JP2008082767A - Particle beam analyzer - Google Patents

Particle beam analyzer Download PDF

Info

Publication number
JP2008082767A
JP2008082767A JP2006260933A JP2006260933A JP2008082767A JP 2008082767 A JP2008082767 A JP 2008082767A JP 2006260933 A JP2006260933 A JP 2006260933A JP 2006260933 A JP2006260933 A JP 2006260933A JP 2008082767 A JP2008082767 A JP 2008082767A
Authority
JP
Japan
Prior art keywords
scanning
particle beam
sample
ray
spectrum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006260933A
Other languages
Japanese (ja)
Other versions
JP5248759B2 (en
Inventor
Takao Ono
卓男 小野
Satoshi Yoshimi
聡 吉見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2006260933A priority Critical patent/JP5248759B2/en
Publication of JP2008082767A publication Critical patent/JP2008082767A/en
Application granted granted Critical
Publication of JP5248759B2 publication Critical patent/JP5248759B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To shorten a measuring time, and to improve measurement accuracy, by acquiring an enlarged image in a prescribed measuring range on a sample under the same particle beam irradiation condition and a scanning condition, and by performing simultaneously spectrum analysis in the range. <P>SOLUTION: When the scanning condition such as scanning speed and the measuring range are set and a measurement start instruction is given from an operation part 24, a synchronization control part 22 starts driving of a sample stage 4 so that an electron beam irradiation position is scanned in the measuring range, and simultaneously starts generation of a secondary electron image based on a detection signal by an electron detector 15, and generation of an X-ray spectrum based on an X-ray pulse by an X-ray detector 9. The secondary electron image appears gradually following progression of scanning, and the intensity of the X-ray spectrum is enhanced gradually, and thereby both images are displayed in real time in the same window on a screen of a display part 25. Hereby, the secondary electron image and the X-ray spectrum in the measuring range can be acquired together, when first-time scanning is finished. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、走査電子顕微鏡(SEM=Scanning Electron Microscope)や電子線マイクロアナライザなど、電子線、イオンビーム、中性子線等の粒子線を試料に照射して試料の分析や観察を行う粒子線分析装置に関する。   The present invention relates to a particle beam analyzer for analyzing and observing a sample by irradiating the sample with a particle beam such as an electron beam, an ion beam, or a neutron beam, such as a scanning electron microscope (SEM) or an electron beam microanalyzer. About.

走査電子顕微鏡や電子線マイクロアナライザでは、微小径に集束させた電子線を試料に照射し、試料上の所定の測定範囲内でその電子線の照射位置を一次元的又は二次元的に走査する。そして、電子線の照射位置から発生した二次電子や反射電子等を検出し、その検出信号に基づいて上記測定範囲における試料表面の拡大画像を作成してモニタの画面上に表示する。また、電子線の照射位置からはそこに含まれる元素に特有のエネルギーを有する特性X線(固有X線ともいう)やカソードルミネセンス(以下CLと略す)が放出されるため、前述のように電子線の照射位置を走査しながら特性X線やCLを検出してそれらのエネルギー(波長)や強度を調べることにより、測定範囲内に含まれる元素のマッピングを行うことができる。   In a scanning electron microscope or electron beam microanalyzer, a sample is irradiated with an electron beam focused to a minute diameter, and the irradiation position of the electron beam is scanned one-dimensionally or two-dimensionally within a predetermined measurement range on the sample. . Then, secondary electrons and reflected electrons generated from the irradiation position of the electron beam are detected, and an enlarged image of the sample surface in the measurement range is created based on the detection signal and displayed on the monitor screen. In addition, characteristic X-rays (also referred to as intrinsic X-rays) and cathodoluminescence (hereinafter abbreviated as CL) having energy peculiar to the elements contained therein are emitted from the electron beam irradiation position. By detecting characteristic X-rays and CL while scanning the irradiation position of the electron beam and examining their energy (wavelength) and intensity, it is possible to perform mapping of elements included in the measurement range.

一般に上記のようなマッピング分析を行う場合には、試料に含まれる元素の種類を予め調べ又は予測しておき、それら複数の含有元素の特性X線のエネルギーに着目してX線強度を測定して各含有元素毎のマッピング像を作成する。こうした目的のためには、X線検出器として、分光結晶とスリットとを組み合わせたX線分光器を利用した波長分散型のX線検出器が用いられることが多い。   In general, when performing the mapping analysis as described above, the type of element contained in the sample is examined or predicted in advance, and the X-ray intensity is measured by paying attention to the characteristic X-ray energy of the plurality of contained elements. To create a mapping image for each contained element. For this purpose, a wavelength dispersion type X-ray detector using an X-ray spectrometer combining a spectroscopic crystal and a slit is often used as the X-ray detector.

一方、試料に含まれる元素が不明であってその元素の種類を調べたい場合や、多種類の元素について迅速に定量分析を行いたいような場合には、X線検出器として、リチウムドリフト型Si半導体検出器などのエネルギー分散型X線検出器が利用される。エネルギー分散型X線検出器では幅広いエネルギーの情報が同時に得られるため、短時間でX線スペクトルを取得することができる。   On the other hand, when the element contained in the sample is unknown and it is desired to investigate the type of the element, or when it is desired to perform rapid quantitative analysis of many kinds of elements, the lithium drift Si semiconductor is used as an X-ray detector. An energy dispersive X-ray detector such as a detector is used. Since the energy dispersive X-ray detector can simultaneously obtain a wide range of energy information, an X-ray spectrum can be acquired in a short time.

従来の電子線マイクロアナライザなどでは、上述したような所定の測定範囲内のマッピング分析と同測定範囲の二次電子画像(又は反射電子画像)の取得とは同時に行われている(例えば特許文献1など参照)。これは、マッピング画像は測定範囲内の或る元素の分布状態を示すものであり、試料表面の凹凸や形状などと含有元素との対応関係を調べることが重要であるからである。   In a conventional electron beam microanalyzer or the like, mapping analysis within a predetermined measurement range as described above and acquisition of a secondary electron image (or reflected electron image) within the measurement range are performed simultaneously (for example, Patent Document 1). Etc.) This is because the mapping image shows the distribution state of a certain element within the measurement range, and it is important to examine the correspondence between the unevenness and shape of the sample surface and the contained elements.

これに対し、X線スペクトル分析の場合にはマッピング分析とは異なり、測定範囲内の試料表面の形状との対応関係はあまり重要でないことが多い。また、X線スペクトル分析では、測定範囲内全体に含まれる元素のおおよその種類を迅速に知りたいことが多いために、測定範囲内全体に亘る比較的高速の走査を何回も繰り返し、それによって得られるX線パルスの計数値をエネルギー毎に積算してゆくことで時間経過に伴いX線スペクトル分析の感度を上げるようにしているのに対し、二次電子画像の取得時には走査速度を比較的遅くし、1つの微小位置から得られる二次電子の数をできるだけ多くすることで画像の精細度を上げるようにしている。そのため、X線スペクトル分析は二次電子画像の取得とは別の手順で行われている。   In contrast, in the case of X-ray spectrum analysis, unlike mapping analysis, the correspondence with the shape of the sample surface within the measurement range is often not very important. In addition, in X-ray spectrum analysis, it is often desirable to quickly know the approximate types of elements contained in the entire measurement range, and therefore, a relatively high-speed scan over the entire measurement range is repeated many times. While the X-ray pulse count value obtained is integrated for each energy to increase the sensitivity of X-ray spectrum analysis over time, the scanning speed is relatively high when acquiring secondary electron images. The image quality is increased by increasing the number of secondary electrons obtained from one minute position as late as possible. Therefore, the X-ray spectrum analysis is performed by a procedure different from the acquisition of the secondary electron image.

しかしながら、例えば試料の表面に原因不明の微小物質の付着等があってその成分を調べたいような場合には、その部分の拡大画像の取得とX線スペクトル分析との両方を行う必要がある。こうした場合に、従来の装置では、それぞれ別の手順で所望の測定範囲の拡大画像の取得と同じ測定範囲のX線スペクトル分析とを実行する必要があるため、測定時間が余計に掛かるとともに分析条件の設定作業などが面倒である。また、いずれの測定を先に行うにしても、後から行う測定では先の測定で照射された電子線による試料表面の損傷の影響があって正確な測定に支障をきたすおそれがある。   However, for example, when there is adhesion of a minute substance whose cause is unknown on the surface of the sample and it is desired to examine the component, it is necessary to perform both acquisition of an enlarged image of the part and X-ray spectrum analysis. In such a case, in the conventional apparatus, it is necessary to execute the acquisition of the enlarged image of the desired measurement range and the X-ray spectrum analysis of the same measurement range in different procedures. Setting work etc. is troublesome. In addition, regardless of which measurement is performed first, the measurement performed later may be affected by the damage of the sample surface due to the electron beam irradiated in the previous measurement, which may hinder accurate measurement.

特開2002−48740号公報JP 2002-48740 A

本発明は上記課題を解決するために成されたものであり、その目的とするところは、同一の粒子線照射に対して所定の測定範囲の試料表面の拡大画像の取得とスペクトルの取得とを同時に行うことができる粒子線分析装置を提供することである。   The present invention has been made to solve the above-mentioned problems, and the object of the present invention is to acquire an enlarged image and a spectrum of a sample surface in a predetermined measurement range for the same particle beam irradiation. It is to provide a particle beam analyzer that can be performed simultaneously.

上記課題を解決するために成された本発明に係る粒子線分析装置は、
a)試料に粒子線を照射する粒子線照射手段と、
b)前記試料上で粒子線の照射位置が一次元又は二次元的に移動するように試料又は粒子線の一方又は両方を走査する走査手段と、
c)前記粒子線の照射に応じて前記試料から発生する該試料を特徴付ける情報信号を検出する信号検出手段と、
d)前記走査手段による粒子線の走査に伴って前記信号検出手段により得られる信号に基づいて、その走査範囲の試料表面の拡大画像を作成する画像データ処理手段と、
e)前記粒子線の照射に応じて前記試料から放出される特性X線又はカソードルミネセンスを検出する分光手段と、
f)前記走査手段による粒子線の走査に伴って前記分光手段により得られる信号に基づいてその走査範囲に含まれる元素についてのX線スペクトル又はカソードルミネセンススペクトルを作成するスペクトルデータ処理手段と、
g)前記走査手段による所定の測定範囲内の走査の開始/終了に応じて、前記画像データ処理手段による試料表面の拡大画像作成動作と前記スペクトルデータ処理手段によるX線スペクトル又はカソードルミネセンススペクトルの作成動作とを同時に並行して実行するようにそれら各手段を制御する制御手段と、
を備えることを特徴としている。
The particle beam analyzer according to the present invention, which has been made to solve the above problems,
a) a particle beam irradiation means for irradiating the sample with a particle beam;
b) scanning means for scanning one or both of the sample and the particle beam so that the irradiation position of the particle beam moves one-dimensionally or two-dimensionally on the sample;
c) signal detection means for detecting an information signal characterizing the sample generated from the sample in response to irradiation of the particle beam;
d) an image data processing means for creating an enlarged image of the sample surface in the scanning range based on a signal obtained by the signal detection means as the particle beam is scanned by the scanning means;
e) spectroscopic means for detecting characteristic X-rays or cathodoluminescence emitted from the sample in response to irradiation of the particle beam;
f) Spectral data processing means for creating an X-ray spectrum or cathodoluminescence spectrum for an element included in the scanning range based on a signal obtained by the spectroscopic means as the particle beam is scanned by the scanning means;
g) In response to the start / end of scanning within a predetermined measurement range by the scanning unit, an enlarged image creation operation of the sample surface by the image data processing unit and an X-ray spectrum or cathodoluminescence spectrum by the spectral data processing unit Control means for controlling each of the means so as to execute the creation operation simultaneously in parallel;
It is characterized by having.

上記粒子線とは、電子線、イオンビーム等の荷電粒子線や中性子線などである。また、上記試料を特徴付ける情報信号とは、一般に試料の表面形状や試料表面付近の組成などを反映した表面画像を再現可能な情報信号であり、典型的には二次電子、反射電子、低真空二次電子等の荷電粒子による信号である。この情報信号が二次電子、反射電子、又は低真空二次電子によるものである場合、上記信号検出手段はそれぞれ、二次電子検出器、反射電子検出器、低真空二次電子検出器(低真空下で電場をかけて雰囲気ガス分子を雪崩放電させることで増幅させた電子やイオンの吸収電流を検出する手法で、検出対象は電子に限らない)とする。また、分光手段は、例えばエネルギー分散型X線検出器、波長分散型X線検出器、CL法による分光を行う検出器などとすることができるが、幅広いエネルギー(範囲)を同時に検出できることからエネルギー分散型X線検出器が好ましい。   The particle beam is a charged particle beam such as an electron beam or an ion beam, or a neutron beam. In addition, the information signal that characterizes the sample is an information signal that can reproduce a surface image that generally reflects the surface shape of the sample and the composition near the sample surface, and typically includes secondary electrons, reflected electrons, and low vacuum. It is a signal by charged particles such as secondary electrons. When this information signal is a secondary electron, a reflected electron, or a low vacuum secondary electron, the signal detection means is a secondary electron detector, a reflected electron detector, a low vacuum secondary electron detector (low (This is a method for detecting the absorption current of electrons and ions amplified by applying an electric field under vacuum to cause avalanche discharge of atmospheric gas molecules, and the detection target is not limited to electrons). The spectroscopic means may be, for example, an energy dispersive X-ray detector, a wavelength dispersive X-ray detector, a detector that performs spectroscopic analysis using the CL method, and the like. A distributed X-ray detector is preferred.

また、走査手段は、粒子線照射手段の位置を移動させたり粒子線自体を偏向させたりして粒子線を走査するものでもよいし、試料が載置されたステージを移動させる等の試料を走査するものでもよく、両者を組み合わせたものでもよいが、一般的には走査範囲が狭い場合には粒子線の偏向による走査を行い、走査範囲が或る程度以上広い場合には試料の移動による走査を行うとよい。   The scanning unit may scan the particle beam by moving the position of the particle beam irradiation unit or deflecting the particle beam itself, or may scan the sample such as moving the stage on which the sample is placed. In general, scanning is performed by deflection of particle beams when the scanning range is narrow, and scanning by moving the sample when the scanning range is larger than a certain level. It is good to do.

本発明に係る粒子線分析装置では、試料上で一次元又は二次元の測定範囲が設定され、例えば走査速度などの分析条件が設定された上で、分析開始の指令が与えられると、制御手段は所定のルートで粒子線の照射位置が移動するように試料と粒子線照射位置との相対位置関係の走査を開始し、それと同時に画像データ処理手段とスペクトルデータ処理手段の動作も開始させる。一般的には所定の測定範囲を比較的低速で1回のみ走査を行うが、複数回の繰り返し走査も可能である。画像データ処理手段は信号検出手段から検出信号が得られるに従って、その信号強度に基づいて測定範囲内の各微小部位の表面像を作成する。一方、スペクトルデータ処理手段は分光手段から検出信号が得られるに従って、X線やCLのエネルギー毎に強度を積算してX線又はCLのスペクトルのカーブを変化させる。そして、所定の測定範囲の走査が終了したならば、制御手段は試料表面画像の作成とスペクトルの作成の両方をともに終了させる。これにより、同一の粒子線の照射条件及び走査条件の下で、同時に測定範囲内の試料表面拡大画像と該測定範囲に対するX線又はCLスペクトルとを得ることができる。   In the particle beam analyzer according to the present invention, when a one-dimensional or two-dimensional measurement range is set on a sample, and an analysis start command is given after setting an analysis condition such as a scanning speed, the control means Starts scanning of the relative positional relationship between the sample and the particle beam irradiation position so that the irradiation position of the particle beam moves along a predetermined route, and simultaneously starts the operations of the image data processing means and the spectral data processing means. In general, a predetermined measurement range is scanned only once at a relatively low speed, but a plurality of repeated scans are also possible. As the detection signal is obtained from the signal detection means, the image data processing means creates a surface image of each minute part within the measurement range based on the signal intensity. On the other hand, as the detection signal is obtained from the spectroscopic means, the spectral data processing means integrates the intensity for each X-ray or CL energy to change the curve of the X-ray or CL spectrum. When the scanning of the predetermined measurement range is completed, the control means ends both the creation of the sample surface image and the creation of the spectrum. Thereby, under the irradiation conditions and scanning conditions of the same particle beam, it is possible to simultaneously obtain an enlarged sample surface image within the measurement range and an X-ray or CL spectrum for the measurement range.

好ましくは、試料表面の拡大画像とそれに対応するX線又はCLスペクトルとを同一ウインドウ内に表示させる表示制御手段をさらに備える構成とし、同一の測定範囲における試料表面の拡大画像とX線又はCLスペクトルとを面倒な切替え操作無しに見ることができるようにするとよい。   Preferably, the apparatus further includes display control means for displaying an enlarged image of the sample surface and the corresponding X-ray or CL spectrum in the same window, and the enlarged image of the sample surface and the X-ray or CL spectrum in the same measurement range. Can be seen without troublesome switching operations.

また前述のような走査手段による所定の測定範囲内の走査の過程で、それまでに得られた試料表面の拡大画像とX線又はCLスペクトルとをリアルタイムで表示するようにするとよい。これによれば、確実に測定が実行されていることをユーザーが確認でき、また測定が終了しなくても必要な情報が得られた時点で或いは適切な測定でないことが判明した時点で測定を中止させて、無駄な時間を掛ける必要もなくなる。   Further, in the process of scanning within a predetermined measurement range by the scanning means as described above, an enlarged image of the sample surface obtained so far and an X-ray or CL spectrum may be displayed in real time. According to this, the measurement can be performed when the user can confirm that the measurement is being performed reliably, and when necessary information is obtained even if the measurement is not completed, or when it is determined that the measurement is not appropriate. There is no need to stop and waste time.

以上のように本発明に係る粒子線分析装置によれば、試料上の所定の測定範囲の表面拡大画像の取得と該測定範囲全体に含まれる元素を反映したスペクトルとを同時に、つまりは同一の粒子線照射条件で同一の走査条件の下で取得することができる。これにより、別の手順で2回の測定を実行する場合に比べてユーザーの操作上の負担が軽減され、測定時間も短くて済むので測定効率が向上する。また、一方の測定が他方の測定における粒子線照射による試料表面の損傷等の影響を受けずに済むので、従来よりも測定結果の正確性、信頼性が向上する。   As described above, according to the particle beam analyzer according to the present invention, the acquisition of the enlarged surface image of the predetermined measurement range on the sample and the spectrum reflecting the elements included in the entire measurement range are performed simultaneously, that is, the same. It can be obtained under the same scanning conditions under the particle beam irradiation conditions. As a result, the burden on the user's operation is reduced and the measurement time can be shortened as compared with the case where the measurement is performed twice by another procedure, and the measurement efficiency is improved. In addition, since one measurement does not need to be affected by the damage of the sample surface due to particle beam irradiation in the other measurement, the accuracy and reliability of the measurement result are improved as compared with the conventional measurement.

以下、本発明の一実施例である電子線マイクロアナライザについて図面を参照して説明する。図1は本実施例による電子線マイクロアナライザの要部の概略構成図である。   Hereinafter, an electron beam microanalyzer according to an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a schematic configuration diagram of a main part of an electron beam microanalyzer according to this embodiment.

加速源19により駆動される電子銃1から放出された電子線Eは偏向コイル2を介し、対物レンズ3によって集束されて試料ステージ4上に載置された試料5の表面に照射される。試料ステージ4は試料ステージ制御部7の制御により駆動される、モータ等を含むステージ駆動機構6によりX軸方向、Y軸方向に移動可能となっており、これにより試料5上での電子線Eの照射位置が移動する。電子線Eの照射により試料5から放出された特性X線はエネルギー分散型のX線検出器9に入力され、X線検出器9は入射したX線のエネルギー(つまりは波長)に比例した波高値を有するパルス信号を発生する。このパルス信号は増幅器11で増幅され、A/D変換器12でデジタルデータに変換されてX線データ処理部13に入力される。X線データ処理部13では、パルス高さ毎に弁別されてカウントされたX線パルスの数がヒストグラムメモリ14に記憶される。そして、ヒストグラムメモリ14に記憶されたデータに基づいて、横軸をX線エネルギー、縦軸をX線カウント数(又はX線強度)としたX線スペクトルが作成される。   The electron beam E emitted from the electron gun 1 driven by the acceleration source 19 is focused by the objective lens 3 through the deflection coil 2 and irradiated onto the surface of the sample 5 placed on the sample stage 4. The sample stage 4 can be moved in the X-axis direction and the Y-axis direction by a stage drive mechanism 6 including a motor and the like, which is driven by the control of the sample stage control unit 7, and thereby the electron beam E on the sample 5. The irradiation position moves. The characteristic X-rays emitted from the sample 5 by the irradiation of the electron beam E are input to the energy dispersive X-ray detector 9, and the X-ray detector 9 has a wave proportional to the energy (that is, wavelength) of the incident X-rays. A pulse signal having a high value is generated. This pulse signal is amplified by the amplifier 11, converted to digital data by the A / D converter 12, and input to the X-ray data processing unit 13. In the X-ray data processing unit 13, the number of X-ray pulses discriminated for each pulse height and counted is stored in the histogram memory 14. Based on the data stored in the histogram memory 14, an X-ray spectrum is generated with the X-ray energy on the horizontal axis and the X-ray count number (or X-ray intensity) on the vertical axis.

一方、電子線Eの照射により試料5からは二次電子や反射電子も放出され、例えばシンチレータと光電子増倍管とから成る電子検出器15により検出される。電子検出器15による検出信号はA/D変換器17によりデジタルデータに変換され、画像データ処理部18に入力される。画像データ処理部18では電子線Eの照射位置の走査に応じた範囲の試料表面の二次電子画像(又は反射電子画像)が作成される。   On the other hand, secondary electrons and reflected electrons are also emitted from the sample 5 by irradiation with the electron beam E, and are detected by an electron detector 15 including, for example, a scintillator and a photomultiplier tube. A detection signal from the electronic detector 15 is converted into digital data by the A / D converter 17 and input to the image data processing unit 18. The image data processing unit 18 creates a secondary electron image (or reflected electron image) of the sample surface in a range corresponding to the scanning of the irradiation position of the electron beam E.

増幅器11、A/D変換器12、X線データ処理部13を含むX線分析部10の動作はX線分析制御部20により制御され、A/D変換器17、画像データ処理部18を含む撮像部16は撮像制御部21により制御される。後述するように、電子線Eの照射位置の走査に応じてX線分析部10の動作と撮像部16の動作とを同期して行うために同期制御部22を備え、さらに操作部24により受けた操作や表示部25の表示画面上に所定の表示を行うために中央制御/処理部23を備える。この中央制御/処理部23、X線分析制御部20、撮像制御部21、同期制御部22などのほか、X線データ処理部13、画像データ処理部18の機能の多くは、1乃至複数のパーソナルコンピュータにインストールされた専用の制御/処理ソフトウエアを実行することで実現される。   The operation of the X-ray analysis unit 10 including the amplifier 11, the A / D converter 12, and the X-ray data processing unit 13 is controlled by the X-ray analysis control unit 20, and includes the A / D converter 17 and the image data processing unit 18. The imaging unit 16 is controlled by the imaging control unit 21. As will be described later, a synchronization control unit 22 is provided to synchronize the operation of the X-ray analysis unit 10 and the operation of the imaging unit 16 in accordance with the scanning of the irradiation position of the electron beam E, and is further received by the operation unit 24. A central control / processing unit 23 is provided to perform predetermined operations and display on the display screen of the display unit 25. In addition to the central control / processing unit 23, the X-ray analysis control unit 20, the imaging control unit 21, the synchronization control unit 22, and the like, many of the functions of the X-ray data processing unit 13 and the image data processing unit 18 are one or more. This is realized by executing dedicated control / processing software installed in a personal computer.

なお、煩雑になるために図1では記載を省略しているが、試料5の全体像を目視で観察できるように、試料5を撮像するCCDカメラ等の撮像回路、又は試料5の表面像を覗き込むためのレンズ光学系が付設されている。   Although not shown in FIG. 1 for the sake of complexity, an imaging circuit such as a CCD camera that images the sample 5 or a surface image of the sample 5 is used so that the entire image of the sample 5 can be visually observed. A lens optical system is provided for viewing.

次に本装置で特徴的な、二次電子画像とX線スペクトルの同時取得時(以下、同時動作モードと呼ぶ)の動作を説明する。ユーザーは図示しないCCDカメラ等で撮影される、図2に示すような試料5全体の観察像30の中で測定対象としたい測定範囲31を操作部24から指定する。図2では測定範囲31は二次元であるが、一次元範囲でもよい。また、測定範囲31矩形状でなく任意の形状にすることができる。また、分析条件として走査速度(或いは全体の走査時間)、電子線のエネルギー強度などの電子線照射条件など、を操作部24から設定する。測定範囲31内の繰り返し走査回数を設定できるようにしてもよいが、一般に、同時動作モードの場合には測定範囲31を1回のみ低速で走査するワンフレームスロースキャンに限定しておくとよい。したがって、ここではワンフレームスロースキャンであるものとする。   Next, the operation at the time of simultaneous acquisition of a secondary electron image and an X-ray spectrum (hereinafter referred to as a simultaneous operation mode) characteristic of this apparatus will be described. The user designates a measurement range 31 desired to be measured in the observation image 30 of the entire sample 5 as shown in FIG. In FIG. 2, the measurement range 31 is two-dimensional, but it may be a one-dimensional range. Further, the measurement range 31 can be an arbitrary shape instead of a rectangular shape. In addition, scanning speed (or overall scanning time), electron beam irradiation conditions such as electron beam energy intensity, and the like are set from the operation unit 24 as analysis conditions. Although the number of repeated scans within the measurement range 31 may be set, in general, in the simultaneous operation mode, the measurement range 31 may be limited to one frame slow scan that scans at a low speed only once. Therefore, it is assumed here that the one-frame slow scan is performed.

上記のような分析条件を設定した上でユーザーが測定開始を指示すると、中央制御/処理部23は同期制御部22に測定開始指令を送り、同期制御部22は試料ステージ制御部7と加速源19に所定の制御信号を送る。これにより、試料5上の上記測定範囲31内の走査開始点32に電子線Eが当たるように試料ステージ4が移動され、電子銃1から所定のエネルギーの電子線Eが出射され、電子線Eの照射位置の走査が開始される。即ち、ステージ駆動機構6による二次元的な試料ステージ4の移動により、電子線Eの照射位置は図2中に矢印で示すように走査される。但し、この走査の順序はこれに限定されるものでなく、予め決められたアルゴリズムに従って任意の順序に走査するものとすることができる。なお、ここでは試料ステージ4のX軸、Y軸の2軸方向の移動により走査が達成されるようにしているが、偏向コイル2に印加する電圧を変化させることで電子線Eを曲げ、それによって電子線Eの照射位置を走査するようにしてもよい。   When the user instructs the start of measurement after setting the analysis conditions as described above, the central control / processing unit 23 sends a measurement start command to the synchronization control unit 22, and the synchronization control unit 22 uses the sample stage control unit 7 and the acceleration source. A predetermined control signal is sent to 19. Thereby, the sample stage 4 is moved so that the electron beam E hits the scanning start point 32 in the measurement range 31 on the sample 5, and the electron beam E having a predetermined energy is emitted from the electron gun 1. Scanning of the irradiation position is started. That is, the irradiation position of the electron beam E is scanned as indicated by an arrow in FIG. 2 by moving the two-dimensional sample stage 4 by the stage driving mechanism 6. However, the scanning order is not limited to this, and scanning may be performed in an arbitrary order according to a predetermined algorithm. Here, scanning is achieved by moving the sample stage 4 in the X-axis and Y-axis directions, but the electron beam E is bent by changing the voltage applied to the deflection coil 2. Thus, the irradiation position of the electron beam E may be scanned.

同期制御部22は上記のような電子線Eの照射位置の走査開始とともに、X線分析制御部20を介してX線分析部10の動作を開始させ、撮像制御部21を介して撮像部16の動作を開始させる。つまり、同期制御部22は走査の開始とX線分析部10の動作の開始と撮像部16の動作の開始とを同期させる。これにより、X線分析部10においては、X線検出器9に入射したX線フォトンが持つエネルギーに対応したデータがヒストグラムメモリ14に格納され始める。図2に示したように測定範囲31内で走査が進むに従い、ヒストグラムメモリ14におけるX線カウント値は全体的に増加するから、これに基づいて作成されるX線スペクトルは、図3(a)に示すように、初めは横軸に一致する水平な線から徐々に全体が上方向に盛り上がってゆくように変化する。   The synchronization control unit 22 starts scanning the irradiation position of the electron beam E as described above, and starts the operation of the X-ray analysis unit 10 via the X-ray analysis control unit 20, and the imaging unit 16 via the imaging control unit 21. Start the operation. That is, the synchronization control unit 22 synchronizes the start of scanning, the start of operation of the X-ray analysis unit 10, and the start of operation of the imaging unit 16. Thereby, in the X-ray analysis unit 10, data corresponding to the energy of the X-ray photons incident on the X-ray detector 9 starts to be stored in the histogram memory 14. As the scanning progresses within the measurement range 31 as shown in FIG. 2, the X-ray count value in the histogram memory 14 increases as a whole, and the X-ray spectrum created based on this increases as shown in FIG. As shown in FIG. 3, the whole changes gradually so as to gradually rise upward from a horizontal line coinciding with the horizontal axis.

一方、撮像部16においては、測定範囲31内での走査に伴って各微小部位で順次二次電子強度が得られるから、画像データ処理部18で作成される二次電子画像は図3(b)に示すように、走査の順に次第に画像が現れるものとなる。X線データ処理部13は上述のように順次更新されるX線スペクトルを中央制御/処理部23に送り、画像データ処理部18は順次更新される二次電子画像を中央制御/処理部23に送る。同時動作モードでは、中央制御/処理部23は図4に示すように同一のウインドウ40内にX線スペクトル41と二次電子画像42とを配置する表示画面を作成し、これを表示部25の画面上に表示する。測定範囲31内で走査が進んでX線スペクトル41や二次電子画像42が更新されると、ウインドウ40内の表示も更新されるから、ユーザーはほぼリアルタイムで電子線Eが照射された範囲についての画像やX線スペクトルを見ることができる。   On the other hand, in the imaging unit 16, secondary electron intensity is sequentially obtained at each minute site with scanning within the measurement range 31, so the secondary electron image created by the image data processing unit 18 is shown in FIG. As shown in (), images gradually appear in the order of scanning. The X-ray data processing unit 13 sends the X-ray spectrum that is sequentially updated as described above to the central control / processing unit 23, and the image data processing unit 18 sends the secondary electron image that is sequentially updated to the central control / processing unit 23. send. In the simultaneous operation mode, the central control / processing unit 23 creates a display screen on which the X-ray spectrum 41 and the secondary electron image 42 are arranged in the same window 40 as shown in FIG. Display on the screen. When scanning progresses within the measurement range 31 and the X-ray spectrum 41 and the secondary electron image 42 are updated, the display in the window 40 is also updated. Images and X-ray spectra can be seen.

電子線Eの照射位置が測定範囲31内の走査終了点33に到達し、試料ステージ制御部7から走査終了信号が同期制御部22に送られると、同期制御部22は加速源19により電子線Eの照射を停止させる。また同時に、撮像制御部21を介して画像データ処理部18での二次電子強度信号の取り込みを終了させ、X線分析制御部20を介してX線データ処理部13での新たなデータのヒストグラムメモリ14への書き込みも終了させる。これにより、全ての測定が終了する。この時点で中央制御/処理部23には、測定範囲31全体の二次電子画像が保持され、測定範囲31全体のX線スペクトルも保持されている。したがって、例えばユーザーが操作部24で所定の操作を行うと、二次電子画像とX線スペクトルとは関連付けられてハードディスクなどの記憶装置に格納される。また、測定終了とともに、予め決められたフォルダなどに二次電子画像とX線スペクトルとを自動的に格納するようにしてもよい。   When the irradiation position of the electron beam E reaches the scanning end point 33 within the measurement range 31 and a scanning end signal is sent from the sample stage control unit 7 to the synchronization control unit 22, the synchronization control unit 22 causes the acceleration source 19 to transmit the electron beam. E irradiation is stopped. At the same time, the acquisition of the secondary electron intensity signal in the image data processing unit 18 is terminated via the imaging control unit 21, and a new data histogram is obtained in the X-ray data processing unit 13 via the X-ray analysis control unit 20. Writing to the memory 14 is also terminated. This completes all measurements. At this time, the central control / processing unit 23 holds the secondary electron image of the entire measurement range 31 and also holds the X-ray spectrum of the entire measurement range 31. Therefore, for example, when the user performs a predetermined operation with the operation unit 24, the secondary electron image and the X-ray spectrum are associated with each other and stored in a storage device such as a hard disk. Further, the secondary electron image and the X-ray spectrum may be automatically stored in a predetermined folder or the like at the end of the measurement.

具体的な構成として、従来一般的に、X線データ処理部13やX線分析制御部20の機能をコンピュータ上で実現するためのソフトウエアと画像データ処理部18や撮像制御部21をコンピュータ上で実現するためのソフトウエアとは別であることが多いが、これに同期制御部22の機能を実現するようなソフトウエアを追加するか、或いはそれぞれのソフトウエアに相互に実行命令や分析条件のパラメータを送受信する機能を付加するようなプログラムを追加することにより、上述したような特徴的な制御/処理を達成することができる。もちろん、X線スペクトル分析用のソフトウエアと二次電子画像取得用のソフトウエアを統合した1つのソフトウエアでも同様の機能を達成できることは明らかである。   As a specific configuration, conventionally, software for realizing the functions of the X-ray data processing unit 13 and the X-ray analysis control unit 20 on the computer and the image data processing unit 18 and the imaging control unit 21 are generally installed on the computer. In many cases, software for realizing the function of the synchronization control unit 22 is added to the software, or execution instructions and analysis conditions are mutually added to each software. By adding a program that adds a function for transmitting and receiving the parameters, it is possible to achieve the characteristic control / processing as described above. Of course, it is obvious that the same function can be achieved by a single software integrating the software for X-ray spectrum analysis and the software for secondary electron image acquisition.

以上のようにして本実施例の電子線マイクロアナライザでは、同一の電子線照射条件及び走査条件の下で同時並行的に、任意の測定範囲の二次電子画像や反射電子画像とX線スペクトルとを取得することができ、しかもその取得の途中状況を表示部25の画面上の同一ウインドウ40内で確認することができる。したがって、例えばX線スペクトル41上で或る特定のエネルギーの強度が急に上昇したときにそれに対応する試料表面の部位を二次電子画像42上で確認したり、逆に試料表面上で特異な部位が出現したときにX線スペクトル41上で特異的な変化が生じないかどうかを確認する、といった有用な測定が可能である。また、走査の途中でそれまでに得られたX線スペクトル41又は二次電子画像42からこれ以上の測定が不要であることが判明した場合には、その時点で強制的に測定を中止することもできる。これにより、不要な測定を行う必要がなくなり測定効率の向上を図ることができる。   As described above, in the electron beam microanalyzer of the present embodiment, a secondary electron image, a reflected electron image, and an X-ray spectrum in an arbitrary measurement range are simultaneously obtained in parallel under the same electron beam irradiation condition and scanning condition. Can be acquired, and the progress status of the acquisition can be confirmed in the same window 40 on the screen of the display unit 25. Therefore, for example, when the intensity of a specific energy suddenly increases on the X-ray spectrum 41, the corresponding portion of the sample surface is confirmed on the secondary electron image 42, or conversely, it is peculiar on the sample surface. Useful measurements such as confirming whether or not a specific change occurs on the X-ray spectrum 41 when a site appears are possible. In addition, if it is found that no further measurement is necessary from the X-ray spectrum 41 or the secondary electron image 42 obtained so far during the scanning, the measurement should be forcibly stopped at that time. You can also. Thereby, it is not necessary to perform unnecessary measurement, and the measurement efficiency can be improved.

なお、上記実施例は本発明の一実施例であって、本発明の趣旨の範囲で適宜変形、修正、追加を行っても本願請求の範囲に包含されることは当然である。例えば、試料に電子線を照射する代わりにイオンビームや中性子線などの他の粒子線を照射するようにしてもよく、そうした粒子線の照射に応じて試料から出てくる特性X線を検出する手段はエネルギー分散型検出器に限らず、波長分散型X線検出器やカソードルミネセンス法による分光器と光電子増倍管などの検出器を組み合わせたものでもよい。また、試料表面画像を可視化するために、粒子線の照射に応じて試料から出てくる二次電子を検出するほか、反射電子や低真空雰囲気の下で発生した電流を検出するものでもよい。また、X線スペクトル分析と試料表面画像の観察とを行う手段をそれぞれ1つずつ持つもののみならず、複数併せ持つものでもよい。その場合でも、全ての測定を1回の走査の開始/終了に同期して実行すればよい。   It should be noted that the above embodiment is an embodiment of the present invention, and it should be understood that modifications, corrections, and additions within the scope of the present invention are included in the scope of the present application. For example, instead of irradiating the sample with an electron beam, another particle beam such as an ion beam or a neutron beam may be irradiated, and a characteristic X-ray emitted from the sample is detected according to the irradiation of the particle beam. The means is not limited to the energy dispersive detector, but may be a combination of a wavelength dispersive X-ray detector, a spectroscope using a cathodoluminescence method, and a detector such as a photomultiplier tube. Further, in order to visualize the sample surface image, secondary electrons emitted from the sample in response to the irradiation of the particle beam may be detected, and a reflected electron or a current generated under a low vacuum atmosphere may be detected. Further, not only one means for performing X-ray spectrum analysis and observation of the sample surface image, but also a plurality of means may be provided. Even in that case, all measurements may be performed in synchronization with the start / end of one scan.

本発明の一実施例による走査電子顕微鏡の要部の概略構成図。The schematic block diagram of the principal part of the scanning electron microscope by one Example of this invention. 試料上に設定される測定範囲と電子線走査の軌跡の一例を示す模式図。The schematic diagram which shows an example of the measurement range set on a sample, and the locus | trajectory of an electron beam scanning. 電子線走査に伴うX線スペクトルと二次電子画像の変化の説明図。Explanatory drawing of the change of the X-ray spectrum and secondary electron image accompanying electron beam scanning. 表示部に表示されるウインドウの一例の概略図。The schematic diagram of an example of the window displayed on a display part.

符号の説明Explanation of symbols

1…電子銃
2…偏向コイル
3…対物レンズ
4…試料ステージ
5…試料
6…ステージ駆動機構
7…試料ステージ制御部
9…X線検出器
10…X線分析部
11…増幅器
12、17…A/D変換器
13…X線データ処理部
14…ヒストグラムメモリ
15…電子検出器
16…撮像部
18…画像データ処理部
19…加速源
20…X線分析制御部
21…撮像制御部
22…同期制御部
23…中央制御/処理部
24…操作部
25…表示部
40…ウインドウ
41…X線スペクトル
42…二次電子画像
DESCRIPTION OF SYMBOLS 1 ... Electron gun 2 ... Deflection coil 3 ... Objective lens 4 ... Sample stage 5 ... Sample 6 ... Stage drive mechanism 7 ... Sample stage control part 9 ... X-ray detector 10 ... X-ray analysis part 11 ... Amplifier 12, 12, ... A / D converter 13 ... X-ray data processing unit 14 ... histogram memory 15 ... electron detector 16 ... imaging unit 18 ... image data processing unit 19 ... acceleration source 20 ... X-ray analysis control unit 21 ... imaging control unit 22 ... synchronization control Unit 23 ... Central control / processing unit 24 ... Operation unit 25 ... Display unit 40 ... Window 41 ... X-ray spectrum 42 ... Secondary electron image

Claims (3)

a)試料に粒子線を照射する粒子線照射手段と、
b)前記試料上で粒子線の照射位置が一次元又は二次元的に移動するように試料又は粒子線の一方又は両方を走査する走査手段と、
c)前記粒子線の照射に応じて前記試料から発生する該試料を特徴付ける情報信号を検出する信号検出手段と、
d)前記走査手段による粒子線の走査に伴って前記信号検出手段により得られる信号に基づいて、その走査範囲の試料表面の拡大画像を作成する画像データ処理手段と、
e)前記粒子線の照射に応じて前記試料から放出される特性X線又はカソードルミネセンスを検出する分光手段と、
f)前記走査手段による粒子線の走査に伴って前記分光手段により得られる信号に基づいてその走査範囲に含まれる元素についてのX線スペクトル又はカソードルミネセンススペクトルを作成するスペクトルデータ処理手段と、
g)前記走査手段による所定の測定範囲内の走査の開始/終了に応じて、前記画像データ処理手段による試料表面の拡大画像作成動作と前記スペクトルデータ処理手段によるX線スペクトル又はカソードルミネセンススペクトルの作成動作とを同時に並行して実行するようにそれら各手段を制御する制御手段と、
を備えることを特徴とする粒子線分析装置。
a) a particle beam irradiation means for irradiating the sample with a particle beam;
b) scanning means for scanning one or both of the sample and the particle beam so that the irradiation position of the particle beam moves one-dimensionally or two-dimensionally on the sample;
c) signal detection means for detecting an information signal characterizing the sample generated from the sample in response to irradiation of the particle beam;
d) an image data processing means for creating an enlarged image of the sample surface in the scanning range based on a signal obtained by the signal detection means as the particle beam is scanned by the scanning means;
e) spectroscopic means for detecting characteristic X-rays or cathodoluminescence emitted from the sample in response to irradiation of the particle beam;
f) Spectral data processing means for creating an X-ray spectrum or cathodoluminescence spectrum for an element included in the scanning range based on a signal obtained by the spectroscopic means as the particle beam is scanned by the scanning means;
g) In response to the start / end of scanning within a predetermined measurement range by the scanning unit, an enlarged image creation operation of the sample surface by the image data processing unit and an X-ray spectrum or cathodoluminescence spectrum by the spectral data processing unit Control means for controlling each of the means so as to execute the creation operation simultaneously in parallel;
A particle beam analyzer comprising:
試料表面の拡大画像とそれに対応するX線スペクトル又はカソードルミネセンススペクトルとを同一ウインドウ内に表示させる表示制御手段をさらに備えることを特徴とする請求項1に記載の粒子線分析装置。   2. The particle beam analyzer according to claim 1, further comprising display control means for displaying an enlarged image of the sample surface and a corresponding X-ray spectrum or cathodoluminescence spectrum in the same window. 前記走査手段による所定の測定範囲内の走査の過程で、それまでに得られた試料表面の拡大画像とX線スペクトル又はカソードルミネセンススペクトルとをリアルタイムで表示することを特徴とする請求項2に記載の粒子線分析装置。   3. The enlarged image of the sample surface obtained so far and the X-ray spectrum or cathodoluminescence spectrum are displayed in real time in the course of scanning within a predetermined measurement range by the scanning means. The described particle beam analyzer.
JP2006260933A 2006-09-26 2006-09-26 Particle beam analyzer Active JP5248759B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006260933A JP5248759B2 (en) 2006-09-26 2006-09-26 Particle beam analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006260933A JP5248759B2 (en) 2006-09-26 2006-09-26 Particle beam analyzer

Publications (2)

Publication Number Publication Date
JP2008082767A true JP2008082767A (en) 2008-04-10
JP5248759B2 JP5248759B2 (en) 2013-07-31

Family

ID=39353802

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006260933A Active JP5248759B2 (en) 2006-09-26 2006-09-26 Particle beam analyzer

Country Status (1)

Country Link
JP (1) JP5248759B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012078156A (en) * 2010-09-30 2012-04-19 Olympus Corp Inspection device
JP2020021560A (en) * 2018-07-30 2020-02-06 日本電子株式会社 Analyzer
CN113203765A (en) * 2020-01-31 2021-08-03 株式会社岛津制作所 Analysis device and control method for analysis device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003178707A (en) * 2001-12-12 2003-06-27 Shimadzu Corp Electron beam analyzing device
JP2006058015A (en) * 2004-08-17 2006-03-02 Jeol Ltd X-ray analyzer equipped with pulse-height distribution display function

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003178707A (en) * 2001-12-12 2003-06-27 Shimadzu Corp Electron beam analyzing device
JP2006058015A (en) * 2004-08-17 2006-03-02 Jeol Ltd X-ray analyzer equipped with pulse-height distribution display function

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012078156A (en) * 2010-09-30 2012-04-19 Olympus Corp Inspection device
JP2020021560A (en) * 2018-07-30 2020-02-06 日本電子株式会社 Analyzer
JP6995024B2 (en) 2018-07-30 2022-01-14 日本電子株式会社 Analysis equipment
CN113203765A (en) * 2020-01-31 2021-08-03 株式会社岛津制作所 Analysis device and control method for analysis device

Also Published As

Publication number Publication date
JP5248759B2 (en) 2013-07-31

Similar Documents

Publication Publication Date Title
JP5269521B2 (en) X-ray analyzer and X-ray analysis method
JP3888980B2 (en) Material identification system
US20170038321A1 (en) Analyzing an object using a particle beam apparatus
US9245711B2 (en) Charged particle beam apparatus and image forming method
JP2011159483A (en) Electron microscope and sample analysis method
JP2011123999A (en) Electron microscope
JP2000243338A (en) Transmission electron microscope device and transmitted electron examination device and examination method
JP2009198404A (en) X-ray analyzer and x-ray analysis method
JP5425482B2 (en) Analysis method and X-ray analyzer using energy dispersive X-ray spectrometer
JP5248759B2 (en) Particle beam analyzer
JP6010547B2 (en) X-ray analyzer
US5128545A (en) Method and apparatus for background correction in analysis of a specimen surface
JP2006173038A (en) Charged particle beam device, sample image display method, and image shift sensitivity measuring method
JP6405271B2 (en) Electron spectrometer and measuring method
JP2005235782A (en) Method of electron beam analysis
JP2009002795A (en) Fluorescent x-ray analyzer
US10879035B2 (en) Scanning electron microscope and measurement method for obtaining images of a specimen using an ion beam and an electron beam
CN116802765A (en) Time resolved cathodoluminescence sample detection
JP2012026757A (en) Surface analyzer and sample holder used for the same
JP2006172919A (en) Scanning electron microscope having three-dimensional shape analysis function
JP6622061B2 (en) Charged particle beam equipment
JP4413887B2 (en) Material identification system
JP2007192741A (en) Element analysis method and element analyzer
JP2003178707A (en) Electron beam analyzing device
JP2008008864A (en) X-ray analyzer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110329

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110525

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110726

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110926

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130313

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130411

R151 Written notification of patent or utility model registration

Ref document number: 5248759

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160419

Year of fee payment: 3