JP5756724B2 - Low softening point glass powder - Google Patents

Low softening point glass powder Download PDF

Info

Publication number
JP5756724B2
JP5756724B2 JP2011211529A JP2011211529A JP5756724B2 JP 5756724 B2 JP5756724 B2 JP 5756724B2 JP 2011211529 A JP2011211529 A JP 2011211529A JP 2011211529 A JP2011211529 A JP 2011211529A JP 5756724 B2 JP5756724 B2 JP 5756724B2
Authority
JP
Japan
Prior art keywords
softening point
glass powder
low softening
point glass
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011211529A
Other languages
Japanese (ja)
Other versions
JP2013071862A (en
Inventor
延仁 武島
延仁 武島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okamoto Glass Co Ltd
Original Assignee
Okamoto Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okamoto Glass Co Ltd filed Critical Okamoto Glass Co Ltd
Priority to JP2011211529A priority Critical patent/JP5756724B2/en
Publication of JP2013071862A publication Critical patent/JP2013071862A/en
Application granted granted Critical
Publication of JP5756724B2 publication Critical patent/JP5756724B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Glass Compositions (AREA)

Description

本発明は、例えば、エレクトロニクス分野において封着用として主にガスや湿気を防止する目的で使用される低軟化点ガラス粉末に関する。   The present invention relates to a low softening point glass powder used mainly for the purpose of preventing gas and moisture as sealing in the electronics field, for example.

エレクトロニクス分野における封着は、電子部品の安定作動において重要な工程であり、現在は酸化鉛を含有したガラス粉末が使用されている。低軟化点ガラス粉末は、また、絶縁を達成することができるため、太陽光発電用セルをはじめ電子部品の電極封着材としても使用される。   Sealing in the electronics field is an important process for stable operation of electronic components, and glass powder containing lead oxide is currently used. Since the low softening point glass powder can achieve insulation, it is also used as an electrode sealant for electronic parts such as solar power generation cells.

しかし、近年鉛の有する毒性が問題となっている。鉛は人体に摂取されると排出しにくく、体内に蓄積する特徴を有するため、多量摂取した際には、鉛中毒を引き起こすことが知られている。   However, the toxicity of lead has become a problem in recent years. When lead is ingested by the human body, it is known that it is difficult to excrete and accumulates in the body.

また、鉛は酸性雨により廃棄された電子部品から地下に浸透し、土壌汚染、地下水汚染を引き起こすとされている。このため、環境規制等が整備されている欧州においては、電子部材への鉛の使用が規制されている。   In addition, lead penetrates into the underground from electronic components discarded due to acid rain, causing soil contamination and groundwater contamination. For this reason, in Europe where environmental regulations are established, the use of lead in electronic components is regulated.

このような背景から、鉛を使用しない封着可能な低軟化点ガラス粉末の開発が強く要求されている。   Against this background, there is a strong demand for the development of sealable low-softening point glass powder that does not use lead.

これまでに、実用的な無鉛低軟化点ガラス材料としてビスマス系ガラス(特許文献1)が提案されているが、ビスマスは鉛の副産物であるため現在管理物質に取り上げられている。また、バナジウム系ガラスの使用も提案されているが、低軟化点および耐水性を達成するために酸化アンチモンや二酸化テルル、酸化ビスマス等の重金属元素を含有しており、これらの物質も管理物質として指定されるなど必ずしも安全なガラス粉末ではなかった。(特許文献2〜4)   So far, bismuth-based glass (Patent Document 1) has been proposed as a practical lead-free low softening point glass material, but bismuth is currently taken up as a controlled substance because it is a by-product of lead. The use of vanadium-based glass has also been proposed, but it contains heavy metal elements such as antimony oxide, tellurium dioxide and bismuth oxide in order to achieve a low softening point and water resistance. It was not necessarily a safe glass powder as specified. (Patent Documents 2 to 4)

特開平10-139478号報JP 10-139478 特開2004-250276号報JP 2004-250276 A 特開2006-342044号報JP 2006-342044 特開2007-320822号報Japanese Unexamined Patent Publication No. 2007-320822

鉛、酸化アンチモン、二酸化テルル、酸化ビスマスの重金属物質を含有しない安全な低軟化点ガラス粉末であることを出発点とし、軟化点が500℃以下で、熱的に安定で、かつ耐水性に優れた低軟化点ガラス粉末を提供することを目的とする。   Starting from a safe, low softening point glass powder that does not contain heavy metal substances such as lead, antimony oxide, tellurium dioxide, and bismuth oxide, with a softening point of 500 ° C or less, thermally stable, and excellent in water resistance Another object is to provide a low softening point glass powder.

上記目的を達成するため本発明に係るガラス粉末は、重量%でV2O5を25〜55%、BaOを30〜35%、SrOを6〜8%、MgOを0〜1%、ZnOを4.5〜5.5%含有し、更にB2O3の2〜8%もしくはP2O5の10〜25%のどちらか一方を含有し、実質的に鉛、アンチモン、テルル、ビスマスの酸化物を含有しない。 In order to achieve the above object, the glass powder according to the present invention comprises, by weight, 25 to 55% of V 2 O 5 , 30 to 35% of BaO, 6 to 8% of SrO, 0 to 1% of MgO, and ZnO. Containing 4.5 to 5.5%, further containing either 2 to 8% of B 2 O 3 or 10 to 25% of P 2 O 5 and substantially containing oxides of lead, antimony, tellurium and bismuth do not do.

V2O5はガラスの骨格を形成する成分であり、低融点、耐水性、熱的安定性を達成するために重要な成分である。最適な含有量は25〜55wt%である。含有量が25wt%未満では500℃以下の軟化点を達成することができず、55wt%を超えると耐水性を達成することができない。 V 2 O 5 is a component that forms a glass skeleton, and is an important component for achieving a low melting point, water resistance, and thermal stability. The optimum content is 25-55 wt%. When the content is less than 25 wt%, a softening point of 500 ° C. or less cannot be achieved, and when it exceeds 55 wt%, water resistance cannot be achieved.

BaOおよびSrOは、本発明を達成するために最も重要な成分であり、二種を含有させることが必須である。BaOは、溶融性を向上し、低軟化点を実現し、さらに耐水性を著しく向上させるため30〜35wt%含有させることが好ましい。BaOが30wt%未満では、良好な耐水性を得ることができず、35wt%を超えると低軟化性を達成することが困難となる。SrOは、耐水性を向上させるため、6〜8wt%の範囲で含有させることが好ましい。SrOが6wt%未満では、BaO添加以上の耐水性を達成することができず、8wt%を超えると熱的安定性が悪化する。BaOおよびSrOは合量で36〜43wt%含有させることが好ましい。低融性を実現するためには、比較的イオン半径の近い成分を二種以上混入させることが好ましく、優れた耐水性を実現するためにはイオン半径の大きな成分を含有させることが好ましい。そのため、BaOおよびSrOの二種を含有させることが必須となる。また、熱的な安定性を実現するためには、イオン半径の大きな成分と小さな成分を混入させることが好ましい。そのため、熱的な安定性を確保するためにMgOを0〜1wt%含有させることができる。MgOが1wt%を超えると、耐水性が悪化する。必要な特性に合わせて、これらの含有バランスを整えることによって優れた特性が達成される。RO(R=Ba、Sr、Mg)成分は、合量で36wt%未満では、耐水性、熱的安定性を達成することができず、44wt%を超えると低融性、耐水性、熱的安定性を達成することが困難となる。   BaO and SrO are the most important components for achieving the present invention, and it is essential to contain two kinds. BaO is preferably contained in an amount of 30 to 35 wt% in order to improve the meltability, realize a low softening point, and remarkably improve the water resistance. If BaO is less than 30 wt%, good water resistance cannot be obtained, and if it exceeds 35 wt%, it is difficult to achieve low softening properties. SrO is preferably contained in the range of 6 to 8 wt% in order to improve water resistance. If SrO is less than 6 wt%, water resistance higher than that of BaO cannot be achieved, and if it exceeds 8 wt%, the thermal stability deteriorates. BaO and SrO are preferably contained in a total amount of 36 to 43 wt%. In order to realize low meltability, it is preferable to mix two or more components having relatively close ionic radii, and in order to achieve excellent water resistance, it is preferable to include components having a large ionic radius. Therefore, it is essential to contain two kinds of BaO and SrO. In order to achieve thermal stability, it is preferable to mix a component having a large ionic radius and a component having a small ionic radius. Therefore, 0 to 1 wt% of MgO can be contained in order to ensure thermal stability. When MgO exceeds 1 wt%, the water resistance deteriorates. Excellent properties are achieved by adjusting the content balance according to the required properties. RO (R = Ba, Sr, Mg) components cannot achieve water resistance and thermal stability if the total amount is less than 36 wt%, and if it exceeds 44 wt%, low meltability, water resistance, thermal It becomes difficult to achieve stability.

ZnOは、化学的耐久性の向上と膨張係数を低下させるため、4.5〜5.5wt%の範囲で含有させることができる。ZnOが4.5wt%以下では化学的耐久性が低下し、5.5wt%以上ではガラスの熱的安定性が低くなってしまう。   ZnO can be contained in the range of 4.5 to 5.5 wt% in order to improve the chemical durability and reduce the expansion coefficient. When ZnO is 4.5 wt% or less, the chemical durability is lowered, and when it is 5.5 wt% or more, the thermal stability of the glass is lowered.

P2O5は、ガラスの結晶化傾向を抑制する成分であり、含有させることが好ましい。最適な含有量は、10〜25wt%である。P2O5が10wt%以下では、ガラス粉末を焼成する際結晶を析出しやすく、また耐水性が悪化する。25wt%以上では低融性を達成することが困難となる。 P 2 O 5 is a component that suppresses the crystallization tendency of glass, and is preferably contained. The optimum content is 10-25 wt%. When P 2 O 5 is 10 wt% or less, crystals are likely to precipitate when the glass powder is fired, and the water resistance deteriorates. If it is 25 wt% or more, it is difficult to achieve low meltability.

B2O3は、P2O5と同様に結晶化傾向を抑制する成分であり、P2O5の代わりに含有させることができる。添加量が2wt%以下では耐水性を達成することが困難となり、8wt%を超えると軟化点が上昇しすぎてしまう。 B 2 O 3 is a component that suppresses the tendency to crystallize similarly to P 2 O 5, and can be contained in place of P 2 O 5 . If the addition amount is 2 wt% or less, it becomes difficult to achieve water resistance, and if it exceeds 8 wt%, the softening point will increase too much.

本発明は、上述のように適切な組成範囲において、熱的に安定でかつ耐水性に優れたガラス粉末を提供するものである。実験の結果、本発明に係るガラス粉末は、軟化点が500℃以下で、かつ熱的な安定性を示す△T(結晶化温度-ガラス転移温度)が120℃以上で、かつ70℃の蒸留水中に1時間浸漬した際の重量減少が0.5%以下となる。   The present invention provides a glass powder that is thermally stable and excellent in water resistance in an appropriate composition range as described above. As a result of the experiment, the glass powder according to the present invention has a softening point of 500 ° C. or lower, a ΔT (crystallization temperature-glass transition temperature) showing thermal stability of 120 ° C. or higher, and a 70 ° C. distillation. The weight loss when immersed in water for 1 hour is 0.5% or less.

(軟化点が500℃以下であること)
電子部品等は高温に曝されると性能劣化を引起してしまうため、封着などはより低温で行われることが望ましい。また、封着温度が高い場合には、より低温で溶けるガラスを使用することにより封着に要する時間を大幅に短縮することができる。
(Softening point is 500 ° C or less)
Since electronic parts and the like are subject to performance degradation when exposed to high temperatures, it is desirable that sealing or the like be performed at a lower temperature. Further, when the sealing temperature is high, the time required for sealing can be greatly shortened by using glass that melts at a lower temperature.

(熱的に安定であること)
熱的に安定である(結晶化しない)ことにより、結晶質に見られる粒界が存在せず、より高い密封度を得ることができる。
(Thermal stability)
By being thermally stable (not crystallizing), there is no grain boundary seen in the crystalline, and a higher sealing degree can be obtained.

(耐水性に優れること)
耐水性が劣ると水との反応によりガラスが溶出し、密封を壊してしまうばかりか、これが他の電子部品の性能劣化を招いてしまうため、耐水性は優れていなければならない。
(Excellent water resistance)
If the water resistance is inferior, the glass will be eluted by reaction with water and the seal will be broken, and this will cause the performance of other electronic components to deteriorate, so the water resistance must be excellent.

以下、実施例をあげて本発明を具体的に説明するが、本発明はこれに限定されるものではない。   Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto.

原料酸化物として、V2O5、RCO3(R=Mg、Ca、Sr、Ba)、ZnO、メタリン酸原料を表1に示す比率(重量%)で混合した原料バッチを、白金坩堝に充填し、電気炉内で1000℃、60分の条件で溶融した後、溶融物をステンレス板上に流し出しガラスを得た。得られたガラスは、ハンマーミルによって粉砕され、目開き100μmのふるいによって分級した。上記ふるいを通過したガラス粉末をポットミルによって48時間微粉砕を行い、平均粒径1〜3μmのガラス粉末を得た。   As a raw material oxide, a raw material batch in which V2O5, RCO3 (R = Mg, Ca, Sr, Ba), ZnO, and metaphosphoric acid raw materials were mixed in the ratio (% by weight) shown in Table 1 was filled in a platinum crucible, and an electric furnace After melting at 1000 ° C. for 60 minutes, the melt was poured onto a stainless steel plate to obtain glass. The obtained glass was pulverized by a hammer mill and classified by a sieve having an opening of 100 μm. The glass powder that passed through the sieve was pulverized for 48 hours with a pot mill to obtain glass powder having an average particle size of 1 to 3 μm.

得られたガラス粉末は、ガラス転移温度、軟化点、結晶化温度を測定し、熱的安定性を示すΔTを算出した。また、耐水性の評価を行った。その結果を表1に示す。   The glass powder obtained was measured for glass transition temperature, softening point, and crystallization temperature, and ΔT indicating thermal stability was calculated. Moreover, water resistance was evaluated. The results are shown in Table 1.

<ガラス転移温度、軟化点、結晶化温度、熱的安定性>
示差熱分析(DTA)により、リファレンスにα-アルミナを用い加熱速度10K/分で測定を行った。得られたDTA曲線の微分曲線の第一吸熱ピークをガラス転移温度、第二吸熱ピークを軟化点、第一発熱ピークを結晶化温度とした。熱的安定性を示すΔTは、結晶化温度からガラス転移温度を差から算出した。
<Glass transition temperature, softening point, crystallization temperature, thermal stability>
By differential thermal analysis (DTA), α-alumina was used as a reference, and measurement was performed at a heating rate of 10 K / min. The first endothermic peak of the differential curve of the obtained DTA curve was defined as the glass transition temperature, the second endothermic peak as the softening point, and the first exothermic peak as the crystallization temperature. ΔT, which indicates thermal stability, was calculated from the difference in glass transition temperature from the crystallization temperature.

<耐水性>
溶融後得られたガラス片を徐冷し、ひずみを完全に除去した。その後、ガラス片を1mm3に加工し、500mLの蒸留水が入った容器の中に浸漬させた。このとき、ガラス片の表面を同一状態になるように、#320のサンドペーパーで研磨を行った。容器中の蒸留水が70℃になるよう加熱し、一時間放置した。一時間加熱後、120℃に設定された恒温槽で水分を乾燥させ、初期重量に対する重量減少率を算出した。

Figure 0005756724
<Water resistance>
The glass piece obtained after melting was gradually cooled to completely remove the strain. Thereafter, the glass piece was processed to 1 mm 3 and immersed in a container containing 500 mL of distilled water. At this time, polishing was performed with # 320 sandpaper so that the surfaces of the glass pieces were in the same state. The distilled water in the vessel was heated to 70 ° C. and left for 1 hour. After heating for 1 hour, the moisture was dried in a thermostat set to 120 ° C., and the weight reduction rate relative to the initial weight was calculated.
Figure 0005756724

本発明の低軟化点ガラス粉末を電極材として使用した場合、電極(金属)の酸化防止と基板への密着性が向上する。また、太陽光発電用セルにおいては良好なファイヤースルー性能と、オーミック接続性が向上する。ここで、「ファイヤースルー」とは、セル表面に存在する反射防止膜をガラスが溶解することによって反射防止膜を突き抜け、セルと電極材を接合する性能を言う。また、「オーミック接続性」とは、セルと電極材を抵抗なく接合させる能力を言う。   When the low softening point glass powder of the present invention is used as an electrode material, the oxidation prevention of the electrode (metal) and the adhesion to the substrate are improved. Moreover, in the photovoltaic power generation cell, good fire-through performance and ohmic connectivity are improved. Here, “fire through” refers to the ability of glass to melt through the antireflection film present on the cell surface to penetrate the antireflection film and join the cell and the electrode material. “Ohmic connectivity” refers to the ability to join a cell and an electrode material without resistance.

本発明の低軟化点ガラス粉末を用いて電極材を製造する場合、例えば、有機ビヒクル、有機溶媒、ガラスフリット、銀粉を混錬し、スクリーン印刷によって電極回路を形成することができる。   When producing an electrode material using the low softening point glass powder of the present invention, for example, an organic vehicle, an organic solvent, glass frit, and silver powder can be kneaded and an electrode circuit can be formed by screen printing.

Claims (4)

実質的に鉛、アンチモン、テルル、ビスマスの酸化物を含有しないガラス粉末において、
重量%でV2O5を25〜55%、BaOを30〜35%、SrOを6〜8%、MgOを0〜1%、ZnOを4.5〜5.5%含有し、更にB 2 O 3 もしくはP 2 O 5 のどちらか一方を含有し、B 2 O 3 を含有する場合にはその含有量を2〜8%とし、P 2 O 5 を含有する場合にはその含有量を10〜25%とすることを特徴とする低軟化点ガラス粉末。
In glass powders substantially free of lead, antimony, tellurium and bismuth oxides,
Containing 25 to 55% V 2 O 5 by weight, 30 to 35% BaO, 6 to 8% SrO, 0 to 1% MgO, 4.5 to 5.5% ZnO, and B 2 O 3 or P When containing either 2 O 5 or B 2 O 3 , the content is 2 to 8%, and when P 2 O 5 is contained, the content is 10 to 25%. A low softening point glass powder characterized by
前記ガラス粉末の軟化点が500℃以下で、かつ熱的な安定性を示す△T(結晶化温度-ガラス転移温度)が120℃以上で、かつ70℃の蒸留水中に1時間浸漬した際の重量減少が0.5%以下であることを特徴とする請求項1に記載の低軟化点ガラス粉末。   When the glass powder has a softening point of 500 ° C. or lower and ΔT (crystallization temperature-glass transition temperature) showing thermal stability is 120 ° C. or higher and immersed in distilled water at 70 ° C. for 1 hour. The low softening point glass powder according to claim 1, wherein the weight loss is 0.5% or less. 請求項1又は2に記載の低軟化点ガラス粉末を含有したことを特徴とする電極材。   An electrode material comprising the low softening point glass powder according to claim 1. ガスや湿気の侵入を防止する封着材において、請求項1又は2に記載の低軟化点ガラス粉末を含有したことを特徴とする封着材。 A sealing material for preventing intrusion of gas or moisture , comprising the low softening point glass powder according to claim 1 or 2.
JP2011211529A 2011-09-27 2011-09-27 Low softening point glass powder Active JP5756724B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011211529A JP5756724B2 (en) 2011-09-27 2011-09-27 Low softening point glass powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011211529A JP5756724B2 (en) 2011-09-27 2011-09-27 Low softening point glass powder

Publications (2)

Publication Number Publication Date
JP2013071862A JP2013071862A (en) 2013-04-22
JP5756724B2 true JP5756724B2 (en) 2015-07-29

Family

ID=48476635

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011211529A Active JP5756724B2 (en) 2011-09-27 2011-09-27 Low softening point glass powder

Country Status (1)

Country Link
JP (1) JP5756724B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3078643A4 (en) * 2013-12-04 2017-07-26 Hitachi, Ltd. Sealed structure, multi-layer heat-insulating glass and glass container
CN108238723A (en) * 2016-12-26 2018-07-03 西安宏星电子浆料科技有限责任公司 Solar energy crystal silicon battery back silver paste lead-free electronic glass powder and preparation method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5574518B2 (en) * 2008-03-17 2014-08-20 日本電気硝子株式会社 Sealing material
JP5190672B2 (en) * 2008-03-17 2013-04-24 日本電気硝子株式会社 Vanadium-based glass composition and vanadium-based material
JP5354444B2 (en) * 2008-06-17 2013-11-27 日本電気硝子株式会社 Sealing material
TWI391362B (en) * 2009-03-27 2013-04-01 Hitachi Powdered Metals A glass composition and a conductive mortar composition using the same, an electrode wire member, and an electronic component
JP5713422B2 (en) * 2009-10-16 2015-05-07 日本電気硝子株式会社 Dye-sensitized solar cell glass composition and dye-sensitized solar cell material

Also Published As

Publication number Publication date
JP2013071862A (en) 2013-04-22

Similar Documents

Publication Publication Date Title
TWI544496B (en) Lead-free conductive composition for solar cell electrodes
TWI363443B (en) Lithium ion conductive solid electrolyte and a method for manufacturing the same
JP5919673B2 (en) Solid electrolyte and method for producing the same
JP5856178B2 (en) Lead-free conductive paste composition for solar cells
Tatsumisago et al. Electrical and mechanical properties of glass and glass-ceramic electrolytes in the system Li3BO3–Li2SO4
JP2002109955A (en) Sulfide crystallized glass, solid electrolyte, and fully solid secondary cell
TWI460142B (en) Insulated with lead - free low - melting glass paste
KR101765927B1 (en) Electrically-conductive paste composition for solar cell
TW201114717A (en) Glass frit for formation of electrode, and electrically conductive paste for formation of electrode and solar cell each utilizing same
JP6425450B2 (en) Glass electrolyte
CN104769758A (en) All-solid ion secondary cell
JP6027765B2 (en) Lead-free conductive paste composition for solar cells
TW201425260A (en) Conductive paste composition for solar cell
TW201020225A (en) Oxide sintered compact for producing transparent conductive film
KR101832580B1 (en) Method for producing sulfide solid electrolyte
JP5756724B2 (en) Low softening point glass powder
JP7176937B2 (en) Method for producing composite solid electrolyte
CN105174728A (en) Glass powder for crystalline silicon solar cell front silver paste and preparation method thereof
JP5756723B2 (en) Low softening point glass powder
CN112864461B (en) Method for producing sulfide solid electrolyte material
JP5935001B2 (en) Low softening point glass powder
CN108806828A (en) For the conductive paste of solar cell, solar cell and its manufacturing method and solar cell module
TWI582054B (en) Alkali selenogermanate glasses
JP5849382B2 (en) Sulfide solid electrolyte material
Lee et al. V 2 O 5-P 2 O 5-ZnO-Sb 2 O 3 Glass Frit Materials with BaO and Al 2 O 3 for Large-sized Dye-sensitized Solar Cell Sealing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140512

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150526

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150601

R150 Certificate of patent or registration of utility model

Ref document number: 5756724

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250