JP2014075520A - 荷電粒子ビーム描画装置 - Google Patents

荷電粒子ビーム描画装置 Download PDF

Info

Publication number
JP2014075520A
JP2014075520A JP2012222993A JP2012222993A JP2014075520A JP 2014075520 A JP2014075520 A JP 2014075520A JP 2012222993 A JP2012222993 A JP 2012222993A JP 2012222993 A JP2012222993 A JP 2012222993A JP 2014075520 A JP2014075520 A JP 2014075520A
Authority
JP
Japan
Prior art keywords
vacuum vessel
charged particle
particle beam
lid
internal space
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012222993A
Other languages
English (en)
Inventor
Satoshi Yasuda
聡 安田
Tatsuhiro Kawashima
辰裕 河島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nuflare Technology Inc
Original Assignee
Nuflare Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nuflare Technology Inc filed Critical Nuflare Technology Inc
Priority to JP2012222993A priority Critical patent/JP2014075520A/ja
Publication of JP2014075520A publication Critical patent/JP2014075520A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Electron Beam Exposure (AREA)

Abstract

【課題】装置の複雑化及び大型化を抑えつつ、大気圧変動による描画精度の低下を抑止することができる荷電粒子ビーム描画装置を提供する。
【解決手段】荷電粒子ビーム描画装置は、荷電粒子光学系を内蔵する光学鏡筒2bと、開口部2a1が上面に形成された真空容器2aと、光学鏡筒2bが固定され、開口部2a1を塞ぐための蓋体34と、真空容器2a内に設けられ、その真空容器2aの内部空間を真空容器2aの上面側の第1内部空間K1と真空容器2aの底面側の第2内部空間K2に区分し、貫通孔31aが形成されたベース体31と、ベース体31に固定されて真空容器2aの第1内部空間K1内に設けられ、蓋体34を支持する複数の支持部材35と、真空容器2aと蓋体34とを接続して真空容器2aを密閉する伸縮可能な伸縮部材36とを備える。
【選択図】図2

Description

本発明は、荷電粒子ビーム描画装置に関する。
近年の大規模集積回路(LSI)の高集積化及び大容量化に伴って、半導体デバイスに要求される回路線幅は益々微小になってきている。半導体デバイスに所望の回路パターンを形成するためには、リソグラフィ技術が用いられており、このリソグラフィ技術では、マスク(レチクル)と称される原画パターンを用いたパターン転写が行われている。このパターン転写に用いる高精度なマスクを製造するためには、優れた解像度を有する荷電粒子ビーム描画装置が用いられている。
この荷電粒子ビーム描画装置の一例としては、マスクやブランクなどの試料が載置されたステージを移動させつつ、ステージ上の試料の所定位置に荷電粒子ビームを偏向して照射し、ステージ上の試料にパターンを描画する荷電粒子ビーム描画装置が開発されている。この荷電粒子ビーム描画装置では、試料室となる真空容器の上に光学鏡筒が搭載されている。この光学鏡筒は、荷電粒子ビームを照射するための荷電粒子光学系を内蔵するものである。
このような荷電粒子ビーム描画装置において、真空容器が減圧により真空状態にされると、その真空容器は大気圧の影響により微小に(例えば、数十μm程度)変形するため、真空容器上の光学鏡筒が傾くことになる。この光学鏡筒の傾きは荷電粒子ビームの軌道に影響を与えるものである。特に、大気圧は高気圧や低気圧の通過(天候の変化)に応じて変動するため、この大気圧変動により真空容器の変形量、すなわち光学鏡筒の傾き量が変わり、荷電粒子ビームの軌道が変化する。したがって、大気圧変動により照射位置の安定性が低下し、結果として、描画精度が低下してしまう。
ここで、ステージの位置精度の低下を防止するため、真空容器である試料室を内側容器と外側容器との二重の密閉容器構造に形成し、内側容器と外側容器との間の空間を一定の圧力に保持する荷電粒子ビーム描画装置が提案されている(例えば、特許文献1参照)。また、荷電粒子ビームの照***度を向上させるとともに、メンテナンス性及び組立再現性の向上を図るため、真空容器を跨いで光学鏡筒を支持するコラム支持体を有する荷電粒子ビーム装置が提案されている(例えば、特許文献2参照)。さらに、ステージ移動時の光学鏡筒の振動を抑制するため、真空容器である試料室上に光学鏡筒を支持するための架台を有する電子ビーム描画装置が提案されている(例えば、特許文献3参照)。
特開2003−17394号公報 特開2003−318080号公報 特開2002−260566号公報
しかしながら、前述のような内側容器と外側容器との間の空間を一定の圧力に保持する荷電粒子ビーム描画装置では、その圧力を一定するための制御機構が必要となるため、装置が複雑化してしまう。また、真空容器の外部にコラム支持体を有する荷電粒子ビーム描画装置、あるいは、試料室の外部に架台を有する電子ビーム描画装置では、装置が大型化してしまう。このため、装置の複雑化及び大型化を抑えつつ、大気圧変動による描画精度の低下を抑止することが望まれている。
本発明が解決しようとする課題は、装置の複雑化及び大型化を抑えつつ、大気圧変動による描画精度の低下を抑止することができる荷電粒子ビーム描画装置を提供することである。
本発明の実施形態に係る荷電粒子ビーム描画装置は、荷電粒子光学系を内蔵する光学鏡筒と、開口部が上面に形成された真空容器と、光学鏡筒が固定され、開口部を塞ぐための蓋体と、真空容器内に設けられ、その真空容器の内部空間を真空容器の上面側の第1内部空間と真空容器の底面側の第2内部空間に区分し、貫通孔が形成されたベース体と、ベース体に固定されて真空容器の第1内部空間内に設けられ、蓋体を支持する複数の支持部材と、真空容器と蓋体とを接続して真空容器を密閉する伸縮可能な伸縮部材とを備える。
また、上記荷電粒子ビーム描画装置において、支持部材に固定されたレーザ干渉計をさらに備えることが望ましい。
また、上記荷電粒子ビーム描画装置において、伸縮部材は、蓋体に溶接により固定されており、真空容器に固定部材により固定されていることが望ましい。
また、上記荷電粒子ビーム描画装置において、伸縮部材は、固定部材により真空容器に接合される接合部を有しており、接合部は、伸縮部材の他の部分よりリン及び硫黄の濃度が低い材料により形成されていることが望ましい。
また、上記荷電粒子ビーム描画装置において、ベース体及び複数の支持部材は、室温で2×10−6/K以下の線膨張係数を有する材料により形成されていることが望ましい。
本発明によれば、装置の複雑化及び大型化を抑えつつ、大気圧変動による描画精度の低下を抑止することができる。
実施形態に係る荷電粒子ビーム描画装置の概略構成を示す図である。 図1に示す荷電粒子ビーム描画装置が備える描画部の概略構成を示す断面図である。 図2に示す描画部が備える蓋体及び複数の支持部材を示す平面図である。 図2に示す描画部が備える伸縮部材及びその周辺を拡大して示す断面図である。 図2に示す描画部の真空状態を示す断面図である。
実施の一形態について図面を参照して説明する。
図1に示すように、実施形態に係る荷電粒子ビーム描画装置1は、荷電粒子ビームによる描画を行う描画部2と、その描画部2を制御する制御部3とを備えている。この荷電粒子ビーム描画装置1は、荷電粒子ビームとして例えば電子ビームを用いた可変成形型の描画装置の一例である。なお、荷電粒子ビームは電子ビームに限られるものではなく、イオンビームなどの他の荷電粒子ビームであっても良い。
描画部2は、描画対象となる試料Wを収容する試料室(描画室)となる真空容器2aと、その真空容器2aにつながる光学鏡筒2bとを有している。この光学鏡筒2bは、真空容器2aの上面に設けられており、荷電粒子光学系(電子光学系)により電子ビームを成形及び偏向し、真空容器2a内の試料Wに対して照射するものである。このとき、真空容器2a及び光学鏡筒2bの両方の内部は減圧されて真空状態にされている。
真空容器2a内には、試料Wを支持するステージ11が設けられている。このステージ11は水平面内で互いに直交するX軸方向とY軸方向(以下、単にX方向及びY方向という)に移動機構12により移動可能に形成されている。ステージ11の載置面上には、例えばマスクやブランクなどの試料Wが載置される。また、真空容器2aの内部には、レーザ干渉計13が設けられており、このレーザ干渉計13は自身とステージ11、すなわちステージ11上のミラー11aとの離間距離を計測する計測器である。さらに、真空容器2aの外面には、駆動部14が設けられており、この駆動部14はステージ11を移動させる移動機構12を駆動する。なお、ミラー11a、レーザ干渉計13及び駆動部14は一組とされ、その組がX方向用及びY方向用として二組設けられている。
光学鏡筒2b内には、電子ビームBを出射する電子銃などの出射部21と、その電子ビームBを集光する照明レンズ22と、ビーム成形用の第1の成形アパーチャ23と、投影用の投影レンズ24と、ビーム成形用の成形偏向器25と、ビーム成形用の第2の成形アパーチャ26と、試料W上にビーム焦点を結ぶ対物レンズ27と、試料Wに対するビームショット位置を制御するための副偏向器28及び主偏向器29とが配置されている。これらの各部21〜29が荷電粒子光学系として機能する。
このような描画部2では、電子ビームBが出射部21から出射され、照明レンズ22により第1の成形アパーチャ23に照射される。この第1の成形アパーチャ23は例えば矩形状の開口を有している。これにより、電子ビームBが第1の成形アパーチャ23を通過すると、その電子ビームの断面形状は矩形状に成形され、投影レンズ24により第2の成形アパーチャ26に投影される。なお、この投影位置は成形偏向器25により偏向可能であり、投影位置の変更により電子ビームBの形状と寸法を制御することが可能である。その後、第2の成形アパーチャ26を通過した電子ビームBは、その焦点が対物レンズ27によりステージ11上の試料Wに合わされて照射される。このとき、ステージ11上の試料Wに対する電子ビームBのショット位置は副偏向器28及び主偏向器29により偏向される。
制御部3は、描画データを記憶する描画データ記憶部3aと、その描画データを処理してショットデータを生成するショットデータ生成部3bと、描画部2を制御する描画制御部3cとを備えている。なお、ショットデータ生成部3bや描画制御部3cは、電気回路などのハードウエアにより構成されても良く、また、各機能を実行するプログラムなどのソフトウエアにより構成されても良く、あるいは、それらの両方の組合せにより構成されても良い。
描画データ記憶部3aは、試料Wにパターンを描画するための描画データを記憶する記憶部である。この描画データは、半導体集積回路の設計者などによって作成された設計データ(レイアウトデータ)が荷電粒子ビーム描画装置1に入力可能となるように、すなわち荷電粒子ビーム描画装置1用のフォーマットに変換されたデータであり、外部装置から描画データ記憶部3aに入力されて保存されている。描画データ記憶部3aとしては、例えば、磁気ディスク装置や半導体ディスク装置(フラッシュメモリ)などを用いることが可能である。
なお、前述の設計データは、通常、多数の微小なパターン(図形など)を含んでおり、そのデータ量はかなりの大容量になっている。この設計データがそのまま他のフォーマットに変換されると、変換後のデータ量はさらに増大してしまう。このため、描画データでは、データの階層化やパターンのアレイ表示などの方法により、データ量の圧縮化が図られている。このような描画データが、チップ領域の描画パターン、または、同一描画条件である複数のチップ領域を仮想的にマージして一つのチップに見立てた仮想チップ領域の描画パターンなどを規定するデータとなる。
ショットデータ生成部3bは、描画データにより規定される描画パターンをストライプ状(短冊状)の複数のストライプ領域(長手方向がX方向であり、短手方向がY方向である)に分割し、さらに、各ストライプ領域を行列状の多数のサブ領域に分割する。加えて、ショットデータ生成部3bは、各サブ領域内の図形の形状や大きさ、位置などを決定し、さらに、図形を一回のショットで描画不可能である場合には、描画可能な複数の部分領域に分割し、ショットデータを生成する。なお、ストライプ領域の短手方向(Y方向)の長さは電子ビームBを主偏向で偏向可能な長さに設定されている。
描画制御部3cは、前述の描画パターンを描画する際、移動機構12によりステージ11をストライプ領域の長手方向(X方向)に移動させつつ、電子ビームBを主偏向器29により各サブ領域に位置決めし、副偏向器28によりサブ領域の所定位置にショットして図形を描画する。その後、一つのストライプ領域の描画が完了すると、ステージ11をY方向にステップ移動させてから次のストライプ領域の描画を行い、これを繰り返して試料Wの描画領域の全体に電子ビームBによる描画を行う。なお、描画中には、ステージ11が一方向に連続的に移動しているため、描画原点がステージ11の移動に追従するように、主偏向器29によってサブ領域の描画原点をトラッキングさせている。
このように電子ビームBは、副偏向器28と主偏向器29によって偏向され、連続的に移動するステージ11に追従しながら、その照射位置が決められる。ステージ11のX方向の移動を連続的に行うとともに、そのステージ11の移動に電子ビームBのショット位置を追従させることで、描画時間を短縮することができる。ただし、本実施形態では、ステージ11のX方向の移動を連続して行っているが、これに限るものではなく、例えば、ステージ11を停止させた状態で一つのサブ領域の描画を行い、次のサブ領域に移動するときは描画を行わないステップアンドリピート方式の描画方法を用いても良い。
このような電子ビームBによる描画において、レーザ干渉計13により計測されたステージ11との相対距離に関する相対距離情報は、移動機構12によるステージ11の移動に関する制御(フィードバック制御)だけではなく、副偏向器28や主偏向器29などの制御、すなわち照射位置の制御(描画の制御)にも用いられる。このため、レーザ干渉計13による計測結果は描画精度に直接影響を与えるものとなる。
次に、描画部2が備える真空容器2aについて図2及び図3を参照して詳しく説明する。
図2に示すように、真空容器2aは、光学鏡筒2bが挿入される開口部2a1を上面に有しており、ベース体31を間にして第1筐体32及び第2筐体33により構成されている。第1筐体32内には、光学鏡筒2bが固定された蓋体34と、その蓋体34を支持する複数の支持部材35と、第1筐体32と蓋体34とを接続する伸縮部材36と、ステージ11や移動機構12を支持する支持台37とが設けられている。
ベース体31は、真空容器2a内に設けられ、その真空容器2aの内部空間を真空容器2aの上面側の第1内部空間K1と真空容器2aの底面側の第2内部空間K2に区分する板状の部材である。このベース体31は、各支持部材35が固定される第1面M1(表面)及びその第1面M1の反対面である第2面M2(裏面)を有している。また、ベース体31の略中央には、第1内部空間K1と第2内部空間K2とをつなげる貫通孔31aが形成されている。なお、第1内部空間K1及び第2内部空間K2は貫通孔31aによりつながっていれば良く、その貫通孔31aの形状は特に限定されるものではない。例えば、貫通孔31aとしては、ベース体31の端部を切り欠いて形成した貫通孔(切り欠き部)を用いることも可能である。
第1筐体32は、ステージ11や移動機構12、全支持部材35、支持台37などを内蔵するようにベース体31の第1面M1上に形成されている。この第1筐体32は、ベース体31の第1面M1上に設けられた側面壁32aと、開口部2a1を有する上面壁32bとにより構成されている。側面壁32aの上部のフランジ部分と上面壁32bの外周の端部がネジなどの固定部材(図示せず)により固定されて第1筐体32が密閉状態とされている。また、側面壁32aの下部のフランジ部分がベース体31の第1面M1にネジなどの固定部材(図示せず)により固定されている。
第2筐体33は、ベース体31と離間してその間に空間を有するようにベース体31の第2面M2上に形成されている。この第2筐体33は、ベース体31の第2面M2上に設けられた側面壁33aと、その側面壁33aに連続する底面壁33bとを有している。側面壁33aの部分がベース体31の第2面M2にネジなどの固定部材(図示せず)により固定されている。
蓋体34は、光学鏡筒2bが固定され、真空容器2aの開口部2a1を塞ぐための部材である。この蓋体34は、光学鏡筒2bがはまり込む貫通孔34aを中央部に有する形状、例えば円環状に形成されている(図3参照)。この蓋体34は、真空容器2aの開口部2a1を塞ぐように位置づけられ、各支持部材35にネジなどの固定部材(図示せず)により固定されている。
各支持部材35は、ベース体31の第1面M1に固定されて真空容器2aの第1内部空間K1内に設けられ、蓋体34を支持する部材である。これらの支持部材35は、ステージ11や移動機構12、支持台37などを囲むように配置され、ベース体31の第1面M1にネジなどの固定部材(図示せず)により固定されている。なお、支持部材35は、板材の両端部を互いに逆方向に曲げてクランク形状となるように形成されている。このような各支持部材35のうち隣り合う二つの支持部材35には、レーザ干渉計13がX方向用あるいはY方向用としてステージ11上のミラー11aに合わせて設けられており、レーザ光通過用の窓35aが形成されている。
ここで、図3に示すように、支持部材35は蓋体34の中心軸を中心として放射状に四つ並べられており、蓋体34は四点支持により支持されている。ただし、これに限るものではなく、例えば、支持部材35の個数を三つあるいは二つにし、蓋体34を三点支持又は二点支持により支持するようしても良く、その支持数は限定されるものではない。
図2に戻り、伸縮部材36は、真空容器2aの第1筐体32と蓋体34とを接続して真空容器2aを密閉する伸縮可能な部材である。この伸縮部材36は、蓋体34の形状に合わせて円環状に形成されている。伸縮部材36は伸縮可能な部材であるため、真空容器2aが大気圧により変形してもその変形を吸収するように伸縮する。伸縮部材36は、真空圧に耐えることができ、さらに、真空容器2aの密閉状態を維持することができる部材である。この伸縮部材36としては、例えば、ベローズ部材などを用いることが可能である。
支持台37は、ベース体31の第1面M1上に設けられており、ステージ11及び移動機構12を支持する部材である。この支持台37は、ベース体31の貫通孔31aを塞がずに跨ぐよう、ベース体31の第1面M1上に設けられている。
次に、伸縮部材36について図4を参照して詳しく説明する。
図4に示すように、伸縮部材36は、その一端が蓋体34の外周側の端部に溶接により固定されており、他端が第1筐体32の上面壁32bに固定部材41により固定されている。この固定部材41としては、例えばネジなどを用いることが可能である。伸縮部材36の上面壁32b側の先端部である接合部36aと上面壁32bとの間には、密閉用のOリング(オーリング)42が設けられている。このOリング42は、伸縮部材36を固定している状態の固定部材41より第1筐体32の内部空間側に位置している。なお、接合部36aは、固定部材41により第1筐体32の上面壁32bに接合される部分であり、Oリング42を収容する環状の凹部36a1を有している。
このような伸縮部材36の接合構造によれば、固定部材41により伸縮部材36を第1筐体32の上面壁32bに接合すれば良いため、溶接により伸縮部材36を第1筐体32の上面壁32bに接合する場合などに比べ(このときの溶接は困難である)、装置の組立作業が容易となるので、作業性を向上させることができる。
前述のような構成の真空容器2aの真空状態(減圧状態)について図5を参照して詳しく説明する。
真空容器2a及び光学鏡筒2b内は描画開始前に所定の真空度まで減圧される。これにより、真空容器2a及び光学鏡筒2bの両方の内部は真空状態にされる。このとき、図5に示すように、真空容器2aは大気圧により内部方向に向かって変形することになる。具体的には、真空容器2aの第1筐体32における側面壁32a及び上面壁32bが内部に撓むように微小に(例えば、数十μm程度)変形し、同じように、第2筐体33の底面壁33bが内部に撓むように微小に(例えば、数十μm程度)変形する。なお、真空容器2a及び光学鏡筒2bの真空状態が解除されると、真空容器2aは元の形状に戻る(図2参照)。
このような大気圧による側面壁32a及び上面壁32bの変形は伸縮部材36が縮むことにより吸収されるため、蓋体34に固定されている光学鏡筒2bの傾きに影響を与えることはない。さらに、第1内部空間K1に存在する各支持部材35には真空圧のみがかかり、それらの支持部材35は外部の大気圧の影響を受けないため変形することはない。また、ベース体31の第1面M1及び第2面M2(表裏の両面)にも真空圧のみがかかり、そのベース体31は外部の大気圧の影響を受けないため変形することはない。これにより、たとえ大気圧が変動しても、光学鏡筒2bを支持する各支持部材35及びそれらの支持部材35を支持するベース体31が変形しないことから、大気圧変動に起因して光学鏡筒2bの傾き量、すなわち荷電粒子ビームの軌道が変化することを抑えることが可能になる。このため、大気圧変動により照射位置の安定性、すなわち描画精度が低下することを抑止することができる。
以上説明したように、実施形態によれば、真空容器2a内を第1内部空間K1と第2内部空間K2とに互いをつなげつつ区分するベース体31を設け、光学鏡筒2bが固定された蓋体34を支持する複数の支持部材35を第1内部空間K1内に設け、さらに、真空容器2aと蓋体34とを接続して真空容器2aを密閉する伸縮部材36を設けることによって、真空容器2aを支えるためのベース体31及び各支持部材35が大気圧の影響により変形することが防止される。これにより、大気圧の影響により光学鏡筒2bが傾くことを抑えることが可能となるため、大気圧変動に起因して光学鏡筒2bの傾き量、すなわち荷電粒子ビームの軌道が変化することを抑えることができ、その結果、大気圧変動による描画精度の低下を抑止することができる。加えて、真空容器2a内にベース体31や各支持部材35を設けるだけで良いため、装置の複雑化及び大型化を抑えることもできる。
また、通常、真空容器2aの外面にレーザ干渉計13を設けるが、この場合には大気圧による真空容器2aの変形に起因してレーザ干渉計13のレーザ光の光路が傾くことになる。このため、レーザ干渉計13の計測精度が低くなり、結果として、描画精度が低下してしまう。ところが、前述のようにレーザ干渉計13を支持部材35に設けることによって、支持部材35が大気圧の影響により変形しないため、レーザ干渉計13のレーザ光の光路が傾くことがなくなる。これにより、レーザ干渉計13の計測精度が低くなることを防止することが可能となるので、描画精度の低下を抑止することができる。
ここで、ベース体31や蓋体34、各支持部材35などの材料としては、低熱膨張材料を用いることが望ましい。具体的には、室温付近で約2×10−6/K以下の線膨張係数を有する材料によって、ベース体31や蓋体34、各支持部材35などを形成することが望ましい。例えば、低熱膨張材料としては、低熱膨張合金であるインバー(Fe−36%Ni)を用いることが可能である。このインバーの熱膨張率は、室温付近で約1.2×10−6/Kであり、鉄やニッケルの約1/10の値である。ただし、ベース体31や蓋体34、各支持部材35などの熱膨張係数は同じあっても、異なっていても良い。
低熱膨張材料は熱による変形が小さい材料であるため、ステージ11の移動に伴う摩擦やモータ起動などによる発熱の影響を受けにくくなる。したがって、低熱膨張材料を用いてベース体31や蓋体34、各支持部材35などを形成することによって、温度変化に対するベース体31や蓋体34、各支持部材35などの変形を抑制することが可能となる。これにより、ベース体31や蓋体34、各支持部材35などの変形に起因する光学鏡筒2bの傾きが抑えられるので、描画精度の安定性を向上させることができる。
また、真空容器2aには、大気側と真空側との間のリークを防止する真空保持機能が求められるが、低純度の低熱膨張材料には、内部に気泡などの欠陥が含まれることがある。この場合には、低熱膨張材料を加工すると、欠陥が表面に現われて良好な接合面(シール面)を形成することができず、所望の真空保持機能を得ることができなくなる恐れがある。このため、真空容器2aには、高純度の低熱膨張材料を用いることが望ましい。
ここで、真空容器2aを高純度の低熱膨張材料、例えば、高純度のインバーのみにより構成することも可能であるが、高純度のインバーは低純度のインバーに比べ、その製造工程数が増加するため、入手が容易ではなく価格も高いという現状がある。このため、真空容器2aの接合部(シール部)にのみ高純度のインバーを使用し、接合部以外の部分には低純度のインバーを使用することが望ましい。これにより、装置の製造時間を短縮させるとともに、製造コストを抑えることができる。例えば、Oリング42によってシールが形成される部分、すなわち伸縮部材36の接合部36aを高純度のインバーにより構成することが望ましい。
インバーの純度は、リン(P)及び硫黄(S)の濃度で表現される。具体的には、リン及び硫黄の濃度が高くなるほど、インバーの純度は低くなる。本実施形態では、リン及び硫黄がいずれも所定濃度以下であるものを「高純度のインバー」と定義する。例えば、リン及び硫黄がそれぞれ0.001質量%以下であるものを「高純度のインバー」とする。この場合には、リン及び硫黄のいずれか一方が0.001質量%を超えるものは「低純度のインバー」となる。シール部におけるリン及び硫黄の濃度が、非シール部におけるリン及び硫黄の濃度の1/10以下となるようにすることが望ましい。
なお、前述の実施形態においては、伸縮部材36の一端部を蓋体34の外周側の端部に固定しており、その他端部を第1筐体32の上面壁32bに固定部材41により固定しているが(図4参照)、これに限るものではなく、伸縮部材36のどちらの端部も同じ方法、すなわち溶接あるいは固定部材により固定するようにしても良い。
また、前述の実施形態においては、伸縮部材36の一端部を蓋体34の外周側の端部に固定しているが(図4参照)、これに限るものではなく、蓋体34の内周側、例えば、蓋体34と光学鏡筒2bとの境界(あるいは光学鏡筒2b)に固定するようにしても良い。この場合には、大気圧による蓋体34の変形を確実に防止することができる。ただし、支持部材35により支持されている蓋体34の箇所の厚さは、蓋体34の厚さと支持部材35の厚さとの合計となり、また、蓋体34の環状部分の幅も小さいため、大気圧の影響によって数十μm程度も変形することはなく、光学鏡筒2bが傾くことを抑止することが可能である。一方、数十μmよりも小さい、例えば数μm程度の変形が問題となるような場合には、伸縮部材36の一端部を蓋体34の内周側、例えば、蓋体34と光学鏡筒2bとの境界に固定することが有効である。これにより、蓋体34の表裏の両面には真空圧のみがかかり、その蓋体34は外部の大気圧の影響を受けないため数μm程度にも変形することがなくなる。
また、前述の実施形態においては、ステージ11の位置を把握するための手段として、ミラー11aやレーザ干渉計13を用いているが、これに限るものではなく、例えば、マーク列からなるリニアスケールと、このリニアスケールに臨むリニアセンサとをステージ11に搭載することも可能である。この場合には、リニアセンサによってマーク列を検出し、ステージ11の位置を把握することになる。なお、ミラー11aやレーザ干渉計13を一組としてX方向用及びY方向用に二組設けるのと同じように、リニアスケールとリニアセンサを一組としてX方向用及びY方向用に二組設け、ステージ11のX方向及びY方向の位置を把握する。
以上、本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
1 荷電粒子ビーム描画装置
2 描画部
2a 真空容器
2a1 開口部
2b 光学鏡筒
3 制御部
3a 描画データ記憶部
3b ショットデータ生成部
3c 描画制御部
11 ステージ
11a ミラー
12 移動機構
13 レーザ干渉計
14 駆動部
21 出射部
22 照明レンズ
23 第1の成形アパーチャ
24 投影レンズ
25 成形偏向器
26 第2の成形アパーチャ
27 対物レンズ
28 副偏向器
29 主偏向器
31 ベース板
31a 貫通孔
32 第1筐体
32a 側面壁
32b 上面壁
33 第2筐体
33a 側面壁
33b 底面壁
34 蓋体
34a 貫通孔
35 支持部材
36 伸縮部材
36a 接合部
36a1 凹部
37 支持台
41 固定部材
42 Oリング
B 電子ビーム
M1 第1面
M2 第2面
K1 第1内部空間
K2 第2内部空間
W 試料

Claims (5)

  1. 荷電粒子光学系を内蔵する光学鏡筒と、
    開口部が上面に形成された真空容器と、
    前記光学鏡筒が固定され、前記開口部を塞ぐための蓋体と、
    前記真空容器内に設けられ、その真空容器の内部空間を前記真空容器の上面側の第1内部空間と前記真空容器の底面側の第2内部空間に区分し、貫通孔が形成されたベース体と、
    前記ベース体に固定されて前記真空容器の第1内部空間内に設けられ、前記蓋体を支持する複数の支持部材と、
    前記真空容器と前記蓋体とを接続して前記真空容器を密閉する伸縮可能な伸縮部材と、
    を備えることを特徴とする荷電粒子ビーム描画装置。
  2. 前記支持部材に固定されたレーザ干渉計をさらに備えることを特徴とする請求項1に記載の荷電粒子ビーム描画装置。
  3. 前記伸縮部材は、前記蓋体に溶接により固定されており、前記真空容器に固定部材により固定されていることを特徴とする請求項1又は請求項2に記載の荷電粒子ビーム描画装置。
  4. 前記伸縮部材は、前記固定部材により前記真空容器に接合される接合部を有しており、
    前記接合部は、前記伸縮部材の他の部分よりリン及び硫黄の濃度が低い材料により形成されていることを特徴とする請求項3に記載の荷電粒子ビーム描画装置。
  5. 前記ベース体及び前記複数の支持部材は、室温で2×10−6/K以下の線膨張係数を有する材料により形成されていることを特徴とする請求項1ないし請求項4のいずれか1項に記載の荷電粒子ビーム描画装置。
JP2012222993A 2012-10-05 2012-10-05 荷電粒子ビーム描画装置 Pending JP2014075520A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012222993A JP2014075520A (ja) 2012-10-05 2012-10-05 荷電粒子ビーム描画装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012222993A JP2014075520A (ja) 2012-10-05 2012-10-05 荷電粒子ビーム描画装置

Publications (1)

Publication Number Publication Date
JP2014075520A true JP2014075520A (ja) 2014-04-24

Family

ID=50749460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012222993A Pending JP2014075520A (ja) 2012-10-05 2012-10-05 荷電粒子ビーム描画装置

Country Status (1)

Country Link
JP (1) JP2014075520A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016051441A1 (ja) * 2014-09-29 2016-04-07 株式会社日立製作所 イオンビーム装置および試料観察方法
JP2017163083A (ja) * 2016-03-11 2017-09-14 株式会社ニコン 荷電粒子線露光装置、露光方法、及びデバイス製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001284219A (ja) * 2000-03-30 2001-10-12 Toshiba Corp 荷電粒子ビーム装置及び荷電粒子ビーム装置用試料室
JP2003282423A (ja) * 2002-03-27 2003-10-03 Hitachi High-Technologies Corp 定圧チャンバ、それを用いた照射装置、回路パターンの製造装置及び回路パターンの検査装置
JP2004104021A (ja) * 2002-09-12 2004-04-02 Canon Inc 露光装置及びデバイス製造方法
JP2006066457A (ja) * 2004-08-24 2006-03-09 Nsk Ltd ステージ駆動装置
JP2008129358A (ja) * 2006-11-21 2008-06-05 Ricoh Co Ltd 真空チャンバ及び電子線描画装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001284219A (ja) * 2000-03-30 2001-10-12 Toshiba Corp 荷電粒子ビーム装置及び荷電粒子ビーム装置用試料室
JP2003282423A (ja) * 2002-03-27 2003-10-03 Hitachi High-Technologies Corp 定圧チャンバ、それを用いた照射装置、回路パターンの製造装置及び回路パターンの検査装置
JP2004104021A (ja) * 2002-09-12 2004-04-02 Canon Inc 露光装置及びデバイス製造方法
JP2006066457A (ja) * 2004-08-24 2006-03-09 Nsk Ltd ステージ駆動装置
JP2008129358A (ja) * 2006-11-21 2008-06-05 Ricoh Co Ltd 真空チャンバ及び電子線描画装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016051441A1 (ja) * 2014-09-29 2016-04-07 株式会社日立製作所 イオンビーム装置および試料観察方法
JPWO2016051441A1 (ja) * 2014-09-29 2017-08-10 株式会社日立製作所 イオンビーム装置および試料観察方法
US10340117B2 (en) 2014-09-29 2019-07-02 Hitachi, Ltd. Ion beam device and sample observation method
JP2017163083A (ja) * 2016-03-11 2017-09-14 株式会社ニコン 荷電粒子線露光装置、露光方法、及びデバイス製造方法

Similar Documents

Publication Publication Date Title
JP2004095862A (ja) 露光装置
JP2004055767A (ja) 電子ビーム露光装置及び半導体デバイスの製造方法
JP2014075520A (ja) 荷電粒子ビーム描画装置
JP2013038297A (ja) 荷電粒子ビーム描画装置及び荷電粒子ビーム描画方法
TWI398897B (zh) Z軸向載台結構及其應用
KR101687591B1 (ko) 하전 입자 빔 묘화 장치
JP2016129165A (ja) 荷電粒子ビーム描画装置
JP2015038967A (ja) 荷電粒子ビーム描画装置及び描画チャンバ
TWI498938B (zh) 荷電粒子束描繪裝置、光圈單元及荷電粒子束描繪方法
JP2014033075A (ja) 荷電粒子ビーム描画装置及びパターン検査装置
JP7167750B2 (ja) 荷電粒子ビーム描画装置及び荷電粒子ビーム描画方法
JP2014086476A (ja) リソグラフィー装置、それを用いた物品の製造方法
JP2016166924A (ja) ステージ装置
JP7017129B2 (ja) 荷電粒子ビーム描画装置及び荷電粒子ビーム描画方法
JP2016170287A (ja) 真空装置及び荷電粒子ビーム描画装置
JP6248134B2 (ja) 荷電粒子ビーム描画装置
KR101638231B1 (ko) 하전 입자빔 묘화 장치 및 묘화 챔버
JP2014007231A (ja) 荷電粒子ビーム描画装置
JP2018073901A (ja) 荷電粒子ビーム描画装置及び荷電粒子ビーム描画方法
JP2014033074A (ja) 荷電粒子ビーム描画装置及びパターン検査装置
JP2008042173A (ja) 荷電粒子ビーム描画方法、荷電粒子ビーム描画装置及びプログラム
TWI712864B (zh) 帶電粒子束照射裝置
JP2013077778A (ja) 荷電粒子ビーム描画装置および荷電粒子ビーム描画方法
JP2010212582A (ja) 荷電粒子ビーム描画装置、荷電粒子ビーム描画方法及び荷電粒子ビームの非点補正方法
WO2018167922A1 (ja) 荷電粒子ビーム光学装置、露光装置、露光方法、制御装置、制御方法、情報生成装置、情報生成方法、及び、デバイス製造方法

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20150406

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150804

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160524

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20161125