JP2014049214A - Electron microscope and acquisition method of electron microscope image - Google Patents

Electron microscope and acquisition method of electron microscope image Download PDF

Info

Publication number
JP2014049214A
JP2014049214A JP2012189417A JP2012189417A JP2014049214A JP 2014049214 A JP2014049214 A JP 2014049214A JP 2012189417 A JP2012189417 A JP 2012189417A JP 2012189417 A JP2012189417 A JP 2012189417A JP 2014049214 A JP2014049214 A JP 2014049214A
Authority
JP
Japan
Prior art keywords
electron microscope
image
microscope image
scanning transmission
acquisition condition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012189417A
Other languages
Japanese (ja)
Inventor
Yuka Koshigoe
悠香 腰越
Shohei Terada
尚平 寺田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2012189417A priority Critical patent/JP2014049214A/en
Priority to PCT/JP2013/068590 priority patent/WO2014034277A1/en
Publication of JP2014049214A publication Critical patent/JP2014049214A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • H01J37/28Electron or ion microscopes; Electron or ion diffraction tubes with scanning beams
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/05Electron or ion-optical arrangements for separating electrons or ions according to their energy or mass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/244Detection characterized by the detecting means
    • H01J2237/2449Detector devices with moving charges in electric or magnetic fields

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electron microscope image acquisition condition adjustment method for adjusting the optimum acquisition condition of an electron microscope image to high efficiency and high accuracy, when acquiring a high image contrast of the electron microscope image of a sample composed of a light element by using a scanning transmission electron microscope, and to provide an electron microscope image acquisition condition calculation system and a sample film thickness calculation system.SOLUTION: A scanning transmission electron microscope having a plurality of lenses, an iris for limiting an electron beam, and a detector, and acquiring an electron microscope image comprises: an acquisition condition calculation system for calculating the acquisition condition of the electron microscope image; and a sample film thickness calculation system for calculating the sample film thickness in the electron beam transmission direction.

Description

本発明は、電子線を試料に照射して試料内を透過または散乱した電子を検出して拡大像を得る電子顕微鏡に関する。特に、電子顕微鏡像取得条件の調整を高効率かつ高精度に行うことの出来る電子顕微鏡像の取得条件算出システムと試料膜厚条件算出システムを備えた電子顕微鏡、ならびに電子顕微鏡像の取得条件調整方法に関する。   The present invention relates to an electron microscope that obtains an enlarged image by irradiating a sample with an electron beam to detect electrons transmitted or scattered in the sample. In particular, an electron microscope image acquisition condition calculation system and an electron microscope image acquisition condition adjustment method capable of adjusting an electron microscope image acquisition condition with high efficiency and high accuracy, and an electron microscope image acquisition condition adjustment method About.


リチウムイオン電池の高性能化のために、リチウムイオン電池の負極において活物質に表面処理が施されている。上述の表面処理状態を解明するため、走査透過電子顕微法(Scanning Transmission Electron Microscopy:STEM)ならびに電子エネルギー損失分光法(Electron Energy Loss Spectroscopy:EELS)を用いた電子顕微鏡像の観察とスペクトル分析が、必須の分析手段になっている。

In order to improve the performance of the lithium ion battery, the active material is surface-treated in the negative electrode of the lithium ion battery. In order to elucidate the surface treatment state described above, observation and spectral analysis of electron microscope images using scanning transmission electron microscopy (STEM) and electron energy loss spectroscopy (EELS) It is an indispensable analytical tool.

走査透過電子顕微鏡は、高電圧で加速した電子線を試料上に収束し走査することにより、試料から透過もしくは散乱した電子を検出器で検出し、電子顕微鏡像を取得する。電子顕微鏡像を取得する際には、顕微鏡内のレンズや絞り等により、像の拡大、縮小やフォーカス、非点補正等が調整される。
The scanning transmission electron microscope converges and scans an electron beam accelerated by a high voltage on a sample, thereby detecting electrons transmitted or scattered from the sample by a detector and acquiring an electron microscope image. When acquiring an electron microscope image, enlargement, reduction, focus, astigmatism correction, and the like of the image are adjusted by a lens and a diaphragm in the microscope.

走査透過電子顕微鏡による電子顕微鏡像の観察において、空間分解能に加えて試料間の像強度の差異(像コントラスト)が重要となる。しかしながら、常に像コントラストが最大になるような電子顕微鏡像の取得条件で観察されているとは限らない。
In observation of an electron microscope image with a scanning transmission electron microscope, a difference in image intensity (image contrast) between samples is important in addition to spatial resolution. However, it is not always observed under the conditions for obtaining an electron microscope image that maximizes the image contrast.

引用文献1には、透過型電子顕微鏡に付随している複数個の多重極子レンズを有する電子分光器の多重極子レンズを調整する方法であって、多重極子レンズの励磁電流をパラメータとしたパラメータ設計手法を用いたシミュレーションにより最適条件を求めるレンズ調整方法が開示されている。
Cited Document 1 discloses a method of adjusting a multipole lens of an electron spectrometer having a plurality of multipole lenses attached to a transmission electron microscope, and parameter design using the excitation current of the multipole lens as a parameter. A lens adjustment method for obtaining an optimum condition by simulation using a technique is disclosed.

特開2009-37738号公報JP 2009-37738 A

特許文献1では、(走査)透過型電子顕微鏡に付随した電子分光器を高効率かつ高精度に最適条件を調整することが可能な電子分光器のレンズ調整方法及びレンズ調整システムが開示されているが、測定される試料に関しては何ら考慮されていない。したがって、試料に応じて、最適な電子顕微鏡像取得条件を高効率で高精度に得るための検討が必要となる。またさらに、上述の取得条件を決定するための操作性を向上させることも望まれる。   Patent Document 1 discloses a lens adjustment method and a lens adjustment system for an electron spectrometer capable of adjusting an optimum condition of an electron spectrometer attached to a (scanning) transmission electron microscope with high efficiency and high accuracy. However, no consideration is given to the sample to be measured. Therefore, it is necessary to study to obtain optimum electron microscope image acquisition conditions with high efficiency and high accuracy according to the sample. Furthermore, it is desirable to improve the operability for determining the above acquisition conditions.

そこで本発明は、上述した従来の走査透過電子顕微鏡の電子顕微鏡像の取得時における条件を高効率かつ高精度に探索し、走査透過電子顕微鏡内に配置されたレンズ、絞り等を調整することが可能な電子顕微鏡像取得条件の調整方法、電子顕微鏡像取得条件算出システムおよび試料膜厚条件算出システムを提供するものである。   Therefore, the present invention can search for the conditions at the time of acquiring an electron microscope image of the above-described conventional scanning transmission electron microscope with high efficiency and high accuracy, and adjust a lens, a diaphragm, etc. arranged in the scanning transmission electron microscope. An electron microscope image acquisition condition adjustment method, an electron microscope image acquisition condition calculation system, and a sample film thickness condition calculation system are provided.

上記課題を解決する手段として、 本発明は以下の構成を備える。複数個のレンズ、電子線を制限する絞り、検出器を有し、電子顕微鏡像を取得する走査透過電子顕微鏡にあって、前記電子顕微鏡像の取得条件を算出する取得条件算出システムと、前記電子線透過方向の試料膜厚を算出する試料膜厚条件算出システムとを有することを特徴とする走査透過電子顕微鏡。 As means for solving the above problems, the present invention comprises the following arrangement. A scanning transmission electron microscope having a plurality of lenses, a diaphragm for limiting an electron beam, a detector, and acquiring an electron microscope image, an acquisition condition calculation system for calculating an acquisition condition of the electron microscope image, and the electron A scanning transmission electron microscope comprising: a sample film thickness condition calculation system for calculating a sample film thickness in a line transmission direction.

上記本発明の電子顕微鏡によれば、電子顕微鏡像取得条件である電子線の加速電圧、収束角、取り込み角、プローブ電流、検出器、像取り込み画素数、像取り込み時間または試料膜厚を、効率的にかつ高精度に最適条件へ調整し、像コントラストが明瞭な電子顕微鏡像を取得することのできる電子顕微鏡を提供できる。また、上記の電子顕微鏡像取得条件算出システムと、試料膜厚条件算出システムによれば、短時間で操作性よく電子顕微鏡像取得条件の調整を行うことが可能となる。
According to the electron microscope of the present invention, the electron microscope image acquisition conditions, ie, electron beam acceleration voltage, convergence angle, capture angle, probe current, detector, number of image capture pixels, image capture time or sample film thickness, It is possible to provide an electron microscope capable of adjusting an optimum condition with high accuracy and obtaining an electron microscope image with a clear image contrast. Further, according to the electron microscope image acquisition condition calculation system and the sample film thickness condition calculation system described above, it is possible to adjust the electron microscope image acquisition conditions with good operability in a short time.

本発明における一実施例の走査透過電子顕微鏡の概略図。1 is a schematic view of a scanning transmission electron microscope according to one embodiment of the present invention. 本発明における取得条件算出システムの使用手順を示したフローチャート。The flowchart which showed the use procedure of the acquisition condition calculation system in this invention. 本発明における画像表示装置12の表示内容の一例を示した概略図。Schematic which showed an example of the display content of the image display apparatus 12 in this invention. 本発明における電子顕微鏡像取得条件のパラメータ入力図の説明図。Explanatory drawing of the parameter input figure of the electron microscope image acquisition condition in this invention. 本発明におけるL18直交表の説明図。Explanatory drawing of the L18 orthogonal table in this invention. 図6に最適条件の検討に用いた試料の模式図Fig. 6 is a schematic diagram of the sample used for examining the optimum conditions. 本発明の実施の形態による電子顕微鏡像取得条件制御方法を用いる前の電子顕微鏡像。The electron microscope image before using the electron microscope image acquisition condition control method by embodiment of this invention. 本発明の実施の形態により得られた要因効果図。The factor effect figure obtained by embodiment of this invention. 本発明の実施の形態により電子顕微鏡像の取得条件を最適化後得られた電子顕微鏡像。The electron microscope image obtained after optimizing the acquisition conditions of an electron microscope image by embodiment of this invention. 本発明における一実施例の走査透過電子顕微鏡の別の概略図。FIG. 3 is another schematic diagram of a scanning transmission electron microscope according to an embodiment of the present invention. 本発明における一実施例の走査透過電子顕微鏡の別の概略図。FIG. 3 is another schematic diagram of a scanning transmission electron microscope according to an embodiment of the present invention.

以下、本発明の電子顕微鏡をさらに詳細に説明する。
走査透過電子顕微鏡法は加速した電子線を試料に収束させ二次元的に試料上を走査させ、試料中を透過または散乱した電子を検出して拡大像を得る手法である。試料を通過した電子は、何もエネルギーを損失に通過した透過電子、エネルギーを損失せずに散乱される弾性散乱電子、エネルギーを一部失って散乱される非弾性散乱電子に大別され、散乱の仕方により電子の散乱角および散乱量に差異が生じる。特に弾性散乱電子の散乱角の違いは原子番号に依存し、原子番号が大きい試料は散乱角が大きく、原子番号が小さい試料は散乱角が小さい。また、弾性散乱電子の量は試料密度に依存し、試料密度が高い試料は散乱電子量が多く試料密度が低い試料は散乱電子量が少ない。

電子顕微鏡像による試料の観察において、空間分解能に加えて像コントラストが重要である。像コントラストは試料各部における像強度の比によって評価できる。像コントラストがない場合、各試料での像強度の比が1であることを意味する。また、像強度の比と1との差が大きい場合、最適な電子顕微鏡像の取得条件であると表現される。
Hereinafter, the electron microscope of the present invention will be described in more detail.
Scanning transmission electron microscopy is a technique for obtaining an enlarged image by converging an accelerated electron beam on a sample, scanning the sample two-dimensionally, and detecting electrons transmitted or scattered in the sample. Electrons that have passed through the sample are broadly divided into transmitted electrons that have lost energy and lost, elastically scattered electrons that are scattered without losing energy, and inelastically scattered electrons that are scattered with some energy lost. Depending on the method, there are differences in the scattering angle and scattering amount of electrons. In particular, the difference in the scattering angle of elastically scattered electrons depends on the atomic number. A sample with a large atomic number has a large scattering angle, and a sample with a small atomic number has a small scattering angle. The amount of elastically scattered electrons depends on the sample density, and a sample with a high sample density has a large amount of scattered electrons and a sample with a low sample density has a small amount of scattered electrons.

In observation of a sample using an electron microscope image, image contrast is important in addition to spatial resolution. The image contrast can be evaluated by the ratio of image intensity at each part of the sample. When there is no image contrast, it means that the image intensity ratio of each sample is 1. In addition, when the difference between the image intensity ratio and 1 is large, it is expressed as an optimum electron microscope image acquisition condition.

以下、本発明の実施の形態として、電子分光器を付随した走査透過電子顕微鏡による電子顕微鏡像の取得方法の一例について図面に基づき説明する。図1は、本実施例の模式図である。

本実施の形態の電子分光器付き走査透過電子顕微鏡は、走査透過電子顕微鏡1、電子線分光器11 、画像表示装置12、電子顕微鏡制御装置15、取得条件算出システム13、試料膜厚算出システム14などから構成される。走査透過電子顕微鏡1には、電子線3を放出する電子源2,収束レンズ4,球面収差補正器5、収束絞り6、対物レンズ7,投影レンズ9,検出器10などが設けられ、対物レンズ7と投影レンズ9との間に試料8が配置される。

なお、走査透過電子顕微鏡1の構成、電子分光器8の構成はこれに限定されるものではない。電子源2より放出された電子線3は、走査透過電子顕微鏡内の収束レンズ4、球面収差補正器5、収束絞り6、対物レンズ7を通過し、試料8に照射される。試料8を通過した電子線3は、投影レンズ9を通過し、検出器10にて検出される。検出器10は散乱角の小さい電子を捉える明視野検出器51と散乱角の大きな電子を捉える暗視野検出器52がある。

電子線3を試料8上で走査することにより、各場所から通過した電子を各検出器にて検出し、各検出器に対応した電子顕微鏡像が画像表示装置12に表示される。

電子顕微鏡像を取得する場合は、電子線3の加速電圧、プローブ電流、試料8への電子線3の収束角および検出器10への取り込み角等を制御することにより、上述の各検出器に入る電子線量を制御し観察範囲内の各試料間の像コントラストを得る。また、検出器の種類、電子顕微鏡像観察時の取り込み画素数および取り込み時間によっても像コントラストが変更する。

また、電子線源2、収束レンズ4、収束絞り6、対物レンズ7、投影レンズ9、検出器10は、電子顕微鏡制御装置15において制御される。制御内容については、画像表示装置により確認できる。また制御内容は、電子顕微鏡制御装置15に適宜保存される。

各試料からの電子エネルギー損失スペクトルを取得する場合は、走査透過電子顕微鏡直下に付随している電子分光器11に電子線3を進入させる。

試料8から電子顕微鏡像を取得する前に、取得条件算出システム13および試料膜厚算出システム14により、電子顕微鏡像取得条件である電子線の加速電圧、収束角、取り込み角、プローブ電流、検出器、像取り込み画素数、像取り込み時間または試料膜厚をパラメータとしたパラメータ設計手法を用いたシミュレーションにより要因効果図を作成し、その要因効果図を用いて像コントラストが最適になる電子顕微鏡像取得条件を求める。

電子顕微鏡像取得条件を求めた後、求めた取得条件に従い、電子顕微鏡1内の電子線源2、集束レンズ4、収束絞り6、対物レンズ7、投影レンズ9および検出器10を調整する。制御内容は適宜保存されるので、条件の調整には以前の制御条件を使用し、シミュレーションの効率化、結果の最適化を図ることもできる。
Hereinafter, as an embodiment of the present invention, an example of an electron microscope image acquisition method using a scanning transmission electron microscope with an electron spectrometer will be described with reference to the drawings. FIG. 1 is a schematic diagram of this embodiment.

The scanning transmission electron microscope with an electron spectrometer of the present embodiment includes a scanning transmission electron microscope 1, an electron beam spectrometer 11, an image display device 12, an electron microscope control device 15, an acquisition condition calculation system 13, and a sample film thickness calculation system 14. Etc. The scanning transmission electron microscope 1 is provided with an electron source 2 that emits an electron beam 2, a converging lens 4, a spherical aberration corrector 5, a converging aperture 6, an objective lens 7, a projection lens 9, a detector 10, and the like. A sample 8 is arranged between the projection lens 7 and the projection lens 9.

In addition, the structure of the scanning transmission electron microscope 1 and the structure of the electron spectrometer 8 are not limited to this. The electron beam 3 emitted from the electron source 2 passes through the converging lens 4, the spherical aberration corrector 5, the converging diaphragm 6, and the objective lens 7 in the scanning transmission electron microscope, and irradiates the sample 8. The electron beam 3 that has passed through the sample 8 passes through the projection lens 9 and is detected by the detector 10. The detector 10 includes a bright field detector 51 that captures electrons having a small scattering angle and a dark field detector 52 that captures electrons having a large scattering angle.

By scanning the electron beam 3 on the sample 8, electrons passing from each place are detected by each detector, and an electron microscope image corresponding to each detector is displayed on the image display device 12.

When acquiring an electron microscope image, by controlling the acceleration voltage of the electron beam 3, the probe current, the convergence angle of the electron beam 3 onto the sample 8, the capture angle into the detector 10, etc. The image contrast between each sample within the observation range is obtained by controlling the electron dose entering. In addition, the image contrast changes depending on the type of detector, the number of captured pixels during electron microscope image observation, and the capture time.

The electron beam source 2, the converging lens 4, the converging diaphragm 6, the objective lens 7, the projection lens 9, and the detector 10 are controlled by the electron microscope control device 15. The control content can be confirmed by the image display device. Further, the control content is appropriately stored in the electron microscope control device 15.

When acquiring an electron energy loss spectrum from each sample, the electron beam 3 is caused to enter the electron spectrometer 11 attached immediately below the scanning transmission electron microscope.

Before acquiring an electron microscope image from the sample 8, an acquisition condition calculation system 13 and a sample film thickness calculation system 14 are used to acquire an electron microscope image acquisition condition of an electron beam acceleration voltage, convergence angle, capture angle, probe current, and detector. A factorial effect diagram is created by simulation using a parameter design method with the number of image capture pixels, image capture time, or sample film thickness as parameters, and the electron microscope image acquisition conditions that optimize the image contrast using the factorial effect diagram Ask for.

After obtaining the electron microscope image acquisition conditions, the electron beam source 2, the focusing lens 4, the focusing diaphragm 6, the objective lens 7, the projection lens 9, and the detector 10 in the electron microscope 1 are adjusted according to the obtained acquisition conditions. Since the control contents are stored as appropriate, the previous control conditions can be used to adjust the conditions, and the simulation can be made more efficient and the results optimized.

図2は、電子顕微鏡像取得条件の調整手順の例を示したフローチャートであり、像コントラストを最適にする取得条件算出システム13および試料膜厚算出システム14での調整内容を示す。特に図2では、S103〜S112を取得条件算出システム13で実施した内容について示す。本調整手順により、操作者の負担を低減し、高効率にレンズを調整できる。
FIG. 2 is a flowchart showing an example of the procedure for adjusting the electron microscope image acquisition condition, and shows the adjustment contents in the acquisition condition calculation system 13 and the sample film thickness calculation system 14 that optimize the image contrast. In particular, FIG. 2 shows the contents of S103 to S112 performed by the acquisition condition calculation system 13. With this adjustment procedure, the burden on the operator can be reduced and the lens can be adjusted with high efficiency.

まず、前記試料の任意の位置における電子線透過方向の試料膜厚を調整した試料を作製する(S100)。次に、電子顕微鏡像取得における各条件のパラメータを少なくとも3つ入力する(S101)。入力したパラメータの水準は、電子顕微鏡像取得条件に対して、変動領域内の最大値、中間値及び最小値としても良いし、装置据付時の設定値に対して、所定の上下範囲内としても良い。また、電子線取得条件の調整に影響の少ないレンズ等については、装置据付時や、装置製造時などに水準を固定して設定しておいても良い。このような場合は、パラメータ内の複数個を装置据付時等に固定し、固定されないパラメータを測定時に調整する。固定されたパラメータも電子顕微鏡像取得条件の調整のシミュレーションに使用してもよいが、パラメータから固定値を削除することにより、シミュレーションが容易となる。
First, a sample is prepared by adjusting the sample film thickness in the electron beam transmission direction at an arbitrary position of the sample (S100). Next, at least three parameters for each condition in electron microscope image acquisition are input (S101). The input parameter level may be the maximum value, the intermediate value, and the minimum value in the fluctuation region with respect to the electron microscope image acquisition conditions, or may be within a predetermined vertical range with respect to the set value at the time of installation of the apparatus. good. Further, a lens or the like that has little influence on the adjustment of the electron beam acquisition conditions may be set with a fixed level at the time of device installation or device manufacture. In such a case, a plurality of parameters are fixed when the apparatus is installed, and parameters that are not fixed are adjusted during measurement. Although the fixed parameter may be used for the simulation of the adjustment of the electron microscope image acquisition condition, the simulation is facilitated by deleting the fixed value from the parameter.

次に、シミュレーション回数を入力する(S102)。シミュレーション回数は1回以上とし、回数に制限を設けない。但し、シミュレーション回数が多い場合、電子顕微鏡像取得条件の最適条件を求めるのに時間がかかるため、パラメータを調整する前に、一度現状の像コントラストを確認しておくことが望ましい。調整前の像コントラストの確認により、結果に応じてシミュレーション回数の設定を変化させ、必要な調整の完了までの時間を短縮できる。
Next, the number of simulations is input (S102). The number of simulations is one or more, and there is no limit on the number of simulations. However, when the number of simulations is large, it takes time to obtain the optimum conditions for the electron microscope image acquisition conditions. Therefore, it is desirable to confirm the current image contrast once before adjusting the parameters. By checking the image contrast before adjustment, the setting of the number of simulations can be changed according to the result, and the time until completion of necessary adjustment can be shortened.

シミュレーション回数を設定後、各電子顕微鏡像取得条件のパラメータをタグチメソッドにおける直交表に割り付ける(S103,104)。調整に必要なパラメータが5個以上有する場合は、L18直交表を用い、4個以下の場合は、L9直交表を用いればよい。
直交表に基づいた実験条件下で電子顕微鏡像を取得する。この電子顕微鏡像を取得する際には、所望の観察位置の試料が含まれていれば、どこで像を取得しても良い。

各条件での像観察終了後、各条件下での像コントラストを算出し、要因効果図を作成し、各条件の最適解を抽出する(S105〜107)。

シミュレーションを始める前に設定したシミュレーション回数に到達していない場合は、電子顕微鏡像取得条件のパラメータを設定しなおし、再度上記手順を実施する(S108〜111)。2回目以降のパラメータを設定する際は、パラメータの上限、下限値の範囲を前回のシミュレーション時よりも限定すると、精度が向上する。

所定のシミュレーション回数が終了後、各電子顕微鏡像取得条件の解を出力する(S110)。この最適値を設定して、各電子顕微鏡像取得条件を調整した後、所望の位置において像を観察する(S112)。

図2のフローチャートでは、事前に試料膜厚を調整した試料を用いて、電子顕微鏡内に関連する取得条件のみをパラメータとして最適解を求めた。しかし、試料膜厚についても電子顕微鏡像の取得条件の一つとしてパラメータに設定しても構わない。この場合、試料膜厚算出システム14により事前に測定しておいた試料に対する透過電子量、試料の密度等から像コントラストを最適化する試料膜厚も算出することが出来る。最適化された試料膜厚で実際の測定が行われる。

また、試料10は、透過方向に膜厚の異なる楔形の試料形状でも良く、この場合においては、膜厚の異なる箇所で随時電子顕微鏡像を撮影することにより、試料膜厚をパラメータとして試料膜厚算出システム14を用いて電子顕微鏡像取得条件を最適化することが出来る。この場合も、最適化された試料膜厚が得られる位置で実際の測定が行われる。
After setting the number of simulations, the parameters of each electron microscope image acquisition condition are assigned to the orthogonal table in Taguchi method (S103, 104). When there are five or more parameters necessary for adjustment, an L18 orthogonal table may be used, and when four or less parameters are used, an L9 orthogonal table may be used.
An electron microscope image is acquired under experimental conditions based on an orthogonal table. When acquiring the electron microscope image, the image may be acquired anywhere as long as the sample at the desired observation position is included.

After the image observation under each condition is completed, the image contrast under each condition is calculated, a factor effect diagram is created, and the optimum solution for each condition is extracted (S105 to 107).

If the number of simulations set before starting the simulation has not been reached, the parameters of the electron microscope image acquisition condition are reset and the above procedure is performed again (S108 to 111). When setting the parameters for the second and subsequent times, the accuracy is improved if the range of the upper and lower limit values of the parameters is limited as compared with the previous simulation.

After the predetermined number of simulations is completed, a solution for each electron microscope image acquisition condition is output (S110). After setting the optimum value and adjusting each electron microscope image acquisition condition, the image is observed at a desired position (S112).

In the flowchart of FIG. 2, an optimal solution is obtained using only the acquisition conditions related to the inside of the electron microscope as parameters, using a sample whose sample film thickness has been adjusted in advance. However, the sample film thickness may also be set as a parameter as one of the acquisition conditions of the electron microscope image. In this case, the sample film thickness for optimizing the image contrast can be calculated from the amount of transmitted electrons, the density of the sample, and the like measured in advance by the sample film thickness calculation system 14. Actual measurements are made with optimized sample thickness.

Further, the sample 10 may have a wedge-shaped sample shape with a different film thickness in the transmission direction. In this case, the sample film thickness is taken as a parameter by taking an electron microscope image at any time at a location with a different film thickness. The calculation system 14 can be used to optimize electron microscope image acquisition conditions. Also in this case, actual measurement is performed at a position where an optimized sample film thickness is obtained.

次に、操作者の行う操作及び電子顕微鏡の操作指示画面について説明する。図3は、画像表示装置12内の表示内容の一例を示した図である。選択ボタン群16には、電子顕微鏡像の取得条件の調整を開始する電子顕微鏡像取得条件算出ボタン17、取得した前記試料の電子顕微鏡像の像強度を読み取る箇所を入力する位置入力ボタン、像コントラストを求める式(例えば、所定の2点間で像強度の相対比)を入力する式入力ボタン等が含まれている。

例えば、選択ボタン群16中にある取得した前記試料の電子顕微鏡像の像強度を読み取る箇所を入力する位置入力ボタンを選択すると、検出器10により取得された電子顕微鏡像を表示する電子顕微鏡像表示画面18中に像強度を読み取る位置を示す複数の像強度読み取りポイント19が表示される。また像コントラストを求める式を入力する式入力ボタンを選択すると、式入力項20に入力した式より像コントラストを算出し、算出した結果を像コントラスト表示項21に表示する。
Next, an operation performed by the operator and an operation instruction screen of the electron microscope will be described. FIG. 3 is a diagram showing an example of display contents in the image display device 12. The selection button group 16 includes an electron microscope image acquisition condition calculation button 17 for starting adjustment of an electron microscope image acquisition condition, a position input button for inputting a location for reading the image intensity of the acquired electron microscope image of the sample, and image contrast. A formula input button for inputting a formula (for example, a relative ratio of image intensities between two predetermined points) is included.

For example, when a position input button for inputting a position for reading the image intensity of the acquired electron microscope image of the sample in the selection button group 16 is selected, an electron microscope image display that displays the electron microscope image acquired by the detector 10 is displayed. A plurality of image intensity reading points 19 indicating positions for reading the image intensity are displayed on the screen 18. When an expression input button for inputting an expression for obtaining image contrast is selected, the image contrast is calculated from the expression input to the expression input term 20, and the calculated result is displayed on the image contrast display item 21.

選択ボタン群16の電子顕微鏡像条件の調整を開始する電子顕微鏡像の取得条件算出ボタン17を選択すると、電子顕微鏡像取得条件のパラメータ入力図22及び直交表23を表示する。電子顕微鏡像取得条件のパラメータ入力図22には、各電子顕微鏡像取得条件をパラメータとして入力する。入力する値は固定値,設定値いずれでも選択できる。パラメータを電子顕微鏡像取得条件のパラメータ入力図22に入力後、タグチメソッドにおける直交表23に割り付ける。水準を自動設定している場合は、電子顕微鏡像取得条件のパラメータ入力図22及び直交表23は、電子顕微鏡像取得条件の調整を開始する電子顕微鏡像取得条件算出ボタン17を選択する毎に表示する必要はない。また直交表は、調整の必要な条件の数に応じて、L9、L18直交表等を用いることができる。

画像表示装置12内には、電子顕微鏡像表示画面18、電子顕微鏡像強度の読み取りポイント19、像コントラストの算出式入力項20および算出結果表示機能21が付加されている。電子顕微鏡像の像コントラストを算出し、表示する手順の一例は、以下に示す通りである。(1)電子顕微鏡像を表示する。(2)電子顕微鏡像の像強度を取得する位置を決定し、各位置の像強度を求める。(3)像コントラストを算出する式を入力する。事前に登録してある場合は、登録された式から1つを選択する。(4)各位置の像強度から像コントラストを算出する。本手順は、像コントラストの算出表示方法を示した一例であり、特に算出方法については、これに限るものではない。
When the electron microscope image acquisition condition calculation button 17 for starting the adjustment of the electron microscope image condition of the selection button group 16 is selected, a parameter input diagram 22 and an orthogonal table 23 of the electron microscope image acquisition condition are displayed. Parameter Input for Electron Microscope Image Acquisition Conditions In FIG. 22, each electron microscope image acquisition condition is input as a parameter. The input value can be selected as either a fixed value or a set value. After inputting the parameters in the parameter input diagram 22 of the electron microscope image acquisition condition, the parameters are assigned to the orthogonal table 23 in Taguchi method. When the level is automatically set, the parameter input diagram 22 for the electron microscope image acquisition condition and the orthogonal table 23 are displayed every time the electron microscope image acquisition condition calculation button 17 for starting the adjustment of the electron microscope image acquisition condition is selected. do not have to. As the orthogonal table, L9, L18 orthogonal table, or the like can be used depending on the number of conditions that need to be adjusted.

In the image display device 12, an electron microscope image display screen 18, an electron microscope image intensity reading point 19, an image contrast calculation expression input term 20, and a calculation result display function 21 are added. An example of the procedure for calculating and displaying the image contrast of the electron microscope image is as follows. (1) An electron microscope image is displayed. (2) The position where the image intensity of the electron microscope image is acquired is determined, and the image intensity at each position is obtained. (3) An expression for calculating the image contrast is input. If registered in advance, select one from the registered expressions. (4) The image contrast is calculated from the image intensity at each position. This procedure is an example showing a method for calculating and displaying an image contrast, and the calculation method is not particularly limited to this.

像コントラストは、試料上以外の真空部分に位置を決定し、その点を基準に各試料位置の像コントラストを算出することもできる。
As for the image contrast, a position is determined in a vacuum portion other than on the sample, and the image contrast at each sample position can be calculated based on that point.

図4は、電子顕微鏡像取得条件のパラメータ入力図を説明する図である。一番左端の列には、各電子線取得条件(加速電圧、収束角、取り込み角、プローブ電流、検出器、観察位置、像取り込み画素数および像取り込み時間)が記されており、調整に必要な電子顕微鏡像取得条件に対応して増減することが可能である。また、一番上の行には、各取得条件の水準の番号(水準1〜3)が記されており、各条件について、2または3水準を設定する。この水準は、前述の通り、装置据付時に固定しても測定前の調整毎に設定しても構わない。
FIG. 4 is a diagram for explaining parameter input diagrams of electron microscope image acquisition conditions. The leftmost column shows each electron beam acquisition condition (acceleration voltage, convergence angle, capture angle, probe current, detector, observation position, number of image capture pixels, and image capture time), and is necessary for adjustment. It is possible to increase or decrease according to various electron microscope image acquisition conditions. In the top row, level numbers (levels 1 to 3) of the respective acquisition conditions are written, and 2 or 3 levels are set for each condition. As described above, this level may be fixed at the time of installation of the apparatus or set for each adjustment before measurement.

図5は、本発明におけるL18直交表を示す図を説明する図である。一番左端の列には、実験条件の番号(実験条件1〜18)が記載されており、一番上の行には、調整を必要とする取得条件の記号(A=加速電圧、B=収束角、C=取り込み角、D=プローブ電流、E=検出器、F=観察位置、G=像取り込み画素数およびH=像取り込み時間)が記載されている。図5中の数字は、図4中の水準(水準1〜3)が入力されることを意味している。調整する電子顕微鏡像取得条件のパラメータが3個以下の場合は、L9直交表を用いる。
FIG. 5 is a diagram for explaining a diagram showing an L18 orthogonal table in the present invention. In the leftmost column, the experimental condition numbers (experimental conditions 1 to 18) are described, and in the uppermost row, the symbol of the acquisition condition that requires adjustment (A = acceleration voltage, B = The convergence angle, C = capture angle, D = probe current, E = detector, F = observation position, G = number of image capture pixels and H = image capture time). The numbers in FIG. 5 mean that the levels (levels 1 to 3) in FIG. 4 are input. When the number of parameters of the electron microscope image acquisition condition to be adjusted is 3 or less, the L9 orthogonal table is used.

次に、前述の実施例の実施した結果を示す。本例では、走査透過電子顕微鏡について、電子顕微鏡像の取得条件算出システムおよび試料膜厚条件算出システムを用い、電子顕微鏡内8つの電子線取得条件を調整し、真空における点の像強度を基準に試料上の2点の像コントラストを最大にした。

図6に最適条件の検討に用いた試料の模式図を示す。今回検討した試料は、高配向黒鉛33の上に非晶質炭素32および保護膜31を堆積させている。高配向黒鉛33と非晶質炭素32を構成している元素は両者とも炭素である。保護膜31は走査透過型電子顕微鏡用試料を作製するために集束イオンビーム装置を利用する際に高配向黒鉛33ならびに非晶質炭素32をイオンビームから保護するために堆積させた。
Next, the result of carrying out the above-described embodiment will be shown. In this example, for a scanning transmission electron microscope, an electron microscope image acquisition condition calculation system and a sample film thickness condition calculation system are used to adjust eight electron beam acquisition conditions in the electron microscope, and based on the image intensity of a point in a vacuum. The image contrast at the two points on the sample was maximized.

Fig. 6 shows a schematic diagram of the sample used in the examination of the optimum conditions. In the sample examined this time, amorphous carbon 32 and protective film 31 are deposited on highly oriented graphite 33. Both of the elements constituting the highly oriented graphite 33 and the amorphous carbon 32 are carbon. The protective film 31 was deposited to protect the highly oriented graphite 33 and the amorphous carbon 32 from the ion beam when the focused ion beam apparatus was used to prepare a sample for a scanning transmission electron microscope.

今回の最適条件の検討にあたり、電子顕微鏡像を取得する箇所の試料膜厚は50〜150 nmとし、EELSが測定可能な範囲で検討した。
In the examination of the optimum conditions this time, the sample film thickness at the location where the electron microscope image was acquired was set to 50 to 150 nm, and examination was performed within the range where EELS can be measured.

図7は調整前の電子顕微鏡像である。調整前の図6中A点とB点の像コントラストは(A点での像強度)/(B点での像強度)=1.15であった。本電子顕微鏡像は、明視野検出器52により観察された。

今回は、電子顕微鏡1内の8つの取得条件(加速電圧、収束角、取り込み角、プローブ電流、検出器、像取り込み画素数、像取り込み時間、観察位置)を調整するため、L18直交表を用いた。また、シミュレーション回数は2回とした。電子顕微鏡像取得条件のパラメータ入力図22には各取得条件の水準を小、中、大と設定値が変化するように入力した。
FIG. 7 is an electron microscope image before adjustment. The image contrast between point A and point B in FIG. 6 before adjustment was (image intensity at point A) / (image intensity at point B) = 1.15. This electron microscope image was observed by the bright field detector 52.

This time, we use the L18 orthogonal table to adjust the 8 acquisition conditions (acceleration voltage, convergence angle, capture angle, probe current, detector, number of image capture pixels, image capture time, observation position) in the electron microscope 1 It was. The number of simulations was two. Parameter Input for Electron Microscope Image Acquisition Conditions In FIG. 22, the levels of each acquisition condition are input so that the set values change from small to medium to large.

図8に1回目のシミュレーション後、得られた要因効果図を示す。各パラメータにおいてSN比が最大となる水準の設定値の±10%を水準として再度L18直交表に割り付け2回目のシミュレーションを行った。
FIG. 8 shows a factor effect diagram obtained after the first simulation. A second simulation was performed by allocating again to the L18 orthogonal table with ± 10% of the set value of the level at which the S / N ratio was maximum for each parameter as the level.

2回目のシミュレーション後、出力された各取得条件の最適水準より求めた電子顕微鏡像取得条件を元に取得条件を調整した後の電子顕微鏡像を図9に示す。図7で像強度を測定した同箇所において、調整後のA点とB点の像強度から像コントラストを求めた結果、(A点での像強度)/(B点での像強度)=1.35であった。従来は、電子顕微鏡像取得条件に対して、変動領域の全範囲を用いて調整していたが、限られた範囲内の調整時間となるため、調整時間の短縮化を図ることが可能となった。
FIG. 9 shows an electron microscope image after adjusting the acquisition conditions based on the electron microscope image acquisition conditions obtained from the optimum levels of the output acquisition conditions after the second simulation. As a result of obtaining the image contrast from the adjusted image intensities at points A and B at the same location where the image intensity was measured in FIG. 7, (image intensity at point A) / (image intensity at point B) = 1. .35. Conventionally, adjustment was performed using the entire range of the fluctuation region with respect to the electron microscope image acquisition conditions, but since the adjustment time is within a limited range, the adjustment time can be shortened. It was.

なお、本発明の取得条件算出システム13を用いた後、出力された設定値の極近傍のみを手動により確認すると、更に高精度に各取得条件を調整することが可能である。
In addition, after using the acquisition condition calculation system 13 of the present invention, it is possible to adjust each acquisition condition with higher accuracy by manually checking only the vicinity of the output set value.

上述の例では、取得条件算出システム13を稼動する条件算出ボタンを電子顕微鏡像表示画面上に設ける例を記載したが、別の箇所に設けてもよい。特に、測定毎の電子顕微鏡像取得条件の制御では水準の設定値を変更せず、予め設定された値を使用する場合には、毎回水準の設定値等を入力する必要がないので、画像表示装置上に開始ボタンを設けなくとも不都合が少ない。
In the above-described example, the example in which the condition calculation button for operating the acquisition condition calculation system 13 is provided on the electron microscope image display screen is described, but it may be provided in another location. In particular, the control of the electron microscope image acquisition conditions for each measurement does not change the set value of the level, and when using a preset value, it is not necessary to input the set value of the level every time. There is little inconvenience even if no start button is provided on the apparatus.

以上より、上記実施の形態の電子顕微鏡像取得条件制御方法及び取得条件算出システムおよび試料膜厚条件算出システムによれば、電子顕微鏡による電子顕微鏡像取得条件の調整を高効率かつ高精度に行うことが出来る。
As described above, according to the electron microscope image acquisition condition control method, the acquisition condition calculation system, and the sample film thickness condition calculation system of the above embodiment, the adjustment of the electron microscope image acquisition condition by the electron microscope can be performed with high efficiency and high accuracy. I can do it.

以上、本発明者によってなされた発明を実施の形態に基づき具体的に説明したが、本発明は前記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることはいうまでもない。
As mentioned above, the invention made by the present inventor has been specifically described based on the embodiment. However, the present invention is not limited to the embodiment, and various modifications can be made without departing from the scope of the invention. Needless to say.

図10は、試料8を薄片加工しながら走査透過電子顕微鏡の取得条件を最適化するための走査透過電子顕微鏡の別の一例を示す概略図である。図10は、走査透過電子顕微鏡1と集束イオンビーム装置80が試料室近傍で接続されており、試料8は図10に図示されていない試料トランスファーシステムにより、両装置間を自由に移動することが出来る。集束イオンビーム装置80は、イオン源71、集束レンズ72、ビーム偏向器73、対物レンズ74、探針78、二次電子検出器77、タングステン源76、集束イオンビーム装置制御装置79等を備えている。試料10が走査透過電子顕微鏡1より集束イオンビーム装置80に移動された後、イオン源71よりイオンビーム75を発生させる。イオンビーム75の試料10への照射位置は、ビーム偏向器73により指定され所望の試料膜厚に加工することが出来る。集束イオンビーム装置80では、走査透過電子顕微鏡1による電子顕微鏡像の観察方向に対して垂直な方向からイオンビーム75は照射され、観察試料の薄片化がおこなわれる。本装置によれば、試料膜厚を随時調整しながら、電子顕微鏡像を観察することが出来るため、試料膜厚をパラメータとして取得条件を最適化することが可能である。   FIG. 10 is a schematic diagram showing another example of the scanning transmission electron microscope for optimizing the acquisition conditions of the scanning transmission electron microscope while processing the sample 8 as a thin piece. In FIG. 10, the scanning transmission electron microscope 1 and the focused ion beam device 80 are connected in the vicinity of the sample chamber, and the sample 8 can freely move between both devices by a sample transfer system not shown in FIG. I can do it. The focused ion beam device 80 includes an ion source 71, a focusing lens 72, a beam deflector 73, an objective lens 74, a probe 78, a secondary electron detector 77, a tungsten source 76, a focused ion beam device controller 79, and the like. Yes. After the sample 10 is moved from the scanning transmission electron microscope 1 to the focused ion beam device 80, an ion beam 75 is generated from the ion source 71. The irradiation position of the ion beam 75 on the sample 10 is designated by the beam deflector 73 and can be processed into a desired film thickness. In the focused ion beam device 80, the ion beam 75 is irradiated from a direction perpendicular to the observation direction of the electron microscope image by the scanning transmission electron microscope 1, and the observation sample is thinned. According to the present apparatus, the electron microscope image can be observed while adjusting the sample film thickness as needed, so that the acquisition conditions can be optimized using the sample film thickness as a parameter.

図11は、試料8を薄片加工しながら走査透過電子顕微鏡の取得条件を最適化するための走査透過電子顕微鏡の別の一例を示す概略図である。図11において、図10と同様に走査透過電子顕微鏡1と集束イオンビーム装置80が接続されている。図11の場合、試料10の設置場所は一箇所であり、集束イオンビーム装置80による試料薄片化、走査透過電子顕微鏡1による電子顕微鏡観察のそれぞれに対応して、試料10の傾斜を変更する。図11においても、試料膜厚を随時調整しながら、電子顕微鏡像を観察することが出来るため、試料膜厚をパラメータとして取得条件を最適化することが出来る。例えば、まず試料を楔型に加工しておき、上述の方法で最適な試料膜厚を求める。その後、最適な膜圧となるように加工を行い、観察試料を作製した後に観察を行う。
FIG. 11 is a schematic diagram showing another example of the scanning transmission electron microscope for optimizing the acquisition conditions of the scanning transmission electron microscope while processing the sample 8 as a thin piece. 11, the scanning transmission electron microscope 1 and the focused ion beam device 80 are connected as in FIG. In the case of FIG. 11, there is only one place where the sample 10 is installed, and the inclination of the sample 10 is changed in accordance with sample thinning by the focused ion beam device 80 and electron microscope observation by the scanning transmission electron microscope 1. Also in FIG. 11, since an electron microscope image can be observed while adjusting the sample film thickness as needed, acquisition conditions can be optimized using the sample film thickness as a parameter. For example, the sample is first processed into a wedge shape, and the optimum sample film thickness is obtained by the above-described method. Thereafter, processing is performed to obtain an optimum film pressure, and observation is performed after an observation sample is prepared.

1 走査型透過電子顕微鏡
2 電子線源
3 電子線
4 収束レンズ
5 球面収差補正器
6 収束絞り
7 対物レンズ
8 試料
9 投影レンズ
10 検出器
11 電子線分光器
12 画像表示装置
13 取得条件算出システム
14 試料膜厚算出システム
15 電子顕微鏡制御装置
16 選択ボタン群
17 電子顕微鏡像取得条件算出ボタン
18 電子顕微鏡像表示画面
19 像強度読み取りポイント
20 式入力項
21 像コントラスト表示項
22 電子顕微鏡像取得条件パラメータ入力図
23 直交表
31 保護膜
32 非晶質炭素
33 高配向黒鉛
51 明視野検出器
52 暗視野検出器
71 イオン源
72 集束レンズ
73 ビーム偏向器
74 対物レンズ
75 イオンビーム
76 タングステン源
77 二次電子検出器
78 探針
79 集束イオンビーム装置制御装置
80 集束イオンビーム装置
DESCRIPTION OF SYMBOLS 1 Scanning transmission electron microscope 2 Electron beam source 3 Electron beam 4 Converging lens 5 Spherical aberration corrector 6 Converging diaphragm 7 Objective lens 8 Sample
9 Projection lens 10 Detector
11 Electron spectrometer
12 Image display device
13 Acquisition condition calculation system
14 Sample thickness calculation system 15 Electron microscope control device 16 Selection button group 17 Electron microscope image acquisition condition calculation button 18 Electron microscope image display screen 19 Image intensity reading point 20 Expression input item 21 Image contrast display item 22 Electron microscope image acquisition condition parameter Input diagram 23 Orthogonal table 31 Protective film 32 Amorphous carbon 33 Highly oriented graphite 51 Bright field detector 52 Dark field detector 71 Ion source 72 Focusing lens 73 Beam deflector 74 Objective lens 75 Ion beam 76 Tungsten source 77 Secondary electrons Detector 78 Probe 79 Focused ion beam device controller 80 Focused ion beam device

Claims (10)

複数個のレンズ、電子線を制限する絞り、検出器を有し、電子顕微鏡像を取得する走査透過電子顕微鏡にあって、
前記電子顕微鏡像の取得条件を算出する取得条件算出システムと、前記電子線透過方向の試料膜厚を算出する試料膜厚条件算出システムとを有することを特徴とする走査透過電子顕微鏡。
A scanning transmission electron microscope having a plurality of lenses, a diaphragm for limiting an electron beam, a detector, and acquiring an electron microscope image,
A scanning transmission electron microscope comprising: an acquisition condition calculation system that calculates an acquisition condition of the electron microscope image; and a sample film thickness condition calculation system that calculates a sample film thickness in the electron beam transmission direction.
請求項1に記載された走査透過電子顕微鏡であって、
前記電子顕微鏡像の取得条件は、電子線の加速電圧、収束角、取り込み角、プローブ電流、検出器の種類、観察位置、像取り込み画素数、像取り込み時間及び試料膜厚であることを特徴とする走査透過電子顕微鏡。
The scanning transmission electron microscope according to claim 1,
The acquisition conditions of the electron microscope image are an electron beam acceleration voltage, convergence angle, capture angle, probe current, detector type, observation position, number of image capture pixels, image capture time, and sample film thickness. Scanning transmission electron microscope.
請求項1に記載された走査透過電子顕微鏡であって、
前記走査透過電子顕微鏡は電子顕微鏡像を表示する画像表示装置を有し、前記画像表示装置上に電子顕微鏡像取得条件の算出を開始する電子顕微鏡像の取得条件算出ボタンと、取得した前記試料の電子顕微鏡像の像強度を読み取る位置を入力する位置入力ボタンと、像コントラストを求める式を入力する式入力ボタンを有することを特徴とする走査透過電子顕微鏡。
The scanning transmission electron microscope according to claim 1,
The scanning transmission electron microscope has an image display device for displaying an electron microscope image, an electron microscope image acquisition condition calculation button for starting calculation of an electron microscope image acquisition condition on the image display device, and the acquired sample A scanning transmission electron microscope comprising: a position input button for inputting a position for reading an image intensity of an electron microscope image; and an expression input button for inputting an expression for obtaining an image contrast.
請求項3に記載された走査透過電子顕微鏡であって、
前記電子顕微鏡像の取得条件算出ボタンにより前記電子顕微鏡像の取得条件算出システムが起動し、また前記位置入力ボタンにより前記電子顕微鏡像内の任意の像強度を取得し、また式入力ボタンにより前記像強度から各試料間の像コントラストを算出することを特徴とする走査透過電子顕微鏡。
A scanning transmission electron microscope according to claim 3,
The acquisition condition calculation system of the electron microscope image is activated by the acquisition condition calculation button of the electron microscope image, the arbitrary image intensity in the electron microscope image is acquired by the position input button, and the image is input by the expression input button. A scanning transmission electron microscope characterized in that image contrast between samples is calculated from intensity.
請求項3に記載された走査透過電子顕微鏡であって、
前記位置入力ボタンにより前記電子顕微鏡像内の任意の点の像強度を取得し、前記電子顕微鏡像内の組成が既知である箇所の像強度と比較することにより、
前記電子顕微鏡像の任意の点の組成を同定することを特徴とする走査透過電子顕微鏡。
A scanning transmission electron microscope according to claim 3,
By obtaining the image intensity of an arbitrary point in the electron microscope image by the position input button, by comparing with the image intensity of the location where the composition in the electron microscope image is known,
A scanning transmission electron microscope characterized by identifying the composition of an arbitrary point in the electron microscope image.
請求項1に記載された走査透過電子顕微鏡は、球面収差補正器を備えることを特徴とする走査透過電子顕微鏡。 The scanning transmission electron microscope according to claim 1, further comprising a spherical aberration corrector. 複数個のレンズ、電子線を制限する絞り、検出器を有し、荷電粒子線像を取得する荷電粒子線装置にあって、
前記荷電粒子線像の取得条件を算出する取得条件算出システムと、前記荷電粒子線透過方向の試料膜厚を算出する試料膜厚条件算出システムとを有することを特徴とする荷電粒子線装置。
A charged particle beam apparatus that has a plurality of lenses, a diaphragm for limiting an electron beam, a detector, and acquires a charged particle beam image,
A charged particle beam apparatus comprising: an acquisition condition calculation system that calculates an acquisition condition of the charged particle beam image; and a sample film thickness condition calculation system that calculates a sample film thickness in the charged particle beam transmission direction.
請求項7に記載された荷電粒子線装置であって、
前記荷電粒子線像の取得条件は、荷電粒子線の加速電圧、収束角、取り込み角、プローブ電流、検出器の種類、観察位置、像取り込み画素数、像取り込み時間及び試料膜厚であることを特徴とする荷電粒子線装置。
The charged particle beam device according to claim 7,
The acquisition conditions of the charged particle beam image include an acceleration voltage, a convergence angle, a capture angle, a probe current, a detector type, an observation position, an image capture pixel number, an image capture time, and a sample film thickness of the charged particle beam. Characterized charged particle beam device.
複数個のレンズ、絞り、検出器を有する走査透過電子顕微鏡像の最適な像取得条件の調整方法において、
前記複数個の各レンズの励磁電流値、絞りの穴径、検出器の種類、取り込み時間、加速電圧、及び試料膜厚に基づく設定値をパラメータとして用い、パラメータ設計手法を用いたシミュレーションを行い、前記シミュレーションに基づく算出値により前記各レンズの励磁電流値、絞りの穴径、検出器の種類、取り込み時間、加速電圧の条件を設定することを特徴とする像取得条件の調整方法。
In the adjustment method of the optimum image acquisition condition of the scanning transmission electron microscope image having a plurality of lenses, apertures, and detectors,
Using a set value based on the excitation current value of each of the plurality of lenses, aperture diameter, detector type, capture time, acceleration voltage, and sample film thickness as a parameter, a simulation using a parameter design method is performed, A method of adjusting an image acquisition condition, wherein conditions of an excitation current value of each lens, a diameter of an aperture, a detector type, an acquisition time, and an acceleration voltage are set based on a calculated value based on the simulation.
請求項9に記載された像取得条件の調整方法において、
前記パラメータ設計手法を用いたシミュレーションは、前記設定値に基づくパラメータを直交表に読み込むステップと、前記パラメータを直交表に割り付けるステップと、前記直交表に基づく各条件下で電子顕微鏡像を取得するステップと、前記取得した電子顕微鏡像より要因効果図を作成するステップと、前記要因効果図より各レンズの励磁電流値、絞りの穴径、検出器の種類、取り込み時間、加速電圧及び膜厚の条件を算出するステップとを有することを特徴とする走査透過電子顕微鏡の像取得条件の調整方法。
The image acquisition condition adjustment method according to claim 9,
The simulation using the parameter design method includes a step of reading a parameter based on the set value into an orthogonal table, a step of assigning the parameter to the orthogonal table, and a step of acquiring an electron microscope image under each condition based on the orthogonal table And a step of creating a factor effect diagram from the acquired electron microscope image, and conditions of the excitation current value of each lens, aperture diameter, detector type, capture time, acceleration voltage and film thickness from the factor effect diagram A method for adjusting image acquisition conditions for a scanning transmission electron microscope.
JP2012189417A 2012-08-30 2012-08-30 Electron microscope and acquisition method of electron microscope image Pending JP2014049214A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012189417A JP2014049214A (en) 2012-08-30 2012-08-30 Electron microscope and acquisition method of electron microscope image
PCT/JP2013/068590 WO2014034277A1 (en) 2012-08-30 2013-07-08 Electron microscope and electron microscope image acquisition method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012189417A JP2014049214A (en) 2012-08-30 2012-08-30 Electron microscope and acquisition method of electron microscope image

Publications (1)

Publication Number Publication Date
JP2014049214A true JP2014049214A (en) 2014-03-17

Family

ID=50183099

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012189417A Pending JP2014049214A (en) 2012-08-30 2012-08-30 Electron microscope and acquisition method of electron microscope image

Country Status (2)

Country Link
JP (1) JP2014049214A (en)
WO (1) WO2014034277A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005108567A (en) * 2003-09-29 2005-04-21 Hitachi High-Technologies Corp Sample observation method by electron microscope
JP2006127850A (en) * 2004-10-27 2006-05-18 Hitachi High-Technologies Corp Charged particle beam device and sample manufacturing method
JP2009037738A (en) * 2007-07-31 2009-02-19 Hitachi High-Technologies Corp Electron microscope equipped with electronic spectrometer

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006190567A (en) * 2005-01-06 2006-07-20 Hitachi High-Technologies Corp Electron beam device
JP2007173132A (en) * 2005-12-26 2007-07-05 Hitachi High-Technologies Corp Scanning transmission electron microscope and tuning method of scanning transmission electron microscope

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005108567A (en) * 2003-09-29 2005-04-21 Hitachi High-Technologies Corp Sample observation method by electron microscope
JP2006127850A (en) * 2004-10-27 2006-05-18 Hitachi High-Technologies Corp Charged particle beam device and sample manufacturing method
JP2009037738A (en) * 2007-07-31 2009-02-19 Hitachi High-Technologies Corp Electron microscope equipped with electronic spectrometer

Also Published As

Publication number Publication date
WO2014034277A1 (en) 2014-03-06

Similar Documents

Publication Publication Date Title
US9535020B2 (en) Analyzing an object using a particle beam apparatus
JP5517584B2 (en) electronic microscope
US10274441B2 (en) Generating an image of an object or a representation of data about the object
US10132761B2 (en) Method of constructing 3D image, image processor, and electron microscope
JP6932004B2 (en) 3D imaging in a charged particle microscope
JP5727564B2 (en) Method for investigating and correcting aberrations in charged particle lens systems
JP4997013B2 (en) Electron microscope with electron spectrometer
JP6266467B2 (en) Electron microscope and monochromator adjustment method
US10658152B1 (en) Method for controlling a particle beam device and particle beam device for carrying out the method
JP2018186076A (en) Aberration measurement in charged particle microscope
JP2006173027A (en) Scanning transmission electron microscope, aberration measuring method, and aberration correction method
JP7426192B2 (en) Transmission charged particle microscope with adjustable beam energy spread
JP2021174544A (en) Method performed by data processing device, and charged particle beam device for inspecting sample by such method
US8294118B2 (en) Method for adjusting optical axis of charged particle radiation and charged particle radiation device
US20150012229A1 (en) Sample analysis apparatus, non-transitory computer-readable recording medium and sample analysis method
JP2005032732A (en) Scanning electron microscope
JP4668807B2 (en) Charged particle beam apparatus and charged particle beam image generation method
WO2014034277A1 (en) Electron microscope and electron microscope image acquisition method
JP6472434B2 (en) X-ray analyzer and computer program
US20200152416A1 (en) Charged particle microscope for examining a specimen, and method of determining an aberration of said charged particle microscope
JP2004265879A (en) Element mapping device, scanning transmission electron microscope, and element mapping method
JP2011022059A (en) Charged particle microscope and analysis method
JP2008082767A (en) Particle beam analyzer
JP5218683B2 (en) Charged particle beam equipment
JP2005038641A (en) Charged particle beam device equipped with aberration control unit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160106

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160719

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161004

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20161011

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20170106

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170110

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170112

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20170124