,
as an essential ingredient. In addition, components such as (F) a surface treatment agent, (G) cerium oxide, and (H) organopolysiloxane can be included. Each component will be described in detail below.

[(A)アルケニル基を有するオルガノポリシロキサン]
(A)成分である1分子中に少なくとも2個のアルケニル基を有するオルガノポリシロキサンは、ケイ素原子に結合したアルケニル基を1分子中に2個以上有するオルガノポリシロキサンであり、本発明の熱伝導性シリコーン組成物の主剤となるものである。通常は主鎖部分が基本的にジオルガノシロキサン単位の繰り返しからなるのが一般的であるが、これは分子構造の一部に分枝状の構造を含んだものであってもよく、また環状体であってもよいが、硬化物の機械的強度等、物性の点から直鎖状のジオルガノポリシロキサンが好ましい。
[(A) Organopolysiloxane having an alkenyl group]
The organopolysiloxane having at least two alkenyl groups in one molecule, which is the component (A), is an organopolysiloxane having two or more silicon-bonded alkenyl groups in one molecule, and is an organopolysiloxane having two or more silicon-bonded alkenyl groups in one molecule. It is the main ingredient of the silicone composition. Generally, the main chain basically consists of repeating diorganosiloxane units, but this may include a branched structure as part of the molecular structure, or a cyclic structure. Although it may be a solid, linear diorganopolysiloxane is preferable from the viewpoint of physical properties such as mechanical strength of the cured product.

ケイ素原子に結合するアルケニル基以外の官能基としては、以下に例示する1価炭化水素基が挙げられる。例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert-ブチル基、ペンチル基、ネオペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ドデシル基等のアルキル基;シクロペンチル基、シクロヘキシル基、シクロヘプチル基等のシクロアルキル基;フェニル基、トリル基、キシリル基、ナフチル基、ビフェニリル基等のアリール基;ベンジル基、フェニルエチル基、フェニルプロピル基、メチルベンジル基等のアラルキル基等が挙げられる。これらの1価炭化水素基の中で、好ましくは炭素原子数が1~10、より好ましくは炭素原子数が1~6のものである。中でも、メチル基、エチル基、プロピル基等の炭素原子数1~3のアルキル基、及びフェニル基が好適に用いられる。また、ケイ素原子に結合したアルケニル基以外の官能基は全てが同一であることに限定するものではない。 Examples of functional groups other than alkenyl groups bonded to silicon atoms include monovalent hydrocarbon groups exemplified below. For example, methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, tert-butyl group, pentyl group, neopentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group, dodecyl group, etc. Alkyl group; cycloalkyl group such as cyclopentyl group, cyclohexyl group, cycloheptyl group; aryl group such as phenyl group, tolyl group, xylyl group, naphthyl group, biphenylyl group; benzyl group, phenylethyl group, phenylpropyl group, methylbenzyl and aralkyl groups such as groups. Among these monovalent hydrocarbon groups, those having 1 to 10 carbon atoms are preferred, and those having 1 to 6 carbon atoms are more preferred. Among them, alkyl groups having 1 to 3 carbon atoms such as methyl group, ethyl group and propyl group, and phenyl group are preferably used. Moreover, the functional groups other than the alkenyl groups bonded to the silicon atoms are not limited to all being the same.

また、アルケニル基としては、例えば、ビニル基、アリル基、プロペニル基、イソプロペニル基、ブテニル基、ヘキセニル基、シクロヘキセニル基等の通常炭素原子数が2~8程度のものが挙げられ、中でもビニル基、アリル基等の低級アルケニル基が好ましく、特に好ましくはビニル基である。なお、アルケニル基は、分子中に2個以上存在するが、得られる硬化物の柔軟性がよいものとするため、分子鎖末端のケイ素原子にのみ結合して存在することが好ましい。 Examples of the alkenyl group include those having usually about 2 to 8 carbon atoms such as vinyl group, allyl group, propenyl group, isopropenyl group, butenyl group, hexenyl group and cyclohexenyl group. A lower alkenyl group such as an allyl group is preferred, and a vinyl group is particularly preferred. Although two or more alkenyl groups are present in the molecule, it is preferable that the alkenyl groups are present bonded only to the silicon atoms at the ends of the molecular chains in order to improve the flexibility of the resulting cured product.

この1分子中に少なくとも2個のアルケニル基を有するオルガノポリシロキサンの23℃における動粘度は、通常、10~100,000mm/s、特に好ましくは500~50,000mm/sの範囲である。前記動粘度がこの範囲内であれば、得られる組成物の保存安定性が悪くならず、伸展性が悪くならない。なお、本明細書において、動粘度はJIS Z 8803:2011に記載の方法でキャノン・フェンスケ型粘度計を用いて23℃で測定した場合の値である。 The kinematic viscosity at 23° C. of this organopolysiloxane having at least two alkenyl groups in one molecule is usually in the range of 10 to 100,000 mm 2 /s, particularly preferably in the range of 500 to 50,000 mm 2 /s. . When the kinematic viscosity is within this range, the storage stability of the obtained composition is not deteriorated, and the extensibility is not deteriorated. In this specification, kinematic viscosity is a value measured at 23° C. using a Canon-Fenske viscometer according to the method described in JIS Z 8803:2011.

この(A)成分の1分子中に少なくとも2個のアルケニル基を有するオルガノポリシロキサンは、1種単独でも、動粘度が異なる2種以上を組み合わせて用いてもよい。 The organopolysiloxane having at least two alkenyl groups in one molecule of component (A) may be used singly or in combination of two or more having different kinematic viscosities.

[(B)オルガノハイドロジェンポリシロキサン]
(B)成分のオルガノハイドロジェンポリシロキサンは、ケイ素原子に直接結合した水素原子を少なくとも2個有するオルガノハイドロジェンポリシロキサンである。即ち、1分子中に少なくとも2個以上、好ましくは2~100個のケイ素原子に直接結合する水素原子(ヒドロシリル基)を有するオルガノハイドロジェンポリシロキサンであり、(A)成分の架橋剤として作用する成分である。即ち、(B)成分中のヒドロシリル基と(A)成分中のアルケニル基とが、後述する(D)成分の白金族金属系硬化触媒により促進されるヒドロシリル化反応により付加して、架橋構造を有する3次元網目構造を与える。なお、ヒドロシリル基の数が2個未満の場合、硬化しない。
[(B) Organohydrogenpolysiloxane]
The organohydrogenpolysiloxane of component (B) is an organohydrogenpolysiloxane having at least two hydrogen atoms directly bonded to silicon atoms. That is, it is an organohydrogenpolysiloxane having at least two, preferably 2 to 100, hydrogen atoms (hydrosilyl groups) directly bonded to silicon atoms in one molecule, and acts as a cross-linking agent for component (A). is an ingredient. That is, the hydrosilyl groups in the component (B) and the alkenyl groups in the component (A) are added by a hydrosilylation reaction promoted by the platinum group metal-based curing catalyst of the component (D), which will be described later, to form a crosslinked structure. gives a three-dimensional network structure with In addition, when the number of hydrosilyl groups is less than 2, it does not cure.

ケイ素原子に直接結合した水素原子を少なくとも2個有するオルガノハイドロジェンポリシロキサンとしては、下記平均構造式(3)で示されるものが用いられるが、これに限定されるものではない。

Figure 2022174600000002
(式中、Rは独立に水素原子、又は炭素数1~12のアルキル基、炭素数6~12のアリール基、及び炭素数7~12のアラルキル基から選ばれる1価炭化水素基である。ただし、1分子中の2個以上、好ましくは2~10個のRは水素原子である。また、eは1以上の整数、好ましくは10~200の整数である。) As the organohydrogenpolysiloxane having at least two hydrogen atoms directly bonded to silicon atoms, those represented by the following average structural formula (3) are used, but are not limited thereto.
Figure 2022174600000002
(wherein R 5 is independently a hydrogen atom or a monovalent hydrocarbon group selected from an alkyl group having 1 to 12 carbon atoms, an aryl group having 6 to 12 carbon atoms, and an aralkyl group having 7 to 12 carbon atoms. However, 2 or more, preferably 2 to 10, R 5 in one molecule are hydrogen atoms, and e is an integer of 1 or more, preferably 10 to 200.)

式(3)中、Rは独立に水素原子、又は炭素数1~12のアルキル基、炭素数6~12のアリール基、及び炭素数7~12のアラルキル基から選ばれる1価炭化水素基である。Rの水素原子以外の1価炭化水素基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert-ブチル基、ペンチル基、ネオペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ドデシル基等のアルキル基;シクロペンチル基、シクロヘキシル基、シクロヘプチル基等のシクロアルキル基;フェニル基、トリル基、キシリル基、ナフチル基、ビフェニリル基等のアリール基;ベンジル基、フェニルエチル基、フェニルプロピル基、メチルベンジル基等のアラルキル基が挙げられる。これらの1価炭化水素基の中で、好ましくは炭素原子数が1~10、特に好ましくは炭素原子数が1~6のものであり、中でも、好ましくはメチル基、エチル基、プロピル基等の炭素原子数1~3のアルキル基、及びフェニル基が好適に用いられる。また、Rは全てが同一であることに限定するものではない。また、eは1以上の整数、好ましくは10~200の整数である。 In formula (3), R 5 is independently a hydrogen atom or a monovalent hydrocarbon group selected from an alkyl group having 1 to 12 carbon atoms, an aryl group having 6 to 12 carbon atoms, and an aralkyl group having 7 to 12 carbon atoms. is. Examples of monovalent hydrocarbon groups other than hydrogen atoms for R 5 include methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, tert-butyl group, pentyl group, neopentyl group, hexyl group and heptyl group. cycloalkyl groups such as cyclopentyl, cyclohexyl and cycloheptyl groups; aryl groups such as phenyl, tolyl, xylyl, naphthyl and biphenylyl groups; Group; aralkyl groups such as a benzyl group, a phenylethyl group, a phenylpropyl group, and a methylbenzyl group. Among these monovalent hydrocarbon groups, those having 1 to 10 carbon atoms are preferred, and those having 1 to 6 carbon atoms are particularly preferred. An alkyl group having 1 to 3 carbon atoms and a phenyl group are preferably used. Also, R5 is not limited to being the same . Also, e is an integer of 1 or more, preferably an integer of 10-200.

(B)成分の添加量は、(B)成分由来のヒドロシリル基が(A)成分由来のアルケニル基1モルに対して0.1~5.0モルとなる量、即ちケイ素原子に直接結合した水素原子のモル数が前記(A)成分由来のアルケニル基のモル数の0.1~5.0倍量となる量であり、好ましくは0.3~2.0モルとなる量、更に好ましくは0.5~1.0モルとなる量である。(B)成分由来のSi-H基の量が(A)成分由来のアルケニル基1モルに対して0.1モル未満であると硬化しない、又は硬化物の強度が不十分で成形体としての形状を保持できず取り扱えない場合がある。また5.0モルを超えると硬化物の柔軟性がなくなり、硬化物が脆くなる。 The amount of component (B) to be added is such that the hydrosilyl groups derived from component (B) are 0.1 to 5.0 mol per 1 mol of alkenyl groups derived from component (A), that is, they are directly bonded to silicon atoms. The amount is such that the number of moles of hydrogen atoms is 0.1 to 5.0 times the number of moles of alkenyl groups derived from component (A), preferably 0.3 to 2.0 moles, more preferably 0.3 to 2.0 times. is an amount that is 0.5 to 1.0 mol. If the amount of Si—H groups derived from the component (B) is less than 0.1 mol with respect to 1 mol of the alkenyl group derived from the component (A), it will not be cured, or the strength of the cured product will be insufficient and the molding will not be possible. It may not be able to hold its shape and may not be handled. On the other hand, if it exceeds 5.0 mol, the cured product loses flexibility and becomes brittle.

[(C)熱伝導性充填材]
(C)成分である熱伝導性充填材は、下記(C-1)~(C-4)成分からなるものである。
(C-1)平均粒径が65μmを超えて135μm以下である球状アルミナフィラー、
(C-2)平均粒径が30μmを超えて65μm以下である球状アルミナフィラー、
(C-3)平均粒径が4μmを超えて30μm以下である球状アルミナフィラー、
(C-4)平均粒径が0.4μmを超えて4μm以下である不定形アルミナフィラー、
なお、本発明において、上記平均粒径は、日機装(株)製の粒度分析計であるマイクロトラックMT3300EXにより、レーザ回折・散乱法にて測定した体積基準の累積平均粒径(メディアン径)の値である。
[(C) Thermally conductive filler]
The thermally conductive filler, which is the component (C), consists of the following components (C-1) to (C-4).
(C-1) a spherical alumina filler having an average particle size of more than 65 μm and 135 μm or less;
(C-2) a spherical alumina filler having an average particle size of more than 30 μm and 65 μm or less;
(C-3) a spherical alumina filler having an average particle size of more than 4 μm and 30 μm or less;
(C-4) an amorphous alumina filler having an average particle size of more than 0.4 μm and 4 μm or less;
In the present invention, the average particle size is a volume-based cumulative average particle size (median diameter) value measured by a laser diffraction/scattering method using Microtrac MT3300EX, a particle size analyzer manufactured by Nikkiso Co., Ltd. is.

(C-1)成分の球状アルミナフィラーは、熱伝導率を優位に向上させることができる。球状アルミナフィラーの平均粒径は65μmを超えて135μm以下であり、70~120μmであることが好ましい。(C-1)成分の球状アルミナフィラーの平均粒径が135μmより大きいと、反応釜や撹拌羽の磨耗が顕著となり、組成物の絶縁性が低下する。(C-1)成分の球状アルミナとしては1種又は2種以上を複合して用いてもよい。2種以上を複合して用いる場合は、それぞれ上記平均粒径の範囲を満たせばよい。 The (C-1) component spherical alumina filler can significantly improve the thermal conductivity. The average particle size of the spherical alumina filler is more than 65 μm and 135 μm or less, preferably 70 to 120 μm. If the average particle size of the spherical alumina filler of component (C-1) is larger than 135 μm, the abrasion of the reaction vessel and the stirring blades becomes remarkable, and the insulating properties of the composition deteriorate. As the spherical alumina of component (C-1), one kind or a combination of two or more kinds may be used. When two or more kinds are used in combination, each of them should satisfy the above average particle size range.

(C-2)成分及び(C-3)成分の球状アルミナフィラーは、組成物の熱伝導率を向上させるとともに、不定形アルミナフィラーと反応釜や撹拌羽の接触を抑制し、磨耗を抑えるバリア効果を提供する。平均粒径については、(C-2)成分は30μmを超えて65μm以下であり、35~60μmであることが好ましく、(C-3)成分は4μmを超えて30μm以下であり、7~25μmであることが好ましい。球状アルミナフィラーの平均粒径が4μm以下であると、バリア効果が低下し、不定形粒子による反応釜や撹拌羽の磨耗が顕著となる。(C-2)成分及び(C-3)成分の球状アルミナとしては1種又は2種以上を複合して用いてもよい。2種以上を複合して用いる場合は、それぞれ上記平均粒径の範囲を満たせばよい。 The spherical alumina fillers of components (C-2) and (C-3) improve the thermal conductivity of the composition, suppress contact between the amorphous alumina filler and the reaction vessel and stirring blades, and are a barrier that suppresses wear. provide an effect. Regarding the average particle diameter, the component (C-2) is more than 30 μm and 65 μm or less, preferably 35 to 60 μm, and the component (C-3) is more than 4 μm and 30 μm or less, and is 7 to 25 μm. is preferably If the average particle diameter of the spherical alumina filler is 4 μm or less, the barrier effect is lowered, and the wear of the reaction vessel and stirring blades due to irregularly shaped particles becomes significant. As the spherical alumina of component (C-2) and component (C-3), one kind or a combination of two or more kinds may be used. When two or more kinds are used in combination, each of them should satisfy the above average particle size range.

(C-4)成分の不定形アルミナフィラーは、組成物の熱伝導率を向上させる役割も担うが、その主な役割は組成物の粘度調整、滑らかさ向上、充填性向上である。(C-4)成分の平均粒径は0.4μmを超えて4μm以下であり、0.6~3μmであることが、上記した特性発現のためにより好ましい。 The (C-4) component, the amorphous alumina filler, also plays a role in improving the thermal conductivity of the composition, but its main role is to adjust the viscosity of the composition, improve smoothness, and improve fillability. The average particle size of the component (C-4) is more than 0.4 μm and 4 μm or less, and more preferably 0.6 to 3 μm in order to develop the properties described above.

(C-1)成分の配合量は、(A)成分100質量部に対して1,400~3,000質量部であり、好ましくは1,800~2,500質量部である。(C-1)成分の配合量が少なすぎると熱伝導率の向上が困難であり、多すぎると反応釜や撹拌羽の磨耗が顕著となり、組成物の絶縁性が低下する。 Component (C-1) is added in an amount of 1,400 to 3,000 parts by mass, preferably 1,800 to 2,500 parts by mass, per 100 parts by mass of component (A). If the amount of component (C-1) is too small, it will be difficult to improve the thermal conductivity.

(C-2)成分の配合量は、(A)成分100質量部に対して500~1,500質量部であり、好ましくは600~1,300質量部である。(C-2)成分の配合量が少なすぎると不定形粒子による反応釜や撹拌羽の磨耗が顕著となり、多すぎると組成物の流動性が失われ、成形性が損なわれる。 The amount of component (C-2) to be blended is 500 to 1,500 parts by mass, preferably 600 to 1,300 parts by mass, per 100 parts by mass of component (A). If the amount of component (C-2) is too small, wear of the reaction vessel and stirring blades due to irregularly shaped particles will be significant.

(C-3)成分の配合量は、(A)成分100質量部に対し300~900質量部であり、好ましくは500~800質量部である。(C-3)成分の配合量が少なすぎると不定形粒子による反応釜や撹拌羽の磨耗が顕著となり、多すぎると組成物の流動性が失われ、成形性が損なわれる。 Component (C-3) is added in an amount of 300 to 900 parts by mass, preferably 500 to 800 parts by mass, per 100 parts by mass of component (A). If the amount of the component (C-3) is too small, wear of the reaction vessel and stirring blades due to the irregularly shaped particles will be remarkable, and if it is too large, the fluidity of the composition will be lost and the moldability will be impaired.

(C-4)成分の配合量は、(A)成分100質量部に対して1,000~1,900質量部であり、好ましくは1,100~1,500質量部である。(C-4)成分の配合量が少なすぎると組成物の流動性が失われ、成形性が損なわれる。(C-4)成分の配合量が多すぎると反応釜や撹拌羽の磨耗が顕著となる。 Component (C-4) is added in an amount of 1,000 to 1,900 parts by mass, preferably 1,100 to 1,500 parts by mass, per 100 parts by mass of component (A). If the amount of component (C-4) is too small, the composition loses its fluidity and its moldability is impaired. If the blending amount of component (C-4) is too large, the abrasion of the reaction vessel and the stirring blades becomes remarkable.

更に、(C)成分の配合量(即ち、上記(C-1)~(C-4)成分の合計配合量)は、(A)成分100質量部に対して3,900~6,000質量部であり、好ましくは4,000~5,500質量部である。この配合量が3,900質量部未満の場合には、得られる組成物の熱伝導率が悪くなり、6,000質量部を超える場合には、組成物の流動性が失われ、成形性が損なわれる。 Furthermore, the blending amount of component (C) (that is, the total blending amount of components (C-1) to (C-4) above) is 3,900 to 6,000 mass parts per 100 parts by mass of component (A). parts, preferably 4,000 to 5,500 parts by mass. If this amount is less than 3,900 parts by mass, the thermal conductivity of the resulting composition will be poor, and if it exceeds 6,000 parts by mass, the fluidity of the composition will be lost and moldability will be poor. undermined.

上記配合割合で(C)成分を用いることで、上記した本発明の効果がより有利にかつ確実に達成できる。 By using the component (C) in the above mixing ratio, the effects of the present invention described above can be achieved more advantageously and reliably.

[(D)白金族金属系硬化触媒]
(D)成分の白金族金属系硬化触媒は、(A)成分由来のアルケニル基と、(B)成分由来のヒドロシリル基の付加反応を促進するための触媒であり、ヒドロシリル化反応に用いられる触媒として周知の触媒が挙げられる。その具体例としては、例えば、白金(白金黒を含む)、ロジウム、パラジウム等の白金族金属単体、HPtCl・nHO、HPtCl・nHO、NaHPtCl・nHO、KaHPtCl・nHO、NaPtCl・nHO、KPtCl・nHO、PtCl・nHO、PtCl、NaHPtCl・nHO(但し、式中、nは0~6の整数であり、好ましくは0又は6である。)等の塩化白金、塩化白金酸及び塩化白金酸塩、アルコール変性塩化白金酸(米国特許第3,220,972号明細書参照)、塩化白金酸とオレフィンとのコンプレックス(米国特許第3,159,601号明細書、同第3,159,662号明細書、同第3,775,452号明細書参照)、白金黒、パラジウム等の白金族金属をアルミナ、シリカ、カーボン等の担体に担持させたもの、ロジウム-オレフィンコンプレックス、クロロトリス(トリフェニルフォスフィン)ロジウム(ウィルキンソン触媒)、塩化白金、塩化白金酸又は塩化白金酸塩とビニル基含有シロキサン、特にビニル基含有環状シロキサンとのコンプレックス等が挙げられる。
[(D) Platinum Group Metal Curing Catalyst]
The platinum group metal-based curing catalyst of the component (D) is a catalyst for promoting the addition reaction between the alkenyl group derived from the component (A) and the hydrosilyl group derived from the component (B), and is used for the hydrosilylation reaction. well-known catalysts. Specific examples thereof include, for example, platinum (including platinum black), rhodium, palladium, and other platinum group metal simple substances, H 2 PtCl 4 ·nH 2 O, H 2 PtCl 6 ·nH 2 O, NaHPtCl 6 ·nH 2 O , KaHPtCl6.nH2O , Na2PtCl6.nH2O , K2PtCl4.nH2O , PtCl4.nH2O , PtCl2 , Na2HPtCl4.nH2O ( wherein , n is an integer of 0 to 6, preferably 0 or 6.), platinum chloride, chloroplatinic acid and chloroplatinate, alcohol-modified chloroplatinic acid (US Pat. See), a complex of chloroplatinic acid and an olefin (see U.S. Pat. Nos. 3,159,601, 3,159,662 and 3,775,452), platinum black , platinum group metal such as palladium supported on a carrier such as alumina, silica, carbon, etc., rhodium-olefin complex, chlorotris (triphenylphosphine) rhodium (Wilkinson catalyst), platinum chloride, chloroplatinic acid or chloroplatinic acid A complex of a salt and a vinyl group-containing siloxane, particularly a vinyl group-containing cyclic siloxane, and the like can be mentioned.

(D)成分の配合量は、(A)成分に対して白金族金属元素質量換算で0.1~2,000ppmであり、好ましくは50~1,000ppmである。(D)成分の配合量が少なすぎると付加反応が進まず、多すぎると経済的に不利であるため好ましくない。 The amount of component (D) to be blended is 0.1 to 2,000 ppm, preferably 50 to 1,000 ppm, in terms of platinum group metal element mass relative to component (A). If the amount of component (D) is too small, the addition reaction will not proceed, and if it is too large, it will be economically disadvantageous.

[(E)付加反応制御剤]
(E)成分の付加反応制御剤は、通常の付加反応硬化型シリコーン組成物に用いられる公知の付加反応制御剤を全て用いることができる。例えば、1-エチニル-1-ヘキサノール、3-ブチン-1-オール、エチニルメチリデンカルビノール等のアセチレン化合物や各種窒素化合物、有機リン化合物、オキシム化合物、有機クロロ化合物等が挙げられる。
[(E) addition reaction control agent]
Component (E), the addition reaction inhibitor, can be any of the known addition reaction inhibitors used in ordinary addition reaction curing silicone compositions. Examples thereof include acetylene compounds such as 1-ethynyl-1-hexanol, 3-butyn-1-ol and ethynylmethylidene carbinol, various nitrogen compounds, organic phosphorus compounds, oxime compounds and organic chloro compounds.

(E)成分の配合量は、(A)成分100質量部に対して0.01~2.0質量部であり、好ましくは0.1~1.2質量部である。(E)成分の配合量が少なすぎると付加反応の進行により組成物の取り扱い性に劣る場合があり、多すぎると付加反応が進まず、成形効率が損なわれる場合がある。 Component (E) is added in an amount of 0.01 to 2.0 parts by mass, preferably 0.1 to 1.2 parts by mass, per 100 parts by mass of component (A). If the amount of the component (E) is too small, the addition reaction may progress, resulting in poor handleability of the composition.

[(F)表面処理剤]
本発明の熱伝導性シリコーン組成物には、組成物調製時に(C)成分である熱伝導性充填材を疎水化処理し、(A)成分であるアルケニル基を有するオルガノポリシロキサンとの濡れ性を向上させ、(C)成分である熱伝導性充填材を(A)成分からなるマトリックス中に均一に分散させることを目的として、(F)成分の表面処理剤を配合することができる。該(F)成分としては、特に限定されないが、特に下記に示す(F-1)成分及び(F-2)成分が好ましい。
[(F) Surface treatment agent]
In the thermally conductive silicone composition of the present invention, the thermally conductive filler, which is component (C), is subjected to a hydrophobizing treatment when the composition is prepared, and wettability with the organopolysiloxane having an alkenyl group, which is component (A), is improved. For the purpose of improving and uniformly dispersing the thermally conductive filler as component (C) in the matrix consisting of component (A), the surface treatment agent as component (F) can be blended. The component (F) is not particularly limited, but components (F-1) and (F-2) shown below are particularly preferred.

(F-1)成分は、下記一般式(1)で表されるアルコキシシラン化合物である。
Si(OR4-a-b (1)
(式中、Rは独立に炭素原子数6~15のアルキル基であり、Rは独立に非置換又は置換の炭素原子数1~12の1価炭化水素基であり、Rは独立に炭素原子数1~6のアルキル基であり、aは1~3の整数、bは0~2の整数であり、但しa+bは1~3の整数である。)
Component (F-1) is an alkoxysilane compound represented by the following general formula (1).
R 1 a R 2 b Si(OR 3 ) 4-ab (1)
(wherein R 1 is independently an alkyl group having 6 to 15 carbon atoms, R 2 is independently an unsubstituted or substituted monovalent hydrocarbon group having 1 to 12 carbon atoms, and R 3 is independently is an alkyl group having 1 to 6 carbon atoms, a is an integer of 1 to 3, b is an integer of 0 to 2, provided that a+b is an integer of 1 to 3.)

上記一般式(1)において、Rで表されるアルキル基としては、例えば、ヘキシル基、オクチル基、ノニル基、デシル基、ドデシル基、テトラデシル基等が挙げられる。このRで表されるアルキル基の炭素原子数が6~15の範囲を満たすと(A)成分の濡れ性が十分に向上し、取り扱い性がよく、組成物の低温特性が良好なものとなる。 Examples of the alkyl group represented by R 1 in the general formula (1) include hexyl group, octyl group, nonyl group, decyl group, dodecyl group and tetradecyl group. When the number of carbon atoms in the alkyl group represented by R 1 satisfies the range of 6 to 15, the wettability of the component (A) is sufficiently improved, the handleability is good, and the low-temperature properties of the composition are good. Become.

で表される非置換又は置換の炭素原子数1~12の1価炭化水素基としては、炭素原子数1~5のアルキル基、炭素原子数6~12のアリール基、及び炭素原子数7~12のアラルキル基から選ばれる基が好ましい。炭素原子数1~5のアルキル基の例としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert-ブチル基、ペンチル基、ネオペンチル基が挙げられる。炭素原子数6~12のアリール基の例としては、例えば、フェニル基、トリル基、キシリル基、ナフチル基、ビフェニリル基等が挙げられる。そして、炭素原子数7~12のアラルキル基の例としては、例えば、ベンジル基、フェニルエチル基、フェニルプロピル基、メチルベンジル基等が挙げられる。中でも、好ましくはメチル基、エチル基、プロピル基等の炭素原子数1~3のアルキル基、及びフェニル基が挙げられる。Rで表される炭素原子数1~6のアルキル基としては、例えば、メチル基、エチル基、プロピル基、ブチル基、ヘキシル基等が挙げられる。 The unsubstituted or substituted monovalent hydrocarbon group having 1 to 12 carbon atoms represented by R 2 includes an alkyl group having 1 to 5 carbon atoms, an aryl group having 6 to 12 carbon atoms, and an aryl group having 6 to 12 carbon atoms. Groups selected from 7 to 12 aralkyl groups are preferred. Examples of alkyl groups having 1 to 5 carbon atoms include methyl, ethyl, propyl, isopropyl, butyl, isobutyl, tert-butyl, pentyl and neopentyl groups. Examples of aryl groups having 6 to 12 carbon atoms include phenyl group, tolyl group, xylyl group, naphthyl group, biphenylyl group and the like. Examples of aralkyl groups having 7 to 12 carbon atoms include benzyl, phenylethyl, phenylpropyl and methylbenzyl groups. Among them, preferred are alkyl groups having 1 to 3 carbon atoms such as methyl group, ethyl group and propyl group, and phenyl group. Examples of the alkyl group having 1 to 6 carbon atoms represented by R 3 include methyl group, ethyl group, propyl group, butyl group and hexyl group.

(F-2)成分は、下記一般式(2)で表される分子鎖片末端がトリアルコキシシリル基で封鎖されたジメチルポリシロキサンである。

Figure 2022174600000003
(式中、Rは独立に炭素原子数1~6のアルキル基であり、cは5~100の整数である。) Component (F-2) is a dimethylpolysiloxane having one molecular chain end blocked with a trialkoxysilyl group represented by the following general formula (2).
Figure 2022174600000003
(Wherein, R 4 is independently an alkyl group having 1 to 6 carbon atoms, and c is an integer of 5 to 100.)

で表される炭素原子数1~6のアルキル基としては、例えば、前記Rで例示されたアルキル基と同じものが例示できる。cは5~100、好ましくは5~70、特に好ましくは10~50の整数である。 Examples of the alkyl group having 1 to 6 carbon atoms represented by R 4 include the same alkyl groups exemplified for R 3 above. c is an integer of 5-100, preferably 5-70, particularly preferably 10-50.

(F)成分の表面処理剤としては、(F-1)成分及び(F-2)成分からなる群から選ばれる少なくとも1種を配合することができる。
(F)成分を配合する場合の配合量としては、(A)成分100質量部に対して0.01~300質量部であることが好ましく、0.1~200質量部であることがより好ましい。(F)成分の配合量が前記上限以下であるとオイル分離を誘発しない。
At least one selected from the group consisting of components (F-1) and (F-2) can be blended as the component (F) surface treatment agent.
When component (F) is blended, the amount to be blended is preferably 0.01 to 300 parts by mass, more preferably 0.1 to 200 parts by mass, per 100 parts by mass of component (A). . If the blending amount of the component (F) is equal to or less than the above upper limit, no oil separation is induced.

[(G)酸化セリウム]
本発明の熱伝導性シリコーン組成物には、(G)成分として酸化セリウムを配合することができる。(G)成分の酸化セリウムは、耐熱性を向上させる熱安定剤である。酸化セリウムとしては、BET比表面積が50m/g以上を有するものを用いることが好ましい。
[(G) cerium oxide]
The thermally conductive silicone composition of the present invention may contain cerium oxide as component (G). The component (G), cerium oxide, is a heat stabilizer that improves heat resistance. Cerium oxide having a BET specific surface area of 50 m 2 /g or more is preferably used.

(G)成分の配合量は、(A)成分100質量部に対して、6.5~25.0質量部であり、より好ましくは8.0~13.0質量部である。(G)成分の配合量が上記範囲内であれば、高温保存時における硬化物の硬度低下が起こらず、組成物の流動性が失われず、成形性が損なわれることがない。 The blending amount of component (G) is 6.5 to 25.0 parts by mass, more preferably 8.0 to 13.0 parts by mass, per 100 parts by mass of component (A). When the amount of component (G) is within the above range, the hardness of the cured product does not decrease during storage at high temperatures, the fluidity of the composition is not lost, and the moldability is not impaired.

[(H)オルガノポリシロキサン]
本発明の熱伝導性シリコーン組成物には、熱伝導性シリコーン組成物の粘度調整剤等の特性付与を目的として、(H)成分として、下記一般式(4)で表される23℃における動粘度が10~100,000mm/sのオルガノポリシロキサンを添加することができる。(H)成分は、1種単独で用いても、2種以上を併用してもよい。

Figure 2022174600000004
(式中、Rは独立に非置換又は置換の炭素原子数1~12の脂肪族不飽和結合を含まない1価炭化水素基、dは5~2,000の整数である。) [(H) Organopolysiloxane]
In the thermally conductive silicone composition of the present invention, for the purpose of imparting properties such as a viscosity modifier to the thermally conductive silicone composition, the component (H) is a Organopolysiloxanes with viscosities from 10 to 100,000 mm 2 /s can be added. (H) component may be used individually by 1 type, or may use 2 or more types together.
Figure 2022174600000004
(In the formula, R 6 is independently an unsubstituted or substituted monovalent hydrocarbon group containing no aliphatic unsaturated bonds of 1 to 12 carbon atoms, and d is an integer of 5 to 2,000.)

上記一般式(4)において、Rは独立に非置換又は置換の炭素原子数1~12の脂肪族不飽和結合を含まない1価炭化水素基である。Rとしては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert-ブチル基、ペンチル基、ネオペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ドデシル基等のアルキル基;シクロペンチル基、シクロヘキシル基、シクロヘプチル基等のシクロアルキル基;フェニル基、トリル基、キシリル基、ナフチル基、ビフェニリル基等のアリール基;ベンジル基、フェニルエチル基、フェニルプロピル基、メチルベンジル基等のアラルキル基;並びにこれらの基の炭素原子が結合している水素原子の一部又は全部がフッ素、塩素、臭素等のハロゲン原子、シアノ基等で置換された基、例えば、クロロメチル基、2-ブロモエチル基、3-クロロプロピル基、3,3,3-トリフルオロプロピル基、クロロフェニル基、フルオロフェニル基、シアノエチル基、3,3,4,4,5,5,6,6,6-ノナフルオロヘキシル基等が挙げられ、代表的なものは炭素原子数が1~10、特に代表的なものは炭素原子数が1~6のものであり、好ましくはメチル基、エチル基、プロピル基、クロロメチル基、ブロモエチル基、3,3,3-トリフルオロプロピル基、シアノエチル基等の炭素原子数1~3の非置換又は置換のアルキル基、及びフェニル基、クロロフェニル基、フルオロフェニル基等の非置換又は置換のフェニル基が挙げられるが、メチル基、フェニル基がより好ましい。
上記dは要求される粘度の観点から、好ましくは5~2,000の整数で、より好ましくは10~1,000の整数である。
In the general formula (4), R 6 is independently an unsubstituted or substituted monovalent hydrocarbon group containing no aliphatic unsaturated bond and having 1 to 12 carbon atoms. Examples of R6 include methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, tert-butyl group, pentyl group, neopentyl group, hexyl group, heptyl group, octyl group, nonyl group and decyl group. , Alkyl groups such as dodecyl group; Cycloalkyl groups such as cyclopentyl group, cyclohexyl group and cycloheptyl group; Aryl groups such as phenyl group, tolyl group, xylyl group, naphthyl group and biphenylyl group; aralkyl groups such as aryl groups and methylbenzyl groups; For example, chloromethyl group, 2-bromoethyl group, 3-chloropropyl group, 3,3,3-trifluoropropyl group, chlorophenyl group, fluorophenyl group, cyanoethyl group, 3,3,4,4,5,5, 6,6,6-Nonafluorohexyl group and the like, typical ones having 1 to 10 carbon atoms, particularly typical ones having 1 to 6 carbon atoms, preferably methyl group , ethyl group, propyl group, chloromethyl group, bromoethyl group, 3,3,3-trifluoropropyl group, unsubstituted or substituted alkyl group having 1 to 3 carbon atoms such as cyanoethyl group, and phenyl group, chlorophenyl group , a fluorophenyl group and other unsubstituted or substituted phenyl groups, and more preferably a methyl group or a phenyl group.
From the viewpoint of the required viscosity, d is preferably an integer of 5 to 2,000, more preferably an integer of 10 to 1,000.

また、(H)成分の23℃における動粘度は、好ましくは10~100,000mm/sであり、100~10,000mm/sであることがより好ましい。該動粘度が10mm/s以上であると、得られる熱伝導性シリコーン硬化物がオイルブリードを発生させない。該動粘度が100,000mm/s以下であると、得られる熱伝導性シリコーン硬化物の柔軟性が十分である。 The kinematic viscosity of component (H) at 23° C. is preferably 10 to 100,000 mm 2 /s, more preferably 100 to 10,000 mm 2 /s. When the kinematic viscosity is 10 mm 2 /s or more, the resulting thermally conductive cured silicone does not bleed oil. When the kinematic viscosity is 100,000 mm 2 /s or less, the obtained thermally conductive cured product has sufficient flexibility.

(H)成分を本発明の熱伝導性シリコーン組成物に配合する場合、その配合量は特に限定されず、所望の効果が得られる量であればよいが、(A)成分100質量部に対して、好ましくは0.1~100質量部、より好ましくは1~50質量部である。該配合量がこの範囲にあると、硬化前の熱伝導性シリコーン組成物に良好な流動性、作業性を維持し易く、また(C)成分の熱伝導性充填材を該組成物に充填するのが容易である。 When component (H) is added to the thermally conductive silicone composition of the present invention, the amount of component (H) to be added is not particularly limited as long as the desired effect is obtained. , preferably 0.1 to 100 parts by mass, more preferably 1 to 50 parts by mass. When the amount is within this range, the thermally conductive silicone composition before curing can easily maintain good fluidity and workability, and the thermally conductive filler of component (C) is filled into the composition. is easy.

[その他の成分]
本発明の熱伝導性シリコーン組成物には、本発明の目的および作用効果に応じて、更に他の成分を配合しても差し支えない。例えば、酸化鉄等の耐熱性向上剤;シリカ等の粘度調整剤;着色剤;離型剤等の任意成分を配合することができる。
[Other ingredients]
The thermally conductive silicone composition of the present invention may further contain other components depending on the purpose and effects of the present invention. For example, optional components such as a heat resistance improver such as iron oxide; a viscosity modifier such as silica; a colorant; and a release agent can be blended.

[熱伝導性シリコーン組成物の粘度]
本発明の熱伝導性シリコーン組成物の粘度(絶対粘度)は、23℃において好ましくは2,000Pa・s以下、より好ましくは1,500Pa・s以下である。粘度が2,000Pa・s以下であると組成物の成形性(加工性)が損なわれない。なお、本発明において、この粘度はフローテスタ粘度計による測定に基づく。
[Viscosity of Thermally Conductive Silicone Composition]
The viscosity (absolute viscosity) of the thermally conductive silicone composition of the present invention is preferably 2,000 Pa·s or less, more preferably 1,500 Pa·s or less at 23°C. If the viscosity is 2,000 Pa·s or less, the moldability (workability) of the composition is not impaired. In the present invention, this viscosity is based on measurement with a flow tester viscometer.

[熱伝導性シリコーン組成物の調製]
本発明の熱伝導性シリコーン組成物は、上述した各成分を常法に準じて均一に混合することにより調製することができる。
[Preparation of Thermally Conductive Silicone Composition]
The thermally conductive silicone composition of the present invention can be prepared by uniformly mixing the components described above according to a conventional method.

[熱伝導性シリコーン硬化物]
本発明の熱伝導性シリコーン硬化物は、上述した本発明の熱伝導性シリコーン組成物を常法に準じて硬化したものである。本発明の熱伝導性シリコーン硬化物の形状は特に限定されないが、シート状であることが好ましい。
[Heat conductive silicone cured product]
The thermally conductive silicone cured product of the present invention is obtained by curing the above-mentioned thermally conductive silicone composition of the present invention according to a conventional method. Although the shape of the thermally conductive silicone cured product of the present invention is not particularly limited, it is preferably in the form of a sheet.

[熱伝導性シリコーン硬化物の製造方法]
熱伝導性シリコーン組成物を成形する硬化条件としては、公知の付加反応硬化型シリコーンゴム組成物と同様でよく、例えば、常温でも十分硬化するが、必要に応じて加熱してもよい。好ましくは100~120℃で8~12分で付加硬化させるのがよい。このようにして得られる本発明の熱伝導性シリコーン硬化物は熱伝導性に優れる。
[Method for producing cured thermally conductive silicone]
Curing conditions for molding the thermally conductive silicone composition may be the same as those for known addition reaction curing silicone rubber compositions. Addition curing is preferably carried out at 100 to 120° C. for 8 to 12 minutes. The thermally conductive silicone cured product of the present invention thus obtained has excellent thermal conductivity.

[熱伝導性シリコーン硬化物の熱伝導率]
本発明の熱伝導性シリコーン硬化物の熱伝導率は、23℃における測定値が5.5W/m・K以上であることが好ましく、6.0W/m・K以上であることがより好ましい。なお、本発明において、熱伝導率はホットディスク法による測定に基づく。
[Thermal conductivity of cured thermally conductive silicone]
The thermal conductivity of the thermally conductive silicone cured product of the present invention is preferably 5.5 W/m·K or more, more preferably 6.0 W/m·K or more, as measured at 23°C. In addition, in the present invention, the thermal conductivity is based on the measurement by the hot disk method.

[熱伝導性シリコーン硬化物の絶縁破壊電圧]
本発明の熱伝導性シリコーン硬化物の絶縁破壊電圧は、1mm厚の成形体の絶縁破壊電圧をJIS K 6249に準拠して測定したときの測定値であり、好ましくは10kV/mm以上、より好ましくは12kV/mm以上である。絶縁破壊電圧が10kV/mm以上のシートの場合、使用時に安定的に絶縁を確保することができる。なお、このような絶縁破壊電圧は、フィラーの種類や純度を調節することにより、調整することができる。
[Dielectric breakdown voltage of cured thermally conductive silicone]
The dielectric breakdown voltage of the cured thermally conductive silicone product of the present invention is a measured value obtained when the dielectric breakdown voltage of a 1 mm-thick molded product is measured according to JIS K 6249, preferably 10 kV/mm or more, more preferably 10 kV/mm or more. is greater than or equal to 12 kV/mm. A sheet having a dielectric breakdown voltage of 10 kV/mm or more can ensure stable insulation during use. In addition, such a dielectric breakdown voltage can be adjusted by adjusting the kind and purity of the filler.

[熱伝導性シリコーン硬化物の硬度]
本発明における熱伝導性シリコーン硬化物の硬度は、アスカーC硬度計で測定した23℃における測定値が好ましくは60以下、より好ましくは40以下、更に好ましくは30以下であり、また5以上であることが好ましい。硬度が60以下である場合、被放熱体の形状に沿うように変形し、被放熱体に応力をかけることなく良好な放熱特性を示すことができる。なお、このような硬度は、(A)成分と(B)成分の比率を変えて、架橋密度を調節することにより、調整することができる。硬度が低いものであれば圧縮性に優れる。
[Hardness of cured thermally conductive silicone]
The hardness of the thermally conductive silicone cured product in the present invention is preferably 60 or less, more preferably 40 or less, still more preferably 30 or less, and 5 or more as measured at 23° C. using an Asker C hardness tester. is preferred. When the hardness is 60 or less, it deforms so as to conform to the shape of the body to be heat dissipated, and good heat dissipation characteristics can be exhibited without applying stress to the body to be heat dissipated. In addition, such hardness can be adjusted by changing the ratio of the component (A) and the component (B) to adjust the crosslink density. The lower the hardness, the better the compressibility.

本発明における熱伝導性シリコーン硬化物は、アスカーC硬度計で測定した硬さにおいて、150℃で500時間保管後の硬さが、保管前の硬さに対して、-5ポイント以上、40ポイント以下のものであることが好ましく、150℃で500時間保管後のアスカーC硬度の低下が5ポイント未満であることがより好ましい。この熱伝導性シリコーン硬化物のアスカーC硬度の低下が5ポイント以下であると、この硬化物は高温で長時間使用しても硬度の低下が小さいものとなる。保管前の硬さは、熱伝導性シリコーン組成物を、プレス成型機を用いて、120℃、10分間の条件で6mm厚のシート状に硬化させ、そのシートを2枚重ねてアスカーC硬度計で測定した値である。 The thermally conductive silicone cured product of the present invention has a hardness measured with an Asker C hardness tester, and the hardness after storage at 150° C. for 500 hours is -5 points or more to 40 points compared to the hardness before storage. The following are preferable, and it is more preferable that the decrease in Asker C hardness after storage at 150° C. for 500 hours is less than 5 points. If the decrease in Asker C hardness of the thermally conductive cured product is 5 points or less, the cured product will show little decrease in hardness even when used at high temperature for a long time. The hardness before storage was determined by curing the thermally conductive silicone composition into a 6 mm thick sheet using a press molding machine at 120° C. for 10 minutes, stacking two of the sheets, and using an Asker C hardness tester. is the value measured by

以下、実施例及び比較例を示し、本発明を具体的に説明するが、本発明は下記の実施例に制限されるものではない。なお、動粘度は23℃においてキャノン・フェンスケ型粘度計により測定した。また、平均粒径は日機装(株)製の粒度分析計であるマイクロトラックMT3300EXにより、レーザ回折・散乱法にて測定した体積基準の累積平均粒径(メディアン径)の値である。 EXAMPLES Hereinafter, the present invention will be specifically described by showing examples and comparative examples, but the present invention is not limited to the following examples. The kinematic viscosity was measured at 23°C with a Canon Fenske viscometer. The average particle diameter is a volume-based cumulative average particle diameter (median diameter) measured by a laser diffraction/scattering method using Microtrac MT3300EX, a particle size analyzer manufactured by Nikkiso Co., Ltd.

下記実施例及び比較例に用いられる(A)~(G)成分を下記に示す。
(A)成分:下記の2種類のアルケニル基を有するオルガノポリシロキサン。
(A-1):下記式(5)で示される動粘度600mm/sのオルガノポリシロキサン。
(A-2):下記式(5)で示される動粘度30,000mm/sのオルガノポリシロキサン。

Figure 2022174600000005
(式中、Xはビニル基であり、fは上記粘度を与える数である。) Components (A) to (G) used in the following examples and comparative examples are shown below.
Component (A): Organopolysiloxane having the following two types of alkenyl groups.
(A-1): Organopolysiloxane having a kinematic viscosity of 600 mm 2 /s represented by the following formula (5).
(A-2): Organopolysiloxane having a kinematic viscosity of 30,000 mm 2 /s represented by the following formula (5).
Figure 2022174600000005
(Wherein, X is a vinyl group, and f is a number that gives the above viscosity.)

(B)成分:下記の2種類のオルガノハイドロジェンポリシロキサン。
(B-1):下記式(6-1)で示されるオルガノハイドロジェンポリシロキサン。

Figure 2022174600000006
(式中、gは27、hは3であり、括弧内のシロキサン単位の配列順は不定である。)
(B-2):下記式(6-2)で示されるオルガノハイドロジェンポリシロキサン。
Figure 2022174600000007
(式中、gは18である。) Component (B): The following two organohydrogenpolysiloxanes.
(B-1): an organohydrogenpolysiloxane represented by the following formula (6-1).
Figure 2022174600000006
(In the formula, g is 27, h is 3, and the sequence of siloxane units in parentheses is undefined.)
(B-2): Organohydrogenpolysiloxane represented by the following formula (6-2).
Figure 2022174600000007
(In the formula, g is 18.)

(C)成分:平均粒径が下記の通りである球状アルミナ、不定形アルミナ。
(C-1):平均粒径が88.6μmの球状アルミナ。
(C-2):平均粒径が48.7μmの球状アルミナ。
(C-3):平均粒径が16.7μmの球状アルミナ。
(C-4):平均粒径が1.7μmの不定形アルミナ。
(D)成分:5質量%塩化白金酸2-エチルヘキサノール溶液。
(E)成分:エチニルメチリデンカルビノール。
Component (C): spherical alumina and amorphous alumina having the following average particle diameters.
(C-1): Spherical alumina having an average particle size of 88.6 μm.
(C-2): Spherical alumina having an average particle size of 48.7 μm.
(C-3): Spherical alumina having an average particle size of 16.7 μm.
(C-4): Amorphous alumina having an average particle size of 1.7 μm.
(D) Component: 5 mass% chloroplatinic acid 2-ethylhexanol solution.
(E) Component: ethynylmethylidene carbinol.

(F)成分:下記式(7)で示される平均重合度が30の片末端がトリメトキシシリル基で封鎖されたジメチルポリシロキサン。

Figure 2022174600000008
Component (F): A dimethylpolysiloxane having an average degree of polymerization of 30 represented by the following formula (7) and having one end blocked with a trimethoxysilyl group.
Figure 2022174600000008

(G)成分:BET比表面積が140m/gの酸化セリウム粉末。 (G) Component: Cerium oxide powder having a BET specific surface area of 140 m 2 /g.

[実施例1~5、比較例1~2]
実施例1~5及び比較例1~2において、上記(A)~(G)成分を下記表1に示す所定の量を用いて下記のように熱伝導性シリコーン組成物を調製し、下記方法に従って熱伝導性シリコーン組成物の粘度を測定した。熱伝導性シリコーン組成物を成形、硬化させ、得られた熱伝導性シリコーン硬化物の熱伝導率、絶縁破壊電圧、硬度を下記方法に従って測定した。結果を表1に示す。
[Examples 1-5, Comparative Examples 1-2]
In Examples 1 to 5 and Comparative Examples 1 and 2, the above components (A) to (G) were used in predetermined amounts shown in Table 1 below to prepare thermally conductive silicone compositions as follows. The viscosity of the thermally conductive silicone composition was measured according to. The thermally conductive silicone composition was molded and cured, and the thermal conductivity, dielectric breakdown voltage and hardness of the resulting thermally conductive cured product were measured according to the following methods. Table 1 shows the results.

[熱伝導性シリコーン組成物の調製]
(A)、(C)、(F)、(G)成分を下記表1の実施例1~5及び比較例1~2に示す所定の配合量で加え、プラネタリーミキサーで60分間混練した。そこに(D)成分を下記表1の実施例1~5及び比較例1~2に示す所定の量で加え、更にセパレータとの離型を促す内添離型剤として、信越化学製のフェニル変性シリコーンオイルであるKF-54を有効量加え、30分間混練した。
そこに更に(B)、(E)成分を下記表1の実施例1~5及び比較例1~2に示す所定の量で加え、30分間混練し、熱伝導性シリコーン組成物を得た。
[Preparation of Thermally Conductive Silicone Composition]
Components (A), (C), (F), and (G) were added in predetermined blending amounts shown in Examples 1 to 5 and Comparative Examples 1 and 2 in Table 1 below, and kneaded for 60 minutes with a planetary mixer. Component (D) was added thereto in a predetermined amount shown in Examples 1 to 5 and Comparative Examples 1 and 2 in Table 1 below. An effective amount of modified silicone oil KF-54 was added and kneaded for 30 minutes.
Further, components (B) and (E) were added in predetermined amounts shown in Examples 1 to 5 and Comparative Examples 1 and 2 in Table 1 below, and the mixture was kneaded for 30 minutes to obtain a thermally conductive silicone composition.

[評価方法]
熱伝導性シリコーン組成物の粘度:
実施例1~5及び比較例1で得られた熱伝導性シリコーン組成物の粘度を、23℃においてフローテスタ粘度計により測定した。測定装置としては島津製作所製のCFT-500EXを使用した。ダイ穴径をφ2mm、ダイ長さを2mm、試験荷重を10kgとして時間とストロークをプロットし、傾きから粘度を算出した。
[Evaluation method]
Viscosity of thermally conductive silicone composition:
The viscosities of the thermally conductive silicone compositions obtained in Examples 1-5 and Comparative Example 1 were measured at 23° C. with a flow tester viscometer. CFT-500EX manufactured by Shimadzu Corporation was used as a measuring device. A die hole diameter of φ2 mm, a die length of 2 mm, and a test load of 10 kg were plotted against time and stroke, and the viscosity was calculated from the slope.

熱伝導率:
実施例1~5及び比較例1で得られた熱伝導性シリコーン組成物を、プレス成型機を用いて、120℃、10分間の条件で6mm厚のシート状に硬化させ、そのシートを2枚用いて、熱伝導率計(商品名:TPS-2500S、京都電子工業(株)製)により該シートの熱伝導率を測定した。
Thermal conductivity:
The thermally conductive silicone compositions obtained in Examples 1 to 5 and Comparative Example 1 were cured using a press molding machine at 120° C. for 10 minutes to form a 6 mm thick sheet. Using a thermal conductivity meter (trade name: TPS-2500S, manufactured by Kyoto Electronics Industry Co., Ltd.), the thermal conductivity of the sheet was measured.

絶縁破壊電圧:
実施例1~5及び比較例1で得られた熱伝導性シリコーン組成物を、プレス成型機を用いて、120℃、10分間の条件で1mm厚のシート状に硬化させ、JIS K 6249に準拠して絶縁破壊電圧を測定した。
Dielectric breakdown voltage:
The thermally conductive silicone compositions obtained in Examples 1 to 5 and Comparative Example 1 were cured using a press molding machine at 120° C. for 10 minutes to form a sheet of 1 mm thickness, which conforms to JIS K 6249. Then, the dielectric breakdown voltage was measured.

硬度:
実施例1~5及び比較例1で得られた熱伝導性シリコーン組成物を上記と同様に6mm厚のシート状に硬化させ、そのシートを2枚重ねてアスカーC硬度計で測定した。
hardness:
The thermally conductive silicone compositions obtained in Examples 1 to 5 and Comparative Example 1 were cured into sheets of 6 mm thickness in the same manner as described above, and two of the sheets were stacked and measured with an Asker C hardness tester.

150℃、500時間保管後の硬度:
上記硬度測定後の熱伝導性シリコーン硬化物のシートを、150℃の高温炉に500時間保管した後、そのシートを2枚重ねてアスカーC硬度計で測定した。
Hardness after storage at 150°C for 500 hours:
After the sheet of the thermally conductive silicone cured material after the hardness measurement was stored in a high-temperature furnace at 150° C. for 500 hours, the two sheets were stacked and measured with an Asker C hardness tester.

Figure 2022174600000009
表中、アルケニル基を有するオルガノポリシロキサン中の全アルケニル基量に対するオルガノハイドロジェンポリシロキサン中の全ケイ素原子に直接結合した水素原子量を、H/Viとする。
Figure 2022174600000009
In the table, H/Vi is the amount of hydrogen atoms directly bonded to all silicon atoms in the organohydrogenpolysiloxane relative to the total amount of alkenyl groups in the organopolysiloxane having alkenyl groups.

実施例1~5では、熱伝導性シリコーン組成物の粘度、熱伝導性シリコーン硬化物の熱伝導率、絶縁破壊電圧、硬度とも良好な結果であった。実施例5では酸化セリウムを添加しなかったが、150℃の高温で保管しても、十分な硬度を有していた。また、酸化セリウムを添加した場合(実施例1~4)、150℃の高温で保管しても、硬度の低下はみられなかった。
比較例1のように(C-2)成分を含有せず、熱伝導性充填材の総質量部が3,900質量部より少なくなると、熱伝導性シリコーン硬化物中のフィラー充填率が小さくなり、熱伝導率が低下する。また、比較例2のように熱伝導性充填材の総質量部が6,000質量部を超えると、熱伝導性シリコーン組成物の濡れ性が不足し、グリース状の均一な熱伝導性シリコーン組成物を得ることができない。
また、実施例1~5では、熱伝導性シリコーン組成物の粘度が300~600Pa・s程度であり、加工性に優れていた。一方比較例1では粘度が200Pa・sであり、加工性が悪く、比較例2ではグリース状にならなかった。
さらに、実施例1~5では硬度が13~15であり、圧縮性に優れていた。一方比較例1では硬度が11であり、圧縮性が悪く、比較例2では測定不可であった。
In Examples 1 to 5, good results were obtained for the viscosity of the thermally conductive silicone composition, the thermal conductivity of the cured thermally conductive silicone composition, the dielectric breakdown voltage, and the hardness. In Example 5, no cerium oxide was added, but it had sufficient hardness even when stored at a high temperature of 150°C. Further, when cerium oxide was added (Examples 1 to 4), no decrease in hardness was observed even when stored at a high temperature of 150°C.
When component (C-2) is not contained as in Comparative Example 1 and the total mass of the thermally conductive filler is less than 3,900 parts by mass, the filler filling rate in the cured thermally conductive silicone becomes small. , the thermal conductivity decreases. Moreover, when the total mass of the thermally conductive filler exceeds 6,000 parts by mass as in Comparative Example 2, the wettability of the thermally conductive silicone composition is insufficient, resulting in a grease-like uniform thermally conductive silicone composition. can't get things
Moreover, in Examples 1 to 5, the viscosity of the thermally conductive silicone composition was about 300 to 600 Pa·s, indicating excellent workability. On the other hand, Comparative Example 1 had a viscosity of 200 Pa·s and was poor in workability, and Comparative Example 2 did not become grease-like.
Furthermore, in Examples 1 to 5, the hardness was 13 to 15, indicating excellent compressibility. On the other hand, in Comparative Example 1, the hardness was 11, indicating poor compressibility, and Comparative Example 2 could not be measured.

なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。 It should be noted that the present invention is not limited to the above embodiments. The above-described embodiment is an example, and any device having substantially the same configuration as the technical idea described in the claims of the present invention and exhibiting the same effect is the present invention. included in the technical scope of

Claims (9)

熱伝導性シリコーン組成物であって、
(A)1分子中に少なくとも2個のアルケニル基を有するオルガノポリシロキサン:100質量部、
(B)ケイ素原子に直接結合した水素原子を少なくとも2個有するオルガノハイドロジェンポリシロキサン:ケイ素原子に直接結合した水素原子のモル数が前記(A)成分由来のアルケニル基のモル数の0.1~5.0倍量となる量、
(C)下記(C-1)~(C-4)成分からなる熱伝導性充填材:3,900~6,000質量部、
(C-1)平均粒径が65μmを超えて135μm以下である球状アルミナフィラー:1,400~3,000質量部、
(C-2)平均粒径が30μmを超えて65μm以下である球状アルミナフィラー:500~1,500質量部、
(C-3)平均粒径が4μmを超えて30μm以下である球状アルミナフィラー:300~900質量部、
(C-4)平均粒径が0.4μmを超えて4μm以下である不定形アルミナフィラー:1,000~1,900質量部、
(D)白金族金属系硬化触媒:前記(A)成分に対して白金族金属元素質量換算で0.1~2,000ppm、及び
(E)付加反応制御剤:0.01~2.0質量部、
を含むものであることを特徴とする熱伝導性シリコーン組成物。
A thermally conductive silicone composition,
(A) an organopolysiloxane having at least two alkenyl groups in one molecule: 100 parts by mass;
(B) Organohydrogenpolysiloxane having at least two hydrogen atoms directly bonded to silicon atoms: the number of moles of hydrogen atoms directly bonded to silicon atoms is 0.1 of the number of moles of alkenyl groups derived from component (A) ~ 5.0 times the amount,
(C) a thermally conductive filler comprising the following components (C-1) to (C-4): 3,900 to 6,000 parts by mass;
(C-1) spherical alumina filler having an average particle size of more than 65 μm and 135 μm or less: 1,400 to 3,000 parts by mass;
(C-2) a spherical alumina filler having an average particle size of more than 30 μm and 65 μm or less: 500 to 1,500 parts by mass;
(C-3) spherical alumina filler having an average particle size of more than 4 μm and 30 μm or less: 300 to 900 parts by mass;
(C-4) Amorphous alumina filler having an average particle size of more than 0.4 μm and 4 μm or less: 1,000 to 1,900 parts by mass,
(D) platinum group metal-based curing catalyst: 0.1 to 2,000 ppm in terms of platinum group metal element mass with respect to component (A), and (E) addition reaction controller: 0.01 to 2.0 mass part,
A thermally conductive silicone composition comprising:
23℃における粘度が2,000Pa・s以下のものであることを特徴とする請求項1に記載の熱伝導性シリコーン組成物。 2. The thermally conductive silicone composition according to claim 1, which has a viscosity at 23[deg.] C. of 2,000 Pa.s or less. 更に、(F)成分として、
(F-1)下記一般式(1)で表されるアルコキシシラン化合物、及び
Si(OR4-a-b (1)
(式中、Rは独立に炭素原子数6~15のアルキル基であり、Rは独立に非置換又は置換の炭素原子数1~12の1価炭化水素基であり、Rは独立に炭素原子数1~6のアルキル基であり、aは1~3の整数、bは0~2の整数であり、但しa+bは1~3の整数である。)
(F-2)下記一般式(2)で表される分子鎖片末端がトリアルコキシシリル基で封鎖されたジメチルポリシロキサン、
Figure 2022174600000010
(式中、Rは独立に炭素原子数1~6のアルキル基であり、cは5~100の整数である。)
からなる群から選ばれる少なくとも1種を前記(A)成分の100質量部に対して0.01~300質量部を含むものであることを特徴とする請求項1または請求項2に記載の熱伝導性シリコーン組成物。
Furthermore, as the (F) component,
(F-1) an alkoxysilane compound represented by the following general formula (1), and R 1 a R 2 b Si(OR 3 ) 4-ab (1)
(wherein R 1 is independently an alkyl group having 6 to 15 carbon atoms, R 2 is independently an unsubstituted or substituted monovalent hydrocarbon group having 1 to 12 carbon atoms, and R 3 is independently is an alkyl group having 1 to 6 carbon atoms, a is an integer of 1 to 3, b is an integer of 0 to 2, provided that a+b is an integer of 1 to 3.)
(F-2) a dimethylpolysiloxane having one molecular chain end blocked with a trialkoxysilyl group represented by the following general formula (2);
Figure 2022174600000010
(Wherein, R 4 is independently an alkyl group having 1 to 6 carbon atoms, and c is an integer of 5 to 100.)
The thermal conductivity according to claim 1 or claim 2, wherein at least one selected from the group consisting of 0.01 to 300 parts by mass per 100 parts by mass of the component (A) Silicone composition.
更に、(G)成分として、酸化セリウムを前記(A)成分の100質量部に対して6.5~25.0質量部を含有するものであることを特徴とする請求項1から請求項3のいずれか1項に記載の熱伝導性シリコーン組成物。 Further, as the component (G), cerium oxide is contained in an amount of 6.5 to 25.0 parts by mass per 100 parts by mass of the component (A). The thermally conductive silicone composition according to any one of . 請求項1から請求項4のいずれか1項に記載の熱伝導性シリコーン組成物の硬化物であることを特徴とする熱伝導性シリコーン硬化物。 A cured thermally conductive silicone product, which is a cured product of the thermally conductive silicone composition according to any one of claims 1 to 4. 請求項5に記載の熱伝導性シリコーン硬化物であって、アスカーC硬度計で測定した硬さにおいて、150℃で500時間保管後の硬さが、保管前の硬さに対して、-5ポイント以上、40ポイント以下のものであることを特徴とする熱伝導性シリコーン硬化物。 6. The thermally conductive silicone cured product according to claim 5, wherein the hardness after storage at 150° C. for 500 hours is -5 compared to the hardness before storage, as measured with an Asker C hardness tester. A cured thermally conductive silicone having a score of 40 points or more. 23℃における熱伝導率が、5.5W/m・K以上のものであることを特徴とする請求項5または請求項6に記載の熱伝導性シリコーン硬化物。 7. The cured thermally conductive silicone material according to claim 5, wherein the thermal conductivity at 23[deg.] C. is 5.5 W/m.K or higher. 1mm厚における絶縁破壊電圧が10kV/mm以上のものであることを特徴とする請求項5から請求項7のいずれか1項に記載の熱伝導性シリコーン硬化物。 8. The cured thermally conductive silicone material according to any one of claims 5 to 7, wherein the dielectric breakdown voltage at a thickness of 1 mm is 10 kV/mm or more. 形状がシート状のものであることを特徴とする請求項5から請求項8のいずれか1項に記載の熱伝導性シリコーン硬化物。 9. The cured thermally conductive silicone product according to any one of claims 5 to 8, which is in the form of a sheet.
JP2021080505A 2021-05-11 2021-05-11 Thermally conductive silicone composition and cured product thereof Active JP7485634B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021080505A JP7485634B2 (en) 2021-05-11 Thermally conductive silicone composition and cured product thereof
PCT/JP2022/014213 WO2022239519A1 (en) 2021-05-11 2022-03-25 Thermally conductive silicone composition and cured product of same
TW111112987A TW202311486A (en) 2021-05-11 2022-04-06 Thermally conductive silicone composition and cured product of same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021080505A JP7485634B2 (en) 2021-05-11 Thermally conductive silicone composition and cured product thereof

Publications (2)

Publication Number Publication Date
JP2022174600A true JP2022174600A (en) 2022-11-24
JP7485634B2 JP7485634B2 (en) 2024-05-16

Family

ID=

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1160955A (en) * 1997-08-14 1999-03-05 Shin Etsu Chem Co Ltd Silicone rubber fixing roll coated with fluororesin or fluorolatex
WO2020217634A1 (en) * 2019-04-24 2020-10-29 信越化学工業株式会社 Thermally conductive silicone composition, method for producing same and thermally conductive silicone cured product

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1160955A (en) * 1997-08-14 1999-03-05 Shin Etsu Chem Co Ltd Silicone rubber fixing roll coated with fluororesin or fluorolatex
WO2020217634A1 (en) * 2019-04-24 2020-10-29 信越化学工業株式会社 Thermally conductive silicone composition, method for producing same and thermally conductive silicone cured product

Also Published As

Publication number Publication date
WO2022239519A1 (en) 2022-11-17
TW202311486A (en) 2023-03-16

Similar Documents

Publication Publication Date Title
JP5664563B2 (en) Thermally conductive silicone composition and cured product thereof
JP5304588B2 (en) Thermally conductive silicone composition and cured product thereof
JP6075261B2 (en) Thermally conductive silicone composition and cured product thereof
JP5418298B2 (en) Thermally conductive silicone composition and cured product thereof
JP5233325B2 (en) Thermally conductive cured product and method for producing the same
TWI822954B (en) Thermal conductive silicone composition and manufacturing method thereof, and thermally conductive silicone hardened material
JP7285231B2 (en) Thermally conductive silicone composition and cured product thereof
JP7033047B2 (en) Thermally conductive silicone composition and its cured product
JP5472055B2 (en) Thermally conductive silicone grease composition
JP2016011322A (en) Heat-conductive composite silicone rubber sheet
JP5131648B2 (en) Thermally conductive silicone composition and thermally conductive silicone molding using the same
TWI813738B (en) Thermally conductive silicon oxide composition and its hardened product
JP7264850B2 (en) Thermally conductive silicone composition, cured product thereof, and heat dissipation sheet
JP7165647B2 (en) Thermally conductive silicone resin composition
WO2022239519A1 (en) Thermally conductive silicone composition and cured product of same
JP7485634B2 (en) Thermally conductive silicone composition and cured product thereof
WO2022255004A1 (en) Thermally conductive silicone composition and cured product of same
JP2023153695A (en) Thermally conductive silicone composition and cured product

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240325

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240409