JP2014077257A - Road surface property measuring device - Google Patents

Road surface property measuring device Download PDF

Info

Publication number
JP2014077257A
JP2014077257A JP2012224635A JP2012224635A JP2014077257A JP 2014077257 A JP2014077257 A JP 2014077257A JP 2012224635 A JP2012224635 A JP 2012224635A JP 2012224635 A JP2012224635 A JP 2012224635A JP 2014077257 A JP2014077257 A JP 2014077257A
Authority
JP
Japan
Prior art keywords
vehicle
road surface
measurement
surface property
wheel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012224635A
Other languages
Japanese (ja)
Other versions
JP6078722B2 (en
Inventor
Koichi Yagi
浩一 八木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
yagi koichi
Original Assignee
yagi koichi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by yagi koichi filed Critical yagi koichi
Priority to JP2012224635A priority Critical patent/JP6078722B2/en
Publication of JP2014077257A publication Critical patent/JP2014077257A/en
Application granted granted Critical
Publication of JP6078722B2 publication Critical patent/JP6078722B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Road Paving Structures (AREA)

Abstract

PROBLEM TO BE SOLVED: To install a detector in an arbitrary posture at an arbitrary position of a measurement vehicle, to evaluate the reliability of a measurement result during measurement, and to measure both right and left sides of the measurement vehicle simultaneously.SOLUTION: A road surface property measuring device includes a vibration detector, a device which estimates vibration characteristics of a measurement vehicle, a device which estimates the installation posture of the vibration detector on the measurement vehicle, and a device which calculates road surface properties. When measurements are taken, an arbitrary vehicle is used as the measurement vehicle and the vibration detector is installed in an arbitrary posture at one arbitrary place of the measurement vehicle. When no measurement is taken, on the other hand, the whole measuring device or some of components of the measuring device can be detached from the measurement vehicle. Neither of vibration characteristics of the measurement vehicle nor the installation posture of the vibration detector on the measurement vehicle are input or set to the measuring device, the measurement vehicle is made to travel on a road whose road surface properties are to be measured, thereby measuring the road surface properties.

Description

本発明は、道路の平坦、***、陥没、段差などの路面性状の計測が容易な路面性状計測装置に関するものである。   The present invention relates to a road surface property measuring apparatus that can easily measure road surface properties such as road flatness, bumps, depressions, and steps.

サスペンションまたはバネが支持する試験車の車軸側、若しくは前記サスペンション下部に位置する第1の検出位置および前記試験車の車体側または前記サスペンション上側に位置する第2の検出位置のうち、前記第1の検出位置の加速度または速度のデータに基づいてIRI(国際ラフネス指数)を算出する路面平坦性測定装置において、前記第1の検出位置における前記車軸方向に対して直交する上下方向の加速度または速度を検出するための第1の検出器と、前記試験車の走行速度を検出する走行速度検出手段と、前記第1の検出器が検出する前記第1の検出位置の加速度または速度と、前記走行速度検出手段が検出する走行速度とを所定の一定時間間隔毎に取り込む手段と、前記取り込まれた前記第1の検出位置の加速度または速度に基づいて前記IRIを求めるための処理手段と、前記走行速度検出手段および前記第1の検出器が検出する測定データを記録すると共に、前記処理手段により読み込まれる各種データ等を記憶する記憶手段と、を備えている。(特許文献1の請求項1ならびに図2参照)   Of the first detection position located on the axle side of the test vehicle supported by the suspension or the spring or the lower part of the suspension and the second detection position located on the vehicle body side of the test vehicle or above the suspension, the first detection position In a road surface flatness measuring apparatus that calculates IRI (International Roughness Index) based on acceleration or velocity data at a detected position, an acceleration or velocity in a vertical direction perpendicular to the axle direction at the first detected position is detected. A first detector for detecting, a traveling speed detecting means for detecting a traveling speed of the test vehicle, an acceleration or speed of the first detection position detected by the first detector, and the traveling speed detection. Means for taking in the traveling speed detected by the means at predetermined intervals, and acceleration or speed of the taken-in first detection position Processing means for obtaining the IRI based on the above, storage means for recording measurement data detected by the traveling speed detection means and the first detector, and storing various data read by the processing means, It has. (See claim 1 and FIG. 2 of Patent Document 1)

予め計測車両のモデル化に用いる諸元データが記憶部に登録されたコントローラを前記計測車両に搭載し、この計測車両を、路面凹凸状態を診断する道路を走行させて該計測車両の車両本体床部における鉛直方向の振動を時系列的に計測し、前記コントローラは、前記時系列的に計測された前記車両本体床部の鉛直方向振動データと、前記記憶部に登録された計測車両のモデル化に用いる諸元データとから、数値解析により前記計測車両のタイヤと路面とが接する部分の変位をリアルタイムに算出して、前記車両本体床部の鉛直方向振動データを前記道路の路面変位データに変換し、この変換された路面変位データに基づいて前記道路の路面凹凸状態を、前記計測車両を走行させながら診断するようにしたことを特徴とする路面診断方法。(特許文献2の請求項1および図1参照)
振動加速度データから路面変位量への変換は、計測車両を特許文献2の図7に示す4自由度系からなるモデルとしてとらえ、各質点の釣り合い式を用いて数値解析により車両のタイヤと路面とが接する部分の変位を算出して行なう。(特許文献2の段落0040および図7参照)
A controller in which specification data used for modeling of the measurement vehicle is registered in the storage unit is mounted on the measurement vehicle, and the measurement vehicle is run on a road for diagnosing a road surface unevenness state, and the vehicle body floor of the measurement vehicle is mounted. The vibration in the vertical direction of the vehicle is measured in time series, and the controller models the vertical vibration data of the vehicle body floor measured in time series and the measurement vehicle registered in the storage unit. The real-time displacement of the part where the tire of the measurement vehicle is in contact with the road surface is calculated by numerical analysis from the specification data used for the vehicle, and the vertical vibration data of the vehicle body floor is converted into road surface displacement data of the road A road surface diagnosis method characterized in that, based on the converted road surface displacement data, the road surface uneven state of the road is diagnosed while the measuring vehicle is running. (Refer to claim 1 of FIG. 1 and FIG. 1)
The conversion from the vibration acceleration data to the road surface displacement amount takes the measurement vehicle as a model consisting of a four-degree-of-freedom system shown in FIG. 7 of Patent Document 2, and the vehicle tire and road surface by numerical analysis using a balance equation of each mass point. This is done by calculating the displacement of the part in contact. (See paragraph 0040 of FIG. 7 and FIG. 7)

スマートフォンは道路と平行になるように設置されているが、若干の傾きを持つことがある。その結果、車両の加減速や右左折によって生じる前後方向(Y軸)、左右方向(X軸)の加速度が、Z軸上に見かけの上下方向加速度として現れる。そこでこの傾きの補正を行うこととした。傾き補正のもととなる直線回帰時に停止時のデータを含めるとその時の値に回帰直線が誘導されすぎる。また、段差通過時のデータを含めると傾きを正しく判断できない。このため、上下方向(Z軸)加速度の50[ms]標準偏差が0.002〜0.135[m/s2]のデータをもとに直線回帰を行った。下限値はゼロより大きくやや余裕を持たせた値として設定し、上限値は一般道を10 分間走行した際に観測された標準偏差の85%タイルの値を用いた。(非特許文献1の3ページから4ページ参照)   Smartphones are installed parallel to the road, but may have a slight inclination. As a result, the acceleration in the front-rear direction (Y-axis) and the left-right direction (X-axis) caused by vehicle acceleration / deceleration and right / left turn appears as an apparent vertical acceleration on the Z-axis. Therefore, it was decided to correct this inclination. If the data at the time of stopping is included in the linear regression that becomes the basis of the inclination correction, the regression line is induced too much to the value at that time. In addition, if the data at the time of passing the step is included, the inclination cannot be determined correctly. For this reason, linear regression was performed based on data with a 50 [ms] standard deviation in the vertical (Z-axis) acceleration of 0.002 to 0.135 [m / s2]. The lower limit value was set as a value with a margin slightly larger than zero, and the upper limit value was the value of 85% tile of standard deviation observed when driving on a general road for 10 minutes. (Refer to pages 3 to 4 of Non-Patent Document 1)

特開2010−66040JP 2010-66040 A 特許第4096091号Patent No. 4096091

八木浩一、加速度センサを用いた路面段差検出手法の改善と東北地方太平洋沖地震後の観測データへの適用、ITSシンポジウム、日本、ITS Japan、2011年11月4日、CD−ROM、1−A−05、3ページ〜4ページKoichi Yagi, Improvement of road surface step detection method using acceleration sensor and application to observation data after Tohoku-Pacific Ocean Earthquake, ITS Symposium, Japan, ITS Japan, November 4, 2011, CD-ROM, 1-A -05, 3-4 pages

特許文献1に記載された方法では、検出器の設置場所が車軸またはサスペンション下部と、サスペンション上部に限定される問題と、検出器を2箇所に設置する必要がある問題と、限定された場所への検出器の設置に専門性を要する問題と、前記問題に起因し特許文献1に記載された路面平坦性測定装置を測定に用いる車両に着脱しにくい問題と、前記問題に起因し測定に用いる車両を変更するのが難しい問題と、測定場所ごとの測定結果の測定信頼性が分からない問題と、がある。   In the method described in Patent Document 1, the problem is that the installation location of the detector is limited to the axle or the suspension lower portion and the suspension upper portion, the problem that the detector needs to be installed at two locations, and the limited location. The problem that requires expertise in the installation of the detector, the problem that the road surface flatness measuring device described in Patent Document 1 is difficult to attach to and detach from the vehicle caused by the problem, and the measurement that is caused by the problem There is a problem that it is difficult to change the vehicle, and a problem that the measurement reliability of the measurement result for each measurement location is not known.

特許文献2に記載された方法では、予め計測車両のモデル化に用いる諸元データを計測装置に登録する必要がある問題と、前記問題に起因し計測車両を変更するのが難しい問題と、振動検出器を鉛直方向に設置しているが道路に対して垂直に設置しないと計測車両の走行速度の変動または計測車両の右左折により計測結果に誤差が生じる問題と、前部サスペンション上部の振動と後部サスペンション上部の振動が同じであることを前提に前部タイヤと後部タイヤにおける路面変位量を計算しているが実際には前部サスペンション上部と後部サスペンション上部の上下変位量は異なっているため計算結果が実際の路面変位量と差が生じる問題と、計測時の振動検出器の設置位置が異なると同じ路面を計測しても計測結果が異なってしまう問題と、計測場所ごとの計測結果の計測信頼性が分からない問題と、計測車両の左輪と右輪のどちらの路面性状を計測した結果であるかが分からない問題と、がある。   In the method described in Patent Document 2, it is necessary to register in advance the specification data used for modeling the measurement vehicle in the measurement device, the problem that it is difficult to change the measurement vehicle due to the problem, and vibration. If the detector is installed vertically but not perpendicularly to the road, there will be errors in the measurement results due to fluctuations in the running speed of the measurement vehicle or left and right turns of the measurement vehicle, and vibration at the top of the front suspension. The road surface displacement amount for the front tire and the rear tire is calculated on the assumption that the vibration of the upper part of the rear suspension is the same, but the vertical displacement amount of the upper part of the front suspension and the upper part of the rear suspension is actually different. There is a problem that the result is different from the actual displacement of the road surface, and the measurement result is different even if the same road surface is measured if the installation position of the vibration detector at the time of measurement is different. And the problem of measurement reliability of the measurement results for each measurement location is not known, and the problems or is the result of measurement either of the road surface properties of the left and right wheels of the measuring vehicle is not known, there is.

非特許文献1に記載された方法では、計測車両に対する加速度計の傾きの補正に加速度計から得られた加速度をそのまま使用しているが、走行時に生じる様々な加速度変化の影響により傾きを正しく補正できない問題がある。   In the method described in Non-Patent Document 1, the acceleration obtained from the accelerometer is used as it is to correct the inclination of the accelerometer with respect to the measurement vehicle, but the inclination is correctly corrected due to the influence of various acceleration changes that occur during traveling. There is a problem that cannot be done.

本発明は、このような従来の問題を解決しようとするもので、計測装置を計測車両の任意の1箇所だけに設置すれば路面性状を計測できるようにし、計測装置の設置姿勢を自動的に推定することで計測装置を任意の姿勢で設置できるようにし、計測車両の諸元データを自動的に推定することで予めの登録を不要とし、前記特徴により計測車両への計測装置の着脱に対して専門性を不要とし、前記特徴により任意の車両を計測車両として使用できるようにし、着脱により計測車両が変化し、計測装置の設置位置、設置姿勢が変化しても同等の計測精度で計測できるようにし、計測車両の走行速度の変動と右左折が生じた場合でも同等の計測精度で計測できるようにし、計測車両の左側と右側において路面性状を同時に計測できるようにし、計測場所ごとの計測信頼性を明らかにすること、を目的とする。   The present invention is intended to solve such a conventional problem. If the measuring device is installed only at one arbitrary position of the measuring vehicle, the road surface property can be measured, and the installation posture of the measuring device is automatically set. By making the estimation, the measurement device can be installed in an arbitrary posture, and the specification data of the measurement vehicle is automatically estimated, so that it is not necessary to register in advance. Specialization is unnecessary, and any vehicle can be used as a measurement vehicle due to the above characteristics. Even if the measurement vehicle changes due to attachment and detachment, the measurement device can be measured with the same measurement accuracy even if the installation position and orientation of the measurement device change. In this way, it is possible to measure with the same measurement accuracy even when fluctuations in the running speed of the measurement vehicle and a right / left turn occur, and the road surface properties can be measured simultaneously on the left and right sides of the measurement vehicle. Revealing the measurement reliability of each Tokoro, an object.

(1)道路の平坦、***、陥没、段差などの路面性状を計測する路面性状計測装置において、計測装置の構成に振動検出器と、計測車両の振動特性を推定する装置と、振動検出器の計測車両への設置姿勢を推定する装置と、路面性状を算出する装置と、を備え、計測するときには、任意の車両を計測車両として使用し、振動検出器を計測車両の任意の1箇所に、任意の姿勢で設置し、計測しないときには、計測装置の全体、または計測装置の構成要素の一部を、計測車両から取り外すことが可能で、計測車両の振動特性と、振動検出器の計測車両への設置姿勢と、のいずれについても計測装置へ入力または設定することなく、計測車両を、路面性状を計測したい道路上を走行させることで、路面性状を計測することを特徴とする。   (1) In a road surface property measuring device for measuring road surface properties such as road flatness, bumps, depressions, steps, etc., the configuration of the measurement device includes a vibration detector, a device for estimating the vibration characteristics of a measurement vehicle, and a vibration detector. A device for estimating an installation posture on a measurement vehicle and a device for calculating road surface properties are provided, and when measuring, an arbitrary vehicle is used as a measurement vehicle, and a vibration detector is disposed at any one position of the measurement vehicle. When installed in any posture and not measured, the entire measuring device or some of the components of the measuring device can be removed from the measuring vehicle, and the vibration characteristics of the measuring vehicle and the vibration detector measuring vehicle The road surface property is measured by running the measurement vehicle on the road on which the road surface property is desired to be measured without inputting or setting any of the installation postures.

(2)(1)において、計測車両として前輪と後輪を持つ車両を使用し、計測装置の構成に、前輪サスペンション上部における上下運動と後輪サスペンション上部における上下運動とをそれぞれ算出する装置を備え、路面性状を、振動検出器を計測車両の前輪位置または後輪位置のいずれかに設置したときと同等の計測精度で計測することを特徴とする。   (2) In (1), a vehicle having a front wheel and a rear wheel is used as a measurement vehicle, and a device for calculating the vertical motion in the upper part of the front wheel suspension and the vertical motion in the upper part of the rear wheel suspension is provided in the configuration of the measurement device. The road surface property is measured with the same measurement accuracy as when the vibration detector is installed at either the front wheel position or the rear wheel position of the measurement vehicle.

(3)(2)において、計測装置の構成に、前輪下部における路面変位量と後輪下部における路面変位量とを比較することで計測結果に信頼性を示す情報を付与する装置を備え、路面性状の計測結果に計測の信頼性を示す情報を付与することを特徴とする。   (3) In (2), the configuration of the measurement device includes a device that gives information indicating reliability to the measurement result by comparing the road surface displacement amount at the lower front wheel portion with the road surface displacement amount at the lower rear wheel portion. Information indicating the reliability of the measurement is added to the measurement result of the property.

(4)(2)または(3)のいずれかにおいて、計測装置の構成に、計測車両のホイールベース間隔を推定する装置と、振動検出器の計測車両への前後方向設置位置を推定する装置と、を備え、計測車両のホイールベース間隔と、振動検出器の計測車両への前後方向設置位置と、の少なくとも1つを計測装置へ入力または設定することなく、路面性状を、振動検出器を計測車両の前輪位置または後輪位置のいずれかに設置したときと同等の計測精度で計測することを特徴とする。   (4) In any one of (2) and (3), in the configuration of the measurement device, a device for estimating the wheelbase interval of the measurement vehicle, and a device for estimating the installation position of the vibration detector in the measurement vehicle on the measurement vehicle , And measure the road surface properties and the vibration detector without inputting or setting at least one of the wheelbase interval of the measurement vehicle and the position of the vibration detector in the front-rear direction to the measurement vehicle. Measured with the same measurement accuracy as when installed at either the front wheel position or the rear wheel position of the vehicle.

(5)(1)から(4)のいずれかにおいて、計測車両として左輪と右輪を持つ車両を使用し、計測装置の構成に、左輪サスペンション上部における上下運動と、右輪サスペンション上部における上下運動と、をそれぞれ算出する装置を備え、計測車両を、路面性状を計測したい道路上を1回走行させることで、計測車両の左輪側と右輪側に分けて、路面性状を計測することを特徴とする。   (5) In any one of (1) to (4), a vehicle having a left wheel and a right wheel is used as a measurement vehicle, and the configuration of the measurement device includes a vertical motion at the upper part of the left wheel suspension and a vertical motion at the upper part of the right wheel suspension. And measuring the road surface property separately for the left wheel side and the right wheel side of the measurement vehicle by running the measurement vehicle once on the road on which the road surface property is to be measured. And

(6)(5)において、計測装置の構成に、計測車両のトレッド幅を推定する装置と、振動検出器の計測車両への左右方向設置位置を推定する装置と、を備え、計測車両のトレッド幅と、振動検出器の計測車両への左右方向設置位置と、の少なくとも1つを計測装置へ入力または設定することなく、計測車両の左輪側と右輪側に分けて、路面性状を計測することを特徴とする。   (6) In (5), the configuration of the measurement device includes a device for estimating a tread width of the measurement vehicle and a device for estimating a horizontal installation position of the vibration detector on the measurement vehicle. The road surface property is measured separately for the left wheel side and the right wheel side of the measurement vehicle without inputting or setting at least one of the width and the left and right position of the vibration detector to the measurement vehicle to the measurement device. It is characterized by that.

(7)(5)または(6)のいずれかにおいて、計測装置の構成に、計測車両が左輪と右輪を持つ車両であるかどうかを判別する装置を備え、計測車両が左輪と右輪を持つかどうかに関する情報を入力または設定することなく、計測車両が左輪と右輪を持つと判定された場合には、計測車両の左輪側と右輪側に分けて路面性状を計測し、計測車両が左輪と右輪を持たないと判定された場合には、計測車両の左輪側と右輪側に分けずに路面性状を計測することを特徴とする。   (7) In any one of (5) and (6), the configuration of the measuring device includes a device for determining whether the measuring vehicle is a vehicle having a left wheel and a right wheel, and the measuring vehicle has a left wheel and a right wheel. If it is determined that the measurement vehicle has a left wheel and a right wheel without entering or setting information regarding whether or not the vehicle has a measurement vehicle, the road surface properties are measured separately on the left wheel side and the right wheel side of the measurement vehicle. When it is determined that the vehicle does not have a left wheel and a right wheel, the road surface property is measured without dividing the measurement vehicle into the left wheel side and the right wheel side.

請求項1については、振動検出器の設置場所を任意に選べる利点と、振動検出器の設置箇所を1箇所に抑えられる利点と、振動検出器を道路に対して垂直に設置しなくてもよい利点と、振動検出器の設置位置が任意となるため専門性を要しない箇所へ設置できる利点と、設置姿勢が任意となるため着脱しやすくなる利点と、着脱がしやすくなることにより計測車両の変更が容易となる利点と、計測車両の振動特性と、振動検出器の設置姿勢を予め登録する必要がなくなる利点と、がある。   With respect to claim 1, the advantage that the installation location of the vibration detector can be arbitrarily selected, the advantage that the installation location of the vibration detector can be reduced to one location, and the vibration detector need not be installed perpendicular to the road. Advantages, the position of the vibration detector can be set arbitrarily, the advantage that it can be installed in a place that does not require specialization, the advantage that the installation posture is optional, the ease of attaching / detaching, and the change of the measurement vehicle due to easy attachment / detachment There is an advantage that it becomes easy, and an advantage that it is not necessary to previously register the vibration characteristics of the measurement vehicle and the installation posture of the vibration detector.

請求項2については、前輪サスペンション上部の上下運動と後輪サスペンション上部における上下運動をそれぞれ算出することで、サスペンション上部の上下運動から路面変位量への変換精度を高められる利点と、振動検出器の設置位置によらず同じ計測結果が得られるようになる利点と、がある。   As for claim 2, by calculating the vertical motion of the upper part of the front wheel suspension and the vertical motion of the upper part of the rear wheel suspension respectively, the advantage that the conversion accuracy from the vertical motion of the suspension upper part to the road surface displacement amount can be improved, There is an advantage that the same measurement result can be obtained regardless of the installation position.

請求項3については、計測結果に計測場所ごとの計測信頼性を示す情報を付与できる利点がある。   The third aspect has an advantage that information indicating measurement reliability for each measurement location can be added to the measurement result.

請求項4については、計測車両のホイールベース間隔と、計測装置の前後方向設置位置をあらかじめ登録する必要がない利点と、前記特徴により計測車両を変更しやすくなる利点と、がある。   According to the fourth aspect, there is an advantage that it is not necessary to register in advance the wheel base interval of the measuring vehicle and the installation position of the measuring device in the front-rear direction, and an advantage that the measuring vehicle can be easily changed by the above features.

請求項5については、1回の走行で計測車両の左輪側と右輪側のそれぞれに対して路面性状を同時に計測できるようになる利点がある。   According to the fifth aspect, there is an advantage that the road surface property can be simultaneously measured for each of the left wheel side and the right wheel side of the measurement vehicle in one run.

請求項6については、計測車両のトレッド幅と、計測装置の左右方向設置位置をあらかじめ登録する必要がない利点と、前記特徴により計測車両を変更しやすくなる利点と、がある。   According to the sixth aspect, there is an advantage that the tread width of the measurement vehicle and the installation position of the measurement device in the left-right direction need not be registered in advance, and an advantage that the measurement vehicle can be easily changed by the features.

請求項7については、計測車両に左輪と右輪を持つ車両を使用した場合には、左輪側と右輪側に分けて路面性状を計測し、計測車両に左輪と右輪を持たない車両を使用した場合には、左輪側と右輪側に分けることなく路面性状を計測することを、自動的に切り替えられるようになる利点と、前記特徴により四輪車や二輪車といった車種が異なる車両を計測車両として使用しやすくなる利点と、がある。   Regarding claim 7, when a vehicle having a left wheel and a right wheel is used as a measurement vehicle, road surface properties are measured separately for the left wheel side and the right wheel side, and a vehicle having no left wheel and right wheel is measured. When used, it is possible to automatically switch between measuring the road surface properties without dividing the left wheel side and right wheel side, and measures different types of vehicles such as four-wheeled vehicles and two-wheeled vehicles due to the above features. There is an advantage that it is easy to use as a vehicle.

図1は計測対象と本発明の使用場面の模式図である。FIG. 1 is a schematic diagram of a measurement object and a usage scene of the present invention. 図2は路面性状計測装置3の計測車両2への設置例である。FIG. 2 is an example of installation of the road surface property measuring device 3 on the measurement vehicle 2. 図3は計測車両2を基準とした軸方向を示す模式図である。FIG. 3 is a schematic diagram showing the axial direction with reference to the measuring vehicle 2. 図4は実施例1における路面性状計測装置3の構成図である。FIG. 4 is a configuration diagram of the road surface property measuring apparatus 3 according to the first embodiment. 図5は設置条件推定部321の構成図である。FIG. 5 is a configuration diagram of the installation condition estimation unit 321. 図6は検出器軸Sx、Sy、Szと、車両軸X、Y、Zの傾きの模式図である。FIG. 6 is a schematic diagram of the inclinations of the detector axes Sx, Sy, Sz and the vehicle axes X, Y, Z. 図7は車両条件推定部323の構成図である。FIG. 7 is a configuration diagram of the vehicle condition estimation unit 323. 図8は計測車両2のバネモデルである。FIG. 8 shows a spring model of the measuring vehicle 2. 図9は上下動算出部324の構成図である。FIG. 9 is a configuration diagram of the vertical motion calculation unit 324. 図10は実施例2における路面性状計測装置3の構成図である。FIG. 10 is a configuration diagram of the road surface property measuring apparatus 3 according to the second embodiment. 図11は実施例2における車両条件推定部323の構成図である。FIG. 11 is a configuration diagram of the vehicle condition estimation unit 323 in the second embodiment. 図12は設置位置推定部3233の構成図である。FIG. 12 is a configuration diagram of the installation position estimation unit 3233. 図13は後輪を中心に回転した場合の車両軸Zの速度とピッチの角速度の関係図である。FIG. 13 is a diagram showing the relationship between the speed of the vehicle axis Z and the angular velocity of the pitch when rotating around the rear wheel. 図14は前輪を中心に回転した場合の車両軸Zの速度とピッチの角速度の関係図である。FIG. 14 is a diagram showing the relationship between the speed of the vehicle axis Z and the angular velocity of the pitch when rotating around the front wheels. 図15は実施例2における上下動算出部324の構成図を示である。FIG. 15 is a configuration diagram of the vertical motion calculation unit 324 in the second embodiment. 図16は信頼性検証部326の構成図である。FIG. 16 is a configuration diagram of the reliability verification unit 326. 図17は実施例2における位置割付部325の構成図である。FIG. 17 is a configuration diagram of the position allocation unit 325 according to the second embodiment.

図1に計測対象と本発明の使用場面の模式図を示す。計測対象となる道路の路面1は平坦111であることが望ましいが、舗装状態により、あるいは時間の経過に伴い***112、陥没113、段差114が生じる。計測車両2に路面性状計測装置3を搭載し、走行時に計測車両2の振動を計測し、走行位置ごとの路面性状計測装置3の上下量を計測する。路面の***112、陥没113、段差114に起因する振動が、車輪21、サスペンション22、車体23を介して路面性状計測装置3に伝わり路面性状計測装置3の上下量として計測される。路面性状計測装置3の上下量からサスペンション上部221の上下量を推定し、車輪下部211の上下量を推定する。車輪下部211の上下量は路面1の平坦111、***112、陥没113、段差114に対応しており、車輪下部211の上下量を路面性状11と定義し、計測結果として得る。   FIG. 1 shows a schematic diagram of a measurement object and a usage scene of the present invention. Although it is desirable that the road surface 1 of the road to be measured is a flat surface 111, a bulge 112, a depression 113, and a step 114 are generated depending on the pavement state or with the passage of time. The road surface property measuring device 3 is mounted on the measurement vehicle 2, the vibration of the measurement vehicle 2 is measured during traveling, and the vertical amount of the road surface property measuring device 3 for each traveling position is measured. The vibration caused by the road surface bump 112, the depression 113, and the step 114 is transmitted to the road surface property measuring device 3 via the wheel 21, the suspension 22, and the vehicle body 23, and is measured as the vertical amount of the road surface property measuring device 3. The vertical amount of the suspension upper portion 221 is estimated from the vertical amount of the road surface property measuring device 3, and the vertical amount of the wheel lower portion 211 is estimated. The vertical amount of the wheel lower portion 211 corresponds to the flat surface 111, the bulge 112, the depression 113, and the step 114 of the road surface 1. The vertical amount of the wheel lower portion 211 is defined as the road surface property 11 and obtained as a measurement result.

図2に路面性状計測装置3の計測車両2への設置例を示す。図2では路面性状計測装置3を計測車両2のダッシュボード上に設置しているが、ダッシュボード上以外の場所に設置してもよい。路面性状11の計測に用いる計測車両2には任意の車両を使うことができる。路面性状計測装置3は計測車両2の任意の1箇所に任意の姿勢で固定して設置する。路面性状計測装置3は計測時に計測車両2に固定されるが、計測していない時の取り外しを妨げない。   FIG. 2 shows an example of installation of the road surface property measuring device 3 on the measurement vehicle 2. Although the road surface property measuring device 3 is installed on the dashboard of the measurement vehicle 2 in FIG. 2, it may be installed at a place other than on the dashboard. Any vehicle can be used as the measurement vehicle 2 used for measuring the road surface property 11. The road surface property measuring device 3 is fixedly installed at an arbitrary position on the measuring vehicle 2 in an arbitrary posture. Although the road surface property measuring device 3 is fixed to the measurement vehicle 2 at the time of measurement, it does not hinder removal when not measuring.

図3に計測車両2を基準とした軸方向を示す。同図(a)は計測車両2を上から見た図、同図(b)は計測車両2を左から見た図、同図(c)は計測車両2を後ろから見た図である。計測車両2の進行方向を車両軸Yとし、進行方向前側を正の値と定義する。計測車両2の幅方向を車両軸Xとし、進行方向右側を正の値と定義する。計測車両2が静止しているときに車両軸Xと車両軸Yがなす平面が路面1に対して平行となるように定義する。車両軸Xと車両軸Yに直交する計測車両2の上下方向を車両軸Zとし、車両上側を正の値と定義する。車両軸X周りの回転をピッチ、車両軸Y周りの回転をロール、車両軸Z周りの回転をヨーとし、ピッチ、ロール、ヨーは軸の正方向に右ネジが進む回転方向を正の値と定義する。軸方向の定義に他の定義を採用しても前記の軸方向の定義に変換が可能であり、他の定義の採用を妨げない。   FIG. 3 shows an axial direction based on the measurement vehicle 2. The figure (a) is the figure which looked at the measuring vehicle 2 from the top, the figure (b) is the figure which looked at the measuring vehicle 2 from the left, and the figure (c) is the figure which looked at the measuring vehicle 2 from the back. The traveling direction of the measuring vehicle 2 is defined as the vehicle axis Y, and the front side in the traveling direction is defined as a positive value. The width direction of the measuring vehicle 2 is defined as the vehicle axis X, and the right side in the traveling direction is defined as a positive value. It is defined so that a plane formed by the vehicle axis X and the vehicle axis Y is parallel to the road surface 1 when the measurement vehicle 2 is stationary. The vertical direction of the measuring vehicle 2 orthogonal to the vehicle axis X and the vehicle axis Y is defined as a vehicle axis Z, and the upper side of the vehicle is defined as a positive value. The rotation around the vehicle axis X is the pitch, the rotation around the vehicle axis Y is the roll, and the rotation around the vehicle axis Z is the yaw. The pitch, roll, and yaw are positive values for the rotation direction in which the right screw advances in the positive direction of the axis. Define. Even if another definition is adopted for the definition of the axial direction, the definition can be converted into the definition of the axial direction, and the adoption of the other definition is not hindered.

図4に実施例1における路面性状計測装置3の構成図を示す。路面性状計測装置3には、検出器31と、路面性状計算装置32と、記録装置33と、を備える。
検出器31は、計測場所を得るための測位装置311と、計測車両2の振動を検出する振動検出器312と、から構成される。測位装置311の代表例としてGPSが存在し、他の測位装置の使用を妨げない。振動検出器312は、3軸方向に計測が可能な加速度計3121から構成される。加速度計3121に代えて、変位検出器を使用した場合でも2階微分することで加速度に変換でき、速度検出器を使用した場合でも微分することで加速度に変換でき、加加速度検出器を使用した場合でも積分することで加速度に変換できるため、加速度計3121に置き換えて使用することを妨げない。
路面性状計算装置32は、検出器31に接続され、検出器31の検出結果をもとに路面性状11を計算する。
記録装置33は、検出器31と、路面性状計算装置32と、に接続され、検出器31での検出結果と、路面性状計算装置32の計算結果と、を記録する。
路面性状計算装置32における路面性状11の計算は、走行中に行うこともできるし、記録装置33に記録された検出器31の検出結果をもとに走行後に行うこともできる。
路面性状計測装置3は、検出器31と、路面性状計算装置32と、記録装置33と、を同じ筺体内に収めた構成以外に、検出器31を、路面性状計算装置32と記録装置33の両方またはいずれか一方の接続を通信装置や記録媒体を介して行うことで、路面性状計算装置32と記録装置33の両方またはいずれか一方を計測車両2の外に備える構成を取ることもできる。
FIG. 4 shows a configuration diagram of the road surface property measuring apparatus 3 according to the first embodiment. The road surface property measuring device 3 includes a detector 31, a road surface property calculating device 32, and a recording device 33.
The detector 31 includes a positioning device 311 for obtaining a measurement location, and a vibration detector 312 that detects vibration of the measurement vehicle 2. GPS is present as a representative example of the positioning device 311 and does not hinder the use of other positioning devices. The vibration detector 312 includes an accelerometer 3121 that can measure in three axial directions. In place of the accelerometer 3121, even when a displacement detector is used, it can be converted to acceleration by second-order differentiation, and even when a speed detector is used, it can be converted to acceleration by differentiation, and a jerk detector is used. Even in this case, it can be converted into acceleration by integration, so that it can be used in place of the accelerometer 3121.
The road surface property calculation device 32 is connected to the detector 31 and calculates the road surface property 11 based on the detection result of the detector 31.
The recording device 33 is connected to the detector 31 and the road surface property calculation device 32, and records the detection result of the detector 31 and the calculation result of the road surface property calculation device 32.
The calculation of the road surface property 11 in the road surface property calculation device 32 can be performed during traveling, or can be performed after traveling based on the detection result of the detector 31 recorded in the recording device 33.
The road surface property measuring device 3 includes the detector 31, the road surface property calculating device 32, and the recording device 33, in addition to the configuration in which the detector 31, the road surface property calculating device 32, and the recording device 33 are housed in the same housing. It is also possible to adopt a configuration in which both or one of the road surface property calculating device 32 and the recording device 33 is provided outside the measurement vehicle 2 by performing both or any one of the connections via a communication device or a recording medium.

路面性状計算装置32の構成には、設置条件推定部321と、軸方向補正部322と、車両条件推定部323と、上下動算出部324と、位置割付部325と、を備える。
設置条件推定部321は、測位装置311と、振動検出器312と、に接続される。
軸方向補正部322は、振動検出器312と、設置条件推定部321と、に接続される。
車両条件推定部323は、軸方向補正部322に接続される。
上下動算出部324は、軸方向補正部322と、車両条件推定部323と、に接続される。
位置割付部325は、測位装置311と、上下動算出部324と、に接続される。
記録装置33は、測位装置311と、振動検出器312と、設置条件推定部321と、車両条件推定部323と、位置割付部325と、に接続され、検出結果と計算結果を記録する。
The configuration of the road surface property calculation device 32 includes an installation condition estimation unit 321, an axial direction correction unit 322, a vehicle condition estimation unit 323, a vertical motion calculation unit 324, and a position allocation unit 325.
The installation condition estimation unit 321 is connected to the positioning device 311 and the vibration detector 312.
The axial direction correction unit 322 is connected to the vibration detector 312 and the installation condition estimation unit 321.
The vehicle condition estimation unit 323 is connected to the axial direction correction unit 322.
The vertical motion calculation unit 324 is connected to the axial direction correction unit 322 and the vehicle condition estimation unit 323.
The position allocation unit 325 is connected to the positioning device 311 and the vertical motion calculation unit 324.
The recording device 33 is connected to the positioning device 311, the vibration detector 312, the installation condition estimation unit 321, the vehicle condition estimation unit 323, and the position allocation unit 325, and records the detection result and the calculation result.

図5に設置条件推定部321の構成図を示す。設置条件推定部321には、ローパスフィルタ3211と、加減速右左折判定部3212と、3軸加速度相関推定部3213と、を備える。
ローパスフィルタ3211は、加速度計3121から検出器の軸方向の加速度すなわち検出器軸加速度を受け取り、一定周波数以下たとえば1Hz以下の加速度低周波成分を軸ごとに求める。他の周波数、たとえば0.5Hz以下、2Hz以下とすることを妨げない。
加減速右左折判定部3212は測位装置311からの計測車両2の走行速度と進行方向を受け取り、一定時間間隔たとえば1秒ごとに走行速度の変化すなわち走行加速度を求め、加速度の絶対値が一定値たとえば0.2Gを超えた場合、計測車両2が加減速していると判定する。また一定時間間隔たとえば1秒ごとの進行方向に、一定角度たとえば5度以上の変化が検出された場合、計測車両2が右左折していると判定する。時間間隔、加減速のしきい値、角度のしきい値に他の値を取ることを妨げない。
3軸加速度相関推定部3213は、ローパスフィルタ3211に接続され軸ごとの加速度低周波成分を受け取り、加減速右左折判定部3212に接続され計測車両2が加減速しているかどうか、右左折しているかどうかの判定結果を受け取る。
図6に検出器軸Sx、Sy、Szと、車両軸X、Y、Zの傾きの模式図を示す。同図(a)は計測車両2を上から見た図、同図(b)は計測車両2を左から見た図、同図(c)は計測車両2を後ろから見た図である。検出器軸加速度低周波成分で絶対値が最も大きい軸を車両軸Zに近い検出器軸Szと判定する。計測車両2が加減速していると判定されたときに、検出器軸の加速度低周波成分が最も大きく変化した軸を車両軸Yに近い検出器軸Syと判定する。計測車両2が右左折していると判定されたときに、検出器軸の加速度低周波成分が最も大きく変化した軸を車両軸Xに近い検出器軸Sxと判定する。判定ごとに検出器軸の判定結果が異なる場合、判定回数が最も多くなった軸を判定結果とする。検出器軸Sx、Sy、Szの加速度低周波成分をSxlow、Sylow、Szlowとする。SxlowとSzlowに対して(1)式の回帰直線を求め、SylowとSzlowに対して(2)式の回帰直線を求め、SxlowとSylowに対して(3)式の回帰直線を求める。(1)式の傾きAyと、(2)式の傾きAxと、を検出器軸Szの計測車両2の上下方向の車両軸Zに対する傾きの正接とみなして傾き角を推定し、(3)式の傾きAzを検出器軸Syの計測車両2の前後方向の車両軸Yに対する傾きの正接とみなして傾き角を推定する。回帰直線は、加減速または右左折していると判定されたときのSxlow、Sylow、Szlowを用いて求める。
(数1)
Szlow=Ay×Sxlow+By (1)
(数2)
Szlow=Ax×Sylow+Bx (2)
(数3)
Sxlow=Az×Sylow+Bz (3)
FIG. 5 shows a configuration diagram of the installation condition estimation unit 321. The installation condition estimation unit 321 includes a low-pass filter 3211, an acceleration / deceleration right / left turn determination unit 3212, and a triaxial acceleration correlation estimation unit 3213.
The low-pass filter 3211 receives the acceleration in the axial direction of the detector, that is, the detector axial acceleration from the accelerometer 3121, and obtains an acceleration low frequency component of a certain frequency or less, for example, 1 Hz or less for each axis. It does not prevent other frequencies, for example, 0.5 Hz or less and 2 Hz or less.
The acceleration / deceleration right / left turn determination unit 3212 receives the traveling speed and the traveling direction of the measurement vehicle 2 from the positioning device 311, obtains a change in traveling speed, that is, a traveling acceleration at a constant time interval, for example, every second, and the absolute value of the acceleration is a constant value. For example, when it exceeds 0.2 G, it determines with the measurement vehicle 2 accelerating / decelerating. When a change of a certain angle, for example, 5 degrees or more is detected in a traveling direction at a certain time interval, for example, every second, it is determined that the measurement vehicle 2 is turning right or left. It does not prevent other values from being set for the time interval, acceleration / deceleration threshold, and angle threshold.
A triaxial acceleration correlation estimation unit 3213 is connected to a low pass filter 3211 and receives an acceleration low frequency component for each axis, and is connected to an acceleration / deceleration right / left turn determination unit 3212 to determine whether the measurement vehicle 2 is accelerating / decelerating. Receives the judgment result of whether or not.
FIG. 6 shows a schematic diagram of the inclinations of the detector axes Sx, Sy, Sz and the vehicle axes X, Y, Z. The figure (a) is the figure which looked at the measuring vehicle 2 from the top, the figure (b) is the figure which looked at the measuring vehicle 2 from the left, and the figure (c) is the figure which looked at the measuring vehicle 2 from the back. The axis having the largest absolute value in the detector axis acceleration low frequency component is determined as the detector axis Sz close to the vehicle axis Z. When it is determined that the measurement vehicle 2 is accelerating / decelerating, the axis where the acceleration low-frequency component of the detector axis has changed the most is determined as the detector axis Sy close to the vehicle axis Y. When it is determined that the measurement vehicle 2 is turning left or right, the axis in which the acceleration low-frequency component of the detector axis changes most greatly is determined as the detector axis Sx close to the vehicle axis X. When the determination result of the detector axis differs for each determination, the axis with the largest number of determinations is determined as the determination result. The acceleration low frequency components of the detector axes Sx, Sy, Sz are Sxlow, Sylow, Szlow. The regression line of the formula (1) is obtained for Sxlow and Szlow, the regression line of the formula (2) is obtained for Sylow and Szlow, and the regression line of the formula (3) is obtained for Sxlow and Sylow. The inclination angle is estimated by regarding the inclination Ay in the expression (1) and the inclination Ax in the expression (2) as the tangent of the inclination of the detector axis Sz with respect to the vehicle axis Z in the vertical direction of the measuring vehicle 2, (3) The inclination angle is estimated by regarding the inclination Az of the equation as the tangent of the inclination of the detector axis Sy with respect to the vehicle axis Y in the front-rear direction of the measuring vehicle 2. The regression line is obtained using Sxlow, Sylow, and Szlow when it is determined that the vehicle is accelerating / decelerating or turning right or left.
(Equation 1)
Szlow = Ay × Sxlow + By (1)
(Equation 2)
Szlow = Ax × Sylow + Bx (2)
(Equation 3)
Sxlow = Az × Sylow + Bz (3)

図4の軸方向補正部322は、加速度計3121と、設置条件推定部321と、に接続され、設置条件推定部321で推定した検出器軸Sx、Sy、Szの車両軸X、Y、Zに対する傾き角をもとに、加速度計3121で得られた検出器軸Sx、Sy、Sz方向の加速度を座標回転させ、車両軸X、Y、Z方向の加速度すなわち車両軸加速度を求める。   4 is connected to the accelerometer 3121 and the installation condition estimation unit 321, and the vehicle axes X, Y, and Z of the detector axes Sx, Sy, and Sz estimated by the installation condition estimation unit 321. The accelerations in the detector axes Sx, Sy, and Sz directions obtained by the accelerometer 3121 are coordinate-rotated based on the inclination angle with respect to, and the accelerations in the vehicle axis X, Y, and Z directions, that is, the vehicle axis accelerations are obtained.

図7に車両条件推定部323の構成図を示す。車両条件推定部323は、車両特性推定部3231から構成される。車両特性推定部3231は、軸方向補正部322からの車両軸加速度を受け取り、上下動算出部324へ計測車両2の共振周波数と減衰比を出力する。
車両特性推定部3231は、周波数分析部32311と、共振周波数抽出部32312と、減衰比推定部32313と、から構成される。
周波数分析部32311は、軸方向補正部322に接続され車両軸加速度を受け取り、加速度の周波数分析を行う。周波数分析は一定時間間隔ごと、たとえば20秒ごとの加速度をもとに行う。周波数分析の結果として周波数ごとの振幅を得て、直前の一定回数分、たとえば30回分の振幅を周波数ごとに足し合わせる。計測車両2の振動には路面性状11に起因する振動が含まれるが、路面性状11に起因する振動の周波数は道路区間ごと、走行速度ごとに異なる。これに対し、計測車両2に固有な振動の周波数は道路区間、走行速度によらず一定であるため、足し合わせることによって共振周波数の抽出が可能となる。時間間隔と足し合わせる回数は他の時間、回数を採用することを妨げない。
共振周波数抽出部32312は、周波数分析部32311に接続され計測車両2の上下方向の車両軸Zにおいて振幅が大きい極大点の周波数を共振周波数として抽出する。
減衰比推定部32313は、周波数分析部32311と、共振周波数抽出部32312と、に接続され、共振周波数抽出部32312で抽出された共振周波数に対応した減衰比を推定する。減衰比の推定方法は半値幅法などがあるが、その方法を問わない。
FIG. 7 shows a configuration diagram of the vehicle condition estimation unit 323. The vehicle condition estimation unit 323 includes a vehicle characteristic estimation unit 3231. The vehicle characteristic estimation unit 3231 receives the vehicle axis acceleration from the axial direction correction unit 322 and outputs the resonance frequency and the attenuation ratio of the measurement vehicle 2 to the vertical motion calculation unit 324.
The vehicle characteristic estimation unit 3231 includes a frequency analysis unit 32311, a resonance frequency extraction unit 32312, and an attenuation ratio estimation unit 32313.
The frequency analysis unit 32311 is connected to the axial direction correction unit 322, receives vehicle axis acceleration, and performs frequency analysis of acceleration. The frequency analysis is performed on the basis of an acceleration at regular time intervals, for example, every 20 seconds. As a result of the frequency analysis, the amplitude for each frequency is obtained, and the amplitude for the predetermined number of times, for example, 30 times, is added for each frequency. The vibration of the measurement vehicle 2 includes vibration caused by the road surface property 11, but the frequency of vibration caused by the road surface property 11 is different for each road section and for each traveling speed. On the other hand, the vibration frequency inherent to the measurement vehicle 2 is constant regardless of the road section and the traveling speed, so that the resonance frequency can be extracted by adding them. The number of times added to the time interval does not prevent other times and times from being adopted.
The resonance frequency extraction unit 32312 is connected to the frequency analysis unit 32311 and extracts the frequency of the maximum point having a large amplitude in the vehicle axis Z in the vertical direction of the measurement vehicle 2 as the resonance frequency.
The attenuation ratio estimation unit 32313 is connected to the frequency analysis unit 32311 and the resonance frequency extraction unit 32312, and estimates an attenuation ratio corresponding to the resonance frequency extracted by the resonance frequency extraction unit 32312. The method for estimating the attenuation ratio includes the half-width method, but it does not matter.

図8に計測車両2のバネモデル4を示す。路面1に存在する路面性状11に起因する振動はバネ特性を持った計測車両2を介して路面性状計測装置3の加速度計3121に伝えられる。バネモデル4を、サスペンション41、車輪42、路面性状計測装置3の設置部43の3つでモデルを構成する場合、図7の共振周波数抽出部32312において、3つの共振周波数を抽出し、周波数の低い方から、サスペンション41、タイヤ42、設置部43の共振周波数と判断する。図7の減衰比推定部32313においては、サスペンション41の共振周波数に対応した減衰比を推定する。
図8に示す計測車両2のバネモデル4については他のバネモデルの採用を妨げず、たとえば、タイヤ42、設置部43に対応した減衰比も考慮するバネモデルや、サスペンション41、タイヤ42の2つで構成されるバネモデルや、サスペンション41のみで構成されるバネモデル、など、さまざまなバネモデルを採用できる。
FIG. 8 shows the spring model 4 of the measurement vehicle 2. The vibration caused by the road surface property 11 existing on the road surface 1 is transmitted to the accelerometer 3121 of the road surface property measurement device 3 through the measurement vehicle 2 having spring characteristics. When the spring model 4 is composed of three models including the suspension 41, the wheels 42, and the installation unit 43 of the road surface property measuring device 3, the resonance frequency extraction unit 3322 in FIG. 7 extracts three resonance frequencies, and the frequency is low. From the direction, the resonance frequency of the suspension 41, the tire 42, and the installation portion 43 is determined. In the damping ratio estimation unit 32313 in FIG. 7, the damping ratio corresponding to the resonance frequency of the suspension 41 is estimated.
The spring model 4 of the measurement vehicle 2 shown in FIG. 8 does not interfere with the adoption of other spring models, and includes, for example, a spring model that takes into account the damping ratio corresponding to the tire 42 and the installation portion 43, a suspension 41, and a tire 42. Various spring models can be employed, such as a spring model that is made up of, or a spring model that is composed only of the suspension 41.

図9に上下動算出部324の構成図を示す。上下動算出部324には、上部上下動算出部3241と、下部上下動算出部3242と、を備える。
上部上下動算出部3241には、加速度ハイパスフィルタ32411と、加速度積分部32412と、速度ハイパスフィルタ32413と、速度積分部32414と、を備える。
加速度ハイパスフィルタ32411は、軸方向補正部322に接続され車両軸加速度を受け取り、一定周波数以上たとえば1Hz以上の周波数の加速度の高周波成分を取り出す。周波数の設定は0.5Hz以上や2Hz以上などの固定値や、計測車両の走行速度に応じた可変値とするなど、他の設定も妨げない。計測車両の走行速度に応じた可変値とする場合は、測位装置311と接続する構成とし、走行速度を得る。
加速度積分部32412は、加速度ハイパスフィルタ32411に接続し加速度の高周波成分を受け取り、積分することで車両軸Z方向速度を求める。
速度ハイパスフィルタ32413は、加速度積分部32412に接続し車両軸Z方向速度を受け取り、一定周波数以上たとえば1Hz以上の周波数の車両軸Z方向速度の高周波成分を取り出す。周波数の設定は0.5Hz以上や2Hz以上などの固定値や、計測車両2の走行速度に応じた可変値とするなど、他の設定も妨げない。計測車両2の走行速度に応じた可変値とする場合は、測位装置311と接続する構成とし、速度を得る。
速度積分部32414は、速度ハイパスフィルタ32413に接続し車両軸Z方向速度の高周波成分を受け取り、積分することで車両軸Z方向変位を求める。
下部上下動算出部3242には、運動方程式演算部32421と、変位ハイパスフィルタ32422と、を備える。
運動方程式演算部32421は、上部上下動算出部3241に接続し路面性状計測装置3の設置部における車両軸Z方向の加速度の高周波成分、速度の高周波成分、変位を受け取り、車両条件推定部323に接続し受け取った計測車両2のバネモデル4に対応する共振周波数と減衰比をもとに、バネモデル4の運動方程式を解くことでバネモデル4の下部の上下変位量を算出する。
変位ハイパスフィルタ32422は、運動方程式演算部32421に接続しバネモデル4の下部上下変位量を受け取り、一定周波数以上たとえば1Hz以上の周波数の下部上下変位量の高周波成分を取り出す。周波数の設定は0.5Hz以上や2Hz以上などの固定値や、計測車両2の走行速度に応じた可変値とするなど、他の設定も妨げない。計測車両2の走行速度に応じた可変値とする場合は、測位装置311と接続する構成とし、走行速度を得る。
FIG. 9 shows a configuration diagram of the vertical motion calculation unit 324. The vertical motion calculation unit 324 includes an upper vertical motion calculation unit 3241 and a lower vertical motion calculation unit 3242.
The upper vertical motion calculation unit 3241 includes an acceleration high-pass filter 32411, an acceleration integration unit 32412, a speed high-pass filter 32413, and a speed integration unit 32414.
The acceleration high-pass filter 32411 is connected to the axial direction correction unit 322, receives vehicle axial acceleration, and extracts a high-frequency component of acceleration having a frequency of a certain frequency or higher, for example, 1 Hz or higher. Other settings such as a fixed value such as 0.5 Hz or higher, 2 Hz or higher, or a variable value corresponding to the traveling speed of the measurement vehicle are not hindered. When setting it as the variable value according to the running speed of a measurement vehicle, it is set as the structure connected to the positioning apparatus 311, and a running speed is obtained.
The acceleration integration unit 32412 is connected to the acceleration high-pass filter 32411, receives the high frequency component of acceleration, and integrates it to obtain the vehicle axis Z direction speed.
The speed high-pass filter 32413 is connected to the acceleration integrator 32412 and receives the speed in the vehicle axis Z direction, and extracts a high frequency component of the speed in the vehicle axis Z direction at a frequency of a certain frequency or higher, for example, 1 Hz or higher. Other settings such as a fixed value such as 0.5 Hz or higher or 2 Hz or a variable value corresponding to the traveling speed of the measurement vehicle 2 are not hindered. When setting it as the variable value according to the traveling speed of the measurement vehicle 2, it is set as the structure connected to the positioning apparatus 311, and speed is obtained.
The speed integration unit 32414 is connected to the speed high-pass filter 32413, receives a high-frequency component of the speed in the vehicle axis Z direction, and integrates to obtain the displacement in the vehicle axis Z direction.
The lower vertical motion calculation unit 3242 includes a motion equation calculation unit 32421 and a displacement high-pass filter 32422.
The motion equation calculation unit 32421 is connected to the upper vertical motion calculation unit 3241 and receives the high-frequency component of acceleration in the vehicle axis Z direction, the high-frequency component of speed, and the displacement at the installation unit of the road surface property measuring device 3, and receives the high-frequency component and displacement of the vehicle condition estimation unit 323. Based on the resonance frequency and damping ratio corresponding to the spring model 4 of the measurement vehicle 2 connected and received, the amount of vertical displacement of the lower part of the spring model 4 is calculated by solving the equation of motion of the spring model 4.
The displacement high-pass filter 32422 is connected to the motion equation calculation unit 32421, receives the lower vertical displacement amount of the spring model 4, and extracts the high frequency component of the lower vertical displacement amount at a frequency equal to or higher than a certain frequency, for example, 1 Hz or higher. Other settings such as a fixed value such as 0.5 Hz or higher or 2 Hz or a variable value corresponding to the traveling speed of the measurement vehicle 2 are not hindered. When setting it as the variable value according to the running speed of the measurement vehicle 2, it is set as the structure connected to the positioning apparatus 311, and a running speed is obtained.

図4の位置割付部325は、測位装置311に接続し緯度経度と検出時刻を受け取り、上下動算出部324に接続し計測車両2のバネモデル4の下部の上下変位量と上下変位量に対応する検出時刻を受け取る。緯度経度と上下変位量は非同期で得られるため、上下変位量が検出された時刻の前後に測位された緯度経度をもとに時間で按分して上下変位量の緯度経度を求め、上下変位量に緯度経度を割り付ける。位置割付部325は、記録装置33に接続し上下変位量と上下変位量に対応する緯度経度を記録する。   The position allocation unit 325 in FIG. 4 is connected to the positioning device 311 to receive the latitude / longitude and the detection time, and is connected to the vertical motion calculation unit 324 to correspond to the vertical displacement and vertical displacement of the lower part of the spring model 4 of the measurement vehicle 2. Receive detection time. Since the latitude and longitude and the vertical displacement are obtained asynchronously, the latitude and longitude of the vertical displacement is obtained by dividing the time based on the latitude and longitude measured before and after the time when the vertical displacement was detected. Assign latitude and longitude to. The position allocation unit 325 is connected to the recording device 33 and records the vertical displacement amount and the latitude and longitude corresponding to the vertical displacement amount.

図10に実施例2における路面性状計測装置3の構成図を示す。
実施例1に対して、振動検出器312に、3軸方向に計測が可能な角速度計3122を追加し、路面性状計算装置32に信頼性検証部326を追加し、路面性状計算装置32の軸方向補正部322と、車両条件推定部323と、上下動算出部324と、位置割付部325と、に改良を加えている。
FIG. 10 shows a configuration diagram of the road surface property measuring apparatus 3 according to the second embodiment.
Compared to the first embodiment, an angular velocity meter 3122 capable of measuring in three axial directions is added to the vibration detector 312, a reliability verification unit 326 is added to the road surface property calculation device 32, and the axis of the road surface property calculation device 32 is added. The direction correction unit 322, the vehicle condition estimation unit 323, the vertical motion calculation unit 324, and the position allocation unit 325 are improved.

軸方向補正部322は、振動検出器312と、設置条件推定部321と、に接続され、設置条件推定部321で推定した検知器軸Sx、Sy、Szの車両軸X、Y、Zに対する傾き角をもとに、振動検出器312で得られた加速度と角速度を座標回転させ、車両軸X、Y、Zに対する加速度と角速度を求める。   The axial direction correction unit 322 is connected to the vibration detector 312 and the installation condition estimation unit 321, and the inclination of the detector axes Sx, Sy, Sz estimated by the installation condition estimation unit 321 with respect to the vehicle axes X, Y, Z Based on the angle, the acceleration and angular velocity obtained by the vibration detector 312 are coordinate-rotated to obtain the acceleration and angular velocity with respect to the vehicle axes X, Y, and Z.

図11に実施例2における車両条件推定部323の構成図を示す。車両条件推定部323は、車両特性推定部3231と、車種判定部3232と、設置位置推定部3233と、から構成される。
車両特性推定部3231は実施例1と同じ構成からなり、軸方向補正部322に接続され車両軸の加速度と角速度を受け取り、上下動算出部324に接続され計測車両2の共振周波数と減衰比を出力する。
車種判定部3232は、軸方向補正部322に接続され車両軸の加速度と角速度を受け取り、上下動算出部324に接続され計測車両2の車種を出力する。車種判定部3232では、計測車両2が四輪車であるか、二輪車であるかを判定する。四輪車は右左折時に車両が回転半径の外側の方向に傾き、二輪車は内側に傾く特性を持つ。計測車両2の左右方向の車両軸Xの加速度と、車両軸Y周りのロールの角速度の関連性を比較し、角速度が大きくなったときに加速度も大きくなれば四輪車、角速度が大きくなっても加速度が大きくならなければ二輪車と判定する。四輪車の方が二輪車に比べて共振周波数が低いことを利用し、車種の判定が正しく行われているかどうかの検証を行うことも出来る。前記検証は必須ではないが、行う場合は車両特性推定部3231と接続し共振周波数を受け取る。あるいは測位装置311と接続し進行方向を受け取り、進行方向の変化から右左折を判定したのち、ロールが右折時に正の値、左折時に負の値となれば二輪車、右折時に負の値、左折時に正の値となれば四輪車と判定する方法もあり、他の判定方法を採用することを妨げない。また車種判定部3232自体も必須ではなく、四輪車用の計測装置、または二輪車用の計測装置として構成することや、四輪車であるか二輪車であるかを予め設定する構成に代えることもできる。
FIG. 11 is a configuration diagram of the vehicle condition estimation unit 323 in the second embodiment. The vehicle condition estimation unit 323 includes a vehicle characteristic estimation unit 3231, a vehicle type determination unit 3232, and an installation position estimation unit 323 3.
The vehicle characteristic estimation unit 3231 has the same configuration as that of the first embodiment, is connected to the axial direction correction unit 322, receives the acceleration and angular velocity of the vehicle axis, and is connected to the vertical motion calculation unit 324 to calculate the resonance frequency and attenuation ratio of the measurement vehicle 2. Output.
The vehicle type determination unit 3232 is connected to the axial direction correction unit 322, receives the acceleration and angular velocity of the vehicle axis, is connected to the vertical motion calculation unit 324, and outputs the vehicle type of the measurement vehicle 2. The vehicle type determination unit 3232 determines whether the measurement vehicle 2 is a four-wheel vehicle or a two-wheel vehicle. A four-wheeled vehicle has a characteristic that the vehicle tilts toward the outside of the turning radius when turning right or left, and the two-wheeled vehicle tilts inward. Compare the acceleration of the vehicle axis X in the left-right direction of the measuring vehicle 2 with the angular velocity of the roll around the vehicle axis Y. If the acceleration increases when the angular velocity increases, the four-wheeled vehicle and the angular velocity increase. If the acceleration does not increase, the vehicle is determined to be a motorcycle. It is possible to verify whether the determination of the vehicle type is correctly performed by utilizing the fact that the resonance frequency of the four-wheeled vehicle is lower than that of the two-wheeled vehicle. The verification is not essential, but when it is performed, the vehicle characteristic estimation unit 3231 is connected to receive the resonance frequency. Alternatively, after connecting to the positioning device 311 and receiving the direction of travel and judging the right or left turn from the change in the direction of travel, if the roll is a positive value when turning right, a negative value when turning left, a two-wheeled vehicle, a negative value when turning right, and a left turn If it becomes a positive value, there is also a method for determining that the vehicle is a four-wheeled vehicle, and it does not prevent other determination methods from being adopted. Further, the vehicle type determination unit 3232 itself is not essential, and may be configured as a measurement device for a four-wheeled vehicle or a measurement device for a two-wheeled vehicle, or may be replaced with a configuration in which the vehicle is a four-wheeled vehicle or a two-wheeled vehicle. it can.

図12に設置位置推定部3233の構成図を示す。設置位置推定部3233は、加速度ハイパスフィルタ32331と、加速度積分部32332と、速度ハイパスフィルタ32333と、速度角速度比統計部32334と、設置位置算出部32335と、から構成される。
加速度ハイパスフィルタ32331は、軸方向補正部322に接続し車両軸加速度を受け取り、一定周波数以上たとえば1Hz以上の周波数の加速度の高周波成分を取り出す。周波数の設定は0.5Hz以上や2Hz以上などの固定値や、計測車両2の走行速度に応じた可変値とするなど、他の設定も妨げない。計測車両2の走行速度に応じた可変値とする場合は、測位装置311と接続する構成とし、走行速度を得る。
加速度積分部32332は、加速度ハイパスフィルタ32331に接続し加速度の高周波成分を受け取り、積分することで車両軸Z方向速度を求める。
速度ハイパスフィルタ32333は、加速度積分部32332に接続し車両軸Z方向速度を受け取り、一定周波数以上たとえば1Hz以上の周波数の車両軸Z方向速度の高周波成分を取り出す。周波数の設定は0.5Hz以上や2Hz以上などの固定値や、計測車両2の走行速度に応じた可変値とするなど、他の設定も妨げない。計測車両2の走行速度に応じた可変値とする場合は、測位装置311と接続する構成とし、走行速度を得る。
加速度ハイパスフィルタ32331と、加速度積分部32332と、速度ハイパスフィルタ32333と、は図9の上下動算出部324の上部上下動算出部3241の加速度ハイパスフィルタ32411と、加速度積分部32412と、速度ハイパスフィルタ32413と、共用する構成にすることもできる。
図12の速度角速度比統計部32334は、軸方向補正部322に接続し車両軸角加速度を受け取り、速度ハイパスフィルタ32333に接続し車両軸Z方向速度の高周波成分を受け取り、車種判定部3232に接続し計測車両2の車種を受け取る。角速度に対する車両軸Z方向速度の比率(車両軸Z方向速度を角速度で割った値)である速度角速度比を求め、各時刻における速度角速度比をもとに速度角速度比の頻度分布を求め、頻度の高い速度角速度比を2つ抽出する。頻度分布は、車種が四輪車の場合、車両軸Z方向速度とピッチの角速度を用いた頻度分布と、車両軸Z方向速度とロールの角速度を用いた頻度分布を求め、車種が二輪車の場合、車両軸Z方向速度とピッチの角速度を用いた頻度分布のみを求める。
設置位置推定部32335は、車種判定部3232に接続し計測車両2の車種を受け取り、速度角速度比統計部32334に接続し、車種が四輪車の場合、頻度の高い速度角速度比をピッチとロールそれぞれに対して2つずつ、合計4つ受け取り、車種が二輪車の場合、ピッチに対して2つ受け取る。
FIG. 12 shows a configuration diagram of the installation position estimation unit 3233. The installation position estimation unit 3233 includes an acceleration high-pass filter 32331, an acceleration integration unit 32332, a speed high-pass filter 32333, a speed angular velocity ratio statistics unit 32334, and an installation position calculation unit 32335.
The acceleration high-pass filter 32331 is connected to the axial direction correction unit 322, receives vehicle axial acceleration, and extracts a high-frequency component of acceleration having a frequency of a certain frequency or higher, for example, 1 Hz or higher. Other settings such as a fixed value such as 0.5 Hz or higher or 2 Hz or a variable value corresponding to the traveling speed of the measurement vehicle 2 are not hindered. When setting it as the variable value according to the running speed of the measurement vehicle 2, it is set as the structure connected to the positioning apparatus 311, and a running speed is obtained.
The acceleration integration unit 32332 is connected to the acceleration high-pass filter 32331, receives a high-frequency component of acceleration, and calculates the vehicle axis Z direction speed by integrating.
The speed high-pass filter 32333 is connected to the acceleration integration unit 32332, receives the vehicle axis Z-direction speed, and extracts a high-frequency component of the vehicle axis Z-direction speed having a frequency equal to or higher than a certain frequency, for example, 1 Hz or higher. Other settings such as a fixed value such as 0.5 Hz or higher or 2 Hz or a variable value corresponding to the traveling speed of the measurement vehicle 2 are not hindered. When setting it as the variable value according to the running speed of the measurement vehicle 2, it is set as the structure connected to the positioning apparatus 311, and a running speed is obtained.
The acceleration high-pass filter 32331, the acceleration integration unit 32332, and the velocity high-pass filter 32333 are the acceleration high-pass filter 32241, the acceleration integration unit 32412, and the velocity high-pass filter of the upper vertical motion calculation unit 3241 of the vertical motion calculation unit 324 in FIG. It can also be configured to be shared with 32413.
12 is connected to the axial direction correction unit 322 to receive the vehicle axial angular acceleration, is connected to the speed high-pass filter 32333, receives a high-frequency component of the speed in the vehicle axis Z direction, and is connected to the vehicle type determination unit 3232. The vehicle type of the measuring vehicle 2 is received. A speed angular speed ratio that is a ratio of the speed in the vehicle axis Z direction to the angular speed (a value obtained by dividing the speed in the vehicle axis Z direction by the angular speed) is obtained, and the frequency distribution of the speed angular speed ratio is obtained based on the speed angular speed ratio at each time. Two high angular velocity ratios are extracted. When the vehicle type is a four-wheeled vehicle, the frequency distribution using the vehicle axis Z direction speed and the angular velocity of the pitch, and the frequency distribution using the vehicle axis Z direction speed and the angular velocity of the roll are obtained, and the vehicle type is a two-wheeled vehicle. Only the frequency distribution using the vehicle axis Z direction speed and the angular velocity of the pitch is obtained.
The installation position estimation unit 32335 is connected to the vehicle type determination unit 3232 to receive the vehicle type of the measurement vehicle 2 and is connected to the speed angular velocity ratio statistical unit 32334. When the vehicle type is a four-wheeled vehicle, the frequency angular velocity ratio with high frequency is changed to pitch and roll. Receive two for each, for a total of four, and if the vehicle type is a two-wheeled vehicle, receive two for the pitch.

設置位置算出部32335の原理を図13、図14を用い説明する。
図13に後輪を中心に回転した場合の車両軸Zの速度とピッチの角速度の関係図を示す。計測車両2の前輪が***112などを通過するとき、後輪を中心に回転する。路面性状計測装置3が回転中心より前に設置されていた場合、車両軸Zの速度とピッチの角速度の符号は一致し、速度角速度比は正の値となる。後輪から路面性状計測装置3までの距離を半径とし、ピッチの角速度を中心角とする扇形を考えた時、計測車両の走行中に発生するピッチの角度は小さいため、扇形の円弧の長さは車両軸Zの速度で近似することができる。扇形の中心角すなわちピッチの角速度と、円弧の長さすなわち車両軸Zの速度から、扇形の半径すなわち後輪から路面性状計測装置3までの距離を求める。
The principle of the installation position calculation unit 32335 will be described with reference to FIGS.
FIG. 13 shows a relationship diagram between the speed of the vehicle shaft Z and the angular velocity of the pitch when rotating around the rear wheel. When the front wheel of the measurement vehicle 2 passes the ridge 112 or the like, it rotates around the rear wheel. When the road surface property measuring device 3 is installed before the center of rotation, the sign of the speed of the vehicle axis Z and the angular speed of the pitch coincide, and the speed angular speed ratio becomes a positive value. Considering a sector with the distance from the rear wheel to the road surface property measuring device 3 as the radius and the angular velocity of the pitch as the central angle, the pitch angle generated during the running of the measuring vehicle is small, so the length of the sectoral arc Can be approximated by the speed of the vehicle axis Z. The distance from the fan-shaped radius, that is, the rear wheel to the road surface property measuring device 3 is obtained from the sector-shaped center angle, that is, the angular velocity of the pitch and the length of the arc, that is, the speed of the vehicle axis Z.

図14に前輪を中心に回転した場合の車両軸Zの速度とピッチの角速度の関係図を示す。計測車両2の後輪が***112などを通過するとき、前輪を中心に回転する。路面性状計測装置3が回転中心より後ろに設置されていた場合、車両軸Zの速度とピッチの角速度の符合は逆になり、速度角速度比は負の値となる。前輪から路面性状計測装置3までの距離を半径とし、ピッチの角速度を中心角とする扇形を考えた時、計測車両の走行中に発生するピッチの角度は小さいため、扇形の円弧の長さは車両軸Zの速度で近似することができる。扇形の中心角すなわちピッチの角速度と、円弧の長さすなわち車両軸Zの速度から、扇形の半径すなわち前輪から路面性状計測装置3までの距離を求める。   FIG. 14 shows a relationship diagram between the speed of the vehicle axis Z and the angular velocity of the pitch when rotating around the front wheel. When the rear wheel of the measuring vehicle 2 passes through the ridge 112 or the like, it rotates around the front wheel. When the road surface property measuring device 3 is installed behind the center of rotation, the sign of the speed of the vehicle axis Z and the angular speed of the pitch are reversed, and the speed angular speed ratio is a negative value. When considering a fan shape with the distance from the front wheel to the road surface property measuring device 3 as the radius and the angular velocity of the pitch as the central angle, the pitch angle generated during the running of the measuring vehicle is small, so the length of the fan-shaped arc is It can be approximated by the speed of the vehicle axis Z. The distance from the fan-shaped radius, that is, the front wheel to the road surface property measuring device 3 is obtained from the fan-shaped center angle, that is, the angular velocity of the pitch, and the length of the arc, that is, the speed of the vehicle axis Z.

図12の設置位置算出部32335では、車種判定部3232から受け取った計測車両2の車種が四輪車の場合、速度角速度比統計部32334から受け取った、車両軸Zの速度とピッチの角速度の頻度の高い2つの速度角速度比をもとに、前輪から路面性状計測装置3までの距離と、後輪から路面性状計測装置3までの距離を求め、車両軸Zの速度とロールの角速度の頻度の高い2つの速度角速度比をもとに、左輪から路面性状計測装置3までの距離と、右輪から路面性状計測装置3までの距離を求める。さらに前輪から路面性状計測装置3までの距離と、後輪から路面性状計測装置3までの距離をもとに、前輪から後輪までの距離すなわちホイールベース間隔を求め、左輪から路面性状計測装置3までの距離と、右輪から路面性状計測装置3までの距離をもとに、左輪から右輪までの距離すなわちトレッド幅を求める。
車種判定部3232から受け取った計測車両2の車種が二輪車の場合、速度角速度比統計部32334から受け取った、車両軸Zの速度とピッチの角速度の頻度の高い2つの速度角速度比をもとに、前輪から路面性状計測装置3までの距離と、後輪から路面性状計測装置3までの距離を求める。さらに前輪から路面性状計測装置3までの距離と、後輪から路面性状計測装置3までの距離をもとに、前輪から後輪までの距離すなわちホイールベース間隔を求める。
In the installation position calculation unit 32335 of FIG. 12, when the vehicle type of the measurement vehicle 2 received from the vehicle type determination unit 3232 is a four-wheel vehicle, the frequency of the speed of the vehicle axis Z and the angular velocity of the pitch received from the speed angular velocity ratio statistics unit 32334. The distance from the front wheel to the road surface property measuring device 3 and the distance from the rear wheel to the road surface property measuring device 3 are obtained based on the two high speed angular velocity ratios, and the speed of the vehicle axis Z and the frequency of the angular velocity of the roll are calculated. The distance from the left wheel to the road surface property measuring device 3 and the distance from the right wheel to the road surface property measuring device 3 are obtained based on the two high speed angular velocity ratios. Further, based on the distance from the front wheel to the road surface property measuring device 3 and the distance from the rear wheel to the road surface property measuring device 3, the distance from the front wheel to the rear wheel, that is, the wheelbase distance is obtained, and the road surface property measuring device 3 from the left wheel is obtained. And the distance from the right wheel to the road surface property measuring device 3, the distance from the left wheel to the right wheel, that is, the tread width is obtained.
When the vehicle type of the measurement vehicle 2 received from the vehicle type determination unit 3232 is a two-wheeled vehicle, based on the two speed angular velocity ratios of the vehicle axis Z and the angular velocity of the pitch, which are received from the velocity angular velocity ratio statistical unit 32334, The distance from the front wheel to the road surface property measuring device 3 and the distance from the rear wheel to the road surface property measuring device 3 are obtained. Further, based on the distance from the front wheel to the road surface property measuring device 3 and the distance from the rear wheel to the road surface property measuring device 3, the distance from the front wheel to the rear wheel, that is, the wheelbase interval is obtained.

路面性状計測装置3の前輪、後輪からの距離と、ホイールベース間隔の算出方法について述べる。
速度角速度比統計部32334から受け取った、車両軸Zの速度とピッチの角速度の頻度の高い2つの速度角速度比がともに正の値であれば、路面性状計測装置3は前輪より前に設置されていると判断し、速度角速度比の小さい値は遠い側の後輪からの距離に対応し、速度角速度比の大きい値は近い側の前輪からの距離に対応する。このとき、ホイールベース間隔は、路面性状計測装置3から後輪までの距離から、路面性状計測装置3から前輪までの距離を引いた距離として求められる。
速度角速度比統計部32334から受け取った、車両軸Zの速度とピッチの角速度の頻度の高い2つの速度角速度比が正と負の値であれば、路面性状計測装置3は前輪と後輪の間に設置されていると判断し、正の速度角速度比は後輪からの距離に対応し、負の速度角速度比は前輪からの距離に対応する。このとき、ホイールベース間隔は、路面性状計測装置3から後輪までの距離に、路面性状計測装置3から前輪までの距離を足した距離として求められる。
速度角速度比統計部32334から受け取った、車両軸Zの速度とピッチの角速度の頻度の高い2つの速度角速度比がともに負の値であれば、路面性状計測装置3は後輪より後ろに設置されていると判断し、速度角速度比の絶対値が小さい値は遠い側の前輪からの距離に対応し、速度角速度比の絶対値の大きい値は近い側の後輪からの距離に対応する。このとき、ホイールベース間隔は、路面性状計測装置3から前輪までの距離から、路面性状計測装置3から後輪までの距離を引いた距離として求められる。
A method for calculating the distance from the front wheel and the rear wheel of the road surface property measuring device 3 and the wheelbase interval will be described.
If the two angular velocity ratios of the vehicle axis Z and the angular velocity of the pitch, which are frequently received, are both positive values received from the velocity angular velocity ratio statistics unit 32334, the road surface property measuring device 3 is installed in front of the front wheels. Therefore, a small value of the speed angular velocity ratio corresponds to the distance from the rear wheel on the far side, and a large value of the speed angular velocity ratio corresponds to the distance from the front wheel on the near side. At this time, the wheel base distance is obtained as a distance obtained by subtracting the distance from the road surface property measuring device 3 to the front wheel from the distance from the road surface property measuring device 3 to the rear wheel.
If the two angular velocity ratios of the vehicle axis Z speed and the angular velocity of the pitch, which are frequently received, from the speed angular velocity ratio statistics unit 32334 are positive and negative values, the road surface property measuring device 3 is located between the front wheels and the rear wheels. The positive angular velocity ratio corresponds to the distance from the rear wheel, and the negative angular velocity ratio corresponds to the distance from the front wheel. At this time, the wheel base distance is obtained as a distance obtained by adding the distance from the road surface property measuring device 3 to the front wheel to the distance from the road surface property measuring device 3 to the rear wheel.
If the two angular velocity ratios of the vehicle axis Z and the angular velocity of the pitch, both received from the velocity angular velocity ratio statistics unit 32334, are negative values, the road surface property measuring device 3 is installed behind the rear wheel. The value with a small absolute value of the speed angular velocity ratio corresponds to the distance from the front wheel on the far side, and the value with a large absolute value of the speed angular velocity ratio corresponds to the distance from the rear wheel on the near side. At this time, the wheelbase interval is obtained as a distance obtained by subtracting the distance from the road surface property measuring device 3 to the rear wheel from the distance from the road surface property measuring device 3 to the front wheel.

路面性状計測装置3の左輪、右輪からの距離と、トレッド幅の算出方法について述べる。
速度角速度比統計部32334から受け取った、車両軸Zの速度とロールの角速度の頻度の高い2つの速度角速度比がともに正の値であれば、路面性状計測装置3は左輪より左に設置されていると判断し、速度角速度比の小さい値は遠い側の右輪からの距離に対応し、速度角速度比の大きい値は近い側の左輪からの距離に対応する。このとき、トレッド幅は、路面性状計測装置3から右輪までの距離から、路面性状計測装置3から左輪までの距離を引いた距離として求められる。
速度角速度比統計部32334から受け取った、車両軸Zの速度とロールの角速度の頻度の高い2つの速度角速度比が正と負の値であれば、路面性状計測装置3は左輪と右輪の間に設置されていると判断し、正の速度角速度比は右輪からの距離に対応し、負の速度角速度比は左輪からの距離に対応する。このとき、トレッド幅は、路面性状計測装置3から左輪までの距離に、路面性状計測装置3から右輪までの距離を足した距離として求められる。
速度角速度比統計部32334から受け取った、車両軸Zの速度とピッチの角速度の頻度の高い2つの速度角速度比がともに負の値であれば、路面性状計測装置3は右輪より右に設置されていると判断し、速度角速度比の絶対値が小さい値は遠い側の左輪からの距離に対応し、速度角速度比の絶対値の大きい値は近い側の右輪からの距離に対応する。このとき、トレッド幅は、路面性状計測装置3から左輪までの距離から、路面性状計測装置3から右輪までの距離を引いた距離として求められる。
A method for calculating the distance from the left wheel and the right wheel of the road surface property measuring device 3 and the tread width will be described.
If the two angular velocity ratios of the vehicle axis Z and the angular velocity of the roll, which are frequently received, are both positive values received from the velocity angular velocity ratio statistics unit 32334, the road surface property measuring device 3 is installed to the left of the left wheel. The small value of the speed angular velocity ratio corresponds to the distance from the far right wheel, and the large value of the speed angular velocity ratio corresponds to the distance from the near left wheel. At this time, the tread width is obtained as a distance obtained by subtracting the distance from the road surface property measuring device 3 to the left wheel from the distance from the road surface property measuring device 3 to the right wheel.
If the two angular velocity ratios of the vehicle axis Z and the angular velocity of the roll, which are frequently received, are positive and negative values received from the velocity angular velocity ratio statistics unit 32334, the road surface property measuring device 3 is located between the left wheel and the right wheel. The positive angular velocity ratio corresponds to the distance from the right wheel, and the negative angular velocity ratio corresponds to the distance from the left wheel. At this time, the tread width is obtained as a distance obtained by adding the distance from the road surface property measuring device 3 to the right wheel to the distance from the road surface property measuring device 3 to the left wheel.
If the two angular velocity ratios of the vehicle axis Z and the angular velocity of the pitch, which are frequently received, are negative values, the road surface property measuring device 3 is installed to the right of the right wheel. A value with a small absolute value of the speed angular velocity ratio corresponds to a distance from the far left wheel, and a value with a large absolute value of the speed angular velocity ratio corresponds to a distance from the near right wheel. At this time, the tread width is obtained as a distance obtained by subtracting the distance from the road surface property measuring device 3 to the right wheel from the distance from the road surface property measuring device 3 to the left wheel.

図15に実施例2における上下動算出部324の構成図を示す。上下動算出部324は、上部加速度算出部3243と、上部上下動算出部3241と、下部上下動算出部3242と、から構成される。図9の実施例1における上下動算出部324の構成図と比べ、上部加速度算出部3243が追加され、上部上下動算出部3241と、下部上下動算出部3242に改良を加えている。
上部加速度算出部3243は、左前輪位置上部加速度算出部3243aと、左後輪位置上部加速度算出部3243bと、右前輪位置上部加速度算出部3243cと、右後輪位置上部加速度算出部3243dと、から構成される。上部加速度算出部3243の構成要素はいずれも、軸方向補正部322に接続し車両軸加速度と車両軸角速度を受け取り、車両条件推定部323に接続し路面性状計測装置3の設置位置を受け取る。
左前輪位置上部加速度算出部3243aは、路面性状計測装置3の設置位置と、設置位置における加速度と角速度をもとに、左前輪のサスペンション上部における加速度を算出する。
左後輪位置上部加速度算出部3243bは、路面性状計測装置3の設置位置と、設置位置における加速度と角速度をもとに、左後輪のサスペンション上部における加速度を算出する。
右前輪位置上部加速度算出部3243cは、路面性状計測装置3の設置位置と、設置位置における加速度と角速度をもとに、右前輪のサスペンション上部における加速度を算出する。
右後輪位置上部加速度算出部3243dは、路面性状計測装置3の設置位置と、設置位置における加速度と角速度をもとに、右後輪のサスペンション上部における加速度を算出する。
サスペンション上部位置における加速度の算出方法について述べる。路面性状計測装置3から車輪までの前後方向の距離と左右方向の距離がすでに求められている。路面性状計測装置3の位置におけるピッチとロールの角速度が計測されている。前記距離を半径、前記角速度を中心角とする扇形を考えると、扇形の円弧の長さが求まる。扇形の円弧の長さは車輪位置における上下方向の速度に相当し、速度を微分することで加速度が求まる。求めた加速度に路面性状計測装置3の設置位置における加速度を加えることで、サスペンション上部位置における加速度が求まる。
FIG. 15 shows a configuration diagram of the vertical motion calculation unit 324 in the second embodiment. The vertical motion calculation unit 324 includes an upper acceleration calculation unit 3243, an upper vertical motion calculation unit 3241, and a lower vertical motion calculation unit 3242. Compared to the configuration diagram of the vertical motion calculation unit 324 in Example 1 of FIG. 9, an upper acceleration calculation unit 3243 is added, and the upper vertical motion calculation unit 3241 and the lower vertical motion calculation unit 3242 are improved.
The upper acceleration calculation unit 3243 includes a left front wheel position upper acceleration calculation unit 3243a, a left rear wheel position upper acceleration calculation unit 3243b, a right front wheel position upper acceleration calculation unit 3243c, and a right rear wheel position upper acceleration calculation unit 3243d. Composed. All the components of the upper acceleration calculation unit 3243 are connected to the axial direction correction unit 322 to receive the vehicle axis acceleration and the vehicle axis angular velocity, and are connected to the vehicle condition estimation unit 323 to receive the installation position of the road surface property measuring device 3.
The left front wheel position upper acceleration calculation unit 3243a calculates the acceleration at the suspension upper part of the left front wheel based on the installation position of the road surface property measuring device 3, the acceleration at the installation position, and the angular velocity.
The left rear wheel position upper acceleration calculator 3243b calculates the acceleration at the suspension upper part of the left rear wheel based on the installation position of the road surface property measuring device 3, the acceleration at the installation position, and the angular velocity.
The right front wheel position upper acceleration calculation unit 3243c calculates the acceleration at the suspension upper part of the right front wheel based on the installation position of the road surface property measuring device 3, the acceleration at the installation position, and the angular velocity.
The right rear wheel position upper acceleration calculation unit 3243d calculates the acceleration at the suspension upper part of the right rear wheel based on the installation position of the road surface texture measuring device 3, the acceleration at the installation position, and the angular velocity.
A method for calculating the acceleration at the upper position of the suspension will be described. The distance in the front-rear direction and the distance in the left-right direction from the road surface property measuring device 3 to the wheels have already been obtained. The pitch and the angular velocity of the roll at the position of the road surface property measuring device 3 are measured. Considering a sector having the radius as the distance and the central angle as the angular velocity, the length of the sectoral arc is obtained. The length of the fan-shaped arc corresponds to the vertical speed at the wheel position, and the acceleration is obtained by differentiating the speed. The acceleration at the suspension upper position is obtained by adding the acceleration at the installation position of the road surface property measuring device 3 to the obtained acceleration.

上部上下動算出部3241は、左前輪位置上部上下動算出部3241aと、左後輪位置上部上下動算出部3241bと、右前輪位置上部上下動算出部3241cと、右後輪位置上部上下動算出部3241dと、から構成される。
左前輪位置上部上下動算出部3241aは左前輪位置上部加速度算出部3243aに接続し左前輪のサスペンション上部位置における上下動を算出する。
左後輪位置上部上下動算出部3241bは左後輪位置上部加速度算出部3243bに接続し左後輪のサスペンション上部位置における上下動を算出する。
右前輪位置上部上下動算出部3241cは右前輪位置上部加速度算出部3243cに接続し右前輪のサスペンション上部位置における上下動を算出する。
右後輪位置上部上下動算出部3241dは右後輪位置上部加速度算出部3243dに接続し右後輪のサスペンション上部位置における上下動を算出する。
上部上下動算出部3241の構成要素である、左前輪位置上部上下動算出部3241aと、左後輪位置上部上下動算出部3241bと、右前輪位置上部上下動算出部3241cと、右後輪位置上部上下動算出部3241dと、における上下動の算出はいずれも、図9に示す実施例1での上部上下動算出部3241と同じ構成で行われる。
The upper vertical motion calculation unit 3241 includes a left front wheel position upper vertical motion calculation unit 3241a, a left rear wheel position upper vertical motion calculation unit 3241b, a right front wheel position upper vertical motion calculation unit 3241c, and a right rear wheel position upper vertical motion calculation. Part 3241d.
The left front wheel position upper vertical movement calculation unit 3241a is connected to the left front wheel position upper acceleration calculation unit 3243a to calculate vertical movement at the suspension upper position of the left front wheel.
The left rear wheel position upper vertical movement calculation unit 3241b is connected to the left rear wheel position upper acceleration calculation unit 3243b to calculate vertical movement at the suspension upper position of the left rear wheel.
The right front wheel position upper vertical movement calculation unit 3241c is connected to the right front wheel position upper acceleration calculation unit 3243c to calculate vertical movement at the suspension upper position of the right front wheel.
The right rear wheel position upper vertical movement calculation unit 3241d is connected to the right rear wheel position upper acceleration calculation unit 3243d to calculate vertical movement at the suspension upper position of the right rear wheel.
Left front wheel position upper vertical motion calculation unit 3241a, left rear wheel position upper vertical motion calculation unit 3241b, right front wheel position upper vertical motion calculation unit 3241c, and right rear wheel position, which are components of the upper vertical motion calculation unit 3241 The calculation of the vertical movement in the upper vertical movement calculation unit 3241d is performed with the same configuration as that of the upper vertical movement calculation unit 3241 in the first embodiment shown in FIG.

図15の下部上下動算出部3242は、左前輪下部上下動算出部3242aと、左後輪下部上下動算出部3242bと、右前輪下部上下動算出部3242cと、右後輪下部上下動算出部3242dと、から構成される。
左前輪下部上下動算出部3242aは、左前輪位置上部上下動算出部3241aに接続し左前輪のサスペンション上部の上下動を受け取り、車両条件推定部323の車両特性推定部3231に接続し共振周波数と減衰比を受け取り、左前輪下部における上下動を算出する。
左後輪下部上下動算出部3242bは左後輪位置上部上下動算出部3241bに接続し左後輪のサスペンション上部の上下動を受け取り、車両条件推定部323の車両特性推定部3231に接続し共振周波数と減衰比を受け取り、左後輪下部における上下動を算出する。
右前輪下部上下動算出部3242cは右前輪位置上部上下動算出部3241cに接続し右前輪のサスペンション上部の上下動を受け取り、車両条件推定部323の車両特性推定部3231に接続し共振周波数と減衰比を受け取り、右前輪下部における上下動を算出する。
右後輪下部上下動算出部3242dは右後輪位置上部上下動算出部3241dに接続し右後輪のサスペンション上部の上下動を受け取り、車両条件推定部323の車両特性推定部3231に接続し共振周波数と減衰比を受け取り、右後輪下部における上下動を算出する。
下部上下動算出部3242の構成要素における上下動の算出はいずれも、図9に示す実施例1での下部上下動算出部3242と同じ構成で行われる。
車両特性推定部3231は、車両条件推定部323に備えず、上部上下動算出部3241と下部上下動算出部3242との間に備え、各車輪ごとに共振周波数と減衰比を求める構成も可能である。
15 includes a left front wheel lower vertical motion calculation unit 3242a, a left rear wheel lower vertical motion calculation unit 3242b, a right front wheel lower vertical motion calculation unit 3242c, and a right rear wheel lower vertical motion calculation unit. 3242d.
The left front wheel lower vertical motion calculation unit 3242a is connected to the left front wheel position upper vertical motion calculation unit 3241a to receive the vertical motion of the left front wheel suspension upper part, and is connected to the vehicle characteristic estimation unit 3231 of the vehicle condition estimation unit 323 to connect to the resonance frequency. Receives the damping ratio and calculates the vertical movement at the lower left front wheel.
The left rear wheel lower vertical movement calculation unit 3242b is connected to the left rear wheel position upper vertical movement calculation unit 3241b to receive the vertical movement of the left rear wheel suspension upper part, and is connected to the vehicle characteristic estimation unit 3231 of the vehicle condition estimation unit 323 to resonate. Receives frequency and damping ratio and calculates vertical movement at the lower left rear wheel.
The right front wheel lower vertical movement calculation unit 3242c is connected to the right front wheel position upper vertical movement calculation unit 3241c to receive the vertical movement of the upper suspension of the right front wheel, and is connected to the vehicle characteristic estimation unit 3231 of the vehicle condition estimation unit 323 to be connected to the resonance frequency and attenuation. The ratio is received and the vertical movement at the lower part of the right front wheel is calculated.
The right rear wheel lower vertical movement calculation unit 3242d is connected to the right rear wheel position upper vertical movement calculation unit 3241d, receives the vertical movement of the suspension of the right rear wheel, and is connected to the vehicle characteristic estimation unit 3231 of the vehicle condition estimation unit 323 to resonate. Receives frequency and damping ratio and calculates vertical movement at the lower right rear wheel.
The calculation of the vertical movement in the components of the lower vertical movement calculation unit 3242 is performed with the same configuration as that of the lower vertical movement calculation unit 3242 in the first embodiment shown in FIG.
The vehicle characteristic estimation unit 3231 is not provided in the vehicle condition estimation unit 323, but is provided between the upper vertical motion calculation unit 3241 and the lower vertical motion calculation unit 3242, and a configuration for obtaining a resonance frequency and a damping ratio for each wheel is also possible. is there.

図16に信頼性検証部326の構成図を示す。信頼性検証部326は、左輪側信頼性検証部3261と、右輪側信頼性検証部3262と、から構成される。
前輪下部と後輪下部の上下変位量は、同じ路面性状11を反映したものなので、同じ位置においては同じ値が期待されることを利用し、算出値の信頼性を検証する。
左輪側信頼性検証部3261は、車両条件推定部323に接続しホイールベース間隔を受け取り、検出器31の測位装置311に接続し走行速度を受け取り、左前輪下部上下動算出部3242aに接続し左前輪下部の上下動を受け取り、左後輪下部上下動算出部3242bに接続し左後輪下部の上下動を受け取る。ホイールベース間隔と走行速度から、前輪と後輪の計測時刻の時間差を算出し、時間差を考慮して前輪の上下動と後輪の上下動の差の絶対値を、計測結果の信頼性を示す値として求め、左前輪下部の上下動に属性情報として付与する。
右輪側信頼性検証部3262は、車両条件推定部323に接続しホイールベース間隔を受け取り、検出器31の測位装置311に接続し走行速度を受け取り、右前輪下部上下動算出部3242cに接続し右前輪下部の上下動を受け取り、右後輪下部上下動算出部3242dに接続し右後輪下部の上下動を受け取る。ホイールベース間隔と走行速度から、前輪と後輪の計測時刻の時間差を算出し、時間差を考慮して前輪の上下動と後輪の上下動の差の絶対値を、計測結果の信頼性を示す値として求め、右前輪下部の上下動に属性情報として付与する。
FIG. 16 shows a configuration diagram of the reliability verification unit 326. The reliability verification unit 326 includes a left wheel side reliability verification unit 3261 and a right wheel side reliability verification unit 3262.
Since the vertical displacement of the lower front wheel and the lower rear wheel reflects the same road surface property 11, the fact that the same value is expected at the same position is used to verify the reliability of the calculated value.
The left wheel side reliability verification unit 3261 is connected to the vehicle condition estimation unit 323 to receive the wheelbase interval, is connected to the positioning device 311 of the detector 31 to receive the traveling speed, and is connected to the left front wheel lower vertical motion calculation unit 3242a to the left The vertical movement of the lower part of the front wheel is received, and the vertical movement of the lower part of the left rear wheel is connected to the vertical movement calculation part 3242b of the left rear wheel to receive the vertical movement of the lower part of the left rear wheel. The time difference between the measurement times of the front and rear wheels is calculated from the wheelbase interval and the running speed, and the absolute value of the difference between the vertical movement of the front wheels and the vertical movement of the rear wheels, taking into account the time difference, indicates the reliability of the measurement results. It is calculated as a value and given as attribute information to the vertical movement of the lower part of the left front wheel.
The right wheel side reliability verification unit 3262 is connected to the vehicle condition estimation unit 323, receives the wheelbase interval, is connected to the positioning device 311 of the detector 31, receives the traveling speed, and is connected to the right front wheel lower vertical movement calculation unit 3242c. The vertical movement of the lower part of the right front wheel is received and connected to the right rear wheel lower part vertical movement calculation unit 3242d to receive the vertical movement of the lower part of the right rear wheel. The time difference between the measurement times of the front and rear wheels is calculated from the wheelbase interval and the running speed, and the absolute value of the difference between the vertical movement of the front wheels and the vertical movement of the rear wheels, taking into account the time difference, indicates the reliability of the measurement results. It is obtained as a value and given as attribute information to the vertical movement of the lower part of the right front wheel.

図17に実施例2における位置割付部325の構成図を示す。位置割付部325は、左輪側位置割付部3251と、右輪側位置割付部3252と、から構成される。
左輪側位置割付部3251は、検出器31の測位装置311に接続し緯度経度と進行方向と検出時刻を受け取り、左輪側信頼性検証部3261に接続し左前輪下部の上下変位量と上下変位量に対応する計測結果信頼性と検出時刻を受け取り、車両条件推定部323に接続し路面性状計測装置3の設置位置とトレッド幅を受け取る。緯度経度と上下変位量は非同期で得られるため、上下変位量が検出された時刻と、前後に測位された緯度経度をもとに時間で按分し、さらに進行方向と設置位置とトレッド幅を考慮し左前輪の緯度経度を求め、上下変位量に緯度経度を割り付ける。
右輪側位置割付部3252は、検出器31の測位装置311に接続し緯度経度と進行方向と検出時刻を受け取り、右輪側信頼性検証部3262に接続し右前輪下部の上下変位量と上下変位量に対応する計測結果信頼性と検出時刻を受け取り、車両条件推定部323に接続し路面性状計測装置3の設置位置とトレッド幅を受け取る。緯度経度と上下変位量は非同期で得られるため、上下変位量が検出された時刻と、前後に測位された緯度経度をもとに時間で按分し、さらに進行方向と設置位置とトレッド幅を考慮し右前輪の緯度経度を求め、上下変位量に緯度経度を割り付ける。
位置割付部325は、記録装置33に接続し上下変位量と上下変位量に対応する計測結果信頼性と緯度経度を記録する。
FIG. 17 shows a configuration diagram of the position allocation unit 325 in the second embodiment. The position allocation unit 325 includes a left wheel side position allocation unit 3251 and a right wheel side position allocation unit 3252.
The left wheel side position assignment unit 3251 is connected to the positioning device 311 of the detector 31 to receive the latitude / longitude, the traveling direction, and the detection time, and is connected to the left wheel side reliability verification unit 3261 to connect the vertical displacement and vertical displacement of the lower left front wheel. The measurement result reliability and the detection time corresponding to are received, and connected to the vehicle condition estimation unit 323 to receive the installation position and tread width of the road surface property measuring device 3. Since the latitude and longitude and the vertical displacement are obtained asynchronously, it is prorated according to the time based on the time when the vertical displacement was detected and the latitude and longitude measured before and after, and further considering the traveling direction, installation position and tread width Then, the latitude and longitude of the left front wheel are obtained, and the latitude and longitude are assigned to the vertical displacement.
The right wheel side position assignment unit 3252 is connected to the positioning device 311 of the detector 31 to receive the latitude / longitude, the traveling direction, and the detection time, and is connected to the right wheel side reliability verification unit 3262 to connect the vertical displacement amount of the lower part of the right front wheel and the up / down direction. The measurement result reliability and the detection time corresponding to the displacement amount are received, connected to the vehicle condition estimation unit 323, and the installation position and tread width of the road surface property measuring device 3 are received. Since the latitude and longitude and the vertical displacement are obtained asynchronously, it is prorated according to the time based on the time when the vertical displacement was detected and the latitude and longitude measured before and after, and further considering the traveling direction, installation position and tread width Then, the latitude and longitude of the right front wheel are obtained, and the latitude and longitude are assigned to the vertical displacement.
The position allocation unit 325 is connected to the recording device 33 and records the measurement result reliability and the latitude and longitude corresponding to the vertical displacement amount and the vertical displacement amount.

前記の実施例2の記述は、図10の車両条件推定部323において、計測車両2の車種が四輪車と推定された場合の構成と処理である。二輪車と推定された場合は、図15の上下動算出部324では、左輪と右輪に分けずに、前輪と後輪に分けて処理を行い、図16の信頼性検証部326では、左輪と右輪に分けずに処理を行い、図17の位置割付部325では、左輪と右輪に分けずに処理を行う。   The description of the second embodiment is the configuration and processing when the vehicle condition estimation unit 323 in FIG. 10 estimates that the vehicle type of the measurement vehicle 2 is a four-wheeled vehicle. When the two-wheeled vehicle is estimated, the vertical motion calculation unit 324 in FIG. 15 performs processing for the front wheel and the rear wheel without dividing the left wheel and the right wheel, and the reliability verification unit 326 in FIG. The processing is performed without dividing the right wheel, and the position assignment unit 325 in FIG. 17 performs the processing without dividing the left wheel and the right wheel.

前記記述の実施例では自走する車両に路面性状計測装置3を設置しているが、自走できない被牽引車に搭載し同様に計測することもできる。二輪が左右に配置された乗り物や三輪車、自転車や車椅子などを用いた計測も妨げない。さらに鉄道車両に搭載し線路の凹凸状態の計測への適用も妨げない。路面性状計測装置3の構成に入出力装置を備えることで、計測開始と計測終了を制御し、計測結果を表示することもできる。実施例で挙げた時間間隔などの定数は変更を妨げず、構成要素における各種演算の実現方法はデジタル式、アナログ式、あるいはハードウェアによるもの、ソフトウェアによるものなど様々な形態での実施も妨げない。この他、本発明の要旨を逸脱しない範囲で種々変形実施可能である。   In the above-described embodiment, the road surface property measuring device 3 is installed in a self-propelled vehicle. Measurements using vehicles with two wheels arranged on the left and right, tricycles, bicycles, wheelchairs, etc. are not disturbed. Furthermore, it is not hindered from being applied to the measurement of the unevenness of railroad tracks mounted on railway vehicles. By providing an input / output device in the configuration of the road surface property measuring device 3, the measurement start and the measurement end can be controlled and the measurement result can be displayed. Constants such as the time interval given in the embodiment do not prevent the change, and the implementation method of various operations in the constituent elements does not prevent the implementation in various forms such as digital, analog, hardware, software, etc. . In addition, various modifications can be made without departing from the scope of the present invention.

1 路面
11 路面性状
111 平坦
112 ***
113 陥没
114 段差
2 計測車両
21 車輪
211 車輪下部
22 サスペンション
221 サスペンション上部
23 車体
3 路面性状計測装置
31 検出器
311 測位装置
312 振動検出器
3121 加速度計
3122 角速度計
32 路面性状計算装置
321 設置条件推定部
3211 ローパスフィルタ
3212 加減速右左折判定部
3213 3軸加速度相関推定部
322 軸方向補正部
323 車両条件推定部
3231 車両特性推定部
32311 周波数分析部
32312 共振周波数抽出部
32313 減衰比推定部
3232 車種判定部
3233 設置位置推定部
32331 加速度ハイパスフィルタ
32332 加速度積分部
32333 速度ハイパスフィルタ
32334 速度角速度比統計部
32335 設置位置算出部
324 上下動算出部
3241 上部上下動算出部
32411 加速度ハイパスフィルタ
32412 加速度積分部
32413 速度ハイパスフィルタ
32414 速度積分部
3241a 左前輪位置上部上下動算出部
3241b 左後輪位置上部上下動算出部
3241c 右前輪位置上部上下動算出部
3241d 右後輪位置上部上下動算出部
3242 下部上下動算出部
32421 運動方程式演算部
32422 変位ハイパスフィルタ
3242a 左前輪下部上下動算出部
3242b 左後輪下部上下動算出部
3242c 右前輪下部上下動算出部
3242d 右後輪下部上下動算出部
3243 上部加速度算出部
3243a 左前輪位置上部加速度算出部
3243b 左後輪位置上部加速度算出部
3243c 右前輪位置上部加速度算出部
3243d 右後輪位置上部加速度算出部
325 位置割付部
3251 左輪側位置割付部
3252 右輪側位置割付部
326 信頼性検証部
3261 左輪側信頼性検証部
3262 右輪側信頼性検証部
33 記録装置
4 バネモデル
41 サスペンション
42 車輪
43 設置部
DESCRIPTION OF SYMBOLS 1 Road surface 11 Road surface property 111 Flat 112 Raising 113 Depression 114 Level difference 2 Measuring vehicle 21 Wheel 211 Lower wheel 22 Suspension 221 Suspension upper part 23 Car body 3 Road surface property measuring device 31 Detector 311 Positioning device 312 Vibration detector 3121 Accelerometer 3122 Road surface property calculation device 321 Installation condition estimation unit 3211 Low-pass filter 3212 Acceleration / deceleration right / left turn determination unit 3213 Triaxial acceleration correlation estimation unit 322 Axial direction correction unit 323 Vehicle condition estimation unit 3231 Vehicle characteristic estimation unit 32311 Frequency analysis unit 32312 Resonance frequency extraction unit 32313 Attenuation ratio estimation unit 3232 Vehicle type determination unit 3233 Installation position estimation unit 32331 Acceleration high-pass filter 32332 Acceleration integration unit 32333 Speed high-pass filter 32334 Speed angular velocity Ratio statistic section 32335 Installation position calculation section 324 Vertical movement calculation section 3241 Upper vertical movement calculation section 32411 Acceleration high-pass filter 32412 Acceleration integration section 32413 Speed high-pass filter 32414 Speed integration section 3241a Left front wheel position upper vertical movement calculation section 3241b Upper left rear wheel position upper section Vertical motion calculator 3241c Upper right wheel position upper vertical motion calculator 3241d Right rear wheel position upper vertical motion calculator 3242 Lower vertical motion calculator 32421 Motion equation calculator 32422 Displacement high-pass filter 3242a Left front wheel lower vertical motion calculator 3242b Left rear wheel Lower vertical movement calculation unit 3242c Right front wheel lower vertical movement calculation unit 3242d Right rear wheel lower vertical movement calculation unit 3243 Upper acceleration calculation unit 3243a Left front wheel position upper acceleration calculation unit 3243b Left rear wheel position upper acceleration calculation unit 3243c Right front wheel position upper acceleration calculation unit 3243d Right rear wheel position upper acceleration calculation unit 325 Position allocation unit 3251 Left wheel side position allocation unit 3252 Right wheel side position allocation unit 326 Reliability verification unit 3261 Left wheel side reliability verification unit 3262 Right wheel side reliability Verification unit 33 Recording device 4 Spring model 41 Suspension 42 Wheel 43 Installation unit

Claims (7)

道路の平坦、***、陥没、段差などの路面性状を計測する路面性状計測装置において、計測装置の構成に振動検出器と、計測車両の振動特性を推定する装置と、振動検出器の計測車両への設置姿勢を推定する装置と、路面性状を算出する装置と、を備え、計測するときには、任意の車両を計測車両として使用し、振動検出器を計測車両の任意の1箇所に、任意の姿勢で設置し、計測しないときには、計測装置の全体、または計測装置の構成要素の一部を、計測車両から取り外すことが可能で、計測車両の振動特性と、振動検出器の計測車両への設置姿勢と、のいずれについても計測装置へ入力または設定することなく、計測車両を、路面性状を計測したい道路上を走行させることで、路面性状を計測することを特徴とする路面性状計測装置。   In a road surface property measuring device that measures road surface properties such as road flatness, bumps, depressions, and steps, a vibration detector is included in the configuration of the measurement device, a device that estimates vibration characteristics of the measurement vehicle, and a vibration detector measurement vehicle A device for estimating the installation posture of the vehicle, and a device for calculating the road surface property. When measuring, an arbitrary vehicle is used as a measurement vehicle, and a vibration detector is disposed at an arbitrary position on the measurement vehicle. When not installed and measured, the entire measuring device or some of the components of the measuring device can be removed from the measuring vehicle, and the vibration characteristics of the measuring vehicle and the installation posture of the vibration detector on the measuring vehicle A road surface property measuring device that measures the road surface property by causing the measuring vehicle to travel on the road on which the road surface property is desired to be measured without inputting or setting to the measuring device. 請求項1に記載された路面性状計測装置において、計測車両として前輪と後輪を持つ車両を使用し、計測装置の構成に、前輪サスペンション上部における上下運動と後輪サスペンション上部における上下運動とをそれぞれ算出する装置を備え、路面性状を、振動検出器を計測車両の前輪位置または後輪位置のいずれかに設置したときと同等の計測精度で計測することを特徴とする路面性状計測装置。   The road surface property measuring apparatus according to claim 1, wherein a vehicle having a front wheel and a rear wheel is used as a measuring vehicle, and the vertical movement of the upper part of the front wheel suspension and the vertical movement of the upper part of the rear wheel suspension are respectively used in the configuration of the measuring apparatus. A road surface property measuring apparatus comprising a device for calculating, and measuring the road surface property with a measurement accuracy equivalent to that when a vibration detector is installed at either a front wheel position or a rear wheel position of a measurement vehicle. 請求項2に記載された路面性状計測装置において、計測装置の構成に、前輪下部における路面変位量と後輪下部における路面変位量とを比較することで計測結果に信頼性を示す情報を付与する装置を備え、路面性状の計測結果に計測の信頼性を示す情報を付与することを特徴とする路面性状計測装置。   The road surface property measuring apparatus according to claim 2, wherein information indicating reliability is added to the measurement result by comparing the amount of road surface displacement at the lower part of the front wheel and the amount of road surface displacement at the lower part of the rear wheel. A road surface property measuring apparatus comprising: a device, and adding information indicating measurement reliability to a road surface property measurement result. 請求項2または請求項3のいずれかに記載された路面性状計測装置において、計測装置の構成に、計測車両のホイールベース間隔を推定する装置と、振動検出器の計測車両への前後方向設置位置を推定する装置と、を備え、計測車両のホイールベース間隔と、振動検出器の計測車両への前後方向設置位置と、の少なくとも1つを計測装置へ入力または設定することなく、路面性状を、振動検出器を計測車両の前輪位置または後輪位置のいずれかに設置したときと同等の計測精度で計測することを特徴とする路面性状計測装置。   The road surface property measuring device according to claim 2 or 3, wherein the configuration of the measuring device includes a device for estimating a wheelbase interval of the measuring vehicle, and a position where the vibration detector is installed in the measuring vehicle in the front-rear direction. A road surface property without inputting or setting at least one of a wheel base interval of the measurement vehicle and a front-rear installation position of the vibration detector to the measurement vehicle. A road surface property measuring apparatus that measures with a measurement accuracy equivalent to that when a vibration detector is installed at either a front wheel position or a rear wheel position of a measurement vehicle. 請求項1から請求項4のいずれかに記載された路面性状計測装置において、計測車両として左輪と右輪を持つ車両を使用し、計測装置の構成に、左輪サスペンション上部における上下運動と、右輪サスペンション上部における上下運動と、をそれぞれ算出する装置を備え、計測車両を、路面性状を計測したい道路上を1回走行させることで、計測車両の左輪側と右輪側に分けて、路面性状を計測することを特徴とする路面性状計測装置。   5. The road surface property measuring apparatus according to claim 1, wherein a vehicle having a left wheel and a right wheel is used as a measuring vehicle, and the vertical movement of the upper part of the left wheel suspension and the right wheel are used in the configuration of the measuring apparatus. It is equipped with a device that calculates the vertical movement at the top of the suspension, and the measurement vehicle is run once on the road on which the road surface property is to be measured, so that the road surface property is divided into the left wheel side and the right wheel side of the measurement vehicle. A road surface property measuring device characterized by measuring. 請求項5に記載された路面性状計測装置において、計測装置の構成に、計測車両のトレッド幅を推定する装置と、振動検出器の計測車両への左右方向設置位置を推定する装置と、を備え、計測車両のトレッド幅と、振動検出器の計測車両への左右方向設置位置と、の少なくとも1つを計測装置へ入力または設定することなく、計測車両の左輪側と右輪側に分けて、路面性状を計測することを特徴とする路面性状計測装置。   The road surface property measuring apparatus according to claim 5, wherein the configuration of the measuring device includes a device for estimating a tread width of the measurement vehicle and a device for estimating a horizontal installation position of the vibration detector on the measurement vehicle. , Without inputting or setting at least one of the tread width of the measurement vehicle and the left-right direction installation position of the vibration detector to the measurement vehicle, separately on the left wheel side and the right wheel side of the measurement vehicle, A road surface property measuring apparatus characterized by measuring a road surface property. 請求項5または請求項6のいずれかに記載された路面性状計測装置において、計測装置の構成に、計測車両が左輪と右輪を持つ車両であるかどうかを判別する装置を備え、計測車両が左輪と右輪を持つかどうかに関する情報を入力または設定することなく、計測車両が左輪と右輪を持つと判定された場合には、計測車両の左輪側と右輪側に分けて路面性状を計測し、計測車両が左輪と右輪を持たないと判定された場合には、計測車両の左輪側と右輪側に分けずに路面性状を計測することを特徴とする路面性状計測装置。   The road surface property measuring device according to claim 5 or 6, wherein the measuring device comprises a device for determining whether or not the measuring vehicle is a vehicle having a left wheel and a right wheel. If it is determined that the measurement vehicle has a left wheel and a right wheel without entering or setting information on whether the vehicle has a left wheel and a right wheel, the road surface properties are divided into the left wheel side and the right wheel side of the measurement vehicle. A road surface property measuring apparatus that measures and measures road surface properties without dividing the measurement vehicle into a left wheel side and a right wheel side when it is determined that the vehicle does not have a left wheel and a right wheel.
JP2012224635A 2012-10-10 2012-10-10 Road surface property measuring device Expired - Fee Related JP6078722B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012224635A JP6078722B2 (en) 2012-10-10 2012-10-10 Road surface property measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012224635A JP6078722B2 (en) 2012-10-10 2012-10-10 Road surface property measuring device

Publications (2)

Publication Number Publication Date
JP2014077257A true JP2014077257A (en) 2014-05-01
JP6078722B2 JP6078722B2 (en) 2017-02-15

Family

ID=50782777

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012224635A Expired - Fee Related JP6078722B2 (en) 2012-10-10 2012-10-10 Road surface property measuring device

Country Status (1)

Country Link
JP (1) JP6078722B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017072926A (en) * 2015-10-06 2017-04-13 パイオニア株式会社 Level difference detection device
JP2017099607A (en) * 2015-12-01 2017-06-08 パイオニア株式会社 Step detection device
JP2017102638A (en) * 2015-12-01 2017-06-08 パイオニア株式会社 Estimation device
KR101786323B1 (en) 2016-04-14 2017-10-18 현대자동차주식회사 Road condition sensing apparatus for vehicle and method of controlling the same
KR20180062505A (en) * 2016-11-30 2018-06-11 주식회사 오픈시스넷 Method for estimating pothole on the road
CN108507529A (en) * 2017-05-16 2018-09-07 重庆大学 A kind of bridge joint slope sedimentation automatic detection device and vehicle
WO2018199286A1 (en) * 2017-04-27 2018-11-01 国立大学法人東京大学 Road surface profile estimating device, road surface profile estimating system, road surface profile estimating method, and road surface profile estimating program
JP2020160075A (en) * 2020-06-02 2020-10-01 パイオニア株式会社 Step detection device
CN111746537A (en) * 2020-06-22 2020-10-09 重庆长安汽车股份有限公司 Self-adaptive cruise speed control system and method based on road surface flatness and vehicle
JP2021085824A (en) * 2019-11-29 2021-06-03 富士通株式会社 Characteristic calculation program, characteristic calculation method, and information processing system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004108988A (en) * 2002-09-19 2004-04-08 Yozo Fujino Road surface diagnostic method and its device
JP2005315675A (en) * 2004-04-28 2005-11-10 Japan Science & Technology Agency Road surface flatness measuring device
JP2006082755A (en) * 2004-09-17 2006-03-30 Honda Motor Co Ltd Road surface condition-detrmining method
JP2006131137A (en) * 2004-11-08 2006-05-25 Denso Corp Signal processing device for vehicle
JP2010226174A (en) * 2009-03-19 2010-10-07 Ntt Docomo Inc Moving means estimation device and moving means estimation method
US20120197588A1 (en) * 2011-01-27 2012-08-02 Hon Hai Precision Industry Co., Ltd. Apparatus and method for inspecting road surfaces

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004108988A (en) * 2002-09-19 2004-04-08 Yozo Fujino Road surface diagnostic method and its device
JP2005315675A (en) * 2004-04-28 2005-11-10 Japan Science & Technology Agency Road surface flatness measuring device
JP2006082755A (en) * 2004-09-17 2006-03-30 Honda Motor Co Ltd Road surface condition-detrmining method
JP2006131137A (en) * 2004-11-08 2006-05-25 Denso Corp Signal processing device for vehicle
JP2010226174A (en) * 2009-03-19 2010-10-07 Ntt Docomo Inc Moving means estimation device and moving means estimation method
US20120197588A1 (en) * 2011-01-27 2012-08-02 Hon Hai Precision Industry Co., Ltd. Apparatus and method for inspecting road surfaces

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN7016002128; 八木浩一: 'スマートフォンの加速度センサを用いた路面段差検出方法' 第9回ITSシンポジウム2010 , 201012, ITS Japan *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017072926A (en) * 2015-10-06 2017-04-13 パイオニア株式会社 Level difference detection device
JP2017099607A (en) * 2015-12-01 2017-06-08 パイオニア株式会社 Step detection device
JP2017102638A (en) * 2015-12-01 2017-06-08 パイオニア株式会社 Estimation device
KR101786323B1 (en) 2016-04-14 2017-10-18 현대자동차주식회사 Road condition sensing apparatus for vehicle and method of controlling the same
KR20180062505A (en) * 2016-11-30 2018-06-11 주식회사 오픈시스넷 Method for estimating pothole on the road
WO2018199286A1 (en) * 2017-04-27 2018-11-01 国立大学法人東京大学 Road surface profile estimating device, road surface profile estimating system, road surface profile estimating method, and road surface profile estimating program
JP2018185276A (en) * 2017-04-27 2018-11-22 国立大学法人 東京大学 Road surface profile estimation device, road surface profile estimation system, road surface profile estimation method and road surface profile estimation program
CN108507529A (en) * 2017-05-16 2018-09-07 重庆大学 A kind of bridge joint slope sedimentation automatic detection device and vehicle
CN108507529B (en) * 2017-05-16 2024-02-06 重庆大学 Bridge slope subsides automatic checkout device and vehicle
JP2021085824A (en) * 2019-11-29 2021-06-03 富士通株式会社 Characteristic calculation program, characteristic calculation method, and information processing system
JP2020160075A (en) * 2020-06-02 2020-10-01 パイオニア株式会社 Step detection device
JP2022107619A (en) * 2020-06-02 2022-07-22 パイオニア株式会社 Step detection device
CN111746537A (en) * 2020-06-22 2020-10-09 重庆长安汽车股份有限公司 Self-adaptive cruise speed control system and method based on road surface flatness and vehicle
CN111746537B (en) * 2020-06-22 2022-05-17 重庆长安汽车股份有限公司 Self-adaptive cruise speed control system and method based on road surface flatness and vehicle

Also Published As

Publication number Publication date
JP6078722B2 (en) 2017-02-15

Similar Documents

Publication Publication Date Title
JP6078722B2 (en) Road surface property measuring device
JP4220929B2 (en) Road surface flatness measuring device
US8494710B2 (en) System and method for identifying a spatial relationship for use in calibrating accelerometer data
CN102168977B (en) Use the wheel alignment diagnosis of GPS
JP6132304B2 (en) Road surface evaluation apparatus and method
CN103717469B (en) Pavement state method of estimation and pavement state estimate equipment
CN105109490B (en) Method for judging sharp turn of vehicle based on three-axis acceleration sensor
US11458776B2 (en) Tread wear monitoring system and method
TWI593571B (en) Tire monitoring methods
CN111127906B (en) Intelligent road surface management system and method based on Internet of things
WO2015081546A1 (en) Method and apparatus for determining acceleration of vehicle
CA3122892C (en) System and method for determining grade and acceleration due to motoring and braking
CN104792937A (en) Bridge head bump detection evaluation method based on vehicle-mounted gravitational acceleration sensor
ES2804054T3 (en) Device and procedure for component verification, especially for axle damping verification, in vehicles
CN103884514B (en) A kind of multifunction motor vehicle measuring instrument and detection method
CN107200040A (en) For the method and system for the vertically profiling for determining raceway surface
CN103290768A (en) Flatness Measuring Instrument and Measuring Method
CN102529850A (en) Safe state monitoring method of motor vehicle based on wheel load type intelligent sensing
CN109629379A (en) A kind of pavement detection method based on mobile phone sensor data
JP6657162B2 (en) Error detection device, error detection method, program
CN205839560U (en) Laser evenness construction depth track detection system
CN112146699A (en) Method for characterizing road conditions
CN106197416A (en) A kind of multi-state vehicle side turning index computation device and computational methods thereof
CN107399207A (en) Tire monitor method
JP2011232128A (en) Road gradient measurement device and road gradient measurement method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150915

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160816

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161128

R150 Certificate of patent or registration of utility model

Ref document number: 6078722

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees