JP2014080487A - Resin composition and near infrared ray cutting filter - Google Patents

Resin composition and near infrared ray cutting filter Download PDF

Info

Publication number
JP2014080487A
JP2014080487A JP2012228578A JP2012228578A JP2014080487A JP 2014080487 A JP2014080487 A JP 2014080487A JP 2012228578 A JP2012228578 A JP 2012228578A JP 2012228578 A JP2012228578 A JP 2012228578A JP 2014080487 A JP2014080487 A JP 2014080487A
Authority
JP
Japan
Prior art keywords
resin
formula
resin composition
infrared
filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012228578A
Other languages
Japanese (ja)
Inventor
Kazuki NIIMI
一樹 新見
Ryotaro Morita
陵太郎 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Kayaku Co Ltd
Original Assignee
Nippon Kayaku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kayaku Co Ltd filed Critical Nippon Kayaku Co Ltd
Priority to JP2012228578A priority Critical patent/JP2014080487A/en
Publication of JP2014080487A publication Critical patent/JP2014080487A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an optical filter using 2 or more kinds of cyanine compounds having low absorption in a visible range, especially at 400 nm to 500 nm, especially a near infrared ray cutting filter (optical filer) for image pickup devices especially such as CCD or CMOS.SOLUTION: There is provided uses of cyanine pigment compounds represented by the following formulae (1) and (2), where Rand Rrepresent substituents such as an alkyl group.

Description

本発明はシアニン色素化合物を含有する樹脂組成物、及びこれらを用いた近赤外線カットフィルタ(光学フィルタ)に関する。   The present invention relates to a resin composition containing a cyanine dye compound, and a near-infrared cut filter (optical filter) using these.

近赤外線吸収色素を用いた樹脂組成物及びそれらを用いた近赤外線カットフィルタの用途としては、プラズマディスプレイパネルや、CCDやCMOS等の撮像素子用のものが挙げられる。   Applications of the resin composition using the near-infrared absorbing dye and the near-infrared cut filter using them include those for image display devices such as plasma display panels and CCDs and CMOSs.

大型薄型テレビやディスプレイとして注目されているプラズマディスプレイパネル(PDP)には、その機構上必然的に発生する近赤外線を遮断するための近赤外線カットフィルタ等を必要とし、それに関して例えば、特許文献1〜4のものが知られている。   A plasma display panel (PDP) attracting attention as a large-sized thin television or a display requires a near-infrared cut filter for blocking near-infrared rays that are inevitably generated due to its mechanism. ~ 4 are known.

またデジタルカメラなどに使用されているCCDやCMOS等の撮像素子は、可視域〜1100nm付近の近赤外域に渡る分光感度を有しており、これに対して人間の目は400nm〜700nm付近の波長の光を感じることができる。よって撮像素子と人間の目では分光感度に大きな差があるため、撮像素子の前面に近赤外域を吸収する近赤外線カットフィルタを備えて、人間の目の視感度に補正することが必要であることが知られている。   In addition, image sensors such as CCDs and CMOSs used in digital cameras have a spectral sensitivity over the near infrared range from the visible range to about 1100 nm, whereas the human eye has a spectral range of about 400 nm to 700 nm. You can feel light of wavelength. Therefore, since there is a large difference in spectral sensitivity between the image sensor and the human eye, it is necessary to provide a near-infrared cut filter that absorbs the near-infrared region in front of the image sensor to correct the visual sensitivity of the human eye. It is known.

このようなフィルタとしては、近赤外波長を選択的に吸収するように、例えば特許文献5にあるようにリン酸塩系ガラスに銅イオンを添加したガラスフィルタが知られている。   As such a filter, there is known a glass filter in which copper ions are added to a phosphate glass so as to selectively absorb near-infrared wavelengths, for example.

しかし、リン酸塩系ガラスに銅イオンを添加したガラスフィルタは多量のPを必須成分として銅イオンを含有しており、このガラスフィルタは、近赤外線吸収効果を促進するために銅イオンの含有量を増加させると、一般に400nm〜550nmの波長域における分光透過性が低下して緑色化の傾向を示すことが知られている。 However, a glass filter in which copper ions are added to phosphate glass contains a large amount of P 2 O 5 as an essential component and contains copper ions, and this glass filter has copper ions to promote the near infrared absorption effect. When the content of is increased, it is generally known that the spectral transmittance in the wavelength region of 400 nm to 550 nm is lowered and a tendency to green is exhibited.

そのため、近赤外線吸収性と可視光透過性に優れた近赤外線カットフィルタが望まれていた。それに応える手段として近赤外線吸収性有機色素を用いる方法がある。特許文献6にあるようにPDP用途として用いられてきた数種の色素を混合することにより、800nm〜1200nmの波長域は十分に遮蔽することができるが、撮像素子の感度補正に必要な700nm〜800nm、特に700nm付近での波長域の遮蔽は十分でなく、可視光透過性も低いため、そのままでは適用することは難しいという問題があることが知られている。   Therefore, a near-infrared cut filter excellent in near-infrared absorptivity and visible light transmittance has been desired. As a means for responding to this, there is a method using a near-infrared absorbing organic dye. As described in Patent Document 6, by mixing several kinds of dyes that have been used for PDP applications, the wavelength range of 800 nm to 1200 nm can be sufficiently shielded, but 700 nm to be necessary for sensitivity correction of the image sensor. It is known that there is a problem that it is difficult to apply as it is because shielding in the wavelength region in the vicinity of 800 nm, particularly in the vicinity of 700 nm is not sufficient and visible light transmittance is low.

これらの問題を解決するために、特許文献7の記載にもあるように、650nm〜750nmの領域を吸収する色素、及び該色素を含有することを特徴とする近赤外線吸収組成物が提案されているが、可視光、特に400nm〜550nmの透過率はまだ十分であるとは言えない。また、数種の色素を混合することによりこの波長領域を遮蔽する近赤外線カットフィルタを製作した報告は無い。   In order to solve these problems, as described in Patent Document 7, a dye that absorbs a region of 650 nm to 750 nm and a near-infrared absorbing composition containing the dye are proposed. However, the transmittance of visible light, particularly 400 nm to 550 nm, is still not sufficient. Moreover, there is no report which manufactured the near-infrared cut filter which shields this wavelength range by mixing several types of pigment | dyes.

このような背景から近年、より可視光吸収が少ない近赤外線吸収色素化合物や該化合物を用いた樹脂組成物、及び近赤外線カットフィルタ、特に400nm〜550nmの吸収がより少なく700nm付近に吸収のあるCCDやCMOSなどの撮像素子用の近赤外線吸収色素をふくむ樹脂組成物、及び該組成物を用いた近赤外線カットフィルタの開発が強く求められている。   Against this background, in recent years, near-infrared absorbing dye compounds with less visible light absorption, resin compositions using such compounds, and near-infrared cut filters, especially CCDs with less absorption at 400 nm to 550 nm and absorption near 700 nm There is a strong demand for the development of a resin composition containing a near-infrared-absorbing dye for imaging devices such as CMOS and the like, and a near-infrared cut filter using the composition.

特開2000−81511号公報JP 2000-81511 A 特公平5−37119号公報Japanese Patent Publication No. 5-37119 特許第3045404号公報Japanese Patent No. 3045404 国際公開第2006/006573号パンフレットInternational Publication No. 2006/006573 Pamphlet 特公昭62−128943号公報Japanese Examined Patent Publication No. 62-128943 特開平11−95026号公報Japanese Patent Laid-Open No. 11-95026 特開2006−343631号公報JP 2006-343631 A

本発明は、可視域吸収の少ない、特には400nm〜550nmに吸収の少ない、2種以上のシアニン色素化合物とそれを用いた樹脂組成物、及び可視域吸収の少ない近赤外線カットフィルタの提供を目的とする。   An object of the present invention is to provide two or more cyanine dye compounds with little absorption in the visible region, particularly 400 nm to 550 nm, a resin composition using the same, and a near-infrared cut filter with little visible region absorption. And

本発明者等は上記課題を解決するべく、鋭意検討の結果、下記式(1)及び式(2)で表される特定のシアニン色素化合物を含有する樹脂組成物及び、それを用いて製膜した近赤外線フィルタが前記課題を解決するものであることを見出し、本発明を完成させた。   As a result of intensive investigations, the present inventors have studied the resin composition containing a specific cyanine dye compound represented by the following formulas (1) and (2), and formed a film using the same. The invented near-infrared filter has been found to solve the above problems, and the present invention has been completed.

即ち、本発明は、
(1)
下記の式(1)及び式(2)で表される化合物と樹脂から成ることを特徴とする樹脂組成物、

Figure 2014080487
Figure 2014080487
(式中、RとRはそれぞれ独立に下記式(3)〜(6)のいずれかの置換基を表す。)
Figure 2014080487
(式(3)中、nは0〜3の整数を表す。)
Figure 2014080487
Figure 2014080487
Figure 2014080487
(式(6)中、mは0〜3の整数を表す。)
(2)式(1)におけるRと式(2)におけるRが、それぞれ独立に式(3)及び式(4)である(1)に記載の化合物を含むことを特徴とする樹脂組成物、
(3)式(1)におけるRが式(3)であり、さらに式(2)におけるRが式(4)である(1)に記載の化合物を含むことを特徴とする樹脂組成物、
(4)式(1)と式(2)の各化合物の混合質量比が7/3〜3/7である(1)乃至(3)のいずれか一つに記載の樹脂組成物、
(5)(4)に記載の樹脂組成物を用いた近赤外線カットフィルタ、
(6)(5)に記載の近赤外線カットフィルタを用いた撮像素子、
に関する。 That is, the present invention
(1)
A resin composition comprising a compound represented by the following formula (1) and formula (2) and a resin:
Figure 2014080487
Figure 2014080487
(In the formula, R 1 and R 2 each independently represents a substituent of any one of the following formulas (3) to (6).)
Figure 2014080487
(In formula (3), n represents an integer of 0 to 3)
Figure 2014080487
Figure 2014080487
Figure 2014080487
(In formula (6), m represents an integer of 0 to 3.)
(2) Resin composition characterized in that R 1 in formula (1) and R 2 in formula (2) each independently contain the compound described in (1) of formula (3) and formula (4) object,
(3) R 1 in Formula (1) is Formula (3), and R 2 in Formula (2) further includes the compound according to (1), which is Formula (4). ,
(4) The resin composition according to any one of (1) to (3), wherein a mixing mass ratio of each compound of formula (1) and formula (2) is 7/3 to 3/7,
(5) A near-infrared cut filter using the resin composition according to (4),
(6) An image sensor using the near infrared cut filter according to (5),
About.

本発明により、可視域吸収で、特に400nm〜550nmに吸収の少ないシアニン色素化合物を含有する樹脂組成物、及び近赤外線カットフィルタ、特にCCDやCMOSなどの撮像素子用の近赤外線カットフィルタを提供することができた。   According to the present invention, there are provided a resin composition containing a cyanine dye compound which absorbs in the visible region and has a particularly low absorption at 400 to 550 nm, and a near-infrared cut filter, particularly a near-infrared cut filter for an image sensor such as a CCD or CMOS I was able to.

本発明を詳細に説明する。
式(1)中、Rは式(3)〜(6)を表し、好ましくは式(3)〜(5)、より好ましくは、式(3)である。
The present invention will be described in detail.
In Formula (1), R 1 represents Formulas (3) to (6), preferably Formulas (3) to (5), and more preferably Formula (3).

式(2)中、Rは式(3)〜(6)を表し、好ましくは式(3)〜(5)、より好ましくは、式(4)である。 In Formula (2), R 2 represents Formulas (3) to (6), preferably Formulas (3) to (5), and more preferably Formula (4).

式(3)中、nは0〜3の整数を表し、好ましくは2〜3、より好ましくは3である。また、式(6)中、mは0〜3の整数を表し、好ましくは3である。   In formula (3), n represents an integer of 0 to 3, preferably 2 to 3, and more preferably 3. In formula (6), m represents an integer of 0 to 3, and is preferably 3.

前記のR、R、n、mのうち、好ましいものを組み合せた化合物はより好ましく、より好ましいものを組み合せた化合物はさらに好ましい。好ましいものと、より好ましいものとの組み合わせ等についても同様である。 Of the above R 1 , R 2 , n, and m, a compound that combines preferred ones is more preferred, and a compound that combines more preferred ones is more preferred. The same applies to combinations of preferable and more preferable ones.

上記式(1)の具体例を下表1に示すが、本発明はこれらの具体例に限定されるものではない。   Specific examples of the above formula (1) are shown in Table 1 below, but the present invention is not limited to these specific examples.

Figure 2014080487
Figure 2014080487

上記式(2)の具体例を下表2に示すが、本発明はこれらの具体例に限定されるものではない。   Specific examples of the above formula (2) are shown in Table 2 below, but the present invention is not limited to these specific examples.

Figure 2014080487
Figure 2014080487

上記式(1)及び式(2)で表される化合物を含む本発明の樹脂組成物は、後記の実施例でその特性を示すように、フィルタ用近赤外線吸収色素として使用することができる。また、他にも光情報記録媒体に用いることもできる。   The resin composition of the present invention containing the compounds represented by the above formulas (1) and (2) can be used as a near-infrared absorbing dye for filters, as shown in the examples below. In addition, it can also be used for an optical information recording medium.

上記式(1)及び式(2)で表される化合物を含む本発明の樹脂組成物を使用した赤外線カットフィルタ(光学フィルタ)は、シアニン色素化合物を含有する樹脂層を基材上に設けたものでも、又、基材自体がシアニン色素化合物を含有する本発明の樹脂組成物(又はその硬化物)からなる層であってもよい。該基材としては、一般に光学フィルタに使用し得るものであれば特に制限されないが、通常、樹脂製の基材が使用される。層の厚みは通常0.1μm〜10mm程度であるが、近赤外線カット率等の目的に応じて適宜、決定され得る。   An infrared cut filter (optical filter) using the resin composition of the present invention containing the compounds represented by the above formulas (1) and (2) has a resin layer containing a cyanine dye compound provided on a substrate. Alternatively, the base material itself may be a layer made of the resin composition of the present invention (or a cured product thereof) containing a cyanine dye compound. The substrate is not particularly limited as long as it can be generally used for an optical filter, but a resin substrate is usually used. The thickness of the layer is usually about 0.1 μm to 10 mm, but can be appropriately determined according to the purpose such as the near infrared cut rate.

本発明の樹脂組成物は、式(1)及び式(2)で表されるシアニン色素化合物を含有する。樹脂としては、下記する本発明の樹脂組成物の使用方法により異なり、本発明の樹脂組成物を基材に用いる場合、例えば、ポリエチレン、ポリシクロアルカン、ポリスチレン、ポリアクリル酸、ポリアクリル酸エステル、ポリ酢酸ビニル、ポリアクリロニトリル、ポリ塩化ビニル、ポリフッ化ビニル等のビニル化合物、及びそれらのビニル化合物の付加重合体、ポリメタクリル酸、ポリメタクリル酸エステル、ポリ塩化ビニリデン、ポリフッ化ビニリデン、ポリシアン化ビニリデン、フッ化ビニリデン/ トリフルオロエチレン共重合体、フッ化ビニリデン/ テトラフルオロエチレン共重合体、シアン化ビニリデン/ 酢酸ビニル共重合体等のビニル化合物又はフッ素系化合物の共重合体、ポリトリフルオロエチレン、ポリテトラフルオロエチレン、ポリヘキサフルオロプロピレン等のフッ素を含む樹脂、ナイロン6、ナイロン66等のポリアミド、ポリイミド、ポリウレタン、ポリペプチド、ポリエチレンテレフタレート等のポリエステル、ポリカーボネート、ポリオキシメチレン等のポリエーテル、エポキシ樹脂、ポリビニルアルコール、ポリビニルブチラール等が挙げられる。これらの樹脂は、基材上に本発明の樹脂組成物からなる樹脂層を設ける場合の基材としても使用できる。   The resin composition of the present invention contains a cyanine dye compound represented by formula (1) and formula (2). As the resin, depending on the method of using the resin composition of the present invention described below, when the resin composition of the present invention is used as a substrate, for example, polyethylene, polycycloalkane, polystyrene, polyacrylic acid, polyacrylic acid ester, Vinyl compounds such as polyvinyl acetate, polyacrylonitrile, polyvinyl chloride, and polyvinyl fluoride, and addition polymers of these vinyl compounds, polymethacrylic acid, polymethacrylic acid esters, polyvinylidene chloride, polyvinylidene fluoride, polyvinylidene polycyanide, Vinyl compounds such as vinylidene fluoride / trifluoroethylene copolymer, vinylidene fluoride / tetrafluoroethylene copolymer, vinylidene cyanide / vinyl acetate copolymer, or copolymers of fluorine compounds, polytrifluoroethylene, poly Tetrafluoroeth Fluorine-containing resins such as nylon and polyhexafluoropropylene, polyamides such as nylon 6 and nylon 66, polyimides, polyurethanes, polypeptides, polyesters such as polyethylene terephthalate, polyethers such as polycarbonate and polyoxymethylene, epoxy resins, polyvinyl alcohol And polyvinyl butyral. These resins can also be used as a substrate when a resin layer comprising the resin composition of the present invention is provided on the substrate.

本発明の赤外線カットフィルタ(光学フィルタ)を作製する方法としては特に限定されるものではないが、例えば、下記の公知の方法が利用できる。1)樹脂に上記式(1)及び式(2)で表されるシアニン色素化合物を混練し、本発明の樹脂組成物とし、加熱成形して樹脂板又はフィルムを作製する方法、2)同シアニン色素化合物と樹脂モノマー又は樹脂モノマーの予備重合体を重合触媒の存在下にキャスト重合し、樹脂板又はフィルムを作製する方法、3)同シアニン色素化合物を含有する塗料を作製し、透明樹脂板、透明フィルム、又は透明ガラス板にコーティングする方法、4)同シアニン色素化合物及び樹脂(接着剤)を含有させた本発明の樹脂組成物を用いて、合わせ樹脂板、合わせ樹脂フィルム、又は合わせガラス板を作製する方法、等である。   Although it does not specifically limit as a method of producing the infrared cut filter (optical filter) of this invention, For example, the following well-known method can be utilized. 1) A method in which a cyanine dye compound represented by the above formulas (1) and (2) is kneaded with a resin to obtain a resin composition of the present invention, which is thermoformed to produce a resin plate or film. 2) The cyanine A method in which a dye compound and a resin monomer or a prepolymer of a resin monomer are cast polymerized in the presence of a polymerization catalyst to produce a resin plate or film, 3) a paint containing the cyanine dye compound is produced, a transparent resin plate, A method of coating a transparent film or a transparent glass plate, 4) a laminated resin plate, a laminated resin film, or a laminated glass plate using the resin composition of the present invention containing the cyanine dye compound and a resin (adhesive) And the like.

1)の方法は、用いる樹脂によって加工温度、フィルム化(樹脂板化)条件等が多少異なるが、通常、上記式(1)及び式(2)で表されるシアニン色素化合物を例えば上記の基材樹脂の粉体又はペレットに添加し、150〜350℃に加熱、溶解させた後、成形して樹脂板を作製する方法あるいは押し出し機によりフィルム化(樹脂板化)する方法等が挙げられる。シアニン色素化合物の添加量は、作製する樹脂板又はフィルムの厚み、吸収強度、可視光透過率等によって異なるが、通常、基材樹脂の質量に対して0.01〜30質量%程度、好ましくは0.03〜15質量%程度使用される。   In the method 1), the processing temperature, filming (resin plate) conditions, etc. are somewhat different depending on the resin used. Usually, the cyanine dye compound represented by the above formulas (1) and (2) is, for example, the above group. Examples thereof include a method of adding a material resin powder or pellet, heating and dissolving at 150 to 350 ° C., and molding to form a resin plate, or forming a film (resin plate) with an extruder. The amount of the cyanine dye compound added varies depending on the thickness, absorption strength, visible light transmittance, etc. of the resin plate or film to be produced, but is usually about 0.01 to 30% by mass with respect to the mass of the base resin, preferably About 0.03 to 15% by mass is used.

2)の方法は、上記式(1)及び式(2)で表されるシアニン色素化合物と、樹脂モノマー又は樹脂モノマーの予備重合体を重合触媒の存在下に型内に注入し、本発明の樹脂組成物とし、反応させて硬化させるか、又は、金型に流し込んで型内で硬い製品となるまで固化させて成形する方法が挙げられる。多くの樹脂がこの方法で成形可能であり、その様な樹脂としては、(メタ)アクリル樹脂、ジエチレングリコールビス(アリルカーボネート)樹脂、エポキシ樹脂、フェノール−ホルムアルデヒド樹脂、ポリスチレン樹脂、シリコン樹脂等が挙げられる。その中でも、硬度、耐熱性、耐薬品性に優れたアクリルシートが得られるメタクリル酸メチルの塊状重合によるキャスティング法が好ましい。重合触媒としては公知のラジカル熱重合開始剤が利用でき、例えば、ベンゾイルパーオキシド、p−クロロベンゾイルパーオキシド、ジイソプロピルパーオキシカーボネート等の過酸化物、アゾビスイソブチロニトリル等のアゾ化合物が挙げられる。その使用量は混合物の総量に対して、一般的に0.01〜5質量%である。熱重合における加熱温度は、通常40〜200℃であり、重合時間は通常30分〜8時間程度である。又、熱重合以外に、光重合開始剤や増感剤を添加して光重合する方法も採用できる。   In the method 2), the cyanine dye compound represented by the above formulas (1) and (2) and a resin monomer or a prepolymer of a resin monomer are injected into a mold in the presence of a polymerization catalyst. The resin composition may be reacted and cured, or poured into a mold and solidified until a hard product is formed in the mold. Many resins can be molded by this method, and examples of such resins include (meth) acrylic resin, diethylene glycol bis (allyl carbonate) resin, epoxy resin, phenol-formaldehyde resin, polystyrene resin, and silicon resin. . Among them, the casting method by bulk polymerization of methyl methacrylate, which can obtain an acrylic sheet excellent in hardness, heat resistance, and chemical resistance, is preferable. As the polymerization catalyst, known radical thermal polymerization initiators can be used, for example, peroxides such as benzoyl peroxide, p-chlorobenzoyl peroxide, diisopropyl peroxycarbonate, and azo compounds such as azobisisobutyronitrile. It is done. The amount used is generally from 0.01 to 5% by weight, based on the total amount of the mixture. The heating temperature in the thermal polymerization is usually 40 to 200 ° C., and the polymerization time is usually about 30 minutes to 8 hours. In addition to thermal polymerization, a method of photopolymerization by adding a photopolymerization initiator or a sensitizer can also be employed.

3)の方法は、上記式(1)及び式(2)で表されるシアニン色素化合物をバインダー樹脂及び溶媒に溶解し塗料(本発明の樹脂組成物)化する方法、同シアニン色素化合物を樹脂の存在下に微粒子化して分散し、水系塗料とする方法等がある。前者の方法では、例えば、脂肪族エステル樹脂、アクリル系樹脂、メラミン樹脂、ウレタン樹脂、芳香族エステル樹脂、ポリカーボネート樹脂、ポリビニル系樹脂、脂肪族ポリオレフィン樹脂、芳香族ポリオレフィン樹脂、ポリビニルアルコール樹脂、ポリビニル変性樹脂等、又は、それらの共重合樹脂を用いる事ができる。   3) is a method in which the cyanine dye compound represented by the above formulas (1) and (2) is dissolved in a binder resin and a solvent to form a paint (resin composition of the present invention). There is a method of forming a fine particle in the presence of water and dispersing it to form a water-based paint. In the former method, for example, aliphatic ester resin, acrylic resin, melamine resin, urethane resin, aromatic ester resin, polycarbonate resin, polyvinyl resin, aliphatic polyolefin resin, aromatic polyolefin resin, polyvinyl alcohol resin, polyvinyl modification Resins or the like or copolymer resins thereof can be used.

溶媒としては、ハロゲン系、アルコール系、ケトン系、エステル系、脂肪族炭化水素系、芳香族炭化水素系、エーテル系、等が用いられるが、これらを混合して用いることもできる。シアニン色素化合物の濃度は、作製するコーティングの厚み、吸収強度、可視光透過率によって異なるが、バインダー樹脂に対して一般的に0.1〜30質量%程度である。このようにして得られた塗料を透明樹脂フィルム、透明樹脂板、透明ガラス等の上にスピンコーター、バーコーター、ロールコーター、スプレー等でコーティングして近赤外線吸収フィルタを得ることができる。   As the solvent, halogen-based, alcohol-based, ketone-based, ester-based, aliphatic hydrocarbon-based, aromatic hydrocarbon-based, ether-based, and the like are used, and these can also be used in combination. The concentration of the cyanine dye compound varies depending on the thickness of the coating to be produced, the absorption intensity, and the visible light transmittance, but is generally about 0.1 to 30% by mass with respect to the binder resin. The paint thus obtained can be coated on a transparent resin film, transparent resin plate, transparent glass or the like with a spin coater, bar coater, roll coater, spray or the like to obtain a near infrared absorption filter.

4)の方法は、シリコン系、ウレタン系、アクリル系等の樹脂用、ポリビニルブチラール接着剤、エチレン− 酢酸ビニル系接着剤等の合わせガラス用の公知の透明接着剤に、上記式(1)及び式(2)で表されるシアニン色素化合物を0.1〜30質量%程度添加した樹脂を用い、透明な樹脂板同士、樹脂板と樹脂フィルム、樹脂板とガラス、樹脂フィルム同士、樹脂フィルムとガラス、ガラス同士を接着することにより光学フィルタを作製する。尚、それぞれの方法で混練・混合の際、紫外線吸収剤、可塑剤等の樹脂成形に用いる通常の添加剤を加えてもよい。   The method 4) is applied to a known transparent adhesive for laminated glass such as silicon-based, urethane-based, acrylic-based resin, polyvinyl butyral adhesive, ethylene-vinyl acetate adhesive, etc. Using a resin to which about 0.1 to 30% by mass of the cyanine dye compound represented by the formula (2) is added, transparent resin plates, resin plates and resin films, resin plates and glass, resin films, resin films, An optical filter is produced by bonding glass and glass together. In addition, when kneading and mixing by each method, usual additives used for resin molding such as an ultraviolet absorber and a plasticizer may be added.

本発明の樹脂組成物を使用した赤外線カットフィルタは、近赤外線吸収化合物として上記式(1)及び式(2)で表されるシアニン色素化合物のみを1種ずつ又はそれ以上使用してもよいが、吸収波長域を広くするために、更にこれらの化合物以外の近赤外線吸収化合物を併用してもよい。併用し得る他の近赤外線吸収化合物としては、例えば、ジイモニウム系化合物、フタロシアニン系化合物、ナフタロシアニン系化合物、ニッケルジチオール錯体等の金属錯体化合物が挙げられる。これらの併用し得る他の近赤外線吸収化合物がカチオン系である場合、対アニオンは本発明のシアニン化合物と同じトリス(ハロゲノアルキルスルホニル)メチドアニオンであってもよい。他の近赤外線吸収化合物としては、特にジイモニウム系化合物が好ましく、更に、このジイモニウム系化合物の対アニオンがトリス(ハロゲノアルキルスルホニル)メチドアニオンであるものが好ましい。   The infrared cut filter using the resin composition of the present invention may use only one or more cyanine dye compounds represented by the above formulas (1) and (2) as near infrared absorbing compounds. In order to broaden the absorption wavelength range, near infrared absorbing compounds other than these compounds may be used in combination. Examples of other near infrared absorbing compounds that can be used in combination include metal complex compounds such as diimonium compounds, phthalocyanine compounds, naphthalocyanine compounds, and nickel dithiol complexes. When these other near infrared ray absorbing compounds that can be used in combination are cationic, the counter anion may be the same tris (halogenoalkylsulfonyl) methide anion as the cyanine compound of the present invention. As the other near-infrared absorbing compound, a diimonium compound is particularly preferable, and a counter anion of the diimonium compound is preferably a tris (halogenoalkylsulfonyl) methide anion.

又、併用しうる無機金属の近赤外線吸収化合物としては、例えば、金属銅又は硫化銅、酸化銅等の銅化合物、酸化亜鉛を主成分とする混合物、タングステン化合物、酸化チタンを主成分とする混合物等が挙げられる。   Examples of the inorganic infrared near-absorbing compound that can be used in combination include copper, copper sulfide, copper compounds such as copper oxide, a mixture containing zinc oxide as a main component, a tungsten compound, and a mixture containing titanium oxide as a main component. Etc.

近赤外線吸収用の本発明の光学フィルタは、撮像素子用途やディスプレイの前面板に限らず、近赤外線をカットする必要があるフィルタフィルム、例えば、断熱フィルム、光学製品、サングラス等にも使用することが出来る。   The optical filter of the present invention for absorbing near infrared rays is used not only for imaging device applications and display front plates, but also for filter films that need to cut near infrared rays, such as heat insulating films, optical products, sunglasses, etc. I can do it.

以下に本発明を実施例により、具体的に説明するが、本発明は実施例に限定されるものではない。なお、特別の記載のない限り、本文中「部」及び「%」とあるのは質量基準である。また、分光特性の測定には紫外可視分光光度計UV−1700(島津製作所社製)を用いた。   EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to the examples. Unless otherwise specified, “part” and “%” in the text are based on mass. Further, an ultraviolet-visible spectrophotometer UV-1700 (manufactured by Shimadzu Corporation) was used for the measurement of the spectral characteristics.

[実施例1]
[光学フィルタの作製]
ジアリルフタレート樹脂(ダイソー株式会社製、商品名「ダイソーダップS」)を、クロロホルム に30質量%になるように溶解して、主剤溶液を得た。この主剤溶液の全質量に対して、特許第4635007号公報を参考に合成される下記式(7)で表されるシアニン色素化合物(クロロホルム中のλmax:698nm)を0.1質量%、同様に合成される下記式(8)で表されるシアニン色素化合物(クロロホルム中のλmax:764nm)を0.1質量%となるように主剤溶液に添加し、これらを溶解させた塗工液を得た。この塗工液をスピンコーター上に配置したガラス基板上に滴下し、その基板を1000rpmで10秒間回転させることで基板表面をコーティングし、その後80℃で10分間乾燥させて光学フィルタを得た。
[Example 1]
[Production of optical filter]
Diallyl phthalate resin (Daiso Co., Ltd., trade name “Daiso Dup S”) was dissolved in chloroform so as to be 30% by mass to obtain a base solution. 0.1% by mass of a cyanine dye compound (λmax in chloroform: 698 nm) represented by the following formula (7) synthesized with reference to Japanese Patent No. 4635007 with respect to the total mass of the base solution: The synthesized cyanine dye compound represented by the following formula (8) (λmax in chloroform: 764 nm) was added to the main agent solution so as to be 0.1% by mass, and a coating solution in which these were dissolved was obtained. . This coating solution was dropped on a glass substrate placed on a spin coater, and the substrate surface was coated by rotating the substrate at 1000 rpm for 10 seconds, and then dried at 80 ° C. for 10 minutes to obtain an optical filter.

Figure 2014080487
Figure 2014080487

Figure 2014080487
Figure 2014080487

[比較例1]
上記式(7)で表されるシアニン色素化合物のみを0.2質量%用いる以外は実施例1と同様にして比較用の光学フィルタを作製した。この光学フィルタを比較例1とする。
[Comparative Example 1]
An optical filter for comparison was produced in the same manner as in Example 1 except that only 0.2% by mass of the cyanine dye compound represented by the above formula (7) was used. This optical filter is referred to as Comparative Example 1.

[比較例2]
上記式(8)で表されるシアニン色素化合物のみを0.2質量%用いる以外は実施例1と同様にして比較用の光学フィルタを作製した。この光学フィルタを比較例2とする。
[Comparative Example 2]
A comparative optical filter was produced in the same manner as in Example 1 except that only 0.2% by mass of the cyanine dye compound represented by the above formula (8) was used. This optical filter is referred to as Comparative Example 2.

[比較例3]
上記式(7)及び式(8)で表されるシアニン色素化合物のほぼ中間の最大吸収波長をもつ下記式(9)で表されるシアニン色素化合物(クロロホルム中のλmax:729nm)のみを0.1質量%用いる以外は実施例1と同様にして比較用の光学フィルタを作製した。この光学フィルタを比較例3とする。
[Comparative Example 3]
Only a cyanine dye compound (λmax in chloroform: 729 nm) represented by the following formula (9) having a maximum absorption wavelength approximately in the middle of the cyanine dye compounds represented by the above formulas (7) and (8) was reduced to 0. A comparative optical filter was produced in the same manner as in Example 1 except that 1% by mass was used. This optical filter is referred to as Comparative Example 3.

Figure 2014080487
Figure 2014080487

実施例1及び、比較例1乃至3で添加した色素の濃度は400nm〜550nmの波長領域の平均透過率が95〜96%となる濃度である。   The density | concentration of the pigment | dye added in Example 1 and Comparative Examples 1 thru | or 3 is a density | concentration from which the average transmittance | permeability of the wavelength range of 400 nm-550 nm will be 95-96%.

実施例1及び、比較例1乃至3で得た光学フィルタの光学特性を下記方法で評価した。   The optical characteristics of the optical filters obtained in Example 1 and Comparative Examples 1 to 3 were evaluated by the following methods.

[光学特性]
分光光度計を用い、実施例1、及び比較例1乃至3の各光学フィルタの透過率を300nm〜1100nmの範囲を1nmのサンプリングピッチで測定した。実施例1、及び比較例1乃至3の光学フィルタの400nm〜550nmの波長領域の平均透過率と、650〜800nmの波長領域の平均透過率を表3に示す。
[optical properties]
Using a spectrophotometer, the transmittance of each optical filter of Example 1 and Comparative Examples 1 to 3 was measured in the range of 300 nm to 1100 nm with a sampling pitch of 1 nm. Table 3 shows the average transmittance in the wavelength region of 400 nm to 550 nm and the average transmittance in the wavelength region of 650 to 800 nm of the optical filters of Example 1 and Comparative Examples 1 to 3.

Figure 2014080487
Figure 2014080487

実施例1及び、比較例1〜3のフィルタはいずれも400nm〜550nmの波長領域では同程度且つ高い透過率を有するよう作製されているため、650nm〜800nmの波長領域の平均透過率が低い方が、可視光透過性・近赤外光遮蔽性を兼ね備える優れた近赤外線カットフィルタと言える。表3の結果から、650nm〜800nmの波長領域では、比較例1乃至3の平均透過率はいずれも実施例1の平均透過率より高い値を示し、近赤外カットフィルタとして劣る結果を示した。   Since the filters of Example 1 and Comparative Examples 1 to 3 are manufactured to have the same and high transmittance in the wavelength region of 400 nm to 550 nm, the average transmittance in the wavelength region of 650 nm to 800 nm is lower. However, it can be said to be an excellent near-infrared cut filter having both visible light transmittance and near-infrared light shielding properties. From the results of Table 3, in the wavelength region of 650 nm to 800 nm, the average transmittances of Comparative Examples 1 to 3 are all higher than the average transmittance of Example 1, indicating a result inferior as a near infrared cut filter. .

上記式(1)及び式(2)で表わされるシアニン色素化合物の混合物を含む本発明の樹脂組成物及びこれらによって得られる近赤外線カットフィルタ(光学フィルタ)は可視光域、特に400nm〜550nmの透過性を担保しつつ、近赤外光、特に650nm〜800nmの近赤外光を十分に遮蔽できるため、各種用途の光学フィルタ、特にCCDやCMOSなどの撮像素子用の近赤外線カットフィルタ(光学フィルタ)として非常に有用である。   The resin composition of the present invention containing a mixture of the cyanine dye compounds represented by the above formulas (1) and (2) and the near-infrared cut filter (optical filter) obtained by these are transparent in the visible light range, particularly 400 nm to 550 nm. In this case, near-infrared light, particularly near-infrared light of 650 nm to 800 nm, can be sufficiently shielded while ensuring the optical properties. Therefore, optical filters for various applications, particularly near-infrared cut filters for image sensors such as CCD and CMOS (optical filters). ) Is very useful.

Claims (6)

下記の式(1)及び式(2)で表される化合物と樹脂から成ることを特徴とする樹脂組成物。
Figure 2014080487
Figure 2014080487
(式中、RとRはそれぞれ独立に下記式(3)〜(6)のいずれかの置換基を表す。)
Figure 2014080487
(式(3)中、nは0〜3の整数を表す。)
Figure 2014080487
Figure 2014080487
Figure 2014080487
(式(6)中、mは0〜3の整数を表す。)
A resin composition comprising a compound represented by the following formulas (1) and (2) and a resin.
Figure 2014080487
Figure 2014080487
(In the formula, R 1 and R 2 each independently represents a substituent of any one of the following formulas (3) to (6).)
Figure 2014080487
(In formula (3), n represents an integer of 0 to 3)
Figure 2014080487
Figure 2014080487
Figure 2014080487
(In formula (6), m represents an integer of 0 to 3.)
式(1)におけるRと式(2)におけるRが、それぞれ独立に式(3)及び式(4)である請求項1に記載の化合物を含むことを特徴とする樹脂組成物。 A resin composition comprising the compound according to claim 1, wherein R 1 in formula (1) and R 2 in formula (2) are each independently formula (3) and formula (4). 式(1)におけるRが式(3)であり、さらに式(2)におけるRが式(4)である請求項1に記載の化合物を含むことを特徴とする樹脂組成物。 A resin composition comprising the compound according to claim 1, wherein R 1 in formula (1) is formula (3), and R 2 in formula (2) is formula (4). 式(1)と式(2)の各化合物の混合質量比が7/3〜3/7である請求項1乃至3のいずれか一項に記載の樹脂組成物。 The resin composition according to any one of claims 1 to 3, wherein a mixing mass ratio of each compound of the formula (1) and the formula (2) is 7/3 to 3/7. 請求項4に記載の樹脂組成物を用いた近赤外線カットフィルタ。 A near-infrared cut filter using the resin composition according to claim 4. 請求項5に記載の近赤外線カットフィルタを用いた撮像素子。 An image pickup device using the near-infrared cut filter according to claim 5.
JP2012228578A 2012-10-16 2012-10-16 Resin composition and near infrared ray cutting filter Pending JP2014080487A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012228578A JP2014080487A (en) 2012-10-16 2012-10-16 Resin composition and near infrared ray cutting filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012228578A JP2014080487A (en) 2012-10-16 2012-10-16 Resin composition and near infrared ray cutting filter

Publications (1)

Publication Number Publication Date
JP2014080487A true JP2014080487A (en) 2014-05-08

Family

ID=50784993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012228578A Pending JP2014080487A (en) 2012-10-16 2012-10-16 Resin composition and near infrared ray cutting filter

Country Status (1)

Country Link
JP (1) JP2014080487A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016045243A (en) * 2014-08-20 2016-04-04 日本化薬株式会社 Thermosetting resin composition comprising near-infrared absorbing dye, and near-infrared cut filter
WO2017130825A1 (en) * 2016-01-29 2017-08-03 富士フイルム株式会社 Composition, film, near-infrared cutoff filter, laminate, pattern formation method, solid-state image sensor, image display device, infrared sensor and color filter
WO2019176409A1 (en) 2018-03-13 2019-09-19 富士フイルム株式会社 Method for manufacturing cured film, and method for manufacturing solid-state imaging element
WO2020049930A1 (en) 2018-09-07 2020-03-12 富士フイルム株式会社 Vehicular headlight unit, light-shielding film for headlight, and method for producing light-shielding film for headlight

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016045243A (en) * 2014-08-20 2016-04-04 日本化薬株式会社 Thermosetting resin composition comprising near-infrared absorbing dye, and near-infrared cut filter
WO2017130825A1 (en) * 2016-01-29 2017-08-03 富士フイルム株式会社 Composition, film, near-infrared cutoff filter, laminate, pattern formation method, solid-state image sensor, image display device, infrared sensor and color filter
KR20180088897A (en) * 2016-01-29 2018-08-07 후지필름 가부시키가이샤 Composition, film, near-IR cut filter, laminate, pattern forming method, solid-state image pickup device, image display device, infrared sensor and color filter
CN108474884A (en) * 2016-01-29 2018-08-31 富士胶片株式会社 Composition, film, near infrared ray cut-off filter, laminated body, pattern forming method, solid-state imaging element, image display device, infrared sensor and colour filter
JPWO2017130825A1 (en) * 2016-01-29 2019-01-17 富士フイルム株式会社 Composition, film, near infrared cut filter, laminate, pattern forming method, solid-state imaging device, image display device, infrared sensor, and color filter
EP3410162A4 (en) * 2016-01-29 2019-02-20 FUJIFILM Corporation Composition, film, near-infrared cutoff filter, laminate, pattern formation method, solid-state image sensor, image display device, infrared sensor and color filter
US10947389B2 (en) 2016-01-29 2021-03-16 Fujifilm Corporation Composition, film, near infrared cut filter, laminate, pattern forming method, solid image pickup element, image display device, infrared sensor, and color filter
KR102247282B1 (en) * 2016-01-29 2021-05-03 후지필름 가부시키가이샤 Composition, film, near-infrared cut-off filter, laminate, pattern formation method, solid-state image sensor, image display device, infrared sensor and color filter
US11518833B2 (en) 2016-01-29 2022-12-06 Fujifilm Corporation Composition, film, near infrared cut filter, laminate, pattern forming method, solid image pickup element, image display device, infrared sensor, and color filter
WO2019176409A1 (en) 2018-03-13 2019-09-19 富士フイルム株式会社 Method for manufacturing cured film, and method for manufacturing solid-state imaging element
WO2020049930A1 (en) 2018-09-07 2020-03-12 富士フイルム株式会社 Vehicular headlight unit, light-shielding film for headlight, and method for producing light-shielding film for headlight

Similar Documents

Publication Publication Date Title
JP2014148567A (en) Resin composition and near-infrared ray cut filter
JP4635007B2 (en) Filter and cyanine compound
TWI633341B (en) The optical filter for solid-state image element and usage thereof
KR20160013124A (en) Infrared-light-blocking composition, infrared-light-blocking layer, infrared cut-off filter, and camera module
JP7200985B2 (en) Optical filters, camera modules and electronics
CN104755969A (en) Near-infrared cut filter and solid-state imaging device
JP5904546B2 (en) Novel cyanine dye compound, resin composition and near-infrared cut filter
JP7031665B2 (en) Optical filter for ambient light sensor
JP2014095007A (en) Novel cyanine pigment compound, resin composition and near infrared ray cutting filter
WO2015012322A1 (en) Near-infrared-absorbing composition, near-infrared cut filter obtained using same, process for producing said cut filter, camera module and process for producing same, and solid photographing element
JP6848477B2 (en) Optical filters and their uses
TWI699614B (en) Composition, composition manufacturing method, cured film, color filter, light shielding film, solid-state imaging element, and image display device
JP6939224B2 (en) Optical filters and their uses
JP2021006901A (en) Optical filter and uses thereof
JP2014080487A (en) Resin composition and near infrared ray cutting filter
JP7066021B2 (en) Resin molded body and blue light cut laminated body
JP6771880B2 (en) Resin composition and laminate
KR102558721B1 (en) Composition for solid-state imaging device, infrared shielding film, and solid-state imaging device
WO2018168231A1 (en) Near-infrared blocking filter, method for producing near-infrared blocking filter, solid-state imaging element, camera module and image display device
JP6844275B2 (en) Optical filters and their uses
CN111868579B (en) Optical filter and use thereof
JP2015004838A (en) Near-infrared ray cut filter for solid imaging device, and solid imaging device and camera module using the filter
JP6723762B2 (en) Resin composition
JP2014058621A (en) Novel cyanine pigment compound, resin composition and near-infrared ray cut filter
JP2013241598A (en) New cyanine compound and use of the same