JP2014049289A - Electrode catalyst for fuel cell, and fuel cell - Google Patents

Electrode catalyst for fuel cell, and fuel cell Download PDF

Info

Publication number
JP2014049289A
JP2014049289A JP2012191332A JP2012191332A JP2014049289A JP 2014049289 A JP2014049289 A JP 2014049289A JP 2012191332 A JP2012191332 A JP 2012191332A JP 2012191332 A JP2012191332 A JP 2012191332A JP 2014049289 A JP2014049289 A JP 2014049289A
Authority
JP
Japan
Prior art keywords
fuel cell
carbon
electrode
boron carbide
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012191332A
Other languages
Japanese (ja)
Inventor
Tetsuo Nagami
哲夫 永見
Tomohiro Ishida
智寛 石田
Mikihiro Kataoka
幹裕 片岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cataler Corp
Toyota Motor Corp
Original Assignee
Cataler Corp
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cataler Corp, Toyota Motor Corp filed Critical Cataler Corp
Priority to JP2012191332A priority Critical patent/JP2014049289A/en
Priority to PCT/JP2013/070594 priority patent/WO2014034357A1/en
Publication of JP2014049289A publication Critical patent/JP2014049289A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/925Metals of platinum group supported on carriers, e.g. powder carriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PROBLEM TO BE SOLVED: To provide an electrode catalyst for a fuel cell, capable of achieving both oxidation resistance and catalyst activity.SOLUTION: An electrode catalyst for a fuel cell includes boron carbide and noble metal supported by the boron carbide.

Description

本発明は、燃料電池用電極触媒、特に担体として炭化ホウ素を使用する燃料電池用電極触媒、及び当該燃料電池用電極触媒を含む燃料電池に関する。   The present invention relates to an electrode catalyst for a fuel cell, in particular, an electrode catalyst for a fuel cell that uses boron carbide as a carrier, and a fuel cell including the electrode catalyst for a fuel cell.

燃料電池は、燃料を補充することにより継続的に電力を取り出すことができ、且つ環境への負担が小さい発電装置である。近年の地球環境保護への関心の高まりにより、燃料電池には大きな期待が寄せられている。また、燃料電池は発電効率が高く、システムの小型化が可能であるため、パソコンや携帯電話等の携帯機器、自動車や鉄道等の車両等の様々な分野での利用が期待されている。   A fuel cell is a power generator that can continuously take out electric power by replenishing fuel and has a low environmental burden. Due to the growing interest in protecting the global environment in recent years, great expectations are placed on fuel cells. In addition, since the fuel cell has high power generation efficiency and can be downsized, it is expected to be used in various fields such as portable devices such as personal computers and mobile phones, vehicles such as automobiles and railways.

燃料電池は、一対の電極(燃料極及び空気極)及び電解質から構成されており、当該電極には担体、及び当該担体に担持されている貴金属が含まれている。従来の燃料電池は一般的にカーボンを担体として使用している。   A fuel cell includes a pair of electrodes (a fuel electrode and an air electrode) and an electrolyte, and the electrode includes a carrier and a noble metal supported on the carrier. Conventional fuel cells generally use carbon as a carrier.

例えば、特許文献1では、担体としてカーボンブラックを使用することが記載されている。また、カーボンブラックに白金及び炭化ホウ素を担持することが記載されている。特許文献2では、担体であるカーボンブラックの黒鉛化を進行させるために炭化ホウ素を添加することが記載されている。   For example, Patent Document 1 describes the use of carbon black as a carrier. Further, it is described that platinum and boron carbide are supported on carbon black. Patent Document 2 describes that boron carbide is added to advance graphitization of carbon black as a support.

一方、特許文献3では、担体としてタンタルホウ化物又はニオブホウ化物を含む針状ホウ化物粉末を使用することが記載されている。また、当該担体を製造するために炭化ホウ素を使用することが記載されている。   On the other hand, Patent Document 3 describes the use of acicular boride powder containing tantalum boride or niobium boride as a carrier. It also describes the use of boron carbide to produce the carrier.

なお、燃料電池に関するものではないが、特許文献4では、炭化ホウ素を排ガス浄化触媒におけるハニカム基材として使用することが記載されている。   Although not related to a fuel cell, Patent Document 4 describes that boron carbide is used as a honeycomb substrate in an exhaust gas purification catalyst.

特開昭63−256138号公報JP 63-256138 A 国際公開第01/92151号パンフレットInternational Publication No. 01/92151 Pamphlet 特開2009−215155号公報JP 2009-215155 A 特開2009−106931号公報JP 2009-106931 A

カーボンは導電性に優れ、燃料電池環境(高電位及び強酸性)において化学的に安定である。そのため、上記の通り、燃料電池用電極に含まれる担体としてカーボンが一般的に使用されている。また、比表面積の大きいカーボンを使用することによって、触媒機能を有する貴金属を当該カーボンに高度に分散させて担持させることができる。これにより、触媒活性を向上させることができる。   Carbon has excellent conductivity and is chemically stable in the fuel cell environment (high potential and strong acidity). Therefore, as described above, carbon is generally used as a carrier contained in the fuel cell electrode. In addition, by using carbon having a large specific surface area, a noble metal having a catalytic function can be highly dispersed and supported on the carbon. Thereby, catalyst activity can be improved.

しかし、カーボンは燃料電池の運転条件下においての反応式(1):
C+2HO→CO+4H+4e (1)
で表されるように電気化学的に酸化される。この反応は徐々に進行するため、燃料電池を長時間運転することにより、カーボンが痩せていき、燃料電池の性能が低下するという問題が生じる。そして、このような問題は比表面積の大きいカーボンにおいて特に顕著に生じる。
However, carbon has a reaction formula (1) under the operating conditions of the fuel cell:
C + 2H 2 O → CO 2 + 4H + + 4e (1)
It is oxidized electrochemically as represented by Since this reaction progresses gradually, there is a problem that the carbon becomes thinner and the performance of the fuel cell deteriorates when the fuel cell is operated for a long time. Such a problem is particularly noticeable in carbon having a large specific surface area.

この問題は、カーボンの結晶性を高め、比表面積を小さくすることによって対処することができる。しかし、カーボンの比表面積を小さくすると、貴金属を担持する部位が減るため、貴金属が粗大粒子としてカーボンに担持されることになる。その結果、触媒活性が低下するという問題が生じる。つまり、触媒の酸化耐性と触媒活性とは相反する性質である。   This problem can be addressed by increasing the crystallinity of the carbon and reducing the specific surface area. However, if the specific surface area of carbon is reduced, the number of sites for supporting the noble metal decreases, so that the noble metal is supported on the carbon as coarse particles. As a result, there arises a problem that the catalytic activity is lowered. That is, the oxidation resistance and catalytic activity of the catalyst are contradictory properties.

そのため、本発明は、酸化耐性と触媒活性とを両立することができる燃料電池用電極触媒を提供することを目的とする。   Therefore, an object of the present invention is to provide a fuel cell electrode catalyst that can achieve both oxidation resistance and catalytic activity.

上述した目的を達成するため、本発明者らが鋭意検討した結果、カーボンに代えて炭化ホウ素(BC)を担体として使用することにより、酸化耐性と触媒活性とを両立できることを見出した。 As a result of intensive studies by the present inventors to achieve the above-described object, it has been found that by using boron carbide (B 4 C) as a carrier instead of carbon, both oxidation resistance and catalytic activity can be achieved.

すなわち、本発明は以下を包含する。   That is, the present invention includes the following.

[1]炭化ホウ素と、当該炭化ホウ素に担持された貴金属とを含む、燃料電池用電極触媒。
[2]貴金属が白金、白金合金、又はパラジウムである、[1]に記載の燃料電池用電極触媒。
[3]一酸化炭素吸着量が22ml/g以上である、[1]又は[2]に記載の燃料電池用電極触媒。
[4]炭化ホウ素に担持された貴金属の量が、当該炭化ホウ素及び貴金属の全重量に対して、24重量%以下である、[1]〜[3]のいずれかに記載の燃料電池用電極触媒。
[5]燃料極と空気極と電解質とを備え、当該燃料極及び/又は空気極が[1]〜[4]のいずれかに記載の燃料電池用電極触媒を含む、燃料電池。
[1] A fuel cell electrode catalyst comprising boron carbide and a noble metal supported on the boron carbide.
[2] The fuel cell electrode catalyst according to [1], wherein the noble metal is platinum, a platinum alloy, or palladium.
[3] The fuel cell electrode catalyst according to [1] or [2], wherein the carbon monoxide adsorption amount is 22 ml / g or more.
[4] The fuel cell electrode according to any one of [1] to [3], wherein the amount of the noble metal supported on the boron carbide is 24% by weight or less based on the total weight of the boron carbide and the noble metal. catalyst.
[5] A fuel cell comprising a fuel electrode, an air electrode, and an electrolyte, wherein the fuel electrode and / or the air electrode includes the fuel cell electrode catalyst according to any one of [1] to [4].

本発明によれば、酸化耐性と触媒活性とを両立した燃料電池用電極触媒を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the electrode catalyst for fuel cells which can make oxidation resistance and catalyst activity compatible can be provided.

一酸化炭素吸着量の測定結果を示す。The measurement result of the carbon monoxide adsorption amount is shown. 実施例5で調製した触媒のTEM写真を示す。The TEM photograph of the catalyst prepared in Example 5 is shown. 比較例5で調製した触媒のTEM写真を示す。The TEM photograph of the catalyst prepared in Comparative Example 5 is shown. 実施例及び比較例で調製した触媒の質量活性及びECSA維持率を示す。The mass activity and ECSA maintenance rate of the catalysts prepared in Examples and Comparative Examples are shown.

以下、本発明について詳細に説明する。   Hereinafter, the present invention will be described in detail.

<燃料電池用電極触媒>
本発明は、炭化ホウ素(BC)と、当該炭化ホウ素に担持された貴金属とを含む、燃料電池用電極触媒に関する。炭化ホウ素は、同程度の比表面積を有するカーボンと比較して、貴金属を高度に分散させて担持させることができる。つまり、炭化ホウ素の比表面積を小さく抑えながら、高い触媒活性を達成することができる。また、炭化ホウ素の比表面積を小さく抑えることにより、酸化耐性を向上させることもできる。その結果、触媒活性と酸化耐性とを両立することができる。
<Electrocatalyst for fuel cell>
The present invention relates to a fuel cell electrode catalyst comprising boron carbide (B 4 C) and a noble metal supported on the boron carbide. Boron carbide can carry a highly dispersed precious metal as compared with carbon having a specific surface area of the same degree. That is, high catalytic activity can be achieved while keeping the specific surface area of boron carbide small. Moreover, oxidation resistance can also be improved by keeping the specific surface area of boron carbide small. As a result, both catalytic activity and oxidation resistance can be achieved.

本発明において使用する炭化ホウ素の種類は特に限定されないが、触媒活性及び酸化耐性を更に向上させる観点から、一定の範囲の比表面積を有する炭化ホウ素を使用することが好ましい。このような比表面積として、例えば、20〜700m/g、好ましくは30〜500m/g、より好ましくは40〜300m/g、特に好ましくは50〜100m/g等を挙げることができる。 Although the kind of boron carbide used in the present invention is not particularly limited, it is preferable to use boron carbide having a specific surface area within a certain range from the viewpoint of further improving the catalytic activity and oxidation resistance. Examples of such a specific surface area include 20 to 700 m 2 / g, preferably 30 to 500 m 2 / g, more preferably 40 to 300 m 2 / g, and particularly preferably 50 to 100 m 2 / g. .

炭化ホウ素の比表面積は、Tristar3000(島津製作所製)を用い、150℃で2時間真空引きして前処理し、N下、分圧P/Po=0.01〜0.1の範囲で10条件導入し、N吸着量を測定することにより決定することができる。 The specific surface area of boron carbide was Tristar 3000 (manufactured by Shimadzu Corporation), vacuum-treated at 150 ° C. for 2 hours and pretreated, and under N 2 , the partial pressure P / Po was in the range of 0.01 to 0.1. It can be determined by introducing conditions and measuring the N 2 adsorption amount.

炭化ホウ素に担持させる貴金属の種類は特に限定されず、燃料電池用電極において一般的に使用されているものを挙げることができる。このような貴金属としては、例えば、白金、パラジウム、ルテニウム、ロジウム、イリジウム、オスミウム、金、銀等を挙げることができる。また、貴金属は単一金属に限定されず、合金であってもよい。合金は貴金属と貴金属以外の金属との合金であってもよい。合金としては、例えば、白金−コバルト合金、白金−ルテニウム合金、白金−イリジウム合金等を挙げることができる。特に限定するものではないが、貴金属として白金、白金合金、又はパラジウムを使用することが特に好ましい。貴金属は1種を単独で使用してもよいし、2種以上を組み合わせて使用してもよい。2種以上の貴金属を組み合わせて使用する場合には、貴金属を合金として使用してもよいし、単なる混合物として使用してもよいし、コアシェル構造物として使用してもよい。   The kind of noble metal supported on boron carbide is not particularly limited, and examples thereof include those commonly used in fuel cell electrodes. Examples of such noble metals include platinum, palladium, ruthenium, rhodium, iridium, osmium, gold, silver and the like. Further, the noble metal is not limited to a single metal and may be an alloy. The alloy may be an alloy of a noble metal and a metal other than the noble metal. Examples of the alloy include a platinum-cobalt alloy, a platinum-ruthenium alloy, and a platinum-iridium alloy. Although it does not specifically limit, it is especially preferable to use platinum, a platinum alloy, or palladium as a noble metal. A noble metal may be used individually by 1 type and may be used in combination of 2 or more type. When two or more kinds of noble metals are used in combination, the noble metals may be used as an alloy, may be used as a simple mixture, or may be used as a core-shell structure.

炭化ホウ素に担持された貴金属の分散の度合いは、当該貴金属に吸着する一酸化炭素の量を測定することにより決定することができる。一酸化炭素吸着量が多いほど貴金属が高度に分散されていることを意味するため、一酸化炭素吸着量は多いほど好ましい。例えば、一酸化炭素吸着量は、22ml/g以上であることが好ましく、24ml/g以上であることがより好ましく、26ml/g以上であることが更に好ましい。例えば、貴金属が白金−コバルト合金である場合、一酸化炭素吸着量が約26ml/g以上であると、当該合金の平均粒径は約3nm以下となる。なお、一酸化炭素吸着量の上限は特に限定されないが、例えば、60ml/g、50ml/g、40ml/g等を挙げることができる。   The degree of dispersion of the noble metal supported on boron carbide can be determined by measuring the amount of carbon monoxide adsorbed on the noble metal. A larger amount of adsorbed carbon monoxide means that the precious metal is highly dispersed. Therefore, a larger amount of adsorbed carbon monoxide is preferable. For example, the carbon monoxide adsorption amount is preferably 22 ml / g or more, more preferably 24 ml / g or more, and further preferably 26 ml / g or more. For example, when the noble metal is a platinum-cobalt alloy, if the carbon monoxide adsorption amount is about 26 ml / g or more, the average particle size of the alloy is about 3 nm or less. The upper limit of the carbon monoxide adsorption amount is not particularly limited, and examples thereof include 60 ml / g, 50 ml / g, 40 ml / g, and the like.

炭化ホウ素に担持させる貴金属の量は特に限定されないが、炭化ホウ素及び貴金属の全重量に対して、24重量%以下であることが好ましく、23重量%以下であることがより好ましく、22重量%以下であることが更に好ましく、21重量%以下であることが特に好ましく、20重量%以下であることが極めて好ましい。このように貴金属の量を抑えることにより、炭化ホウ素に貴金属をより高度に分散させて担持させることができる。その結果、触媒活性を更に向上させることが可能となる。担持させる貴金属の量の下限は、必要とされる触媒活性を維持できれば特に限定されないが、例えば、1重量%、5重量%、10重量%等を挙げることができる。   The amount of the noble metal supported on the boron carbide is not particularly limited, but is preferably 24% by weight or less, more preferably 23% by weight or less, and more preferably 22% by weight or less based on the total weight of the boron carbide and the noble metal. More preferably, it is particularly preferably 21% by weight or less, and particularly preferably 20% by weight or less. By suppressing the amount of the noble metal in this way, the noble metal can be more highly dispersed and supported on the boron carbide. As a result, the catalyst activity can be further improved. The lower limit of the amount of the noble metal to be supported is not particularly limited as long as the required catalytic activity can be maintained, and examples thereof include 1% by weight, 5% by weight, and 10% by weight.

本発明に係る燃料電池用電極触媒の製造方法としては、特別な方法を使用する必要はなく、公知の方法を適用することができる。例えば、炭化ホウ素の分散液に白金源を添加し、混合した後、溶媒を除去し、熱処理することにより製造することができる。   As a method for producing an electrode catalyst for a fuel cell according to the present invention, it is not necessary to use a special method, and a known method can be applied. For example, it can be produced by adding a platinum source to a boron carbide dispersion and mixing it, then removing the solvent and subjecting it to a heat treatment.

白金源としては、白金を含む化合物であれば特に限定されない。例えば、ヘキサクロロ白金酸、ヘキサクロロ白金(IV)酸ナトリウム、ヘキサヒドロキソ白金(IV)酸ナトリウム、テトラクロロ白金(II)酸カリウム、トリス(エチレンジアミン)白金塩化物、ヘキサアンミン白金塩化物、クロロペンタアンミン白金塩化物、クロロトリスアンミン白金塩化物、ヘキサクロロ白金酸アンモニウム、シス−ジクロロビス(ピラジン)白金、シス−ジクロロビス(4,4’−ビピリジン)白金、シス−ジクロロビス(ピリジン)白金、トリクロロ(ピラジン)白金酸、トリクロロ(4,4−ビピリジン)白金酸、トランス−ジクロロジアンミン白金、ジニトロジアンミン白金、白金ニトロアンミンエトキシド、四価白金アンミン溶液、ヘキサヒドロキソ白金酸、テトラニトロ白金酸カリウム、ビス(オキサラト)白金酸カリウム、1,5−シクロオクタジエンジメチル白金等を挙げることができる。   The platinum source is not particularly limited as long as it is a compound containing platinum. For example, hexachloroplatinic acid, sodium hexachloroplatinum (IV), sodium hexahydroxoplatinum (IV), potassium tetrachloroplatinum (II), tris (ethylenediamine) platinum chloride, hexaammineplatinum chloride, chloropentammineplatinum Chloride, chlorotrisammineplatinum chloride, ammonium hexachloroplatinate, cis-dichlorobis (pyrazine) platinum, cis-dichlorobis (4,4'-bipyridine) platinum, cis-dichlorobis (pyridine) platinum, trichloro (pyrazine) platinic acid , Trichloro (4,4-bipyridine) platinic acid, trans-dichlorodiammine platinum, dinitrodiammine platinum, platinum nitroammine ethoxide, tetravalent platinum ammine solution, hexahydroxoplatinic acid, potassium tetranitroplatinate, bis (ox Lato) potassium platinum acid, and 1,5-cyclooctadiene dimethyl platinum.

熱処理の温度としては、例えば、200〜900℃、300〜800℃、400〜700℃等を挙げることができる。熱処理の温度を変化させることにより、触媒活性及び酸化耐性を調節することもできる。   As a temperature of heat processing, 200-900 degreeC, 300-800 degreeC, 400-700 degreeC etc. can be mentioned, for example. The catalyst activity and oxidation resistance can be adjusted by changing the temperature of the heat treatment.

<燃料電池>
本発明は、一対の電極(燃料極及び空気極)と電解質とを備え、当該燃料極及び/又は空気極が上記の燃料電池用電極を含む燃料電池にも関する。本発明に係る燃料電池は上記の燃料電池用電極触媒を含むことにより、高い触媒活性及び酸化耐性を有する。
<Fuel cell>
The present invention also relates to a fuel cell including a pair of electrodes (a fuel electrode and an air electrode) and an electrolyte, and the fuel electrode and / or the air electrode include the above-described fuel cell electrode. The fuel cell according to the present invention has high catalytic activity and oxidation resistance by including the fuel cell electrode catalyst.

本発明に係る燃料電池は、固体高分子形燃料電池(PEFC)、りん酸形燃料電池(PAFC)、溶融炭酸塩形燃料電池(MCFC)、固体酸化物形燃料電池(SOFC)、アルカリ電解質形燃料電池(AFC)、直接形燃料電池(DFC)等とすることができる。   The fuel cell according to the present invention includes a polymer electrolyte fuel cell (PEFC), a phosphoric acid fuel cell (PAFC), a molten carbonate fuel cell (MCFC), a solid oxide fuel cell (SOFC), and an alkaline electrolyte type. A fuel cell (AFC), a direct fuel cell (DFC), or the like can be used.

本発明に係る燃料電池用電極触媒は燃料極及び空気極の両方に含まれていてもよいし、いずれか一方のみに含まれていてもよい。一方の電極のみが本発明に係る燃料電池用電極触媒を含む場合には、他方の電極は炭化ホウ素以外の担体に担持された貴金属を含んでいてもよい。また、本発明に係る燃料電池用電極触媒を含む電極が、炭化ホウ素以外の担体に担持された貴金属を更に含んでいてもよい。   The electrode catalyst for a fuel cell according to the present invention may be included in both the fuel electrode and the air electrode, or may be included in only one of them. When only one electrode includes the fuel cell electrode catalyst according to the present invention, the other electrode may include a noble metal supported on a carrier other than boron carbide. The electrode including the fuel cell electrode catalyst according to the present invention may further include a noble metal supported on a carrier other than boron carbide.

炭化ホウ素以外の担体としては、例えば、カーボン、チタニア、シリカ、セリア、アルミナ、マグネシア、ジルコニア、イットリア等を挙げることができる。カーボン担体としては更に、ケッチェンブラック、バルカン、アセチレンブラック、ブラックパール、カーボンナノチューブ、カーボンナノホーン、カーボンファイバー、メソポーラスカーボン等を挙げることができる。   Examples of the carrier other than boron carbide include carbon, titania, silica, ceria, alumina, magnesia, zirconia, and yttria. Examples of the carbon carrier further include ketjen black, vulcan, acetylene black, black pearl, carbon nanotube, carbon nanohorn, carbon fiber, and mesoporous carbon.

電極の作製方法としては、特別な方法を使用する必要はなく、公知の方法を適用することができる。例えば、電解質と必要に応じて結着剤を溶剤に溶解した溶液に、貴金属を担持した担体を添加し、混練することにより触媒インクを調製し、これを電解質膜や電極用基材に塗布し、乾燥することによって電極を作成することができる。   As a method for producing the electrode, it is not necessary to use a special method, and a known method can be applied. For example, a catalyst ink is prepared by adding a carrier carrying a noble metal to a solution in which an electrolyte and a binder as necessary are dissolved in a solvent, and kneading, and applying this to an electrolyte membrane or an electrode substrate. The electrode can be made by drying.

触媒インクの塗布方法としては、公知の方法、例えば、スプレー法、スクリーン印刷法、ドクターブレード法、グラビア印刷法、ダイコート法等の方法を適用することができる。   As a method for applying the catalyst ink, a known method such as a spray method, a screen printing method, a doctor blade method, a gravure printing method, a die coating method, or the like can be applied.

触媒インクの乾燥方法としては、公知の方法、例えば、減圧乾燥、加熱乾燥、減圧加熱乾燥等の方法を適用することができる。   As a method for drying the catalyst ink, a known method, for example, a method such as vacuum drying, heat drying, or vacuum heat drying can be applied.

本発明に係る燃料電池に含まれる電解質としては、例えば、イオン交換膜、リン酸水溶液、溶融炭酸塩、イオン伝導性セラミックス等を挙げることができる。イオン交換膜としては更に、フッ素系高分子電解質膜、炭化水素系高分子電解質膜等を挙げることができる。   Examples of the electrolyte contained in the fuel cell according to the present invention include an ion exchange membrane, a phosphoric acid aqueous solution, a molten carbonate, and an ion conductive ceramic. Examples of the ion exchange membrane further include a fluorine-based polymer electrolyte membrane and a hydrocarbon-based polymer electrolyte membrane.

本発明に係る燃料電池はセパレータを更に含んでいてもよい。一対の電極と電解質膜とからなる膜電極接合体(MEA)を一対のセパレータで挟持した単位セルを積み重ね、セルスタックを構成することにより、高い電力を得ることができる。   The fuel cell according to the present invention may further include a separator. High power can be obtained by stacking unit cells in which a membrane electrode assembly (MEA) composed of a pair of electrodes and an electrolyte membrane is sandwiched between a pair of separators to form a cell stack.

本発明に係る燃料電池に使用する燃料としては、例えば、酸素、水素、炭素数1〜6の有機化合物、これらの混合物等を挙げることができる。炭素数1〜6の有機化合物としては、例えば、メタン、エタン、プロパン、ブタン、メタノール、イソプロピルアルコール、アセトン、グリセリン、エチレングリコール、ギ酸、酢酸、ジメチルエーテル、ハイドロキノン、シクロヘキサン等を挙げることができる。   Examples of the fuel used in the fuel cell according to the present invention include oxygen, hydrogen, an organic compound having 1 to 6 carbon atoms, and a mixture thereof. Examples of the organic compound having 1 to 6 carbon atoms include methane, ethane, propane, butane, methanol, isopropyl alcohol, acetone, glycerin, ethylene glycol, formic acid, acetic acid, dimethyl ether, hydroquinone, and cyclohexane.

以下、本発明を実施例及び比較例により詳細に説明するが、本発明はこれにより限定されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention in detail, this invention is not limited by this.

<触媒調製>
[実施例1]
37%Pt/BC(熱処理:300℃)
炭化ホウ素(NaBond製)10gに0.1N硝酸水溶液700gを加え分散させた。この分散液に、製品のPt担持率が37重量%となるPt量4.29gを含むジニトロジアンミン白金硝酸溶液、及び99.5%エタノール100gを順に加え、十分に馴染ませ加熱した。加熱は60〜90℃、3時間の範囲で行なった。加熱終了後、この分散液を、ろ過排液の導電率が50μS/cm以下になるまで繰返しろ過洗浄し、得られた粉末ケーキを送風乾燥で80℃、15時間乾燥した。次にアルゴンガス中で触媒粉末を300℃で熱処理した。熱処理は昇温5℃/min、2時間保持により行なった。
<Catalyst preparation>
[Example 1]
37% Pt / B 4 C (heat treatment: 300 ° C.)
To 10 g of boron carbide (manufactured by NaBond), 700 g of a 0.1N nitric acid aqueous solution was added and dispersed. To this dispersion, a dinitrodiammine platinum nitrate solution containing 4.29 g of Pt in which the Pt loading rate of the product was 37% by weight and 100 g of 99.5% ethanol were added in order, and the mixture was fully acclimated and heated. Heating was performed at 60 to 90 ° C. for 3 hours. After the completion of heating, this dispersion was repeatedly filtered and washed until the conductivity of the filtered effluent became 50 μS / cm or less, and the resulting powder cake was dried by blowing at 80 ° C. for 15 hours. Next, the catalyst powder was heat-treated at 300 ° C. in argon gas. The heat treatment was performed by raising the temperature at 5 ° C./min for 2 hours.

上記混合溶液中に炭化ホウ素の27%が溶解するため、Ptの担持率は37%となる。
[4.29g/{4.29g+(10g×0.73)}]×100≒37%
以下の実施例2〜7についても同様である。
Since 27% of boron carbide is dissolved in the mixed solution, the loading ratio of Pt is 37%.
[4.29 g / {4.29 g + (10 g × 0.73)}] × 100≈37%
The same applies to Examples 2 to 7 below.

[実施例2]
25.5%Pt/BC(熱処理:350℃)
製品のPt担持率が25.5重量%となるPt量2.5gを含むジニトロジアンミン白金硝酸溶液を使用し、アルゴンガス中での触媒粉末の熱処理を350℃で行った以外は実施例1と同様の操作を行った。
[Example 2]
25.5% Pt / B 4 C (heat treatment: 350 ° C.)
Example 1 except that a dinitrodiammine platinum nitric acid solution containing 2.5 g of Pt in which the Pt loading of the product is 25.5% by weight was used, and the catalyst powder was heat-treated at 350 ° C. in argon gas. The same operation was performed.

[実施例3]
25.5%Pt/BC(熱処理:500℃)
製品のPt担持率が25.5重量%となるPt量2.5gを含むジニトロジアンミン白金硝酸溶液を使用し、アルゴンガス中での触媒粉末の熱処理を500℃で行った以外は実施例1と同様の操作を行った。
[Example 3]
25.5% Pt / B 4 C (heat treatment: 500 ° C.)
Example 1 except that a dinitrodiammine platinum nitric acid solution containing 2.5 g of Pt in which the Pt loading of the product is 25.5% by weight was used, and the catalyst powder was heat-treated at 500 ° C. in argon gas. The same operation was performed.

[実施例4]
19.5%Pt/BC(熱処理:500℃)
製品のPt担持率が19.5重量%となるPt量1.77gを含むジニトロジアンミン白金硝酸溶液を使用し、アルゴンガス中での触媒粉末の熱処理を500℃で行った以外は実施例1と同様の操作を行った。
[Example 4]
19.5% Pt / B 4 C (heat treatment: 500 ° C.)
Example 1 except that a dinitrodiammine platinum nitric acid solution containing 1.77 g of Pt in which the Pt loading of the product is 19.5% by weight was used, and the catalyst powder was heat-treated at 500 ° C. in argon gas. The same operation was performed.

[実施例5]
19.5%Pt/BC(熱処理:600℃)
製品のPt担持率が19.5重量%となるPt量1.77gを含むジニトロジアンミン白金硝酸溶液を使用し、アルゴンガス中での触媒粉末の熱処理を600℃で行った以外は実施例1と同様の操作を行った。
[Example 5]
19.5% Pt / B 4 C (heat treatment: 600 ° C.)
Example 1 except that a dinitrodiammine platinum nitric acid solution containing 1.77 g of Pt in which the Pt loading of the product is 19.5% by weight was used, and the catalyst powder was heat-treated at 600 ° C. in argon gas. The same operation was performed.

[実施例6]
15.7%Pt/BC(熱処理:500℃)
製品のPt担持率が15.7重量%となるPt量1.36gを含むジニトロジアンミン白金硝酸溶液を使用し、アルゴンガス中での触媒粉末の熱処理を500℃で行った以外は実施例1と同様の操作を行った。
[Example 6]
15.7% Pt / B 4 C (heat treatment: 500 ° C.)
Example 1 except that a dinitrodiammine platinum nitric acid solution containing 1.36 g of Pt in which the Pt loading of the product is 15.7% by weight was used, and the catalyst powder was heat-treated at 500 ° C. in argon gas. The same operation was performed.

[実施例7]
19.5%Pt−Co/BC(熱処理:500℃、合金化熱処理:700℃)
実施例4で調製した19.5%Pt/BCを、炭化ホウ素量に対し80倍の純水に分散させ、モル比でPt:Co=7:1となるように、硝酸コバルト水溶液を滴下投入した。硝酸コバルト水溶液は市販の硝酸コバルト六水和物を純水に溶解させたものである。硝酸コバルト水溶液を投入した後、純水で希釈した水素化ホウ素ナトリウムをCoモル量の1〜6モル倍滴下投入し、1〜20時間程度撹拌した。その後、ろ過排液の導電率が5μS/cm以下になるまでろ過洗浄し、得られた粉末ケーキを送風乾燥で80℃、15時間乾燥した。送風乾燥後の触媒粉末を700℃で熱処理し、合金化した。
[Example 7]
19.5% Pt—Co / B 4 C (heat treatment: 500 ° C., alloying heat treatment: 700 ° C.)
19.5% Pt / B 4 C prepared in Example 4 was dispersed in pure water 80 times the amount of boron carbide, and an aqueous cobalt nitrate solution was prepared so that the molar ratio was Pt: Co = 7: 1. Added dropwise. The cobalt nitrate aqueous solution is obtained by dissolving commercially available cobalt nitrate hexahydrate in pure water. After adding the cobalt nitrate aqueous solution, sodium borohydride diluted with pure water was added dropwise 1 to 6 mol times the Co molar amount, and the mixture was stirred for about 1 to 20 hours. Then, it was filtered and washed until the electrical conductivity of the filtered effluent became 5 μS / cm or less, and the obtained powder cake was dried by blowing at 80 ° C. for 15 hours. The catalyst powder after blast drying was heat-treated at 700 ° C. and alloyed.

[比較例1]
30%Pt/Ketjen(熱処理:700℃)
高比表面積のカーボン(ライオン製 KetjenEC)10gに0.1N硝酸水溶液700gを加え分散させた。この分散液に、製品のPt担持率が30重量%となるPt量4.29gを含むジニトロジアンミン白金硝酸溶液、及び99.5%エタノール100gを順に加え、十分に馴染ませ加熱した。加熱は60〜90℃、3時間の範囲で行なった。加熱終了後、この分散液を、ろ過排液の導電率が50μS/cm以下になるまで繰返しろ過洗浄し、得られた粉末ケーキを送風乾燥で80℃、15時間乾燥した。次にアルゴンガス中で触媒粉末を700℃で熱処理した。熱処理は昇温5℃/min、2時間保持により行なった。
[Comparative Example 1]
30% Pt / Ketjen (heat treatment: 700 ° C)
700 g of 0.1N nitric acid aqueous solution was added to 10 g of carbon having a high specific surface area (KetjenEC manufactured by Lion) and dispersed therein. To this dispersion, a dinitrodiammine platinum nitric acid solution containing 4.29 g of Pt in which the Pt loading rate of the product was 30% by weight and 100 g of 99.5% ethanol were added in order, and the mixture was sufficiently blended and heated. Heating was performed at 60 to 90 ° C. for 3 hours. After the completion of heating, this dispersion was repeatedly filtered and washed until the conductivity of the filtered effluent became 50 μS / cm or less, and the resulting powder cake was dried by blowing at 80 ° C. for 15 hours. Next, the catalyst powder was heat-treated at 700 ° C. in argon gas. The heat treatment was performed by raising the temperature at 5 ° C./min for 2 hours.

[比較例2]
30%Pt/Ketjen(熱処理:900℃)
アルゴンガス中での触媒粉末の熱処理を900℃で行った以外は比較例1と同様の操作を行った。
[Comparative Example 2]
30% Pt / Ketjen (heat treatment: 900 ° C)
The same operation as in Comparative Example 1 was performed except that the heat treatment of the catalyst powder in argon gas was performed at 900 ° C.

[比較例3]
30%Pt/黒鉛化カーボン(熱処理:300℃)
低比表面積の高結晶カーボン(東海カーボン製 黒鉛化カーボン#3855)10gに0.1N硝酸水溶液700gを加え分散させた。この分散液に、製品のPt担持率が30重量%となるPt量4.29gを含むジニトロジアンミン白金硝酸溶液、及び99.5%エタノール100gを順に加え、十分に馴染ませ加熱した。加熱は60〜90℃、3時間の範囲で行なった。加熱終了後、この分散液を、ろ過排液の導電率が50μS/cm以下になるまで繰返しろ過洗浄し、得られた粉末ケーキを送風乾燥で80℃、15時間乾燥した。次にアルゴンガス中で触媒粉末を300℃で熱処理した。熱処理は昇温5℃/min、2時間保持により行なった。
[Comparative Example 3]
30% Pt / graphitized carbon (heat treatment: 300 ° C.)
700 g of 0.1N nitric acid aqueous solution was added and dispersed in 10 g of highly crystalline carbon (graphite carbon # 3855 manufactured by Tokai Carbon Co., Ltd.) having a low specific surface area. To this dispersion, a dinitrodiammine platinum nitric acid solution containing 4.29 g of Pt in which the Pt loading rate of the product was 30% by weight and 100 g of 99.5% ethanol were added in order, and the mixture was sufficiently blended and heated. Heating was performed at 60 to 90 ° C. for 3 hours. After the completion of heating, this dispersion was repeatedly filtered and washed until the conductivity of the filtered effluent became 50 μS / cm or less, and the resulting powder cake was dried by blowing at 80 ° C. for 15 hours. Next, the catalyst powder was heat-treated at 300 ° C. in argon gas. The heat treatment was performed by raising the temperature at 5 ° C./min for 2 hours.

[比較例4]
20%Pt/黒鉛化カーボン(熱処理:300℃)
製品のPt担持率が20重量%となるPt量2.5gを含むジニトロジアンミン白金硝酸溶液を使用した以外は比較例3と同様の操作を行った。
[Comparative Example 4]
20% Pt / graphitized carbon (heat treatment: 300 ° C.)
The same operation as in Comparative Example 3 was performed except that a dinitrodiammine platinum nitric acid solution containing 2.5 g of Pt in which the Pt loading of the product was 20% by weight was used.

[比較例5]
20%Pt/黒鉛化カーボン(熱処理:900℃)
製品のPt担持率が20重量%となるPt量2.5gを含むジニトロジアンミン白金硝酸溶液を使用し、アルゴンガス中での触媒粉末の熱処理を900℃で行った以外は比較例3と同様の操作を行った。
[Comparative Example 5]
20% Pt / graphitized carbon (heat treatment: 900 ° C.)
The same as Comparative Example 3 except that a dinitrodiammine platinum nitric acid solution containing 2.5 g of Pt in which the Pt loading of the product was 20% by weight was used and the catalyst powder was heat-treated at 900 ° C. in argon gas. The operation was performed.

[比較例6]
15%Pt/黒鉛化カーボン(熱処理:900℃)
製品のPt担持率が15重量%となるPt量1.77gを含むジニトロジアンミン白金硝酸溶液を使用し、アルゴンガス中での触媒粉末の熱処理を900℃で行った以外は比較例3と同様の操作を行った。
[Comparative Example 6]
15% Pt / graphitized carbon (heat treatment: 900 ° C.)
The same as Comparative Example 3 except that a dinitrodiammine platinum nitric acid solution containing 1.77 g of Pt in which the Pt loading of the product was 15% by weight was used, and the catalyst powder was heat-treated at 900 ° C. in argon gas. The operation was performed.

[比較例7]
20%Pt−Co/黒鉛化カーボン(熱処理:700℃、合金化熱処理:800℃)
低比表面積の高結晶カーボン(東海カーボン製 黒鉛化カーボン#3855)10gに0.1N硝酸水溶液700gを加え分散させた。この分散液に、製品のPt担持率が20重量%となるPt量2.5gを含むジニトロジアンミン白金硝酸溶液、及び99.5%エタノール100gを順に加え、十分に馴染ませ加熱した。加熱は60〜90℃、3時間の範囲で行なった。加熱終了後、この分散液を、ろ過排液の導電率が50μS/cm以下になるまで繰返しろ過洗浄し、得られた粉末ケーキを送風乾燥で80℃、15時間乾燥した。次にアルゴンガス中で触媒粉末を700℃で熱処理した。熱処理は昇温5℃/min、2時間保持により行なった。
[Comparative Example 7]
20% Pt—Co / graphitized carbon (heat treatment: 700 ° C., alloying heat treatment: 800 ° C.)
700 g of 0.1N nitric acid aqueous solution was added and dispersed in 10 g of highly crystalline carbon (graphite carbon # 3855 manufactured by Tokai Carbon Co., Ltd.) having a low specific surface area. To this dispersion, a dinitrodiammine platinum nitric acid solution containing 2.5 g of Pt in which the Pt loading rate of the product was 20% by weight and 100 g of 99.5% ethanol were added in order, and the mixture was fully adapted and heated. Heating was performed at 60 to 90 ° C. for 3 hours. After the completion of heating, this dispersion was repeatedly filtered and washed until the conductivity of the filtered effluent became 50 μS / cm or less, and the resulting powder cake was dried by blowing at 80 ° C. for 15 hours. Next, the catalyst powder was heat-treated at 700 ° C. in argon gas. The heat treatment was performed by raising the temperature at 5 ° C./min for 2 hours.

調製した20%Pt/黒鉛化カーボンを、カーボン量に対し80倍の純水に分散させ、モル比でPt:Co=7:1となるように、硝酸コバルト水溶液を滴下投入した。硝酸コバルト水溶液は市販の硝酸コバルト六水和物を純水に溶解させたものである。硝酸コバルト水溶液を投入した後、純水で希釈した水素化ホウ素ナトリウムをCoモル量の1〜6モル倍滴下投入し、1〜20時間程度撹拌した。その後、ろ過排液の導電率が5μS/cm以下になるまでろ過洗浄し、得られた粉末ケーキを送風乾燥で80℃、15時間乾燥した。送風乾燥後の触媒粉末を800℃で熱処理し、合金化した。   The prepared 20% Pt / graphitized carbon was dispersed in pure water 80 times the amount of carbon, and an aqueous cobalt nitrate solution was added dropwise so that the molar ratio was Pt: Co = 7: 1. The cobalt nitrate aqueous solution is obtained by dissolving commercially available cobalt nitrate hexahydrate in pure water. After adding the cobalt nitrate aqueous solution, sodium borohydride diluted with pure water was added dropwise 1 to 6 mol times the Co molar amount, and the mixture was stirred for about 1 to 20 hours. Then, it was filtered and washed until the electrical conductivity of the filtered effluent became 5 μS / cm or less, and the obtained powder cake was dried by blowing at 80 ° C. for 15 hours. The catalyst powder after air drying was heat-treated at 800 ° C. and alloyed.

[比較例8]
20%Pt−Co/黒鉛化カーボン(熱処理:900℃、合金化熱処理:800℃)
Pt/黒鉛化カーボンの調製工程におけるアルゴンガス中での触媒粉末の熱処理を900℃で行った以外は比較例7と同様の操作を行った。
[Comparative Example 8]
20% Pt—Co / graphitized carbon (heat treatment: 900 ° C., alloying heat treatment: 800 ° C.)
The same operation as in Comparative Example 7 was performed except that the heat treatment of the catalyst powder in argon gas in the preparation process of Pt / graphitized carbon was performed at 900 ° C.

[比較例9]
15%Pt−Co/黒鉛化カーボン(熱処理:900℃、合金化熱処理:800℃)
比較例6で調製した15%Pt/黒鉛化カーボンを、カーボン量に対し80倍の純水に分散させ、モル比でPt:Co=7:1となるように、硝酸コバルト水溶液を滴下投入した。硝酸コバルト水溶液は市販の硝酸コバルト六水和物を純水に溶解させたものである。硝酸コバルト水溶液を投入した後、純水で希釈した水素化ホウ素ナトリウムをCoモル量の1〜6モル倍滴下投入し、1〜20時間程度撹拌した。その後、ろ過排液の導電率が5μS/cm以下になるまでろ過洗浄し、得られた粉末ケーキを送風乾燥で80℃、15時間乾燥した。送風乾燥後の触媒粉末を800℃で熱処理し、合金化した。
[Comparative Example 9]
15% Pt—Co / graphitized carbon (heat treatment: 900 ° C., alloying heat treatment: 800 ° C.)
The 15% Pt / graphitized carbon prepared in Comparative Example 6 was dispersed in pure water 80 times the amount of carbon, and an aqueous cobalt nitrate solution was added dropwise so that the molar ratio was Pt: Co = 7: 1. . The cobalt nitrate aqueous solution is obtained by dissolving commercially available cobalt nitrate hexahydrate in pure water. After adding the cobalt nitrate aqueous solution, sodium borohydride diluted with pure water was added dropwise 1 to 6 mol times the Co molar amount, and the mixture was stirred for about 1 to 20 hours. Then, it was filtered and washed until the electrical conductivity of the filtered effluent became 5 μS / cm or less, and the obtained powder cake was dried by blowing at 80 ° C. for 15 hours. The catalyst powder after air drying was heat-treated at 800 ° C. and alloyed.

<物性評価法>
(1)一酸化炭素(CO)吸着量
装置:R6015 大倉理研製
測定方法:ヘリウム(100%)気流下、3℃/minで昇温し、80℃に到達後、水素(100%)に切り替え、30分間還元処理を行う。その後、ヘリウム(100%)気流下で30℃まで冷却し、一酸化炭素(100%)をパルス状に導入し、一酸化炭素吸着量を定量する。
<Method for evaluating physical properties>
(1) Carbon monoxide (CO) adsorption amount Equipment: R6015 manufactured by Okura Riken Measuring method: Heated at 3 ° C / min in a helium (100%) airflow, reached 80 ° C, and switched to hydrogen (100%) The reduction process is performed for 30 minutes. Then, it cools to 30 degreeC under helium (100%) airflow, carbon monoxide (100%) is introduce | transduced in a pulse form, and carbon monoxide adsorption amount is quantified.

(2)透過型電子顕微鏡(TEM)観察
装置:FE−TEM HF−2000(日立製作所製)
測定方法:湿式分散法で試料を調製し、加速電圧200kV、倍率1,000,000倍でPtの担持状態を観察する。
(2) Transmission electron microscope (TEM) observation apparatus: FE-TEM HF-2000 (manufactured by Hitachi, Ltd.)
Measurement method: A sample is prepared by a wet dispersion method, and the carrying state of Pt is observed at an acceleration voltage of 200 kV and a magnification of 1,000,000.

<性能評価法>
(1)質量活性
装置:DYNAMIC ELECTRODE HR−301 北斗電工製
測定方法:0.1M HClO水溶液を電解液として、回転ディスク電極法を実施した。作用極上に所定量のPtを塗布した。電解液中に窒素をバブリングさせた状態で電位サイクルクリーニング(RHE基準で50←→1200mV、600サイクル)を実施した。その後、サイクリックボルタンメトリー(RHE基準で50←→1200mV、5サイクル)を行い、5サイクル目のサイクリックボルタモグラムの水素吸着波よりPtのECSA(電気化学表面積)を定量した。酸素に切り替えた後、リニアスイープボルタンメトリー(掃印方向 RHE基準で60mV→1000mV、電極回転数100、400、900、1600、2500rpm)を行って酸素還元反応電流値を測定した。各回転数における酸素還元反応電流値よりKoutecky−Levichプロットを作成し、Pt質量あたりの酸素還元反応電流値(質量活性、単位A/g)を求めた。
<Performance evaluation method>
(1) Mass activity Apparatus: DYNAMIC ELECTRODE HR-301, manufactured by Hokuto Denko Measurement method: A rotating disk electrode method was carried out using 0.1 M HClO 4 aqueous solution as an electrolyte. A predetermined amount of Pt was applied on the working electrode. Potential cycle cleaning (50 ← → 1200 mV, 600 cycles based on RHE) was performed in a state where nitrogen was bubbled into the electrolyte. Thereafter, cyclic voltammetry (50 ← → 1200 mV, 5 cycles based on RHE) was performed, and ECSA (electrochemical surface area) of Pt was quantified from the hydrogen adsorption wave of the cyclic voltammogram at the 5th cycle. After switching to oxygen, linear sweep voltammetry (60 mV → 1000 mV based on the sweep direction RHE, electrode rotation speed 100, 400, 900, 1600, 2500 rpm) was performed to measure the oxygen reduction reaction current value. A Koutecky-Levich plot was created from the oxygen reduction reaction current value at each rotation speed, and the oxygen reduction reaction current value (mass activity, unit A / g) per Pt mass was determined.

(2)ECSA維持率
装置:RDE MODEL 616 東陽テクニカ製
測定方法:0.1M HClO水溶液を電解液として、回転ディスク電極法を実施した。作用極上に所定量のPtを塗布した。電解液中に窒素をバブリングさせた状態で電位サイクルクリーニング(RHE基準で50←→1200mV、600サイクル)を実施した。その後、電位サイクル耐久(RHE基準で400←→1200mV、5000サイクル)を実施し、電位サイクル耐久前後のECSAからECSA維持率を求め、耐久性の指標とした。
(2) ECSA maintenance rate Apparatus: RDE MODEL 616, manufactured by Toyo Technica Measurement method: A rotating disk electrode method was carried out using 0.1 M HClO 4 aqueous solution as an electrolyte. A predetermined amount of Pt was applied on the working electrode. Potential cycle cleaning (50 ← → 1200 mV, 600 cycles based on RHE) was performed in a state where nitrogen was bubbled into the electrolyte. Thereafter, potential cycle durability (400 ← → 1200 mV, 5000 cycles on the RHE basis) was carried out, and an ECSA maintenance rate was obtained from ECSA before and after potential cycle durability, and used as an index of durability.

<物性評価結果>
(1)一酸化炭素吸着量
図1に一酸化炭素吸着量の測定結果を示す。なお、実施例において使用した炭化ホウ素の比表面積は75m/gであり、比較例1〜2において使用したKetjenの比表面積は800m/gであり、比較例3〜9において使用した黒鉛化カーボンの比表面積は90m/gである。
<Results of physical property evaluation>
(1) Carbon monoxide adsorption amount FIG. 1 shows the measurement results of the carbon monoxide adsorption amount. The specific surface area of boron carbide used in the examples was 75 m 2 / g, the specific surface area of Ketjen used in Comparative Examples 1 and 2 was 800 m 2 / g, and the graphitization used in Comparative Examples 3 to 9 The specific surface area of carbon is 90 m 2 / g.

炭化ホウ素は、黒鉛化カーボンよりも比表面積が小さいにも関わらず、黒鉛化カーボンよりも高い一酸化炭素吸着量を示した。   Although boron carbide had a smaller specific surface area than graphitized carbon, it exhibited a higher carbon monoxide adsorption than graphitized carbon.

(2)TEM観察
図1より、炭化ホウ素上のPt粒子は黒鉛化カーボン上のPt粒子よりも高度に分散されていることが示唆された。そこでTEMによりPtの担持状態を確認した。図2及び3に実施例5及び比較例5で調製した触媒のTEM写真を示す。
(2) TEM observation It was suggested from FIG. 1 that the Pt particles on boron carbide are more highly dispersed than the Pt particles on graphitized carbon. Therefore, the carrying state of Pt was confirmed by TEM. 2 and 3 show TEM photographs of the catalysts prepared in Example 5 and Comparative Example 5. FIG.

一酸化炭素吸着量の結果から示唆されたように、炭化ホウ素は、黒鉛化カーボンによりも比表面積が小さいにも関わらず、Pt微粒子が高密度に担持されていることが確認された。一方、黒鉛化カーボンではPt粒子が粗大化していた。   As suggested from the results of the amount of carbon monoxide adsorbed, it was confirmed that boron carbide supported Pt fine particles at a high density even though the specific surface area was smaller than that of graphitized carbon. On the other hand, in graphitized carbon, Pt particles were coarsened.

<性能評価結果>
(1)質量活性及びECSA維持率
図4に実施例及び比較例で調製した触媒の質量活性及びECSA維持率をプロットした。質量活性は触媒性能の指標であり、ECSA維持率は耐久性の指標である。つまり、図4における右上方向が好ましい。質量活性及びECSA維持率の具体的な数値を表1に示す。
<Performance evaluation results>
(1) Mass activity and ECSA maintenance rate In FIG. 4, the mass activity and ECSA maintenance rate of the catalyst prepared in the Example and the comparative example were plotted. Mass activity is an indicator of catalyst performance and ECSA retention is an indicator of durability. That is, the upper right direction in FIG. 4 is preferable. Specific numerical values of mass activity and ECSA maintenance ratio are shown in Table 1.

Figure 2014049289
Figure 2014049289

比較例1及び2で調製した触媒は、高比表面積のカーボンを担体とするため、Ptが微粒子化し、触媒活性が高い。一方、ECSA維持率は大きく低下する。   Since the catalyst prepared in Comparative Examples 1 and 2 uses carbon having a high specific surface area as a carrier, Pt is finely divided and has high catalytic activity. On the other hand, the ECSA maintenance rate is greatly reduced.

比較例3〜9で調製した触媒は、低比表面積の高結晶カーボンを担体とするため、Pt粒子が粗大化し、触媒活性が低い。一方、ECSA維持率は向上する。   Since the catalysts prepared in Comparative Examples 3 to 9 use high crystalline carbon having a low specific surface area as a carrier, Pt particles are coarsened and the catalytic activity is low. On the other hand, the ECSA maintenance rate is improved.

実施例で調製した触媒は、炭化ホウ素を担体とすることにより、触媒活性とECSA維持率とを両立することができる。
The catalyst prepared in the Examples can achieve both catalytic activity and ECSA maintenance rate by using boron carbide as a carrier.

Claims (5)

炭化ホウ素と、当該炭化ホウ素に担持された貴金属とを含む、燃料電池用電極触媒。   A fuel cell electrode catalyst comprising boron carbide and a noble metal supported on the boron carbide. 貴金属が白金、白金合金、又はパラジウムである、請求項1に記載の燃料電池用電極触媒。   The electrode catalyst for a fuel cell according to claim 1, wherein the noble metal is platinum, a platinum alloy, or palladium. 一酸化炭素吸着量が22ml/g以上である、請求項1又は2に記載の燃料電池用電極触媒。   The fuel cell electrode catalyst according to claim 1 or 2, wherein the carbon monoxide adsorption amount is 22 ml / g or more. 炭化ホウ素に担持された貴金属の量が、当該炭化ホウ素及び貴金属の全重量に対して、24重量%以下である、請求項1〜3のいずれかに記載の燃料電池用電極触媒。   The electrode catalyst for fuel cells according to any one of claims 1 to 3, wherein the amount of the noble metal supported on the boron carbide is 24 wt% or less with respect to the total weight of the boron carbide and the noble metal. 燃料極と空気極と電解質とを備え、当該燃料極及び/又は空気極が請求項1〜4のいずれかに記載の燃料電池用電極触媒を含む、燃料電池。
A fuel cell comprising a fuel electrode, an air electrode, and an electrolyte, wherein the fuel electrode and / or the air electrode includes the fuel cell electrode catalyst according to claim 1.
JP2012191332A 2012-08-31 2012-08-31 Electrode catalyst for fuel cell, and fuel cell Pending JP2014049289A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012191332A JP2014049289A (en) 2012-08-31 2012-08-31 Electrode catalyst for fuel cell, and fuel cell
PCT/JP2013/070594 WO2014034357A1 (en) 2012-08-31 2013-07-30 Electrode catalyst for fuel cells, and fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012191332A JP2014049289A (en) 2012-08-31 2012-08-31 Electrode catalyst for fuel cell, and fuel cell

Publications (1)

Publication Number Publication Date
JP2014049289A true JP2014049289A (en) 2014-03-17

Family

ID=50183177

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012191332A Pending JP2014049289A (en) 2012-08-31 2012-08-31 Electrode catalyst for fuel cell, and fuel cell

Country Status (2)

Country Link
JP (1) JP2014049289A (en)
WO (1) WO2014034357A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107732261A (en) * 2017-11-08 2018-02-23 天津工业大学 A kind of boron carbide carried noble metal Oxygen Electrode Material for chargeable lithium-air battery
EP3825443A1 (en) * 2019-11-22 2021-05-26 Korea Institute of Energy Research Method of preparing catalyst for pem water electrolysis and catalyst for pem water electrolysis
KR20210062918A (en) * 2019-11-22 2021-06-01 한국에너지기술연구원 Preparation method of catalyst for PEM hydrolysis and catalyst for PEM hydrolysis
KR102362247B1 (en) * 2020-08-10 2022-02-16 한국에너지기술연구원 Preparation method of catalyst for PEM hydrolysis and catalyst for PEM hydrolysis

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114990617B (en) * 2022-05-17 2024-04-16 浙江工业大学 Boron carbide supported palladium-cobalt bimetallic catalyst and preparation method and application thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10270056A (en) * 1997-03-27 1998-10-09 Mitsubishi Electric Corp Anode electrode catalyst for solid polymer fuel cell
JPH10270055A (en) * 1997-03-25 1998-10-09 Mitsubishi Electric Corp Electrochemical catalyst, and electrochemical reactor, electrochemical element, phosphoric fuel cell, and methanol-direct fuel cell using it
JP2004349171A (en) * 2003-05-23 2004-12-09 Cataler Corp Catalyst layer for solid polymer electrolte fuel cell
JP2007335338A (en) * 2006-06-19 2007-12-27 Toyota Motor Corp Method for manufacturing electrode catalyst for fuel cell, electrode catalyst for fuel cell and polymer electrolyte fuel cell equipped with the same
JP2008171771A (en) * 2007-01-15 2008-07-24 Toyota Motor Corp Electrode catalyst, and fuel cell
JP2009193956A (en) * 2008-01-16 2009-08-27 Toyota Motor Corp Electrode catalyst for fuel cell, and solid polymer fuel cell using the same
JP2009531810A (en) * 2006-03-30 2009-09-03 株式会社キャタラー Fuel cell electrode catalyst with reduced amount of noble metal and solid polymer fuel cell having the same
WO2011071971A1 (en) * 2009-12-09 2011-06-16 Michigan Molecular Institute Fuel cells with improved durability

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10270055A (en) * 1997-03-25 1998-10-09 Mitsubishi Electric Corp Electrochemical catalyst, and electrochemical reactor, electrochemical element, phosphoric fuel cell, and methanol-direct fuel cell using it
JPH10270056A (en) * 1997-03-27 1998-10-09 Mitsubishi Electric Corp Anode electrode catalyst for solid polymer fuel cell
JP2004349171A (en) * 2003-05-23 2004-12-09 Cataler Corp Catalyst layer for solid polymer electrolte fuel cell
JP2009531810A (en) * 2006-03-30 2009-09-03 株式会社キャタラー Fuel cell electrode catalyst with reduced amount of noble metal and solid polymer fuel cell having the same
JP2007335338A (en) * 2006-06-19 2007-12-27 Toyota Motor Corp Method for manufacturing electrode catalyst for fuel cell, electrode catalyst for fuel cell and polymer electrolyte fuel cell equipped with the same
JP2008171771A (en) * 2007-01-15 2008-07-24 Toyota Motor Corp Electrode catalyst, and fuel cell
JP2009193956A (en) * 2008-01-16 2009-08-27 Toyota Motor Corp Electrode catalyst for fuel cell, and solid polymer fuel cell using the same
WO2011071971A1 (en) * 2009-12-09 2011-06-16 Michigan Molecular Institute Fuel cells with improved durability

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107732261A (en) * 2017-11-08 2018-02-23 天津工业大学 A kind of boron carbide carried noble metal Oxygen Electrode Material for chargeable lithium-air battery
EP3825443A1 (en) * 2019-11-22 2021-05-26 Korea Institute of Energy Research Method of preparing catalyst for pem water electrolysis and catalyst for pem water electrolysis
KR20210062918A (en) * 2019-11-22 2021-06-01 한국에너지기술연구원 Preparation method of catalyst for PEM hydrolysis and catalyst for PEM hydrolysis
KR102288276B1 (en) * 2019-11-22 2021-08-11 한국에너지기술연구원 Preparation method of catalyst for PEM hydrolysis and catalyst for PEM hydrolysis
KR102362247B1 (en) * 2020-08-10 2022-02-16 한국에너지기술연구원 Preparation method of catalyst for PEM hydrolysis and catalyst for PEM hydrolysis

Also Published As

Publication number Publication date
WO2014034357A1 (en) 2014-03-06

Similar Documents

Publication Publication Date Title
TWI415676B (en) Catalyst
Yahya et al. Durability and performance of direct glycerol fuel cell with palladium-aurum/vapor grown carbon nanofiber support
JP2008027918A (en) Carried catalyst for fuel cell and manufacturing method therefor, electrode for fuel cell containing carried catalyst, membrane/electrode assembly containing the electrode, and fuel cell containing the membrane/electrode assembly
US20130149632A1 (en) Electrode catalyst for a fuel cell, method of preparing the same, and membrane electrode assembly and fuel cell including the electrode catalyst
JPWO2009060582A1 (en) Method for producing fuel cell electrode material, fuel cell electrode material, and fuel cell using the fuel cell electrode material
JP2001357857A (en) Solid high polymer type fuel cell and its manufacturing method
WO2017123289A2 (en) Membraneless direct liquid fuel cells
WO2014034357A1 (en) Electrode catalyst for fuel cells, and fuel cell
JP2012094315A (en) Anode-side catalyst composition for fuel cell and membrane electrode assembly (mea) for solid polymer fuel cell including the same
JP6727266B2 (en) Anode catalyst layer for fuel cell and fuel cell using the same
JP5813627B2 (en) Fuel cell
JP2008290062A (en) Catalytic carrier, catalyst, method for manufacturing the catalytic carrier and method for manufacturing the catalyst
CN101596453B (en) Method for preparing Pt catalyst with carbon carrier as carrier
KR20140070246A (en) Electrode catalyst for fuel cell, method for preparing the same, electrode for fuel cell including the electrode catalyst, and fuel cell including the same
Han et al. Highly stable and active Pt electrocatalysts on TiO2-Co3O4-C composite support for polymer exchange membrane fuel cells
JP6727263B2 (en) Anode catalyst layer for fuel cell and fuel cell using the same
Evangelista et al. Raman spectroscopy and electrochemical investigations of pt electrocatalyst supported on carbon prepared through plasma pyrolysis of natural gas
JP2008041498A (en) Method of manufacturing catalyst support body for polymer electrolyte fuel cell, and polymer electrolyte fuel cell
JP6040954B2 (en) Method for producing fuel cell catalyst
CN112714972A (en) Anode catalyst layer for fuel cell and fuel cell using the same
WO2007046279A1 (en) Electrode catalyst for fuel cell
Altaf et al. Synthesis and performance study of Pd/CeO 2 composite catalyst for enhanced MOR activity
JP4892811B2 (en) Electrocatalyst
JP2010149008A (en) Electrode catalyst
Chatterjee et al. Carbon-based electrodes for direct methanol fuel cells

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140826

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150106