JP2014043370A - Tin-zinc-silica phosphate-based glass and glass sealing material for high temperature environment - Google Patents

Tin-zinc-silica phosphate-based glass and glass sealing material for high temperature environment Download PDF

Info

Publication number
JP2014043370A
JP2014043370A JP2012185986A JP2012185986A JP2014043370A JP 2014043370 A JP2014043370 A JP 2014043370A JP 2012185986 A JP2012185986 A JP 2012185986A JP 2012185986 A JP2012185986 A JP 2012185986A JP 2014043370 A JP2014043370 A JP 2014043370A
Authority
JP
Japan
Prior art keywords
glass
mol
tin
high temperature
sealing material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012185986A
Other languages
Japanese (ja)
Inventor
Rie Toyohara
梨恵 豊原
Giko Takahashi
儀宏 高橋
Takumi Fujiwara
巧 藤原
Takeshi Kajitani
剛 梶谷
Yuzuru Miyazaki
譲 宮崎
Kei Hayashi
慶 林
Tomomichi Ueno
知道 上野
Toru Ueno
亨 上野
Sei Yamada
聖 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOHOKU CERAMIC KK
Tohoku University NUC
Original Assignee
TOHOKU CERAMIC KK
Tohoku University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOHOKU CERAMIC KK, Tohoku University NUC filed Critical TOHOKU CERAMIC KK
Priority to JP2012185986A priority Critical patent/JP2014043370A/en
Publication of JP2014043370A publication Critical patent/JP2014043370A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Glass Compositions (AREA)
  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a tin-zinc-silica phosphate-based glass and a glass sealing material for high temperature environment, capable of being used under high temperature environment such as 400°C to 800°C, and excellent in insulation properties and durability.SOLUTION: A tin-zinc-silica phosphate-based glass does not contain boron, an alkaline metal and an alkaline earth metal, and have a main component containing 5 to 80 mol% of ZnO, 0.1 to 80 mol% or SnO, 5 to 50 mol% of SiOand 10 to 60 mol% of PO. The content of the main component is preferably 60 mass% or more of a total component. Less than 20 mol% of Al0may be contained as an accessory component based on 100 mol% of the main component.

Description

本発明は、スズ亜鉛シリカリン酸塩系ガラスおよび高温環境用ガラス封止材料に関する。   The present invention relates to a tin zinc silica phosphate glass and a glass sealing material for high temperature environments.

近年、省エネルギー化や防災対策の必要性から、廃熱やガス炎を利用した熱電変換素子や、ガスおよび固体燃料電池を利用した発電機を用いた小規模発電が望まれている。このような発電素子は、400℃〜800℃といった高温環境下で最も効率良く発電が行われる。例えば、シリサイドを主成分とする熱電変換素子材料の動作温度域は、400℃〜600℃である。また、炭酸リチウムや炭酸ナトリウムを電解質材料とする溶融炭酸塩系燃料電池の動作温度域は、600℃〜700℃である(例えば、特許文献1参照)。   In recent years, small-scale power generation using a thermoelectric conversion element using waste heat or a gas flame or a generator using gas and a solid fuel cell has been desired due to the necessity of energy saving and disaster prevention measures. Such a power generating element generates power most efficiently under a high temperature environment of 400 ° C. to 800 ° C. For example, the operating temperature range of a thermoelectric conversion element material mainly composed of silicide is 400 ° C. to 600 ° C. The operating temperature range of a molten carbonate fuel cell using lithium carbonate or sodium carbonate as an electrolyte material is 600 ° C. to 700 ° C. (see, for example, Patent Document 1).

このように、高温環境での動作を行う必要性から、発電材料の酸化防止や信頼性向上のために素子の被覆(封止や封着を含む)が必要とされており、高温用途に用いる封止材料の開発が強く求められている。   As described above, since it is necessary to operate in a high temperature environment, it is necessary to cover the element (including sealing and sealing) in order to prevent the power generation material from being oxidized and to improve reliability. There is a strong demand for the development of sealing materials.

従来の代表的なガラス封止材料として、非鉛系のビスマスホウ酸塩系ガラスやスズリン酸塩系ガラスに代表される低融点ガラスを用いた封着材料があり、特に封着温度が400〜500℃で、熱膨張係数が5〜10×10−6/℃の材料が広く使用されている(例えば、特許文献2参照)。 As a typical representative glass sealing material, there is a sealing material using low melting point glass typified by lead-free bismuth borate glass or tin phosphate glass, and particularly a sealing temperature of 400 to 500. A material having a thermal expansion coefficient of 5 to 10 × 10 −6 / ° C. is widely used (for example, see Patent Document 2).

また、1000℃付近で安定に用いられるガラス材料として石英ガラスがある。しかし、その熱膨張係数は4〜5×10−7/℃の値を示し、熱膨張係数が5〜10×10−6/℃であるセラミックスや金属素子との熱膨張係数差により、封着箇所が破壊源となるという問題がある。この問題を改善するために、石英ガラスにアルカリ金属、アルカリ土類金属またはホウ素などを添加することにより、ガラス転移温度を低下させ、かつ熱膨張を被封着物に近づけたアルカリ/アルカリ土類ケイ酸塩系ガラス封止材料が開発されている。 Moreover, there is quartz glass as a glass material that is stably used at around 1000 ° C. However, the thermal expansion coefficient shows a value of 4 to 5 × 10 −7 / ° C., and due to the difference in thermal expansion coefficient with ceramics and metal elements having a thermal expansion coefficient of 5 to 10 × 10 −6 / ° C., sealing is performed. There is a problem that the location becomes a source of destruction. In order to remedy this problem, alkali / alkaline earth silica whose glass transition temperature is lowered and thermal expansion is close to the material to be sealed is added by adding alkali metal, alkaline earth metal or boron to quartz glass. Acid-based glass sealing materials have been developed.

また、アルカリ成分を忌避する素子に対しては、アルカリ成分を含まない無アルカリガラスが提供されている。この無アルカリガラスは、軟化温度を低下させるため、ホウ素を5〜10%程度含有している(例えば、特許文献3参照)。   Further, non-alkali glass that does not contain an alkali component is provided for an element that avoids the alkali component. This alkali-free glass contains about 5 to 10% of boron in order to lower the softening temperature (see, for example, Patent Document 3).

特開2012−129516号公報JP 2012-129516 A 特開2007−031258号公報JP 2007-031258 A 特開平9−169538号公報JP-A-9-169538

特許文献2に記載のような低融点ガラスを用いた封着材料では、封着温度が400〜500℃程度であるため、400〜800℃といった高温環境下では軟化や意図しない結晶化が発生してしまい、封着材料としての性能を維持することができないという課題があった。また、従来のアルカリ/アルカリ土類ケイ酸塩系ガラス封止材料では、高温になるとアルカリ金属およびアルカリ土類金属に由来したイオンの移動が起こり、絶縁性が低下するという課題があった。また、従来の無アルカリガラスでは、アルカリ金属やアルカリ土類金属による絶縁性の低下を防ぐことはできるが、熱膨張係数が3〜4×10−6/℃と低い値を示すため、セラミックスや金属素子との熱膨張係数差により、封着箇所が破壊源となるという課題があった。また、ホウ素を有しているため、化学的耐久性が低いという課題もあった。 In the sealing material using the low melting point glass as described in Patent Document 2, since the sealing temperature is about 400 to 500 ° C., softening or unintentional crystallization occurs in a high temperature environment of 400 to 800 ° C. Therefore, there is a problem that the performance as a sealing material cannot be maintained. In addition, the conventional alkali / alkaline earth silicate glass sealing material has a problem in that, when the temperature becomes high, migration of ions derived from the alkali metal and the alkaline earth metal occurs, resulting in a decrease in insulation. In addition, the conventional alkali-free glass can prevent a decrease in insulation due to alkali metal or alkaline earth metal, but has a low coefficient of thermal expansion of 3-4 × 10 −6 / ° C. Due to the difference in thermal expansion coefficient with the metal element, there is a problem that the sealed portion becomes a source of destruction. Moreover, since it has boron, there also existed a subject that chemical durability was low.

このような課題から、高温環境用のガラス封止材料は、ガラス転移温度が400℃〜800℃といった高い熱的特性を有し、かつ、ガラス、セラミック、金属などから構成される被封止物と近い、1〜20×10−6/℃の範囲の熱膨張係数を有する必要がある。さらに、高温環境下での電気伝導性の問題から、ガラスの構成元素にアルカリ金属やアルカリ土類金属を含まないことが望ましい。また、化学的耐久性の問題から、ホウ素を含まないことが望ましい。 Because of these problems, glass sealing materials for high temperature environments have high thermal characteristics such as glass transition temperatures of 400 ° C. to 800 ° C., and are to be sealed composed of glass, ceramics, metals, and the like. It is necessary to have a coefficient of thermal expansion in the range of 1 to 20 × 10 −6 / ° C., which is close to Furthermore, it is desirable that the glass does not contain an alkali metal or an alkaline earth metal from the problem of electrical conductivity in a high temperature environment. Moreover, it is desirable not to contain boron from the viewpoint of chemical durability.

本発明は、このような課題に着目してなされたもので、400℃〜800℃といった高温環境下でも使用することができ、絶縁性および耐久性に優れたスズ亜鉛シリカリン酸塩系ガラスおよび高温環境用ガラス封止材料を提供することを目的としている。   The present invention has been made paying attention to such a problem, and can be used even in a high temperature environment such as 400 ° C. to 800 ° C., and has a tin zinc silica phosphate glass excellent in insulation and durability, and a high temperature. It aims at providing the glass sealing material for environment.

上記目的を達成するために、本発明に係るスズ亜鉛シリカリン酸塩系ガラスは、実質的にホウ素、アルカリ金属およびアルカリ土類金属を含有せず、5〜80モル%のZnOと、0.1〜80モル%のSnOと、5〜50モル%のSiOと、10〜60モル%のPとから成る主成分を有することを特徴とする。 In order to achieve the above object, the tin zinc silica phosphate glass according to the present invention is substantially free of boron, alkali metal and alkaline earth metal, contains 5 to 80 mol% ZnO, and 0.1 80 mole% of SnO, and SiO 2 of 5 to 50 mol%, and having a major component consisting of 10 to 60 mol% of P 2 O 5 Prefecture.

本発明に係るスズ亜鉛シリカリン酸塩系ガラスは、5〜80モル%のZnOと、0.1〜80モル%のSnOと、5〜50モル%のSiOと、10〜60モル%のPとから成る主成分を有することにより、400〜800℃の焼成温度を有し、ガラス転移温度直前において5〜15×10−6/℃程度の熱膨張係数を有する。このため、ガラス、セラミック、金属などから構成される被封止物の熱膨張係数(例えば、1〜20×10−6/℃)と近い熱膨張係数を有しているため、焼成過程における焼結割れや、ガラスと被封止物との接合部の剥離等を防ぐことができ、耐久性に優れている。 Tin zinc Shirikarin silicate based glass according to the present invention, a 5 to 80 mol% of ZnO, and SnO 0.1 to 80 mol%, and SiO 2 of 5 to 50 mol%, 10 to 60 mole% of P By having a main component composed of 2 O 5, it has a firing temperature of 400 to 800 ° C. and a thermal expansion coefficient of about 5 to 15 × 10 −6 / ° C. just before the glass transition temperature. For this reason, since it has a thermal expansion coefficient close to the thermal expansion coefficient (for example, 1 to 20 × 10 −6 / ° C.) of an object to be sealed made of glass, ceramic, metal, etc., It can prevent cracking and peeling of the joint between the glass and the object to be sealed, and is excellent in durability.

また、主成分の組成比を変化させることにより、軟化温度や焼成温度を容易に調整できるため、使用する環境温度に柔軟に対応可能である。これにより、被封止物との熱膨張係数のマッチングや熱的安定性をより高めることができ、さらに耐久性を高めることができる。実質的にホウ素を含まないため、ホウ素を含むものと比べて、優れた化学的耐久性を有している。また、実質的にアルカリ金属およびアルカリ土類金属を含まないため、高温環境下でも絶縁性が低下せず、優れた絶縁性を有している。なお、アルカリ土類金属は、アルカリ金属に比べイオン半径が大きく電気伝導への寄与が小さい。このため、高温での電気伝導性を重要視しない使用法においては、マグネシウムやカルシウムなどのアルカリ土類金属を含有していてもよい。また、高温での電気伝導性を全く考慮しない使用法においては、リチウムやナトリウムなどのアルカリ金属を含有していてもよい。   Further, since the softening temperature and the firing temperature can be easily adjusted by changing the composition ratio of the main component, it is possible to flexibly cope with the environmental temperature to be used. Thereby, matching of a thermal expansion coefficient with a to-be-sealed thing and thermal stability can be improved more, and durability can be improved further. Since it does not substantially contain boron, it has excellent chemical durability compared to those containing boron. In addition, since it does not substantially contain alkali metal and alkaline earth metal, the insulation does not deteriorate even under a high temperature environment and has excellent insulation. Note that alkaline earth metals have a larger ionic radius and less contribution to electrical conduction than alkali metals. For this reason, in the usage method which does not attach importance to the electrical conductivity at high temperature, you may contain alkaline-earth metals, such as magnesium and calcium. Moreover, in the usage method which does not consider the electrical conductivity at high temperature, you may contain alkali metals, such as lithium and sodium.

本発明に係るスズ亜鉛シリカリン酸塩系ガラスで、ZnOは熱膨張係数を低下させる効果を有し、その含有量は5〜80モル%、特に30〜60モル%が好ましい。ZnOが80モル%より多いと、ガラスの軟化温度が低下し過ぎてしまう。また、SnOも熱膨張係数を低下させる効果を有し、その含有量は0.1〜80モル%、特に5〜40モル%が好ましい。SnOが0.1モル%より少なくなると、ガラスの粘性に大きな影響を与えなくなり、SnOが80モル%を超えると、ガラスの軟化温度が低下しすぎ、ガラスの熱膨張係数が大きくなりすぎてしまう。なお、この組成範囲でZnOおよびSnOの組成比を調整することにより、熱膨張係数を適切に制御することができ、被封止物との間に発生する割れや剥離等を防止することができる。   In the tin zinc silica phosphate glass according to the present invention, ZnO has an effect of lowering the thermal expansion coefficient, and its content is preferably 5 to 80 mol%, particularly preferably 30 to 60 mol%. When there is more ZnO than 80 mol%, the softening temperature of glass will fall too much. SnO also has an effect of reducing the thermal expansion coefficient, and its content is preferably 0.1 to 80 mol%, particularly preferably 5 to 40 mol%. If the SnO content is less than 0.1 mol%, the glass viscosity will not be greatly affected. If the SnO content exceeds 80 mol%, the glass softening temperature will be too low and the glass thermal expansion coefficient will be too large. . In addition, by adjusting the composition ratio of ZnO and SnO within this composition range, the thermal expansion coefficient can be appropriately controlled, and cracks, peeling, etc. occurring between the objects to be sealed can be prevented. .

SiOはガラス形成酸化物であり、ガラス転移温度や焼成温度を上昇させる効果を有する。また、熱膨張係数を下げ、ガラスの安定性を向上させる効果も有している。SiOの含有量が5モル%未満の場合、ガラス転移温度の上昇が低く、また熱膨張係数に与える影響も小さくなる。また、SiOの含有量が50モル%を超えると、ガラスの粘性が上がり、ガラスの熔融温度が上昇し過ぎる。熱膨張係数、ガラスの安定性、熔融性等を考慮すると、SiOの含有量は、10〜50モル%がより好ましい。 SiO 2 is a glass-forming oxide and has the effect of increasing the glass transition temperature and the firing temperature. It also has the effect of reducing the coefficient of thermal expansion and improving the stability of the glass. When the content of SiO 2 is less than 5 mol%, the increase in the glass transition temperature is low and the influence on the thermal expansion coefficient is also small. If the content of SiO 2 exceeds 50 mol%, raise the viscosity of the glass, melting temperature of the glass is too elevated. Considering the thermal expansion coefficient, the stability of the glass, the meltability, etc., the content of SiO 2 is more preferably 10 to 50 mol%.

は、ガラスの網目を形成する酸化物である。Pの含有量が10モル%未満の場合、ガラス化が困難になり、封止用組成物として使用できなくなる。また、Pの含有量が60モル%を超えると、ガラスの熱膨張係数が大きくなりすぎる。焼成温度、熱膨張係数等を考慮すると、Pの含有量は、25〜40モル%がより好ましい。なお、ここでの焼成温度とは、当該ガラスを粉末状にした試料を、示差熱分析装置(DTA)を用いて10℃/分の速度で昇温して得られる熱収支曲線のうち、熱収支曲線の第一吸熱部が示すガラス転移温度から熱収支曲線の発熱部が最高(結晶化ピーク温度)を示す範囲の温度とする。 P 2 O 5 is an oxide that forms a glass network. When the content of P 2 O 5 is less than 10 mol%, vitrification becomes difficult and the composition cannot be used as a sealing composition. If the content of P 2 O 5 exceeds 60 mol%, the thermal expansion coefficient of the glass becomes too large. Considering the firing temperature, the thermal expansion coefficient, etc., the content of P 2 O 5 is more preferably 25 to 40 mol%. The firing temperature here is a heat balance curve obtained by heating a sample of the glass in powder form at a rate of 10 ° C./min using a differential thermal analyzer (DTA). The temperature ranges from the glass transition temperature indicated by the first endothermic portion of the balance curve to the maximum temperature (crystallization peak temperature) of the heat generating portion of the heat balance curve.

なお、この組成範囲でSiOおよびPの組成比を調整することにより、ガラス転移温度や軟化温度を制御することができ、低融点ガラスで問題となっていた、低い軟化温度によるガラス封止材料の流動変形による素子破壊を防止することができる。 In addition, by adjusting the composition ratio of SiO 2 and P 2 O 5 within this composition range, the glass transition temperature and the softening temperature can be controlled, and a glass with a low softening temperature, which has been a problem with low melting glass. It is possible to prevent element destruction due to flow deformation of the sealing material.

本発明に係るスズ亜鉛シリカリン酸塩系ガラスは、ZnO、SnO、SiOおよびPを主成分とするが、これら以外にも他の成分を添加していてもよい。ただしこの場合には、前記主成分の含有量が、全成分の60重量%以上であることが好ましい。また、添加可能な成分として、例えばAlやCaO(高温での電気伝導性を重要視しない場合)等のガラスを安定化させる成分を含有することが好ましい。Alを含有する場合には、前記主成分100モル%に対して、副成分として20モル%未満、特に1〜15モル%のAlを含むことが好ましい。Alの含有量が20モル%を超えると、ガラスの粘性が高くなりやすい。 The tin zinc silica phosphate glass according to the present invention contains ZnO, SnO, SiO 2 and P 2 O 5 as main components, but other components may be added in addition to these. However, in this case, the content of the main component is preferably 60% by weight or more of the total components. Further, as a possible additional components, for example, Al 2 0 3 and CaO preferably contains a glass component for stabilizing such (if not emphasized electrical conductivity at high temperatures). When Al 2 O 3 is contained, it is preferable that less than 20 mol%, particularly 1 to 15 mol% of Al 2 0 3 is contained as a subcomponent with respect to 100 mol% of the main component. When the content of Al 2 O 3 exceeds 20 mol%, the viscosity of the glass tends to increase.

本発明に係る高温環境用ガラス封止材料は、本発明に係るスズ亜鉛シリカリン酸塩系ガラスの粉末から成る、または、前記スズ亜鉛シリカリン酸塩系ガラスの粉末50〜100体積%と耐火性フィラーの粉末0〜50体積%とを有することを特徴とする。   The glass sealing material for high temperature environment according to the present invention is composed of the powder of tin zinc silica phosphate glass according to the present invention, or the powder of 50 to 100% by volume of the tin zinc silica phosphate glass and the refractory filler. It is characterized by having 0 to 50 volume% of the powder.

本発明に係る高温環境用ガラス封止材料は、熱膨張係数が適合する材料に対しては、封着材料として、本発明に係るスズ亜鉛シリカリン酸塩系ガラスを単独で使用することができる。また、熱膨張係数が適合しない材料、例えば内燃機関用途の部品として用いられる窒化ケイ素(熱膨張係数2.6×10−6/℃)等を封着する場合には、本発明に係るスズ亜鉛シリカリン酸塩系ガラスに、低膨張材料からなる耐火性フィラーの粉末を加えて複合化することにより熱膨張係数を調整して使用することができる。また、熱膨張係数の調整以外にも、例えば機械的強度の向上のために、結晶化ガラスとして使用してもよい。また、耐火性フィラーの粉末以外にも、バインダー、可塑剤、有機溶剤等を添加してペースト状にされてもよい。 The glass encapsulating material for high temperature environment according to the present invention can use the tin zinc silica phosphate glass according to the present invention alone as a sealing material for a material having a suitable thermal expansion coefficient. Further, when sealing a material having an incompatible thermal expansion coefficient, for example, silicon nitride (thermal expansion coefficient 2.6 × 10 −6 / ° C.) used as a component for an internal combustion engine, tin zinc according to the present invention. It can be used by adjusting the coefficient of thermal expansion by adding a powder of a refractory filler made of a low expansion material to silica phosphate glass to form a composite. In addition to adjusting the thermal expansion coefficient, for example, it may be used as crystallized glass in order to improve mechanical strength. In addition to the refractory filler powder, a binder, a plasticizer, an organic solvent, or the like may be added to form a paste.

本発明によれば、400℃〜800℃といった高温環境下でも使用することができ、絶縁性および耐久性に優れたスズ亜鉛シリカリン酸塩系ガラスおよび高温環境用ガラス封止材料を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, it can be used also in high temperature environments, such as 400 to 800 degreeC, and it provides the tin zinc silica phosphate glass excellent in insulation and durability, and the glass sealing material for high temperature environments. it can.

以下、本発明の実施の形態のスズ亜鉛シリカリン酸塩系ガラスおよび高温環境用ガラス封止材料について、実施例に基づいて説明する。
本発明の実施の形態のスズ亜鉛シリカリン酸塩系ガラスは、ZnO源として酸化亜鉛を、SnO源として酸化スズを、SiO源として二酸化ケイ素を、P源としてリン酸水素二アンモニウムを、Al源として酸化アルミニウムを使用している。
Hereinafter, the tin zinc silica phosphate glass and the glass sealing material for high temperature environment according to embodiments of the present invention will be described based on examples.
The tin zinc silica phosphate glass according to the embodiment of the present invention includes zinc oxide as a ZnO source, tin oxide as a SnO source, silicon dioxide as a SiO 2 source, and diammonium hydrogen phosphate as a P 2 O 5 source. Aluminum oxide is used as the Al 2 O 3 source.

本発明の実施の形態のスズ亜鉛シリカリン酸塩系ガラスは、これらの原料を所望のガラスになるべく調合し、白金もしくはアルミナ坩堝に投入し、電気加熱炉内で1000〜1600℃、15〜180分間の加熱溶融を行った後、急冷を行い、ガラス化することにより製造される。   In the tin zinc silica phosphate glass of the embodiment of the present invention, these raw materials are prepared so as to become a desired glass, put into a platinum or alumina crucible, and 1000 to 1600 ° C. for 15 to 180 minutes in an electric heating furnace. After being heated and melted, it is rapidly cooled and vitrified.

製造したガラスを粉砕し、篩を用いて分級し、100μm以下のガラス粉末を高温環境用封止ガラスとした。この高温環境用封止ガラスに対し、バインダー、可塑剤、有機溶剤を混合してスラリー状の高温環境用ガラス封止材料を調製した。なお、必要に応じて耐火性フィラー粉末を添加して混合してもよい。   The produced glass was pulverized and classified using a sieve, and a glass powder of 100 μm or less was used as a high-temperature environment sealing glass. A binder, a plasticizer, and an organic solvent were mixed with this high-temperature environment sealing glass to prepare a slurry-like high-temperature environment glass sealing material. In addition, you may add and mix a refractory filler powder as needed.

本発明の実施の形態のスズ亜鉛シリカリン酸塩系ガラスについて、熱膨張係数の測定および結晶化の確認を行った。表1に、使用したスズ亜鉛シリカリン酸塩系ガラスの組成を示す。それぞれ表1の組成を有するように原料を調合し、白金またはアルミナ坩堝を使用して、空気中1000℃〜1600℃で30〜60分間溶融し、その後、室温〜200℃に熱せられた鉄板上に融液を流し出すことにより、試料1〜4のスズ亜鉛シリカリン酸塩系ガラスを製造した。   The tin-zinc silica phosphate glass of the embodiment of the present invention was measured for thermal expansion coefficient and confirmed for crystallization. Table 1 shows the composition of the tin-zinc silica phosphate glass used. On the iron plate which prepared the raw material so that it might have a composition of Table 1, respectively, and was melt | dissolved in air at 1000 to 1600 degreeC for 30 to 60 minutes using platinum or an alumina crucible, and was then heated to room temperature to 200 degreeC The tin zinc silica phosphate glass of Samples 1 to 4 was manufactured by pouring the melt into the glass.

Figure 2014043370
Figure 2014043370

表1に示す各試料の熱膨張係数の評価を行った。熱膨張係数の評価では、各ガラス試料1〜4をブロック状に切断し、熱機械分析装置(株式会社パーキンエルマー製;熱機械分析装置「TMA7」)を用いて、5℃/分で温度上昇させたときの30℃〜ガラス転移温度以下での伸び量から平均熱膨張係数を算出した。算出された各試料の熱膨張係数を、表1に示す。表1に示すように、各ガラス試料のガラス転移温度直前までの熱膨張係数は、6.2×10−6/℃〜5.5×10−6/℃であった。この熱膨張係数は、ガラス、セラミック、金属などから構成される被封止物の熱膨張係数(1〜20×10−6/℃)と近いため、各試料1〜4を封止材料として使用すると、焼成過程における焼結割れや、ガラスと被封止物との接合部の剥離等を防ぐことができ、耐久性に優れたものになると考えられる。 The thermal expansion coefficient of each sample shown in Table 1 was evaluated. In the evaluation of the thermal expansion coefficient, each glass sample 1 to 4 is cut into blocks, and the temperature rises at 5 ° C./min using a thermomechanical analyzer (manufactured by PerkinElmer, Inc .; thermomechanical analyzer “TMA7”) The average coefficient of thermal expansion was calculated from the amount of elongation at 30 ° C. to the glass transition temperature or less. Table 1 shows the calculated thermal expansion coefficient of each sample. As shown in Table 1, the thermal expansion coefficient of the temperature to the glass transition temperature immediately prior to each glass sample was 6.2 × 10 -6 /℃~5.5×10 -6 / ℃ . Since this thermal expansion coefficient is close to the thermal expansion coefficient (1 to 20 × 10 −6 / ° C.) of an object to be sealed composed of glass, ceramic, metal, etc., each sample 1 to 4 is used as a sealing material. Then, it is possible to prevent sintering cracks in the firing process, separation of the joint between the glass and the object to be sealed, and the like, which are excellent in durability.

表1に示す各試料について、400〜800℃といった高温環境においてガラス封止材料として使用可能かどうかを評価するために、800℃までに結晶化が発生するかどうかの確認を行った。結晶化の有無は、各ガラス試料をアルミナ乳鉢を用いて粉砕し、示差熱分析装置(株式会社リガク製;示差熱分析装置「Thermo plus TG8120」)を用いて、10℃/mimで1000℃まで昇温を行い、結晶化による発熱で示差熱曲線が最高を示す温度から判断した。800℃までの結晶化ピーク発生の有無を、表1に示す。   About each sample shown in Table 1, in order to evaluate whether it can be used as a glass sealing material in a high temperature environment of 400-800 degreeC, it confirmed whether crystallization generate | occur | produced by 800 degreeC. The presence or absence of crystallization was determined by crushing each glass sample using an alumina mortar and using a differential thermal analyzer (manufactured by Rigaku Corporation; differential thermal analyzer “Thermo plus TG8120”) up to 1000 ° C. at 10 ° C./mim. The temperature was raised, and the temperature was judged from the temperature at which the differential heat curve showed the highest heat generation due to crystallization. Table 1 shows the presence or absence of the occurrence of crystallization peaks up to 800 ° C.

表1に示すように、試料1においては、800℃以下でわずかな発熱ピークが認められたが、測定後の試料は緻密に焼結されており、割れ等は認められなかった。測定後の試料1をX線回折測定した結果、ガラス成分が残留する結晶化ガラスであることが確認された。   As shown in Table 1, in Sample 1, a slight exothermic peak was observed at 800 ° C. or lower, but the sample after the measurement was densely sintered and no cracks were observed. As a result of X-ray diffraction measurement of the sample 1 after the measurement, it was confirmed that it was crystallized glass in which the glass component remained.

また、試料2〜4においては、800℃以下の温度では結晶析出による発熱ピークは認められなかった。このことから、試料2〜4を400℃〜800℃の高温環境での封止材料として使用した場合、結晶化による割れや剥離が抑制され、被封着物と良好な接合部を形成するものと考えられる。試料2〜4は、800℃で使用した場合には軟化してしまうと考えられるが、流れ出さないような環境であれば、十分に使用可能であると考えられる。このような軟化流動を示す場合には、例えば、高温にした際の被封着物との(もしくは被封着物間の)熱膨張差による変形や応力を吸収したり、低温〜高温のサイクルにおいて、自己修復性を示したりすることができる。このため、試料2〜4は、特に、室温から高温までを繰り返す熱電変換素子や、ガスおよび固体燃料電池などに、好適に使用することができる。   In Samples 2 to 4, no exothermic peak due to crystal precipitation was observed at a temperature of 800 ° C. or lower. From this, when the samples 2 to 4 are used as a sealing material in a high temperature environment of 400 ° C. to 800 ° C., cracking and peeling due to crystallization are suppressed, and a good bonded portion is formed with the sealed object. Conceivable. Samples 2 to 4 are considered to soften when used at 800 ° C., but are considered to be sufficiently usable in an environment that does not flow out. In the case of showing such a softening flow, for example, it absorbs deformation and stress due to a difference in thermal expansion with (or between) the sealed object at high temperature, or in a cycle from low to high temperature, Self-healing ability. For this reason, the samples 2 to 4 can be suitably used particularly for thermoelectric conversion elements that repeat from room temperature to high temperature, gas and solid fuel cells, and the like.

表1の試料3および4のスズ亜鉛シリカリン酸塩系ガラスを用いて、p型硅素化合物半導体およびn型硅素化合物半導体の封止を行い、剥離や割れについて検討を行った。使用するガラス試料は、表1の試料3の、37ZnO−3SnO−20SiO−40P−5Al(以下、「試料5」とする)、および表1の試料4の、27ZnO−3SnO−30SiO−40P−5Al(以下、「試料6」とする)の2種類を準備した。また、比較試料として、30ZnO−70P(以下、「試料7」とする)と市販のSiO−B系(以下、「試料8」とする)の2種類のガラス試料も準備した。 Using the tin-zinc silica phosphate glass of Samples 3 and 4 in Table 1, the p-type silicon compound semiconductor and the n-type silicon compound semiconductor were sealed, and peeling and cracking were examined. Glass sample used is, the sample 3 in Table 1, 37ZnO-3SnO-20SiO 2 -40P 2 O 5 -5Al 2 O 3 ( hereinafter referred to as "sample 5"), and in Table 1 of the sample 4, 27ZnO- Two types of 3SnO-30SiO 2 -40P 2 O 5 -5Al 2 O 3 (hereinafter referred to as “sample 6”) were prepared. Further, as a comparative sample, two types of glass samples of 30ZnO-70P 2 O 5 (hereinafter referred to as “sample 7”) and a commercially available SiO 2 —B 2 O 3 system (hereinafter referred to as “sample 8”) are also used. Got ready.

まず、試料5〜8をそれぞれアルミナ乳鉢を用いて粉砕し、篩を通過させて粒径100μm以下のガラス粉末とし、これを封止ガラスとした。次に、この封止ガラスの粉末に、各々、バインダー、可塑剤、有機溶剤を所定量加えてボールミル混合することにより、スラリー化した。得られたスラリーをドクターブレード法でシート状に成形してガラス封止材料を得た。   First, samples 5 to 8 were each pulverized using an alumina mortar and passed through a sieve to obtain glass powder having a particle size of 100 μm or less, which was used as sealing glass. Next, a predetermined amount of a binder, a plasticizer, and an organic solvent were added to the encapsulated glass powder, and the mixture was ball milled to form a slurry. The obtained slurry was formed into a sheet shape by a doctor blade method to obtain a glass sealing material.

被封着物としてp型珪化物半導体(熱膨張係数6×10−6/℃)およびn型珪化物半導体(熱膨張係数10×10−6/℃)を用いた。このp型硅化物半導体とn型硅化物半導体との間に、シート状のガラス封止材料を配置し、p型珪化物半導体−ガラス−n型珪化物半導体からなる成形体を作製した。その後、作製した成形体を、400℃〜1000℃で焼成し、p型珪化物半導体−ガラス−n型珪化物半導体からなる封着物を得た。 A p-type silicide semiconductor (thermal expansion coefficient 6 × 10 −6 / ° C.) and an n-type silicide semiconductor (thermal expansion coefficient 10 × 10 −6 / ° C.) were used as the objects to be sealed. A sheet-shaped glass sealing material was disposed between the p-type silicide semiconductor and the n-type silicide semiconductor to produce a molded body made of p-type silicide semiconductor-glass-n-type silicide semiconductor. Then, the produced molded object was baked at 400 degreeC-1000 degreeC, and the sealing material which consists of a p-type silicide semiconductor-glass-n-type silicide semiconductor was obtained.

得られたp型珪化物半導体−ガラス−n型珪化物半導体からなる封着物について、焼結割れおよび界面剥離の有無を調べた結果、比較試料の試料7および試料8では、焼成過程におけるガラスの軟化による不十分な接合や熱膨張係数の不一致に起因すると考えられる、焼成体の層間剥離や割れが発生した。これに対し、試料5および試料6では、焼結割れや、ガラスとp型およびn型の珪化物半導体との接合部などにおける層間剥離などの不具合が発生しておらず、高温度域における耐熱性、熱的安定性が向上することが確認された。   As a result of investigating the presence or absence of sintering cracks and interfacial debonding of the obtained sealing material composed of p-type silicide semiconductor-glass-n-type silicide semiconductor, Samples 7 and 8 of the comparative samples were found to have glass in the firing process. Delamination and cracking of the fired body, which are thought to be caused by insufficient bonding due to softening and mismatch of thermal expansion coefficients, occurred. On the other hand, Sample 5 and Sample 6 are free from defects such as sintering cracks and delamination at the joint between glass and p-type and n-type silicide semiconductors. It was confirmed that the property and thermal stability were improved.

本発明に係るスズ亜鉛シリカリン酸塩系ガラスおよび高温環境用ガラス封止材料は、廃熱やガス炎などの高温度域(400〜600℃)の熱エネルギーを電気エネルギーに変換する熱電変換素子などに使用することができる。また、中温型燃料電池の動作温度域(600〜700℃)にも適応可能である。従って、本発明に係るスズ亜鉛シリカリン酸塩系ガラスおよび高温環境用ガラス封止材料は、発電素子の信頼性、耐久性およびモジュールの高集積化を可能にするだけではなく、種々の技術分野で、高温環境下の封止材料として広く適用することができる。
The tin zinc silica phosphate glass and the glass sealing material for high temperature environment according to the present invention include a thermoelectric conversion element that converts heat energy in a high temperature range (400 to 600 ° C.) such as waste heat and gas flame into electric energy. Can be used for Moreover, it is applicable also to the operating temperature range (600-700 degreeC) of a medium temperature type fuel cell. Therefore, the tin zinc silica phosphate glass and the glass sealing material for high temperature environment according to the present invention not only enable the reliability and durability of the power generation element and the high integration of the module, but also in various technical fields. It can be widely applied as a sealing material in a high temperature environment.

Claims (4)

実質的にホウ素、アルカリ金属およびアルカリ土類金属を含有せず、5〜80モル%のZnOと、0.1〜80モル%のSnOと、5〜50モル%のSiOと、10〜60モル%のPとから成る主成分を有することを特徴とするスズ亜鉛シリカリン酸塩系ガラス。 Substantially boron, containing no alkali metals and alkaline earth metals, and 5-80 mole% of ZnO, and SnO 0.1 to 80 mol%, and SiO 2 of 5 to 50 mol%, 10 to 60 A tin-zinc silica phosphate glass characterized by having a main component composed of mol% of P 2 O 5 . 前記主成分の含有量が、全成分の60重量%以上であることを特徴とする請求項1記載のスズ亜鉛シリカリン酸塩系ガラス。   The tin zinc silica phosphate glass according to claim 1, wherein the content of the main component is 60% by weight or more of the total components. 前記主成分100モル%に対して、副成分として20モル%未満のAlを含むことを特徴とする請求項1または2記載のスズ亜鉛シリカリン酸塩系ガラス。 3. The tin-zinc silica phosphate glass according to claim 1, comprising less than 20 mol% of Al 2 O 3 as a minor component with respect to 100 mol% of the main component. 請求項1乃至3のいずれか1項に記載のスズ亜鉛シリカリン酸塩系ガラスの粉末から成る、または、前記スズ亜鉛シリカリン酸塩系ガラスの粉末50〜100体積%と耐火性フィラーの粉末0〜50体積%とを有することを特徴とする高温環境用ガラス封止材料。
It consists of the powder of the tin zinc silica phosphate glass of any one of Claims 1 thru | or 3, or 50-100 volume% of the powder of the said tin zinc silica phosphate glass, and the powder 0 of a refractory filler The glass sealing material for high temperature environments characterized by having 50 volume%.
JP2012185986A 2012-08-27 2012-08-27 Tin-zinc-silica phosphate-based glass and glass sealing material for high temperature environment Pending JP2014043370A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012185986A JP2014043370A (en) 2012-08-27 2012-08-27 Tin-zinc-silica phosphate-based glass and glass sealing material for high temperature environment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012185986A JP2014043370A (en) 2012-08-27 2012-08-27 Tin-zinc-silica phosphate-based glass and glass sealing material for high temperature environment

Publications (1)

Publication Number Publication Date
JP2014043370A true JP2014043370A (en) 2014-03-13

Family

ID=50394930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012185986A Pending JP2014043370A (en) 2012-08-27 2012-08-27 Tin-zinc-silica phosphate-based glass and glass sealing material for high temperature environment

Country Status (1)

Country Link
JP (1) JP2014043370A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021163520A (en) * 2020-03-30 2021-10-11 大阪瓦斯株式会社 Method for repairing seal member and fuel cell system
JP2021163521A (en) * 2020-03-30 2021-10-11 大阪瓦斯株式会社 Method for repairing seal member and fuel cell system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021163520A (en) * 2020-03-30 2021-10-11 大阪瓦斯株式会社 Method for repairing seal member and fuel cell system
JP2021163521A (en) * 2020-03-30 2021-10-11 大阪瓦斯株式会社 Method for repairing seal member and fuel cell system
JP7349950B2 (en) 2020-03-30 2023-09-25 大阪瓦斯株式会社 Seal member repair method and fuel cell system
JP7399013B2 (en) 2020-03-30 2023-12-15 大阪瓦斯株式会社 Seal member repair method and fuel cell system

Similar Documents

Publication Publication Date Title
DK178886B1 (en) Glass ceramic joint material and its use
JP5787928B2 (en) Barium and strontium-free vitreous or glass-ceramic bonding materials and their use
CN102341357B (en) Crystallizing glass solder and use thereof
JP5818454B2 (en) High temperature glass solder and its use
Sabato et al. Glass-ceramic sealant for solid oxide fuel cells application: Characterization and performance in dual atmosphere
CN103553559B (en) CaO-B2O3-SiO2The composite of glass+aluminium nitride ceramics and preparation method
CN104176936B (en) Vitreous or at least partially crystalline joining material and uses of same
JP2008516881A (en) Glass and glass ceramic sealant composition
JP5679657B2 (en) Glass ceramic seals for use in solid oxide fuel cells
CN108585517A (en) A kind of magnalium silicon systems low thermal coefficient of expansion microcrystal glass material and preparation method thereof
Tong et al. Influence of Al2O3 addition on the properties of Bi2O3–BaO–SiO2–RxOy (R= K, Zn, etc.) glass sealant
CN106746686A (en) A kind of high temperature resistant aluminium paste glass dust and preparation method thereof
CN101585660B (en) Preparation of lead-silicon-aluminum glass powder for passivation encapsulation of semiconductor
KR101457614B1 (en) Glass composition for solid oxide fuel cell sealant, sealant and the manufacturing method using the same
JP2014043370A (en) Tin-zinc-silica phosphate-based glass and glass sealing material for high temperature environment
US8541327B1 (en) Barium oxide, calcium oxide, magnesia, and alkali oxide free glass
JP6105938B2 (en) Sodium battery
KR20180126444A (en) Crystalline glass composition
US9272943B2 (en) Medium temperature solid fuel cell glass packaging material
KR102119318B1 (en) Composition of sealing glass for solid oxide fuel cell and sealing paste comprising the same
CN101759370A (en) Lead-free glass powder solder and preparation method and application thereof
JP5756724B2 (en) Low softening point glass powder
Lawita et al. Effect of Bi2O3 on Thermal Properties of Barium-free Glass-Ceramic sealants in the CaO-MgO-B2O3-Al2O3-SiO2 System
KR20200064819A (en) Sealing glass composition and solid oxide fuel cell using the same
Lawita et al. Influence of Bi2O3 on Crystalline Phase Content and Thermal Properties of Åkermanite and Diopside Based Glass-Ceramic Sealant for SOFCs