JP2014047509A - Short column structure and short span beam structure - Google Patents

Short column structure and short span beam structure Download PDF

Info

Publication number
JP2014047509A
JP2014047509A JP2012190257A JP2012190257A JP2014047509A JP 2014047509 A JP2014047509 A JP 2014047509A JP 2012190257 A JP2012190257 A JP 2012190257A JP 2012190257 A JP2012190257 A JP 2012190257A JP 2014047509 A JP2014047509 A JP 2014047509A
Authority
JP
Japan
Prior art keywords
short
reinforcing coating
column
span beam
short column
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012190257A
Other languages
Japanese (ja)
Inventor
Yukinobu Kurose
行信 黒瀬
Hideo Nakajima
秀雄 中島
Yasushi Watanabe
泰志 渡辺
Kazumitsu Takanashi
和光 高梨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Construction Co Ltd
Shimizu Corp
Original Assignee
Shimizu Construction Co Ltd
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Construction Co Ltd, Shimizu Corp filed Critical Shimizu Construction Co Ltd
Priority to JP2012190257A priority Critical patent/JP2014047509A/en
Publication of JP2014047509A publication Critical patent/JP2014047509A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Reinforcement Elements For Buildings (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent shear failure of a short column or a short span beam and improve ductility capacity thereof and thereby improving earthquake resistance of a building by preventing brittle failure of a short column structure or a short span beam structure.SOLUTION: A surface of a concrete skeleton of a short column 8 or a short span beam is coated with a resin reinforcement coat 3. The reinforcement coat 3 is a compound formed by a chemical reaction of isocyanate with a hardening agent made of at least either polyol or amine.

Description

本発明は、短柱構造及び短スパン梁構造に関する。   The present invention relates to a short column structure and a short span beam structure.

建物の計画上、断面成に大して柱長さが小さくならざる負えない場合がある。例えば垂れ壁と袖壁とが柱に一体的に接合されている場合、垂れ壁と袖壁との間の領域において柱が短柱となる。しかしながら、このように柱が短柱化すると、柱のせん断破壊が卓越して柱の脆性破壊を招くという不具合が生じる。そこで、従来、例えば下記の特許文献1に示されているように、柱の短柱化を防止する構造が提案されている。   Due to the plan of the building, the column length may be inevitably smaller than the cross section. For example, when the drooping wall and the sleeve wall are integrally joined to the column, the column becomes a short column in the region between the drooping wall and the sleeve wall. However, when the columns are shortened in this way, there arises a problem that the shear failure of the columns is dominant and the brittle failure of the columns is caused. Therefore, conventionally, as shown in Patent Document 1 below, for example, a structure for preventing the column from being shortened has been proposed.

一方、建物の計画上、断面成に大して梁長さが小さくならざる負えない場合がある。例えば間隔が狭い柱間に梁が架設された構造では、その梁は短スパン梁となりうる。このように梁が短スパン梁であると、上述した短柱の場合と同様に、梁のせん断破壊が卓越して梁の脆性破壊を招くという不具合が生じる。   On the other hand, in the plan of a building, there is a case where the beam length is inevitably reduced as compared with the cross section. For example, in a structure in which a beam is installed between columns with a narrow interval, the beam can be a short span beam. As described above, when the beam is a short span beam, similarly to the case of the short column described above, there arises a problem that shear failure of the beam is dominant and brittle failure of the beam is caused.

特開平11−172951号公報JP-A-11-172951

しかしながら、上記した従来の技術では、柱と二次壁(垂れ壁、袖壁)との間にスリットを形成し、そのスリットに減衰材を充填するため、施工が煩雑である。特に、柱と二次壁との間にスリットが無い既存の建物の場合には、スリットを形成するために二次壁を切削しなければならず、施工が非常に煩雑である。さらに、上記した従来の技術は、短スパン梁に適用することができない。   However, in the above-described conventional technique, since a slit is formed between the column and the secondary wall (hanging wall, sleeve wall) and the damping material is filled in the slit, the construction is complicated. In particular, in the case of an existing building without a slit between a column and a secondary wall, the secondary wall must be cut to form the slit, and the construction is very complicated. Furthermore, the above-described conventional technique cannot be applied to a short span beam.

本発明は、上記した従来の問題が考慮されたものであり、短柱或いは短スパン梁のせん断破壊を防止すると共に靭性能を向上させ、短柱構造或いは短スパン梁構造の脆性破壊を防止して建物の耐震性を向上させることを目的としている。   The present invention takes the above-mentioned conventional problems into consideration and prevents shear failure of short columns or short span beams and improves toughness performance, and prevents brittle fracture of short column structures or short span beams. The purpose is to improve the earthquake resistance of buildings.

本発明に係る短柱構造は、短柱のコンクリート造の躯体の表面に樹脂製の補強塗膜が被覆されてなり、前記補強塗膜が、イソシアネートと、ポリオール及びアミンのうちの少なくとも一方からなる硬化剤と、の化学反応により形成された化合物からなることを特徴としている。
なお、短柱とは、柱の断面成(D)に対する柱長さ(l)のスパン比(l/D)が例えば3以下である柱を指し、上記スパン比(l/D)が1以下の極短柱も含む。
In the short column structure according to the present invention, a resin reinforcing coating film is coated on the surface of a short column concrete frame, and the reinforcing coating film is composed of at least one of isocyanate, polyol, and amine. It is characterized by comprising a compound formed by a chemical reaction with a curing agent.
The short column refers to a column whose span ratio (l / D) of the column length (l) to the cross-sectional configuration (D) of the column is 3 or less, for example, and the span ratio (l / D) is 1 or less. Including the very short pillars.

また、本発明に係る短スパン梁構造は、短スパン梁のコンクリート造の躯体の表面に樹脂製の補強塗膜が被覆されてなり、前記補強塗膜が、イソシアネートと、ポリオール及びアミンのうちの少なくとも一方からなる硬化剤と、の化学反応により形成された化合物からなることを特徴としている。
なお、短スパン梁とは、梁の断面成(D´)に対する梁長さ(l´)のスパン比(l´/D´)が例えば3以下である梁を指し、上記スパン比(l´/D´)が1以下の極短スパン梁も含む。
Further, the short span beam structure according to the present invention is such that the surface of the concrete frame of the short span beam is coated with a resin reinforcing coating, and the reinforcing coating is made of isocyanate, polyol and amine. It is characterized by comprising a compound formed by a chemical reaction of at least one curing agent.
The short span beam refers to a beam having a span ratio (l ′ / D ′) of the beam length (l ′) to the beam cross-section (D ′) of, for example, 3 or less, and the span ratio (l ′ / D ') includes an extremely short span beam of 1 or less.

本発明では、イソシアネートと、ポリオール及びアミンのうちの少なくとも一方からなる硬化剤と、の化学反応により形成された化合物からなる補強塗膜が、せん断付着力が高く、曲げ引張強度が高く、かつ伸び性能が高い力学的特性(強度、伸び)に優れた合成樹脂であり、例えば10〜25MPa程度の高強度と例えば200%以上の大きな破断伸び(伸び変形性能)を有する。このため、躯体の変形が塑性域に達しても、補強塗膜が躯体の大変形に追従して伸び変形するので、補強塗膜によって躯体の変形に応じたエネルギー吸収性能が発揮される。したがって、せん断応力に対応することが可能な短柱構造或いは短スパン梁構造を設けることができる。   In the present invention, a reinforcing coating film composed of a compound formed by a chemical reaction between isocyanate and at least one of a polyol and an amine has a high shear adhesion, a high bending tensile strength, and an elongation. It is a synthetic resin with high performance and excellent mechanical properties (strength, elongation) and has a high strength of, for example, about 10 to 25 MPa and a large breaking elongation (elongation deformation performance) of, for example, 200% or more. For this reason, even if the deformation of the housing reaches the plastic region, the reinforcing coating film stretches and deforms following the large deformation of the housing, so that the energy absorption performance according to the deformation of the housing is exhibited by the reinforcing coating film. Therefore, it is possible to provide a short column structure or a short span beam structure that can cope with the shear stress.

仮に、せん断応力を受けることにより躯体の変形が塑性域に達してコンクリートが破壊されても、補強塗膜は伸びることはあっても破断せず、補強塗膜によって躯体の表面が被覆された状態が維持される。これにより、躯体のコンクリート片の散逸が防止され、また、躯体が転倒したり崩壊したりせずに自立した形状が保持される。例えば、躯体が短柱や短スパン梁の場合において、大地震時にせん断応力を受けることによって破壊が生じたコンクリート片が散乱して避難の障害となったり、そのコンクリート片が周囲に飛散したりするといった被害の増大を防止することができる。
しかも、補強塗膜は変形抵抗を有しているので、地震時に短柱や短スパン梁の躯体が撓み変形したときに、補強塗膜の変形抵抗力によって躯体を元の形状に戻す力が働く。その結果、躯体は、一旦大きく撓み変形した後に若干戻され、最終的な変形量が小さく抑えられる。
Even if the deformation of the housing reaches the plastic zone due to shear stress and the concrete is destroyed, the reinforcing coating does not break even if it is stretched, and the surface of the housing is covered with the reinforcing coating. Is maintained. Thereby, dissipation of the concrete piece of a housing is prevented, and the self-supporting shape is hold | maintained, without a housing falling down or collapsing. For example, when the frame is a short column or a short span beam, the concrete pieces that have been destroyed due to shear stress during a large earthquake are scattered and become obstacles to evacuation, or the concrete pieces are scattered around. Such an increase in damage can be prevented.
In addition, since the reinforcing coating film has deformation resistance, when the frame of a short column or short span beam is bent and deformed during an earthquake, a force to return the frame to its original shape by the deformation resistance force of the reinforcing coating works. . As a result, the housing is slightly returned after being largely bent and deformed, and the final amount of deformation can be suppressed small.

また、本発明の短柱構造や短スパン梁構造によれば、躯体に補強塗膜を吹き付けや塗布することによって形成されるので、従来技術のようにスリットを形成して減衰材を充填する場合に比べて、容易に且つ安価に施工することができ、既設の躯体においても容易に施工できる。   In addition, according to the short column structure or the short span beam structure of the present invention, it is formed by spraying or coating a reinforcing coating on the housing, so when a slit is formed and a damping material is filled as in the prior art Compared to the above, it can be easily and inexpensively constructed, and can be easily constructed even in an existing housing.

また、本発明に係る短柱構造は、前記補強塗膜が、前記躯体のうち3面以上に設けられていることが好ましい。   In the short columnar structure according to the present invention, it is preferable that the reinforcing coating is provided on three or more surfaces of the casing.

これにより、躯体の3面以上が補強塗膜によって包み込まれた状態となり、その効果(ラッピング効果)により、上記した形状保持がより効果的に発揮される。   Thereby, it will be in the state where 3 or more surfaces of the housing were wrapped with the reinforcement coating film, and the above-mentioned shape maintenance is more effectively exhibited by the effect (lapping effect).

さらに、本発明に係る短柱構造は、前記補強塗膜が、前記躯体の全周に亘って設けられていることがより好ましい。   Furthermore, in the short columnar structure according to the present invention, it is more preferable that the reinforcing coating film is provided over the entire circumference of the casing.

これにより、閉じられた形状(筒状)の補強塗膜の内側に躯体が収容された状態となり、上記したラッピング効果が大きくなり、高い形状保持が発揮される。   Thereby, it will be in the state by which the housing was accommodated inside the reinforcement coating film of the closed shape (tubular shape), the above-mentioned wrapping effect will become large, and high shape maintenance will be exhibited.

また、本発明に係る短スパン梁構造は、前記補強塗膜が、前記躯体のうち3面以上に設けられていることが好ましい。   In the short span beam structure according to the present invention, it is preferable that the reinforcing coating is provided on three or more surfaces of the casing.

これにより、躯体の3面以上が補強塗膜によって包み込まれた状態となり、その効果(ラッピング効果)により、上記した形状保持がより効果的に発揮される。   Thereby, it will be in the state where 3 or more surfaces of the housing were wrapped with the reinforcement coating film, and the above-mentioned shape maintenance is more effectively exhibited by the effect (lapping effect).

さらに、本発明に係る短スパン梁構造は、前記補強塗膜が、前記躯体の下面及び両側の側面にそれぞれ設けられて断面視略コ字状に形成されていることがより好ましい。   Further, in the short span beam structure according to the present invention, it is more preferable that the reinforcing coating film is provided on the lower surface and both side surfaces of the housing, respectively, and is formed in a substantially U shape in a sectional view.

これにより、U字溝状に形成された補強塗膜の内側に躯体が収容された状態となり、上記したラッピング効果が大きくなり、高い形状保持が発揮される。   Thereby, it will be in the state by which the housing was accommodated inside the reinforcement coating film formed in the U-shaped groove shape, the above-mentioned wrapping effect will become large, and high shape maintenance will be exhibited.

本発明に係る短柱構造によれば、短柱のせん断破壊を防止すると共に靭性能を向上させることができ、短柱構造の脆性破壊を防止して構造物の耐震性を向上させることができる。   According to the short column structure according to the present invention, the shear failure of the short column can be prevented and the toughness can be improved, the brittle fracture of the short column structure can be prevented and the earthquake resistance of the structure can be improved. .

また、本発明に係る短スパン梁構造によれば、短スパン梁のせん断破壊を防止すると共に靭性能を向上させることができ、短スパン梁構造の脆性破壊を防止して建物の耐震性を向上させることができる。   Further, according to the short span beam structure according to the present invention, it is possible to prevent the shear failure of the short span beam and improve the toughness performance, and to prevent the brittle fracture of the short span beam structure and improve the earthquake resistance of the building. Can be made.

本発明の実施の形態による短柱構造の概略構成を示す側面図である。It is a side view which shows schematic structure of the short column structure by embodiment of this invention. 図1に示すA−A間の断面図である。It is sectional drawing between AA shown in FIG. 本発明の実施の形態による短スパン梁構造の概略構成を示す側面図である。It is a side view which shows schematic structure of the short span beam structure by embodiment of this invention. 図3に示すB−B間の断面図である。It is sectional drawing between BB shown in FIG. ポリウレア樹脂の力学的特性を示すためのグラフであり、各材料の応力ひずみ関係を示すグラフである。It is a graph for showing the mechanical characteristic of polyurea resin, and is a graph which shows the stress-strain relationship of each material. 躯体の一部分を拡大した断面図である。It is sectional drawing to which a part of housing was expanded. 実施例1による試験結果を示す図である。It is a figure which shows the test result by Example 1. 実施例2による試験結果を示す図である。It is a figure which shows the test result by Example 2. 実施例3による試験結果を示す図である。It is a figure which shows the test result by Example 3. 本発明の変形例を説明するための短柱の横断面図であり、(a)は柱面に沿って壁が設けられた構成を示しており、(b)は柱幅の中間部分に壁が接合された構成を示している。It is a cross-sectional view of a short column for explaining a modification of the present invention, (a) shows a configuration in which a wall is provided along the column surface, (b) shows a wall in the middle part of the column width Shows a configuration in which is joined.

以下、本発明に係る短柱構造及び短スパン梁構造の実施の形態について、図面に基いて説明する。   Hereinafter, embodiments of a short column structure and a short span beam structure according to the present invention will be described with reference to the drawings.

[短柱構造]
図1および図2を参照して、本発明に係る短柱構造の実施の形態の構成を説明する。
[Short column structure]
With reference to FIG. 1 and FIG. 2, the structure of embodiment of the short pillar structure based on this invention is demonstrated.

図1に示す柱1は、建物の柱構造体であり、鉄筋コンクリート造の柱である。この柱1の上部の両側には、上側のスラブ4Aから垂設された垂れ壁5,5がそれぞれ配設されている。これらの垂れ壁5,5は、鉄筋コンクリート造の壁であり、柱1と一体的に接合されている。また、柱1の下部の両側には、下側のスラブ4Bの上面に立設された袖壁6,6がそれぞれ配設されている。これらの袖壁6,6は、鉄筋コンクリート造の壁であり、柱1と一体的に接合されている。上記した垂れ壁5の下端面と袖壁6の上端面との間には間隔が開けられており、垂れ壁5と袖壁6との間に開口部7が形成されている。   A pillar 1 shown in FIG. 1 is a pillar structure of a building and is a reinforced concrete pillar. On both sides of the upper portion of the column 1, hanging walls 5 and 5 that are suspended from the upper slab 4A are respectively disposed. These hanging walls 5 and 5 are reinforced concrete walls, and are integrally joined to the pillar 1. Further, on both sides of the lower part of the column 1, sleeve walls 6 and 6 erected on the upper surface of the lower slab 4 </ b> B are respectively arranged. These sleeve walls 6 and 6 are reinforced concrete walls and are integrally joined to the pillar 1. A space is provided between the lower end surface of the drooping wall 5 and the upper end surface of the sleeve wall 6, and an opening 7 is formed between the drooping wall 5 and the sleeve wall 6.

上記した柱1の中間部分には、垂れ壁5にも袖壁6にも接合されていない部分があり、この部分が、いわゆる短柱8となっている。すなわち、本実施の形態における短柱8とは、柱1のうちの、垂れ壁5,5の下端と袖壁6,6の上端との間の範囲を指している。この短柱8は、柱1の断面成Dに対する柱長さlのスパン比(l/D)が例えば3以下となっており、特に本実施の形態では、上記スパン比(l/D)が例えば1以下である極短柱となっている。ただし、本発明に係る短柱構造は、上記スパン比(l/D)が「3≧l/D>1」の範囲内であってもよい。   In the middle part of the pillar 1 described above, there is a part that is not joined to the hanging wall 5 or the sleeve wall 6, and this part is a so-called short pillar 8. That is, the short column 8 in the present embodiment refers to a range between the lower ends of the hanging walls 5 and 5 and the upper ends of the sleeve walls 6 and 6 in the column 1. The short column 8 has a span ratio (l / D) of a column length l with respect to a cross-sectional configuration D of the column 1 of, for example, 3 or less. In particular, in the present embodiment, the span ratio (l / D) is For example, it is an extremely short pillar of 1 or less. However, in the short columnar structure according to the present invention, the span ratio (l / D) may be within a range of “3 ≧ l / D> 1”.

図2は、上記した短柱8の横断面を示している。なお、図2では図面を簡略化するために鉄筋の図示を省略している。
図2に示すように、短柱8の躯体2の表面には、樹脂製の補強塗膜3が被覆されている。この補強塗膜3は、躯体2の全周に亘って設けられている。つまり、本実施の形態における補強塗膜3は、横断面視の形状が環状(閉じられた形状)、すなわち筒形状に形成されている。また、図1に示すように、本実施の形態における補強塗膜3は、柱1のうちの短柱8の部分の表面にのみ被覆されており、垂れ壁5,5に接合される柱1の上部の表面や、袖壁6,6に接合される柱1の下部の表面には被覆されていない。ただし、本発明に係る短柱構造では、補強塗膜3が、短柱8の部分の表面だけでなく、垂れ壁5,5に接合される柱1の上部の表面や、袖壁6,6に接合される柱1の下部の表面にも被覆されていてもよい。
FIG. 2 shows a cross section of the short column 8 described above. In FIG. 2, the reinforcing bars are not shown to simplify the drawing.
As shown in FIG. 2, the surface of the casing 2 of the short column 8 is covered with a resin reinforcing coating 3. The reinforcing coating 3 is provided over the entire circumference of the housing 2. That is, the reinforcing coating film 3 in the present embodiment is formed in an annular shape (closed shape) in a cross-sectional view, that is, in a cylindrical shape. Further, as shown in FIG. 1, the reinforcing coating 3 in the present embodiment is covered only on the surface of the portion of the short column 8 in the column 1, and the column 1 joined to the hanging walls 5 and 5. The surface of the upper part of the column 1 and the surface of the lower part of the column 1 joined to the sleeve walls 6 and 6 are not covered. However, in the short column structure according to the present invention, the reinforcing coating 3 is not only the surface of the portion of the short column 8, but also the surface of the upper part of the column 1 joined to the drooping walls 5 and 5, and the sleeve walls 6 and 6. The surface of the lower part of the pillar 1 to be joined may be covered.

[短スパン梁構造]
次に、図3および図4を参照して、本発明に係る短スパン梁構造の実施の形態の構成を説明する。
[Short span beam structure]
Next, with reference to FIG. 3 and FIG. 4, the structure of embodiment of the short span beam structure based on this invention is demonstrated.

図3に示す梁10は、建物の梁構造体であり、鉄筋コンクリート造の梁である。この梁10は、2本の柱50,50の間に架設されて両端がそれらの柱50,50にそれぞれ一体的に接合された両端支持梁である。また、梁10は、鉄筋コンクリート造のスラブ40にも一体的に接合されている。   A beam 10 shown in FIG. 3 is a beam structure of a building and is a reinforced concrete beam. The beam 10 is a both-end support beam that is installed between two columns 50 and 50 and whose both ends are integrally joined to the columns 50 and 50, respectively. The beam 10 is also integrally joined to a reinforced concrete slab 40.

上記した2本の柱50,50の間隔は狭く、梁10は短スパン梁となっている。この梁10(短スパン梁)は、梁10の断面成D´に対する梁長さl´のスパン比(l´/D´)が例えば3以下となっている。本実施の形態では、上記したスパン比(l´/D´)が1よりも大きいが、本発明に係る短スパン梁構造では、スパン比(l´/D´)が例えば1以下の極短スパン梁であってもよい。   The distance between the two pillars 50, 50 is narrow, and the beam 10 is a short span beam. In this beam 10 (short span beam), the span ratio (l ′ / D ′) of the beam length l ′ to the cross-section D ′ of the beam 10 is, for example, 3 or less. In the present embodiment, the above-described span ratio (l ′ / D ′) is larger than 1. However, in the short span beam structure according to the present invention, the span ratio (l ′ / D ′) is, for example, an extremely short value of 1 or less. Span beams may be used.

図4は、上記した梁10の横断面を示している。なお、図4では図面を簡略化するために鉄筋の図示を省略している。また、以下、梁10を、短スパン梁10と記す。
図4に示すように、短スパン梁10の躯体20の表面には、樹脂製の補強塗膜30が被覆されている。この補強塗膜30は、躯体20の下面20a及び両側の側面20b,20bにそれぞれ設けられている。つまり、本実施の形態における補強塗膜30は、横断面視の形状が略コ字状、すなわちU字溝状に形成されている。また、補強塗膜30の上端部はスラブ40の下面に沿って屈曲した形状となっており、補強塗膜30の端部はスラブ40の下面まで延びている。
FIG. 4 shows a cross section of the beam 10 described above. In FIG. 4, illustration of reinforcing bars is omitted to simplify the drawing. Hereinafter, the beam 10 is referred to as a short span beam 10.
As shown in FIG. 4, the surface of the housing 20 of the short span beam 10 is covered with a resin reinforcing coating 30. The reinforcing coating film 30 is provided on the lower surface 20a of the housing 20 and the side surfaces 20b and 20b on both sides. That is, the reinforcing coating film 30 in the present embodiment is formed in a substantially U shape, that is, a U-shaped groove shape in a cross-sectional view. Further, the upper end portion of the reinforcing coating film 30 is bent along the lower surface of the slab 40, and the end portion of the reinforcing coating film 30 extends to the lower surface of the slab 40.

[補強塗膜]
上記した補強塗膜3,30は、躯体2,20の表面に吹き付けやローラーなどで塗布される樹脂製の塗膜であって、イソシアネートと、ポリオール及びアミンのうちの少なくとも一方からなる硬化剤との化学反応により形成された化合物からなる。例えば、補強塗膜3,30としては、イソシアネートとアミンとの化学反応により形成された化合物であるポリウレア樹脂を用いることができる。
[Reinforcing coating]
The above-described reinforcing coatings 3 and 30 are resin coatings applied to the surfaces of the casings 2 and 20 by spraying or rollers, and are a curing agent made of isocyanate and at least one of polyol and amine. It consists of a compound formed by the chemical reaction of For example, as the reinforcing coatings 3 and 30, a polyurea resin that is a compound formed by a chemical reaction between an isocyanate and an amine can be used.

補強塗膜3,30は、せん断付着力が高く、曲げ引張強度が高く、かつ伸び性能が高い力学的特性(強度、伸び)に優れた合成樹脂からなり、例えばポリウレア樹脂の場合は、図5に示す応力ひずみ特性を有する。補強塗膜3,30を構成する合成樹脂としては、例えば引張強度が鉄筋の十分の一程度の20MPa程度(10〜25MPa)であって、破断伸びが200%以上の物性を有する樹脂からなる。ポリウレア樹脂としては、例えば「スワエールAR−100(登録商標:三井化学産資株式会社製)」が用いられる。なお、補強塗膜3,30の厚さ寸法Dは、2mm以上であることが好ましい。   The reinforcing coating films 3 and 30 are made of a synthetic resin having high mechanical properties (strength and elongation) with high shear adhesion, high bending tensile strength, and high elongation performance. For example, in the case of a polyurea resin, FIG. It has the stress-strain characteristics shown below. The synthetic resin constituting the reinforcing coatings 3 and 30 is made of, for example, a resin having a physical property that the tensile strength is about 20 MPa (10 to 25 MPa) which is about one tenth of a reinforcing bar and the elongation at break is 200% or more. As the polyurea resin, for example, “Swaer AR-100 (registered trademark: manufactured by Mitsui Chemicals, Inc.)” is used. In addition, it is preferable that the thickness dimension D of the reinforcement coating films 3 and 30 is 2 mm or more.

ここで、躯体2,20に補強塗膜3,30を被覆する施工方法としては、塗布するコンクリート表面を十分に清掃して塵等を取り除いた後、プライマーを塗布し、その後、補強塗膜材料を躯体2,20の表面に所定厚さだけ塗布する。これにより、躯体2,20の表面に補強塗膜3,30が形成される。なお、プライマーの塗布は省略することも可能であり、或いは、補強塗膜3,30と躯体2,20との付着性を高めるために躯体2,20の表面を斫って凸凹に加工してもよい。   Here, as a construction method for covering the casings 2 and 20 with the reinforcing coatings 3 and 30, the concrete surface to be applied is sufficiently cleaned to remove dust and the like, and then a primer is applied, and then the reinforcing coating material Is applied to the surfaces of the casings 2 and 20 by a predetermined thickness. Thereby, the reinforcing coating films 3 and 30 are formed on the surfaces of the casings 2 and 20. The application of the primer can be omitted, or the surface of the casings 2 and 20 is processed to be uneven so as to improve the adhesion between the reinforcing coatings 3 and 30 and the casings 2 and 20. Also good.

次に、上記した構成からなる短柱構造及び短スパン梁構造の作用について、具体的に説明する。
上述したように、本実施の形態では、補強塗膜3,30が、せん断付着力が高く、曲げ引張強度が高く、かつ伸び性能が高い力学的特性(強度、伸び)に優れた合成樹脂であるため、躯体2,20の変形が塑性域に達しても、補強塗膜3,30が躯体2,20の大変形に追従して伸び変形するので、補強塗膜3,30によって躯体2,20の変形に応じたエネルギー吸収性能が発揮される。したがって、せん断応力に対応することが可能な短柱構造或いは短スパン梁構造を設けることができる。
Next, the operation of the short column structure and the short span beam structure having the above-described configuration will be specifically described.
As described above, in the present embodiment, the reinforcing coating films 3 and 30 are made of a synthetic resin excellent in mechanical properties (strength and elongation) with high shear adhesion, high bending tensile strength, and high elongation performance. Therefore, even if the deformation of the casings 2 and 20 reaches the plastic region, the reinforcing coatings 3 and 30 follow the large deformation of the casings 2 and 20 so as to stretch and deform. Energy absorption performance according to 20 deformation is exhibited. Therefore, it is possible to provide a short column structure or a short span beam structure that can cope with the shear stress.

仮に、せん断応力を受けることにより躯体2,20の変形が塑性域に達してコンクリートが破壊されても、補強塗膜3,30は伸びることはあっても破断せず、補強塗膜3,30によって躯体2,20の表面が被覆された状態が維持される。これにより、躯体2,20のコンクリート片の散逸が防止され、また、躯体2,20が転倒したり崩壊したりせずに自立した形状を保持される(形状保持)。例えば、躯体2,20が短柱8や短スパン梁10の場合において、大地震時にせん断応力を受けることによって破壊が生じたコンクリート片が散乱して避難の障害となったり、そのコンクリート片が周囲に飛散したりするといった被害の増大を防止することができる。   Even if the deformation of the frames 2 and 20 reaches the plastic region due to the shear stress and the concrete is destroyed, the reinforcing coatings 3 and 30 are not broken even if they are stretched. Thus, the state in which the surfaces of the casings 2 and 20 are covered is maintained. Thereby, dissipation of the concrete piece of the frames 2 and 20 is prevented, and the self-supporting shape is hold | maintained without the frames 2 and 20 falling down or collapsing (shape maintenance). For example, in the case where the frames 2 and 20 are the short columns 8 and the short span beams 10, the concrete pieces which have been destroyed by receiving the shear stress at the time of a large earthquake are scattered and become an obstacle to evacuation. It is possible to prevent an increase in damage such as scattering.

また、補強塗膜3,30は変形抵抗を有しているので、地震時に短柱8や短スパン梁10の躯体2,20が撓み変形したときに、補強塗膜3,30の変形抵抗力によって躯体2,20を元の形状に戻す力が働く。その結果、躯体2,20は、一旦大きく撓み変形した後に若干戻され、最終的な変形量が小さく抑えられる。   Further, since the reinforcing coatings 3 and 30 have deformation resistance, the deformation resistance force of the reinforcing coatings 3 and 30 is deformed when the frames 2 and 20 of the short columns 8 and the short span beams 10 are bent and deformed during an earthquake. The force which returns the housings 2 and 20 to an original shape by this works. As a result, the casings 2 and 20 are slightly bent and deformed and then returned slightly, so that the final deformation amount is kept small.

また、補強塗膜3,30を躯体2,20の表面に吹き付けたり塗布したりするだけなので、容易に且つ安価に施工することができ、既設の躯体2,20に対しても容易に施工できる。   Further, since the reinforcing coatings 3 and 30 are simply sprayed or applied to the surfaces of the casings 2 and 20, it can be applied easily and inexpensively, and can be easily applied to the existing casings 2 and 20. .

また、図6に示すように、躯体2(20)にクラックC(ひび割れ)が生じても、補強塗膜3(30)はその伸縮性によって破断しない。この場合、補強塗膜3(30)は伸び変形しているので、補強塗膜3(30)の弾性力によって戻る方向の力Eが作用する。この力は、クラックCの幅を拡げる力Sに抵抗する方向に作用するため、結果的に、クラックCの開き量dが小さく抑えられる。   Moreover, as shown in FIG. 6, even if the crack C (crack) arises in the housing 2 (20), the reinforcing coating 3 (30) does not break due to its stretchability. In this case, since the reinforcing coating 3 (30) is stretched and deformed, a force E in the returning direction is applied by the elastic force of the reinforcing coating 3 (30). Since this force acts in a direction that resists the force S that widens the width of the crack C, the opening amount d of the crack C is consequently reduced.

また、本実施の形態の短柱構造及び短スパン梁構造では、補強塗膜3,30が躯体2,20のうち3面以上に設けられているので、躯体2,20が補強塗膜3,30によって包み込まれた状態となり、そのようなラッピング効果により、上記した形状保持がより効果的に発揮される。   Further, in the short column structure and the short span beam structure of the present embodiment, the reinforcing coatings 3, 30 are provided on three or more surfaces of the casings 2, 20, so 30, and the above-described shape retention is more effectively exhibited by such a wrapping effect.

特に、本実施の形態の短柱構造では、補強塗膜3が躯体2の全周に亘って設けられているので、閉じられた形状(筒状)の補強塗膜3の内側に躯体2が収容された状態となり、上記したラッピング効果が大きくなり、高い形状保持が発揮される。   In particular, in the short column structure of the present embodiment, since the reinforcing coating 3 is provided over the entire circumference of the casing 2, the casing 2 is provided inside the reinforcing coating 3 having a closed shape (tubular shape). It becomes a housed state, the above-mentioned lapping effect is increased, and high shape retention is exhibited.

また、特に、本実施の形態の短スパン梁構造では、補強塗膜30が躯体20の下面20a及び両側の側面20b,20bにそれぞれ設けられて断面視略コ字状に形成されているので、U字溝状に形成された補強塗膜30の内側に躯体20が収容された状態となり、上記したラッピング効果が大きくなり、高い形状保持が発揮される。   In particular, in the short span beam structure of the present embodiment, the reinforcing coating 30 is provided on the lower surface 20a of the housing 20 and the side surfaces 20b, 20b on both sides, respectively, and is formed in a substantially U shape in cross section. The casing 20 is accommodated inside the reinforcing coating film 30 formed in a U-shaped groove shape, and the above-described wrapping effect is increased and high shape retention is exhibited.

上述したように、本実施の形態の短柱構造及び短スパン梁構造によれば、短柱8或いは短スパン梁10のせん断破壊を防止すると共に靭性能を向上させることができ、短柱構造或いは短スパン梁構造の脆性破壊を防止して建物の耐震性を向上させることができる。   As described above, according to the short column structure and the short span beam structure of the present embodiment, the shear failure of the short column 8 or the short span beam 10 can be prevented and the toughness can be improved. It is possible to improve the earthquake resistance of the building by preventing brittle fracture of the short span beam structure.

次に、上述した実施の形態による短柱構造及び短スパン梁構造の効果を裏付けるために行った試験例(実施例1、2、3)について以下説明する。   Next, test examples (Examples 1, 2, and 3) performed to support the effects of the short column structure and the short span beam structure according to the above-described embodiment will be described below.

(実施例1)
実施例1では、矩形断面の鉄筋コンクリート製の梁材を試験体に使用し、その梁材の表面にポリウレア樹脂を塗布した試験体1、2、3と、ポリウレア樹脂を塗布しない試験体4とに対して載荷装置を使用した衝撃曲げ試験を行い、ポリウレア樹脂の塗布状況を変えた試験体1〜4の変形状態(亀裂や剥離)を確認した。
各試験体1〜4の梁材は、縦100mm×横120mmで長さ寸法が1200mmの6面を有する構造体であり、4週強度で25N/mm2のコンクリートを使用している。さらに、試験体1〜4の内部にD13(芯被り35mm)、せん断補強筋D6を使用している。そして、載荷条件としては、試験体1〜4を長さ方向を水平方向に向けて配置し、試験体1〜4の長さ方向の中心部に対して30kNの荷重を準静的な0.0001m/sの速度で載荷を付与した。
Example 1
In Example 1, a beam material made of reinforced concrete having a rectangular cross section is used as a test body, and test bodies 1, 2, and 3 in which a polyurea resin is applied to the surface of the beam material, and a test body 4 that is not coated with a polyurea resin. On the other hand, an impact bending test using a loading device was performed, and the deformation state (cracking or peeling) of the test bodies 1 to 4 in which the application state of the polyurea resin was changed was confirmed.
The beam material of each test body 1 to 4 is a structure having six faces of length 100 mm × width 120 mm and a length dimension of 1200 mm, and concrete of 4 weeks strength and 25 N / mm 2 is used. Furthermore, D13 (core cover 35 mm) and shear reinforcement D6 are used inside the test bodies 1 to 4. And as loading conditions, the test bodies 1-4 are arrange | positioned with the length direction turned to a horizontal direction, and the load of 30 kN is applied to the center part of the length direction of the test bodies 1-4 quasi-static. Loading was applied at a speed of 0001 m / s.

ここで、試験体1は梁材の6面に塗布厚4mmのポリウレア樹脂を塗布したものであり、試験体2は梁材の6面に塗布厚2mmのポリウレア樹脂を塗布したものであり、試験体3は梁材のうち長さ方向を水平方向に向けた状態で上面および下面の2面のみに塗布厚2mmのポリウレア樹脂を塗布したもの(4側面にポリウレア樹脂を塗布しない場合)であり、試験体4はポリウレア樹脂を施していないものである。   Here, the test body 1 is obtained by applying a polyurea resin having a coating thickness of 4 mm on the six surfaces of the beam material, and the test body 2 is obtained by applying a polyurea resin having a coating thickness of 2 mm on the six surfaces of the beam material. The body 3 is a beam material in which the length direction is oriented in the horizontal direction and a polyurea resin having a coating thickness of 2 mm is applied only to the upper and lower surfaces (when the polyurea resin is not applied to the four side surfaces). The test body 4 is not subjected to polyurea resin.

図7は、上記試験体1〜4において、横軸を載荷点の変形量δ(mm)とし、縦軸を荷重P(kN)とした曲げ試験結果を示している。
図7に示すように、試験体4の場合には、変形量δが略40mmで破壊し、その破壊箇所においてコンクリート片が生じた。
上下2面にポリウレア樹脂2mmを塗布した試験体3の場合は、変形量δが略60mmで破壊しているが、ポリウレア樹脂を塗布しない試験体4の場合よりはじん性が高い、つまり拘束効果(ラッピング効果)を有し、一定の形状保持効果があることが確認された。
また、梁材の表面全周(6面)にポリウレア樹脂を塗布した試験体1、2においては、降伏後(図7の降伏点P1より右側)でも30kNの荷重が維持されていることが確認できることから、ラッピング効果が大きく、形状保持効果が高いことがわかる。
FIG. 7 shows the bending test results of the test bodies 1 to 4 in which the horizontal axis is the deformation amount δ (mm) of the loading point and the vertical axis is the load P (kN).
As shown in FIG. 7, in the case of the test body 4, the specimen was broken when the deformation amount δ was approximately 40 mm, and a concrete piece was generated at the broken portion.
In the case of the test body 3 coated with 2 mm of polyurea resin on the upper and lower surfaces, the deformation amount δ is broken at about 60 mm, but the toughness is higher than that of the test body 4 not coated with the polyurea resin, that is, the restraining effect. (Wrapping effect) and a certain shape retention effect was confirmed.
Moreover, it was confirmed that the load of 30 kN was maintained even after yielding (right side from the yield point P1 in FIG. 7) in the test bodies 1 and 2 in which polyurea resin was applied to the entire surface of the beam (six sides). From this, it can be seen that the wrapping effect is large and the shape retention effect is high.

(実施例2)
次に、実施例2では、上記実施例1における梁材の6面に塗布厚2mmでポリウレア樹脂を塗布し、衝撃曲げ試験で載荷速度を変えた試験を行い、変形状態(亀裂や剥離)を確認した。
第1試験T1は4m/s(高速)の載荷速度とし、第2試験T2は0.5〜1m/s(中速)の載荷速度とし、第3試験T3は0.1〜0.5m/s(低速)の載荷速度とし、第4試験T4は0.0001m/s(準静的速度)の載荷速度とした。
(Example 2)
Next, in Example 2, a polyurea resin was applied to 6 surfaces of the beam material in Example 1 with a coating thickness of 2 mm, and a test in which the loading speed was changed by an impact bending test was performed, and the deformation state (cracking or peeling) was performed. confirmed.
The first test T1 has a loading speed of 4 m / s (high speed), the second test T2 has a loading speed of 0.5 to 1 m / s (medium speed), and the third test T3 has a loading speed of 0.1 to 0.5 m / s. The loading speed was s (low speed), and the fourth test T4 was a loading speed of 0.0001 m / s (quasi-static speed).

図8は、上記第1試験T1〜第4試験T4において、横軸を載荷点の変形量δ(mm)とし、縦軸を荷重P(kN)とした曲げ試験結果を示している。
図8に示すように、各試験T1〜T4ともに降伏後でも準静的最大荷重が維持されていることがわかる。このことから、ポリウレア樹脂を梁材の6面全体にわたって塗布する場合には、載荷速度にかかわらず、準静的最大荷重が維持されることを確認することができる。このとき、梁材の試験体は大きく変形し、約5度程度の角度で屈曲していたが、コンクリート片が生じることもなく、梁材としての形状が保持されていた。このように、ポリウレア樹脂を塗布した梁材は、衝撃や持続的な加力に対して有効であり、コンクリート片の発生を防ぐことができることが確認できた。
FIG. 8 shows the bending test results in the first test T1 to the fourth test T4 in which the horizontal axis is the deformation amount δ (mm) of the loading point and the vertical axis is the load P (kN).
As shown in FIG. 8, it can be seen that the quasi-static maximum load is maintained even after yielding in each of the tests T1 to T4. From this, when polyurea resin is applied over the entire six surfaces of the beam material, it can be confirmed that the quasi-static maximum load is maintained regardless of the loading speed. At this time, the specimen of the beam material was greatly deformed and bent at an angle of about 5 degrees. However, the concrete piece was not generated and the shape as the beam material was maintained. Thus, it was confirmed that the beam material coated with polyurea resin is effective against impact and continuous force and can prevent the generation of concrete pieces.

(実施例3)
実施例3では、矩形断面の鉄筋コンクリート製の梁材を試験体に使用し、その梁材の表面にポリウレア樹脂を塗布した試験体1´、2´と、ポリウレア樹脂を塗布しない試験体3´とに対して載荷装置を使用した衝撃曲げ試験を行い、ポリウレア樹脂の塗布状況を変えた試験体1´〜3´の変形状態(亀裂や剥離)を確認した。
各試験体1´〜3´の梁材は、縦150mm×横150mmで長さ寸法が450mmの6面を有する構造体であり、4週強度で25N/mm2のコンクリートを使用している。さらに、試験体1´〜3´の内部にD13(芯被り35mm)、せん断補強筋D6を使用している。そして、載荷条件としては、試験体1´〜3´を長さ方向を水平方向に向けて配置し、試験体1´〜3´の長さ方向の中心部に対して30kNの荷重を準静的な0.0001m/sの速度で載荷を付与した。
(Example 3)
In Example 3, a reinforced concrete beam material having a rectangular cross section is used as a test specimen, and test specimens 1 'and 2' in which a polyurea resin is applied to the surface of the beam specimen, and a test specimen 3 'that is not coated with a polyurea resin, An impact bending test using a loading device was performed, and the deformation state (cracking or peeling) of the test bodies 1 ′ to 3 ′ in which the application state of the polyurea resin was changed was confirmed.
The beam material of each test body 1 ′ to 3 ′ is a structure having six surfaces of 150 mm in length × 150 mm in width and 450 mm in length, and concrete of 4 weeks strength and 25 N / mm 2 is used. Furthermore, D13 (core cover 35 mm) and shear reinforcement D6 are used inside the test specimens 1 'to 3'. And as loading conditions, it arrange | positions test bodies 1'-3 'with the length direction turned into a horizontal direction, and applied the load of 30 kN to the center part of the length direction of test bodies 1'-3' semi-statically. Loading was applied at a typical speed of 0.0001 m / s.

ここで、試験体1´は梁材の6面に塗布厚4mmのポリウレア樹脂を塗布したものであり、試験体2´は梁材の上面以外の5面に塗布厚4mmのポリウレア樹脂を塗布したものであり、試験体3´はポリウレア樹脂を施していないものである。   Here, the test body 1 ′ is obtained by applying a polyurea resin having a coating thickness of 4 mm on 6 surfaces of the beam material, and the test body 2 ′ is applied by applying a polyurea resin having a coating thickness of 4 mm on 5 surfaces other than the upper surface of the beam material. The specimen 3 'is not subjected to polyurea resin.

図9は、上記試験体1´〜3´において、横軸を載荷点の変形量δ(mm)とし、縦軸を荷重P(kN)とした曲げ試験結果を示している。
図9に示すように、試験体3´の場合には、変形量δが略0.65mmで破壊し、その破壊箇所においてコンクリート片が生じた。
上面以外の5面にポリウレア樹脂4mmを塗布した試験体2´の場合は、変形量δが略9mmで破壊しているが、ポリウレア樹脂を塗布しない試験体3´の場合よりはじん性が高い、つまり拘束効果(ラッピング効果)を有し、一定の形状保持効果があることが確認された。
また、梁材の表面全周(6面)にポリウレア樹脂を塗布した試験体1´においては、変形量δが略30〜35mmで破壊しているが、5面にポリウレア樹脂を塗布した試験体2´の場合よりは更にじん性が高い、つまりラッピング効果が大きく、形状保持効果が高いことがわかる。
FIG. 9 shows a bending test result of the test bodies 1 ′ to 3 ′ in which the horizontal axis is the deformation amount δ (mm) of the loading point and the vertical axis is the load P (kN).
As shown in FIG. 9, in the case of the test specimen 3 ′, the specimen was broken when the deformation amount δ was approximately 0.65 mm, and a concrete piece was generated at the broken portion.
In the case of the test body 2 ′ in which the polyurea resin 4 mm is applied to the five surfaces other than the upper surface, the deformation amount δ is broken at about 9 mm, but the toughness is higher than in the case of the test body 3 ′ to which the polyurea resin is not applied. That is, it has been confirmed that it has a restraining effect (wrapping effect) and has a certain shape retention effect.
In addition, in the test body 1 ′ in which the polyurea resin is applied to the entire circumference (six surfaces) of the beam material, the deformation δ is broken at about 30 to 35 mm, but the test body in which the polyurea resin is applied to the five surfaces. It can be seen that the toughness is higher than that of 2 ', that is, the wrapping effect is large and the shape retention effect is high.

以上、本発明に係る短柱構造及び短スパン梁構造の実施の形態について説明したが、本発明は上記した実施の形態に限定されるものではなく、その趣旨を逸脱しない範囲で適宜変更可能である。
例えば、上記した実施の形態では、垂れ壁5,5及び袖壁6,6が柱1に一体に接合されることで短柱8が形成される構造について説明しているが、本発明に係る短柱構造は、垂れ壁5,5及び袖壁6,6のうちの何れか一方だけが柱1に一体に接合されることで短柱が形成される構成であってもよい。或いは、本発明に係る短柱構造は、垂れ壁5,5や袖壁6,6が無くても短柱となっている構造に対して適用することが可能である。
As mentioned above, although the embodiment of the short column structure and the short span beam structure according to the present invention has been described, the present invention is not limited to the above-described embodiment, and can be appropriately changed without departing from the gist thereof. is there.
For example, in the above-described embodiment, the structure in which the short column 8 is formed by integrally joining the hanging walls 5 and 5 and the sleeve walls 6 and 6 to the column 1 is described. The short column structure may be configured such that only one of the drooping walls 5 and 5 and the sleeve walls 6 and 6 is integrally joined to the column 1 so that the short column is formed. Alternatively, the short column structure according to the present invention can be applied to a structure having a short column without the hanging walls 5 and 5 and the sleeve walls 6 and 6.

また、上記した実施の形態では、補強塗膜3が短柱8の躯体2の全周に亘って被覆されているが、本発明に係る短柱構造は、例えば図10(a)に示すように壁5Aが一体に接合された短柱8Aにおいて、補強塗膜3Aが短柱8Aの躯体2Aの表面のうちの3面だけを被覆した構成であってもよく、この場合でも、上記したラッピング効果を発揮することができる。さらに、補強塗膜3が短柱8の表面のうちの2面或いは1面だけを被覆している構成であってよく、この場合であっても、上記したラッピング効果が発揮されないが、上記した形状保持の効果を奏することができる。なお、例えば図10(b)に示すように壁5Bが一体に接合された短柱8Bにおいて、一対の補強塗膜3B,3Bが短柱8Bの躯体2Bを両側から覆うようにして短柱8Bの躯体2Bの4面全てを被覆する構成であってもよい。   Further, in the above-described embodiment, the reinforcing coating film 3 is coated over the entire circumference of the casing 2 of the short column 8, but the short column structure according to the present invention is, for example, as shown in FIG. 10 (a). In the short column 8A in which the walls 5A are integrally joined to each other, the reinforcing coating 3A may be configured to cover only three surfaces of the surface of the housing 2A of the short column 8A. The effect can be demonstrated. Further, the reinforcing coating 3 may be configured to cover only two or one of the surfaces of the short columns 8, and even in this case, the above-described wrapping effect is not exhibited. The shape retention effect can be achieved. For example, as shown in FIG. 10B, in the short column 8B in which the walls 5B are integrally joined, the pair of reinforcing coatings 3B and 3B covers the casing 2B of the short column 8B from both sides so that the short column 8B. The structure which coat | covers all four surfaces of the housing 2B of this may be sufficient.

また、上記した実施の形態では、短スパン梁10が柱50,50間に架設された構造について説明しているが、本発明に係る短スパン梁構造は、梁の端部が柱以外の構造体に接合された構成であってもよく、例えば梁の端部が耐震壁に接合された構成であってもよい。   Further, in the above-described embodiment, the structure in which the short span beam 10 is installed between the columns 50 and 50 is described. However, in the short span beam structure according to the present invention, the end of the beam is a structure other than the column. The structure joined to the body may be sufficient, for example, the structure by which the edge part of the beam was joined to the earthquake-resistant wall may be sufficient.

また、上記した実施の形態では、補強塗膜30が短スパン梁10の躯体20の下面20a及び両側の側面20b,20bに被覆されているが、本発明に係る短スパン梁構造は、補強塗膜30が短スパン梁10の躯体20の下面20a及び両側の側面20b,20bのうちの2面或いは1面だけを被覆している構成であってよく、この場合であっても、上記したラッピング効果が発揮されないが、上記した形状保持の効果を奏することができる。   In the above-described embodiment, the reinforcing coating 30 is coated on the lower surface 20a of the housing 20 of the short span beam 10 and the side surfaces 20b, 20b on both sides. However, the short span beam structure according to the present invention has a reinforcing coating. The film 30 may be configured to cover only two or one of the lower surface 20a of the housing 20 of the short-span beam 10 and the side surfaces 20b, 20b on both sides. Although the effect is not exhibited, the above-described shape retention effect can be achieved.

さらに、補強塗膜3,30において、例えばガラス片やガラス繊維、ガラスフリット等を分散させてなる不燃性を有する混入材を、ポリウレア樹脂に混入させることも可能である。あるいは混入材として、例えばコンクリート、煉瓦、瓦、石綿スレート、鉄鋼、アルミニウム、モルタル、漆喰等のガラス以外の不燃材料であっても良い。   Furthermore, in the reinforcing coatings 3 and 30, for example, a nonflammable mixed material in which glass pieces, glass fibers, glass frit, and the like are dispersed can be mixed into the polyurea resin. Alternatively, the mixed material may be a nonflammable material other than glass, such as concrete, brick, tile, asbestos slate, steel, aluminum, mortar, or plaster.

また、上記した実施の形態では、補強塗膜3,30として、イソシアネートとアミンとの化学反応により形成された化合物からなるポリウレア樹脂が用いられているが、本発明は、イソシアネートとポリオールとの化学反応により形成された化合物からなるポリウレタン樹脂を補強塗膜として用いることも可能であり、また、イソシアネートとポリオールとアミンとの化学反応により形成された化合物からなる樹脂を補強塗膜として用いることも可能である。   In the above-described embodiment, a polyurea resin made of a compound formed by a chemical reaction between an isocyanate and an amine is used as the reinforcing coating film 3, 30. It is also possible to use a polyurethane resin composed of a compound formed by reaction as a reinforcing coating, and it is also possible to use a resin composed of a compound formed by a chemical reaction of isocyanate, polyol and amine as a reinforcing coating. It is.

その他、本発明の趣旨を逸脱しない範囲で、上記した実施の形態における構成要素を周知の構成要素に置き換えることは適宜可能である。   In addition, it is possible to appropriately replace the components in the above-described embodiments with known components without departing from the spirit of the present invention.

1・・・柱
2,20・・・躯体
3,30・・・補強塗膜
8・・・短柱
10・・・短スパン梁
DESCRIPTION OF SYMBOLS 1 ... Column 2, 20 ... Frame 3, 30 ... Reinforcement coating film 8 ... Short column 10 ... Short span beam

Claims (6)

短柱のコンクリート造の躯体の表面に樹脂製の補強塗膜が被覆されてなり、
前記補強塗膜は、イソシアネートと、ポリオール及びアミンのうちの少なくとも一方からなる硬化剤と、の化学反応により形成された化合物からなることを特徴とする短柱構造。
The surface of the short concrete frame is covered with a resin reinforcing coating,
The short columnar structure, wherein the reinforcing coating film is made of a compound formed by a chemical reaction between isocyanate and at least one of a polyol and an amine.
前記補強塗膜は、前記躯体のうち3面以上に設けられていることを特徴とする請求項1に記載の短柱構造。   The short column structure according to claim 1, wherein the reinforcing coating film is provided on three or more surfaces of the casing. 前記補強塗膜は、前記躯体の全周に亘って設けられていることを特徴とする請求項1に記載の短柱構造。   The short column structure according to claim 1, wherein the reinforcing coating film is provided over the entire circumference of the casing. 短スパン梁のコンクリート造の躯体の表面に樹脂製の補強塗膜が被覆されてなり、
前記補強塗膜は、イソシアネートと、ポリオール及びアミンのうちの少なくとも一方からなる硬化剤と、の化学反応により形成された化合物からなることを特徴とする短スパン梁構造。
The surface of the concrete frame of the short span beam is covered with a resin reinforcing coating,
The short-span beam structure, wherein the reinforcing coating film is made of a compound formed by a chemical reaction between an isocyanate and a curing agent made of at least one of polyol and amine.
前記補強塗膜は、前記躯体のうち3面以上に設けられていることを特徴とする請求項4に記載の短スパン梁構造。   The short-span beam structure according to claim 4, wherein the reinforcing coating is provided on three or more surfaces of the casing. 前記補強塗膜は、前記躯体の下面及び両側の側面にそれぞれ設けられて断面視略コ字状に形成されていることを特徴とする請求項4に記載の短スパン梁構造。   The short-span beam structure according to claim 4, wherein the reinforcing coating film is provided on a lower surface and both side surfaces of the housing, respectively, and is formed in a substantially U shape in a sectional view.
JP2012190257A 2012-08-30 2012-08-30 Short column structure and short span beam structure Pending JP2014047509A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012190257A JP2014047509A (en) 2012-08-30 2012-08-30 Short column structure and short span beam structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012190257A JP2014047509A (en) 2012-08-30 2012-08-30 Short column structure and short span beam structure

Publications (1)

Publication Number Publication Date
JP2014047509A true JP2014047509A (en) 2014-03-17

Family

ID=50607475

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012190257A Pending JP2014047509A (en) 2012-08-30 2012-08-30 Short column structure and short span beam structure

Country Status (1)

Country Link
JP (1) JP2014047509A (en)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04189977A (en) * 1990-11-22 1992-07-08 Mitsubishi Kasei Corp Reinforcing structure of already existing concrete body
JPH0544299A (en) * 1991-08-08 1993-02-23 Fujita Corp Reinforcing structure of structural steel reinforced concrete structure column member
JPH0734595A (en) * 1993-07-26 1995-02-03 Kajima Corp Reinforcing bar structure of shearing of short span beam
JPH0913694A (en) * 1995-06-28 1997-01-14 Ando Corp Aseismatic reinforcing structure of existing column
JP2000508392A (en) * 1995-06-29 2000-07-04 ファイフェ カンパニー エル.エル.シー. Beams and beam connections reinforced with fabric
JP2000336947A (en) * 1999-06-01 2000-12-05 Ohbayashi Corp Earthquake resistant reinforcing method of rc frame
JP2001003007A (en) * 1999-06-23 2001-01-09 Toray Ind Inc Pretreatment for adhesion and adhesion method
JP2001020449A (en) * 1999-07-07 2001-01-23 Maeda Corp Opening reinforcing construction for reinforced concrete beam member
JP2002028922A (en) * 2000-07-14 2002-01-29 Kanebo Ltd Repairing/reinforcing material consisting of fiber reinforced resin molded object, method for manufacturing the same, and cementitious structure using repairing/reinforcing material
JP2004060197A (en) * 2002-07-25 2004-02-26 Dyflex Holdings:Kk Concrete peeling-off preventive method and concrete structure with reinforcing layer
JP2005213844A (en) * 2004-01-29 2005-08-11 Mitsui Kagaku Sanshi Kk Concrete surface structure and its construction method
JP2005213842A (en) * 2004-01-29 2005-08-11 Mitsui Kagaku Sanshi Kk Concrete-surface structure and its constructing method
JP2006052633A (en) * 2004-07-15 2006-02-23 Mitsubishi Kagaku Sanshi Corp Structure and its reinforcing member and method

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04189977A (en) * 1990-11-22 1992-07-08 Mitsubishi Kasei Corp Reinforcing structure of already existing concrete body
JPH0544299A (en) * 1991-08-08 1993-02-23 Fujita Corp Reinforcing structure of structural steel reinforced concrete structure column member
JPH0734595A (en) * 1993-07-26 1995-02-03 Kajima Corp Reinforcing bar structure of shearing of short span beam
JPH0913694A (en) * 1995-06-28 1997-01-14 Ando Corp Aseismatic reinforcing structure of existing column
JP2000508392A (en) * 1995-06-29 2000-07-04 ファイフェ カンパニー エル.エル.シー. Beams and beam connections reinforced with fabric
JP2000336947A (en) * 1999-06-01 2000-12-05 Ohbayashi Corp Earthquake resistant reinforcing method of rc frame
JP2001003007A (en) * 1999-06-23 2001-01-09 Toray Ind Inc Pretreatment for adhesion and adhesion method
JP2001020449A (en) * 1999-07-07 2001-01-23 Maeda Corp Opening reinforcing construction for reinforced concrete beam member
JP2002028922A (en) * 2000-07-14 2002-01-29 Kanebo Ltd Repairing/reinforcing material consisting of fiber reinforced resin molded object, method for manufacturing the same, and cementitious structure using repairing/reinforcing material
JP2004060197A (en) * 2002-07-25 2004-02-26 Dyflex Holdings:Kk Concrete peeling-off preventive method and concrete structure with reinforcing layer
JP2005213844A (en) * 2004-01-29 2005-08-11 Mitsui Kagaku Sanshi Kk Concrete surface structure and its construction method
JP2005213842A (en) * 2004-01-29 2005-08-11 Mitsui Kagaku Sanshi Kk Concrete-surface structure and its constructing method
JP2006052633A (en) * 2004-07-15 2006-02-23 Mitsubishi Kagaku Sanshi Corp Structure and its reinforcing member and method

Similar Documents

Publication Publication Date Title
JP5291867B2 (en) Toughness reinforcement method for reinforced concrete columnar structures using carbon fiber
KR101553205B1 (en) Repair and Reinforcing methods of Concrete Structures Seismic Upgrading
Hitaka et al. Cyclic tests on steel and concrete‐filled tube frames with Slit Walls
JP5213248B2 (en) Seismic reinforcement structure for existing buildings
JP2012207519A (en) Reinforcement material and reinforcement structure
EP3040496B1 (en) Structure reinforcement system and method
KR102279044B1 (en) Composite elastomer composition and spraying layer for structural reinforcement and construction method of composite elastomer
JP2009249930A (en) Load-carrying material
JP6134098B2 (en) Masonry structure
JP5990003B2 (en) Structure and reinforcing method thereof
JP6108335B2 (en) Beam-column joint structure
KR20130074281A (en) Timber filled steel tube
JP6065199B2 (en) Bridge
JP2006233671A (en) Reinforcing method of single arrangement existing foundation for low-rise housing
JP3168872U (en) Buckling restraint brace
JP2014047509A (en) Short column structure and short span beam structure
JP6468578B2 (en) Plate structure
KR20190073298A (en) Reinforced structural system for secure seismic performance by reinforcing existing bricks walls
Krolo et al. The extended N2 method in seismic design of steel frames considering semi-rigid joints
JP4242300B2 (en) Reinforcement method of concrete structure using continuous fiber sheet
JP5936059B2 (en) Ready-made pile
JP6108336B2 (en) Seismic reinforcement structure
JP2014047510A (en) Structure
KR101124529B1 (en) Manufacturing method and concrete structure reinforcing method using the same
JP6061473B2 (en) Cantilever structure and pier structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160531

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170217

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170725