JP2014032914A - Air electrode for metal air battery and metal air battery - Google Patents

Air electrode for metal air battery and metal air battery Download PDF

Info

Publication number
JP2014032914A
JP2014032914A JP2012173995A JP2012173995A JP2014032914A JP 2014032914 A JP2014032914 A JP 2014032914A JP 2012173995 A JP2012173995 A JP 2012173995A JP 2012173995 A JP2012173995 A JP 2012173995A JP 2014032914 A JP2014032914 A JP 2014032914A
Authority
JP
Japan
Prior art keywords
air
air electrode
electrode
metal
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012173995A
Other languages
Japanese (ja)
Inventor
Hirofumi Iizaka
浩文 飯坂
Manabu Konno
学 今野
Yosuke Horiuchi
洋輔 堀内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cataler Corp
Toyota Motor Corp
Original Assignee
Cataler Corp
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cataler Corp, Toyota Motor Corp filed Critical Cataler Corp
Priority to JP2012173995A priority Critical patent/JP2014032914A/en
Publication of JP2014032914A publication Critical patent/JP2014032914A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a metal air battery capable of satisfying both discharge capacity and cycle characteristics.SOLUTION: An air electrode for a metal air battery is an air electrode constituting a metal air battery including an air electrode using oxygen as an active material, a negative electrode, and an electrolyte layer interposed between the air electrode and the negative electrode. The air electrode for a metal air battery contains at least an alloy catalyst of gold and nickel and a carbon material supporting the alloy catalyst, and the ratio of the alloy catalyst relative to the total amount of the alloy catalyst and the carbon material is 5-20 wt.%. A metal air battery includes the air electrode.

Description

本発明は、金属空気電池用空気極、及び金属空気電池に関する。   The present invention relates to an air electrode for a metal-air battery and a metal-air battery.

正極活物質として酸素を利用する空気電池は、エネルギー密度が高い、小型化及び軽量化が容易である等の利点を有する。そのため、現在、広く使用されているリチウム二次電池を超える高容量電池として注目を集めている。空気電池としては、例えば、リチウム空気電池、マグネシウム空気電池、亜鉛空気電池等の金属空気電池が知られている。
金属空気電池は、空気極において酸素の酸化還元反応が行われ、負極において金属の酸化還元反応が行われることで、充放電が可能である。例えば、伝導イオンが一価の金属イオンである金属空気電池(二次電池)では、以下のような充放電反応が進むと考えられる。尚、下記式においてMは金属種を示す。
An air battery using oxygen as a positive electrode active material has advantages such as high energy density, easy size reduction and weight reduction. Therefore, it is attracting attention as a high-capacity battery that exceeds the lithium secondary battery that is currently widely used. As an air battery, metal air batteries, such as a lithium air battery, a magnesium air battery, and a zinc air battery, are known, for example.
The metal-air battery can be charged and discharged by performing an oxygen redox reaction at the air electrode and a metal redox reaction at the negative electrode. For example, in a metal air battery (secondary battery) in which conductive ions are monovalent metal ions, the following charge / discharge reaction is considered to proceed. In the following formula, M represents a metal species.

[放電時]
負極 : M → M + e
正極 : 2M + O + 2e → M
4M + O + 4e → 2M
[充電時]
負極 : M + e → M
正極 : M → 2M + O + 2e
2MO → 4M + O + 4e
[During discharge]
Negative electrode: M → M + + e
Positive electrode: 2M + + O 2 + 2e → M 2 O 2
4M + + O 2 + 4e → 2M 2 O
[When charging]
Negative electrode: M + + e → M
Positive electrode: M 2 O 2 → 2M + + O 2 + 2e
2M 2 O → 4M + + O 2 + 4e

金属空気電池は、一般的に、炭素材及びバインダー(結着剤)を含む空気極と、負極活物質(金属や合金等)を含む負極と、空気極及び負極の間に介在する電解質とを備える構造を有する。金属空気電池は、通常、さらに、空気極の集電を行う空気極集電体と、負極の集電を行う負極集電体とを有する。   A metal-air battery generally includes an air electrode containing a carbon material and a binder (binder), a negative electrode containing a negative electrode active material (metal, alloy, etc.), and an electrolyte interposed between the air electrode and the negative electrode. It has a structure to provide. The metal-air battery usually further includes an air electrode current collector that collects the air electrode and a negative electrode current collector that collects the negative electrode.

空気極は、一般的に、炭素材を主体として形成されるが、空気極における酸素還元反応の促進や、その他電池特性の向上を目的として、金属や合金等の触媒を用いることが提案されている(例えば、特許文献1〜2、非特許文献1)。
非特許文献1には、40wt%のAu触媒を担持したカーボンで正極を形成することによって、触媒を担持していないカーボンを用いる場合と比較して、過電圧低減や放電容量増加といった効果がある旨が開示されている。
また、特許文献1には、空気極触媒を含有する空気極層を備える空気電池であって、該空気極触媒が、炭素に支持された、Au、Ag、Pt、Pd、Rh、Ir、Ru、Os、Mn、Ni及びこれら金属元素の合金を含むものが開示されている。
一方、金属空気電池ではないが、特許文献3には、炭素を含有する導電助剤が混合された正極において、該導電助剤には、Pt、Au、Ag、Pd、Ir、及びRhから選ばれる1種以上を含む金属粒子が担持されている、リチウム二次電池が開示されている。
The air electrode is generally formed mainly of a carbon material, but it has been proposed to use a catalyst such as a metal or an alloy for the purpose of promoting an oxygen reduction reaction in the air electrode and improving other battery characteristics. (For example, Patent Documents 1 and 2, Non-Patent Document 1).
Non-Patent Document 1 has the effect of reducing the overvoltage and increasing the discharge capacity compared to the case of using carbon not supporting a catalyst by forming a positive electrode with carbon supporting 40 wt% Au catalyst. Is disclosed.
Patent Document 1 discloses an air battery including an air electrode layer containing an air electrode catalyst, and the air electrode catalyst is supported on carbon by Au, Ag, Pt, Pd, Rh, Ir, Ru. , Os, Mn, Ni, and alloys containing these metal elements are disclosed.
On the other hand, although it is not a metal-air battery, Patent Document 3 discloses that in a positive electrode mixed with a carbon-containing conductive assistant, the conductive assistant is selected from Pt, Au, Ag, Pd, Ir, and Rh. There is disclosed a lithium secondary battery in which metal particles containing one or more of the above are supported.

特開2012−015016号公報JP 2012-015016 A WO2007/023964号公報WO2007 / 023964 特開2004−335310号公報JP 2004-335310 A

Electrochemical and Solid−State Letters,13(6)A69−A72(2010),The Influence of Catalysts on Discharge and Charge Voltages of Rechargeable Li−Oxygen BatteriesElectrochemical and Solid-State Letters, 13 (6) A69-A72 (2010), The Influence of Catalysts and Charge Voltages of Rechargeable Li-Oxygen Li-Oxygen.

上記したように、従来、空気極の触媒としてAuを用いることが検討されている。本発明者らが、Au金属を空気極触媒として用いた金属空気電池について、評価実験を実施したところ、高い放電容量が得られるものの、サイクル特性が非常に低いことが確認された。
しかしながら、従来、Auを空気極触媒として用いた場合のサイクル特性については検討されていない。また、Au合金を空気極触媒として用いる場合において、その合金の種類や、炭素材に対する合金の担持量等について、従来、充分に検討されておらず、特にサイクル特性の向上効果が得られるAu合金触媒や担持量について、解明されていない。
As described above, conventionally, the use of Au as an air electrode catalyst has been studied. When the inventors conducted an evaluation experiment on a metal-air battery using Au metal as an air electrode catalyst, it was confirmed that the cycle characteristics were very low although a high discharge capacity was obtained.
However, conventionally, the cycle characteristics when Au is used as the air electrode catalyst have not been studied. In addition, when an Au alloy is used as an air electrode catalyst, the alloy type, the amount of the alloy supported on the carbon material, etc. have not been sufficiently studied so far, and an Au alloy that can particularly improve the cycle characteristics is obtained. The catalyst and supported amount are not elucidated.

本発明は上記実情を鑑みて成し遂げられたものであり、本発明の目的は、放電容量とサイクル特性を両立することが可能な金属空気電池を提供することである。   The present invention has been accomplished in view of the above circumstances, and an object of the present invention is to provide a metal-air battery capable of achieving both discharge capacity and cycle characteristics.

本発明の金属空気電池用空気極は、酸素を活物質とする空気極と、負極と、前記空気極及び前記負極の間に介在する電解質層と、を有する金属空気電池を構成する空気極であって、
金とニッケルとの合金触媒、及び、該合金触媒を担持する炭素材を少なくとも含み、前記合金触媒と前記炭素材の合計量に対する前記合金触媒の割合が、5〜20重量%であることを特徴とする。
本発明の空気極によれば、金(Au)による放電容量増加効果を得つつ、サイクル特性を向上させることができる。
An air electrode for a metal-air battery according to the present invention is an air electrode constituting a metal-air battery having an air electrode using oxygen as an active material, a negative electrode, and an electrolyte layer interposed between the air electrode and the negative electrode. There,
The alloy catalyst of gold and nickel and a carbon material supporting the alloy catalyst are at least included, and the ratio of the alloy catalyst to the total amount of the alloy catalyst and the carbon material is 5 to 20% by weight. And
According to the air electrode of the present invention, it is possible to improve cycle characteristics while obtaining the effect of increasing the discharge capacity by gold (Au).

前記合金触媒において、金とニッケルの合計量に対するニッケルの割合は、1〜40at%であることが好ましい。   In the alloy catalyst, the ratio of nickel to the total amount of gold and nickel is preferably 1 to 40 at%.

本発明の金属空気電池は、酸素を活物質とする空気極と、負極と、前記空気極及び前記負極の間に介在する電解質層と、を有する金属空気電池であって、前記空気極が上記本発明の空気極であることを特徴とするものである。   The metal-air battery of the present invention is a metal-air battery having an air electrode using oxygen as an active material, a negative electrode, and an electrolyte layer interposed between the air electrode and the negative electrode, the air electrode being the above It is an air electrode of the present invention.

本発明によれば、放電容量とサイクル特性を両立する金属空気電池を提供することが可能である。   According to the present invention, it is possible to provide a metal-air battery having both discharge capacity and cycle characteristics.

金属空気電池の一形態例を示す断面模式図である。It is a cross-sectional schematic diagram which shows one example of a metal air battery. 実施例及び比較例における空気極の製造プロセスフローを示す図である。It is a figure which shows the manufacturing process flow of the air electrode in an Example and a comparative example. 実施例1〜3及び比較例1〜3の1サイクル目及び2サイクル目の放電容量を示すグラフである。It is a graph which shows the discharge capacity of the 1st cycle of Examples 1-3 and Comparative Examples 1-3, and the 2nd cycle. 実施例1〜3の放電容量維持率を示すグラフである。It is a graph which shows the discharge capacity maintenance factor of Examples 1-3.

[金属空気電池用空気極]
本発明の金属空気電池用空気極(以下、単に、空気極ということがある)は、酸素を活物質とする空気極と、負極と、前記空気極及び前記負極の間に介在する電解質層と、を有する金属空気電池を構成する空気極であって、
金とニッケルとの合金触媒、及び、該合金触媒を担持する炭素材を少なくとも含み、前記合金触媒と前記炭素材の合計量に対する前記合金触媒の割合が、5〜20重量%であることを特徴とする。
[Air electrode for metal-air battery]
An air electrode for a metal-air battery of the present invention (hereinafter sometimes simply referred to as an air electrode) includes an air electrode using oxygen as an active material, a negative electrode, and an electrolyte layer interposed between the air electrode and the negative electrode. An air electrode constituting a metal-air battery having
The alloy catalyst of gold and nickel and a carbon material supporting the alloy catalyst are at least included, and the ratio of the alloy catalyst to the total amount of the alloy catalyst and the carbon material is 5 to 20% by weight. And

本発明の空気極は、上記したように金属空気電池を構成するものである。以下、リチウム空気電池を例に、図1を用いて、本発明の空気極を備えた金属空気電池について説明する。尚、本発明において金属空気電池の構造は、下記構造に限定されない。
図1に示す金属空気電池9では、酸素を活物質とする空気極(正極)1、金属(例えば、Li金属)からなる負極2、並びに、空気極1及び負極2の間で金属イオン(例えばLiイオン)の伝導を担う電解質層3が、空気極缶5及び負極缶6で構成される電池ケース内に収容されている。空気極缶5及び負極缶6は、ガスケット7により固定されており、電池ケースが封止されている。
The air electrode of the present invention constitutes a metal-air battery as described above. Hereinafter, a metal-air battery including an air electrode according to the present invention will be described using a lithium-air battery as an example with reference to FIG. In the present invention, the structure of the metal-air battery is not limited to the following structure.
In the metal-air battery 9 shown in FIG. 1, an air electrode (positive electrode) 1 using oxygen as an active material, a negative electrode 2 made of metal (for example, Li metal), and metal ions (for example, between the air electrode 1 and the negative electrode 2) The electrolyte layer 3 responsible for the conduction of (Li ions) is accommodated in a battery case composed of an air electrode can 5 and a negative electrode can 6. The air electrode can 5 and the negative electrode can 6 are fixed by a gasket 7 and the battery case is sealed.

空気極1は、酸素の酸化還元反応の場であり、空気極缶5に設けられた空気孔8から取り込まれた空気(酸素)が供給される。空気極1は、金とニッケルとの合金触媒(以下、Au−Ni合金触媒ということがある)を担持した炭素材を含む。該炭素材のAu−Ni合金触媒の担持量は、5〜20重量%である。空気極1は上記Au−Ni合金触媒及び炭素材に加えて、さらにバインダー(例えば、ポリテトラフルオロエチレン)を含んでいる。
空気極1には、空気極1の集電を行う空気極集電体4が設けられている。空気極集電体4は、多孔質構造を有する導電性材料(例えば、金属メッシュ)から構成されており、空気孔8から取り込まれた空気(酸素)が、空気集電体4を経て空気極1に供給可能となっている。
The air electrode 1 is a place for oxygen oxidation-reduction reaction, and is supplied with air (oxygen) taken from an air hole 8 provided in the air electrode can 5. The air electrode 1 includes a carbon material that supports an alloy catalyst of gold and nickel (hereinafter also referred to as an Au—Ni alloy catalyst). The amount of Au—Ni alloy catalyst supported on the carbon material is 5 to 20% by weight. The air electrode 1 further contains a binder (for example, polytetrafluoroethylene) in addition to the Au—Ni alloy catalyst and the carbon material.
The air electrode 1 is provided with an air electrode current collector 4 for collecting the air electrode 1. The air electrode current collector 4 is made of a conductive material (for example, a metal mesh) having a porous structure, and air (oxygen) taken in from the air holes 8 passes through the air current collector 4 to form an air electrode. 1 can be supplied.

負極2は、電極活物質である金属(例えば、Li金属)を含み、伝導イオン種である金属イオン(Liイオン)を吸蔵・放出可能である。   The negative electrode 2 contains a metal (for example, Li metal) that is an electrode active material, and can occlude and release metal ions (Li ions) that are conductive ion species.

電解質層3は、支持電解質塩(例えば、LiN(SOCF等のLi塩)を非水溶媒(例えば、N,N−ジエチル−N−メチル−N−(2−メトキシエチル)アンモニウムビス(トリフルオロメタンスルホニル)アミド等)に溶解した電解液を含んでいる。空気極1と負極2との間には、絶縁性及び多孔質構造を有するセパレータが配置されており(図示せず)、該セパレータの多孔質内に上記電解液が含浸されている。 The electrolyte layer 3 is composed of a supporting electrolyte salt (for example, a Li salt such as LiN (SO 2 CF 3 ) 2 ) and a nonaqueous solvent (for example, N, N-diethyl-N-methyl-N- (2-methoxyethyl) ammonium). An electrolyte solution dissolved in bis (trifluoromethanesulfonyl) amide). A separator having an insulating property and a porous structure is disposed between the air electrode 1 and the negative electrode 2 (not shown), and the electrolyte is impregnated in the porous portion of the separator.

本発明において、金属空気電池とは、酸素を活物質とする空気極と、負極と、空気極及び負極との間に介在する電解質層とを有するものであり、空気極において酸素の酸化還元反応が行われ、負極において金属の酸化還元反応が行われることで、充放電が可能なものであれば特に限定されず、例えば、リチウム空気電池、ナトリウム空気電池、カリウム空気電池、マグネシウム空気電池、カルシウム空気電池、アルミニウム空気電池、亜鉛空気電池、鉄空気電池等が挙げられる。   In the present invention, the metal-air battery has an air electrode using oxygen as an active material, a negative electrode, and an electrolyte layer interposed between the air electrode and the negative electrode. And is not particularly limited as long as it can be charged and discharged by performing a metal redox reaction at the negative electrode. For example, lithium-air battery, sodium-air battery, potassium-air battery, magnesium-air battery, calcium Examples include an air battery, an aluminum air battery, a zinc air battery, and an iron air battery.

本発明者らは、Auを空気極触媒として用いた金属空気電池が、高い放電容量を示すものの、サイクル特性が非常に低いことを確認した。具体的には、Au担持炭素材を用いて空気極を形成した場合、2サイクル目において放電容量が著しく低下することを確認した(後述の比較例2及び3参照)。
そして、本発明者らは、AuをNiと合金化し、且つ、Au−Ni合金粒子を5〜20重量%の割合で炭素材に担持させることによって、放電容量とサイクル特性を両立した空気極が得られることを見出した。
The present inventors have confirmed that a metal-air battery using Au as an air electrode catalyst exhibits a high discharge capacity but has a very low cycle characteristic. Specifically, when the air electrode was formed using an Au-supported carbon material, it was confirmed that the discharge capacity was significantly reduced in the second cycle (see Comparative Examples 2 and 3 described later).
Then, the present inventors have made an air electrode that has both discharge capacity and cycle characteristics by alloying Au with Ni and supporting Au—Ni alloy particles at a ratio of 5 to 20% by weight on a carbon material. It was found that it can be obtained.

上記Au−Ni合金触媒を担持した炭素材を用いることで、Au金属触媒を用いた場合と比較して、サイクル特性を向上させることができる理由は次のように推測される。
すなわち、Auは、酸素還元触媒として知られており、また、化学的に安定であるために酸化しにくく耐久性に優れるというメリットを有している。一方、Niは、酸素の脱離や解離を促進する効果を有するものの、脱離又は解離した酸素との結合を保ちやすいために酸化されやすく、触媒能の低下を招くおそれがある。しかしながら、AuとNiとを合金化することによって、酸素還元能を有し、酸化されにくく、酸素脱離反応を促進する合金触媒を得ることができると考えられる。
また、このようなAu−Ni合金を、5〜20重量%の割合で炭素材に担持させることによって、放電容量を確保しつつ、放電生成物である金属酸化物(例えば、リチウム酸化物)の酸素脱離を容易に進行させることができると考えられる。
従って、上記Au−Ni合金触媒を上記割合で担持した炭素材を用いることによって、放電容量を確保しつつ、放電生成物である金属酸化物の酸素脱離、すなわち、充電時の放電生成物の分解を容易に進行させ、サイクル特性を向上させることができると考えられる。
The reason why the cycle characteristics can be improved by using the carbon material carrying the Au—Ni alloy catalyst as compared with the case of using the Au metal catalyst is presumed as follows.
That is, Au is known as an oxygen reduction catalyst, and has the merit that it is difficult to oxidize and is excellent in durability because it is chemically stable. On the other hand, Ni has an effect of promoting the desorption and dissociation of oxygen, but is liable to be oxidized because it easily maintains the bond with the desorbed or dissociated oxygen, which may cause a decrease in catalytic ability. However, it is considered that by alloying Au and Ni, it is possible to obtain an alloy catalyst that has an oxygen reducing ability, is hardly oxidized, and promotes an oxygen desorption reaction.
Moreover, by supporting such an Au—Ni alloy on a carbon material at a ratio of 5 to 20% by weight, the discharge capacity of the metal oxide (for example, lithium oxide) is ensured while ensuring the discharge capacity. It is considered that oxygen desorption can easily proceed.
Therefore, by using the carbon material carrying the Au-Ni alloy catalyst in the above proportion, the discharge capacity of the metal oxide as a discharge product is secured while ensuring the discharge capacity, that is, the discharge product at the time of charging. It is considered that decomposition can be easily advanced and cycle characteristics can be improved.

Au−Ni合金触媒において、AuとNiとの合金比率は特に限定されないが、AuとNiの合計量に対するNiの割合は、サイクル特性の観点から、1at%以上であることが好ましく、また、放電容量の観点から、40at%以下であることが好ましい。
ここで、AuとNiの合計量に対するNiの割合とは、Au−Ni合金を構成するAuの原子数とNiの原子数の合計量を100at%とした時に、該合計量に対するNiの原子数の割合を意味し、(Ni原子数/Ni原子数+Au原子数)×100%より算出することができる。また、NiとAuの合金比率は、例えば、蛍光X線分析やEDX分析(エネルギー分散型X線分析)等の既知の手法により算出することができる。
In the Au—Ni alloy catalyst, the alloy ratio of Au and Ni is not particularly limited, but the ratio of Ni to the total amount of Au and Ni is preferably 1 at% or more from the viewpoint of cycle characteristics, and discharge. From the viewpoint of capacity, it is preferably 40 at% or less.
Here, the ratio of Ni to the total amount of Au and Ni is the number of Ni atoms relative to the total amount when the total amount of Au atoms and Ni atoms constituting the Au-Ni alloy is 100 at%. It can be calculated from (Ni atom number / Ni atom number + Au atom number) × 100%. The alloy ratio of Ni and Au can be calculated by a known method such as fluorescent X-ray analysis or EDX analysis (energy dispersive X-ray analysis).

上記Au−Ni合金触媒を担持する炭素材としては、導電性を有していればよく、電極を構成する導電性炭素材として公知の材料を用いることができる。例えば、ケッチェンブラック、アセチレンブラック等のカーボンブラック、カーボンナノチューブ等の炭素繊維、活性炭等を挙げることができる。   The carbon material supporting the Au—Ni alloy catalyst may be any material as long as it has conductivity, and a known material can be used as the conductive carbon material constituting the electrode. For example, carbon black such as ketjen black and acetylene black, carbon fiber such as carbon nanotube, activated carbon and the like can be mentioned.

本発明の空気極において、Au−Ni合金触媒と炭素材の合計量に対する合金触媒の割合(Au−Ni合金触媒の担持量ということがある)は、5〜20重量%である。Au−Ni合金触媒の担持量が上記範囲内であることによって、Au担持炭素材よりも優れたサイクル特性を得ることができる。
Au−Ni合金触媒の担持量は、融合結合プラズマ(ICP)発光分析を用いた測定によって算出することができる。
In the air electrode of the present invention, the ratio of the alloy catalyst to the total amount of the Au—Ni alloy catalyst and the carbon material (sometimes referred to as the amount of Au—Ni alloy catalyst supported) is 5 to 20% by weight. When the supported amount of the Au—Ni alloy catalyst is within the above range, cycle characteristics superior to those of the Au-supported carbon material can be obtained.
The supported amount of the Au—Ni alloy catalyst can be calculated by measurement using fusion coupled plasma (ICP) emission analysis.

Au−Ni合金触媒を炭素材に担持させる方法は特に限定されず、一般的な、炭素材に対する合金担持方法を採用することができる。例えば、まず、塩化金酸溶液と炭素材を攪拌し、水素バブリングを行うことで、炭素材に金を担持させる。その後、得られたAu担持炭素材と硝酸ニッケルとを攪拌し、水素バブリングを行うことで、Au担持炭素材にニッケルを担持させる。続いて、得られたAu/Ni担持炭素材を、不活性雰囲気下、熱処理(例えば、900℃)することで、Au−Ni合金触媒を炭素材に担持させることができる。   The method for supporting the Au—Ni alloy catalyst on the carbon material is not particularly limited, and a general alloy supporting method for the carbon material can be employed. For example, first, gold is supported on the carbon material by stirring the chloroauric acid solution and the carbon material and performing hydrogen bubbling. Thereafter, the obtained Au-supported carbon material and nickel nitrate are stirred and subjected to hydrogen bubbling, whereby nickel is supported on the Au-supported carbon material. Subsequently, the obtained Au / Ni-supported carbon material is heat-treated (for example, 900 ° C.) under an inert atmosphere, whereby the Au—Ni alloy catalyst can be supported on the carbon material.

本発明の空気極において、Au−Ni合金触媒を担持した炭素材の含有量は、特に限定されないが、例えば、空気極全体の重量を100重量%とした場合に、触媒の効果を充分に得る観点から、0.01重量%以上、特に5重量%以上であることが好ましく、放電容量の確保、導電性、機械的強度の観点から、90重量%以下、特に、50重量%以下であることが好ましい。   In the air electrode of the present invention, the content of the carbon material supporting the Au—Ni alloy catalyst is not particularly limited. For example, when the weight of the entire air electrode is 100% by weight, the effect of the catalyst is sufficiently obtained. From the viewpoint, it is preferably 0.01% by weight or more, and particularly preferably 5% by weight or more, and from the viewpoints of securing discharge capacity, conductivity, and mechanical strength, it is 90% by weight or less, particularly 50% by weight or less. Is preferred.

空気極は、上記Au−Ni合金触媒担持炭素材を固定化するバインダーを含有することが好ましい。バインダーとしては、例えば、ポリフッ化ビニリデン(PVdF)、ポリテトラフルオロエチレン(PTFE)、スチレン・ブタジエンゴム(SBRゴム)等を挙げることができる。空気極におけるバインダーの含有割合は、特に限定されるものではないが、空気極全体の重量を100wt%とした場合に、1重量%以上、特に5重量%以上であることが好ましく、40重量%以下、特に20重量%以下であることが好ましい。   The air electrode preferably contains a binder for fixing the Au—Ni alloy catalyst-carrying carbon material. Examples of the binder include polyvinylidene fluoride (PVdF), polytetrafluoroethylene (PTFE), styrene / butadiene rubber (SBR rubber), and the like. The content ratio of the binder in the air electrode is not particularly limited, but when the weight of the entire air electrode is 100 wt%, it is preferably 1 wt% or more, particularly preferably 5 wt% or more, and 40 wt% Hereinafter, it is particularly preferably 20% by weight or less.

空気極は、必要に応じて、さらに、上記Au−Ni合金触媒担持炭素材以外に、導電性材料や触媒等を含有していてもよい。
導電性材料としては、例えば、ケッチェンブラック、アセチレンブラック等のカーボンブラック、カーボンナノチューブ等の炭素質材料、ポリチアジル、ポリアセチレン等の導電性高分子等が挙げられる。
触媒としては、例えば、ニッケル、パラジウム及び白金等の白金族;コバルト、マンガン又は鉄等の遷移金属を含むペロブスカイト型酸化物;ルテニウム、イリジウム又はパラジウム等の貴金属酸化物を含む無機化合物;ポルフィリン骨格又はフタロシアニン骨格を有する金属配位有機化合物;二酸化マンガン(MnO)及び酸化セリウム(CeO)等の無機セラミックス;これらの材料を混合した複合材料等が挙げられる。
空気極の厚さは、金属空気電池の用途等により異なるものであるが、例えば2μm〜500μm、特に5μm〜300μmであることが好ましい。
The air electrode may further contain a conductive material, a catalyst, or the like in addition to the Au—Ni alloy catalyst-carrying carbon material as necessary.
Examples of the conductive material include carbon blacks such as ketjen black and acetylene black, carbonaceous materials such as carbon nanotubes, and conductive polymers such as polythiazyl and polyacetylene.
Examples of the catalyst include a platinum group such as nickel, palladium and platinum; a perovskite oxide containing a transition metal such as cobalt, manganese or iron; an inorganic compound containing a noble metal oxide such as ruthenium, iridium or palladium; a porphyrin skeleton or Examples thereof include metal coordination organic compounds having a phthalocyanine skeleton; inorganic ceramics such as manganese dioxide (MnO 2 ) and cerium oxide (CeO 2 ); and composite materials obtained by mixing these materials.
The thickness of the air electrode varies depending on the use of the metal-air battery, but is preferably 2 μm to 500 μm, particularly preferably 5 μm to 300 μm.

空気極は、必要に応じて、該空気極の集電を行う空気極集電体を備えていてもよい。空気極集電体の材料としては、導電性を有するものであれば特に限定されるものではないが、例えばステンレス、ニッケル、アルミニウム、鉄、チタン、カーボン等を挙げることができる。
空気極集電体の形状としては、例えば箔状、板状及び繊維状の他、不織布及びメッシュ(グリッド)等の多孔質状などを挙げることができる。多孔質状の集電体を使用する場合、図1のように、空気極と集電体とを積層してもよいし、或いは、空気極の内部に集電体を配置してもよい。また、後述する電池ケースが空気極集電体の機能を兼ね備えていてもよい。
空気極集電体の厚さは、例えば、10μm〜1000μmの範囲内、中でも20μm〜400μmの範囲内であることが好ましい。
The air electrode may include an air electrode current collector that collects current of the air electrode as necessary. The material for the air electrode current collector is not particularly limited as long as it has conductivity, and examples thereof include stainless steel, nickel, aluminum, iron, titanium, and carbon.
Examples of the shape of the air electrode current collector include a foil shape, a plate shape, and a fiber shape, and a porous shape such as a nonwoven fabric and a mesh (grid). When a porous current collector is used, the air electrode and the current collector may be laminated as shown in FIG. 1, or the current collector may be disposed inside the air electrode. Moreover, the battery case mentioned later may have the function of the air electrode current collector.
The thickness of the air electrode current collector is, for example, preferably in the range of 10 μm to 1000 μm, and more preferably in the range of 20 μm to 400 μm.

空気極の製造方法は、特に限定されず、例えば、少なくともAu−Ni合金触媒担持炭素材、及び必要に応じてバインダー等を混合した空気極用混合物を、空気極集電体の表面で圧延し、必要に応じて乾燥させることで、空気極集電体上に空気極を形成することができる。或いは、溶媒を用いて空気極用混合物スラリーを調製し、空気極集電体上に塗布、乾燥させることで、空気極集電体上に空気極を形成することもできる。また、上記空気極用混合物を圧延又は空気極用混合物スラリーを塗布して得られた空気極を、空気極集電体と重ね合わせ、適宜、加圧や加熱等を行うことで、空気極と空気極集電体とを積層させることもできる。   The method for producing the air electrode is not particularly limited. For example, the air electrode mixture in which at least an Au—Ni alloy catalyst-carrying carbon material and a binder as necessary are mixed is rolled on the surface of the air electrode current collector. The air electrode can be formed on the air electrode current collector by drying as necessary. Alternatively, an air electrode can be formed on the air electrode current collector by preparing a mixture slurry for the air electrode using a solvent, and applying and drying the mixture slurry on the air electrode current collector. Further, the air electrode obtained by rolling the air electrode mixture or applying the air electrode mixture slurry is overlapped with the air electrode current collector, and appropriately subjected to pressurization, heating, etc. An air electrode current collector can also be laminated.

空気極用混合物スラリーの溶媒としては、揮発性を有していれば特に限定されず、適宜選択することができる。具体的には、エタノール、アセトン、N,N−ジメチルホルムアミド(DMF)、N−メチル−2−ピロリドン(NMP)等が挙げられる。
空気極用混合物スラリーを塗布する方法は特に限定されず、ドクターブレード、スプレー法等の一般的な方法を用いることができる。
The solvent for the air electrode mixture slurry is not particularly limited as long as it has volatility, and can be appropriately selected. Specific examples include ethanol, acetone, N, N-dimethylformamide (DMF), N-methyl-2-pyrrolidone (NMP) and the like.
The method for applying the air electrode mixture slurry is not particularly limited, and general methods such as a doctor blade and a spray method can be used.

[金属空気電池]
本発明の金属空気電池は、酸素を活物質とする空気極と、負極と、前記空気極及び前記負極の間に介在する電解質層と、を有する金属空気電池であって、前記空気極が、上記本発明の空気極であることを特徴とするものである。
本発明の空気極については、上記[金属空気電池用空気極]にて説明したものと同様であるため、ここでの説明は省略する。
(負極)
負極は、金属イオン(例えば、Liイオン)を放出・取り込み可能であり、通常、金属イオン(例えばLiイオン)を放出・取り込み可能な負極活物質を含有する。負極は、必要に応じて、負極の集電を行う負極集電体を備えていてもよい。
負極活物質としては、Li、Na、K、Mg、Ca、Al、Zn、Fe等の金属、又は、これら金属の酸化物、硫化物、窒化物等の化合物、或いは、炭素材料などが挙げられる。
[Metal-air battery]
The metal-air battery of the present invention is a metal-air battery having an air electrode using oxygen as an active material, a negative electrode, and an electrolyte layer interposed between the air electrode and the negative electrode, It is the air electrode of the present invention described above.
Since the air electrode of the present invention is the same as that described in the above [Air electrode for metal-air battery], description thereof is omitted here.
(Negative electrode)
The negative electrode can release and take in metal ions (for example, Li ions), and usually contains a negative electrode active material that can release and take in metal ions (for example, Li ions). The negative electrode may include a negative electrode current collector that collects current from the negative electrode, if necessary.
Examples of the negative electrode active material include metals such as Li, Na, K, Mg, Ca, Al, Zn, and Fe, or compounds such as oxides, sulfides, and nitrides of these metals, or carbon materials. .

具体的には、リチウム空気電池の負極活物質としては、例えば、リチウム金属、リチウム元素を含有する合金材料、リチウム化合物(例えば、酸化物、硫化物、窒化物等)等、公知の負極活物質を用いることができる。
リチウム元素を含有する合金としては、例えばリチウムアルミニウム合金、リチウムスズ合金、リチウム鉛合金、リチウムケイ素合金等を挙げることができる。また、リチウム化合物としては、例えばリチウムチタン酸化物等の酸化物、リチウムコバルト窒化物、リチウム鉄窒化物、リチウムマンガン窒化物等の窒化物等を挙げることができる。
Specifically, as a negative electrode active material of a lithium air battery, for example, a known negative electrode active material such as lithium metal, an alloy material containing a lithium element, a lithium compound (for example, oxide, sulfide, nitride, etc.) Can be used.
Examples of the alloy containing lithium element include a lithium aluminum alloy, a lithium tin alloy, a lithium lead alloy, and a lithium silicon alloy. Examples of the lithium compound include oxides such as lithium titanium oxide, nitrides such as lithium cobalt nitride, lithium iron nitride, and lithium manganese nitride.

負極は、負極活物質のみを含有するものであってもよく、負極活物質の他に導電性材料及びバインダーの少なくとも一方を含有するものであってもよい。例えば、負極活物質が箔状である場合は、負極活物質のみを含有する負極とすることができる。一方、負極活物質が粉末状である場合は、負極活物質及びバインダーを含有する負極とすることができる。尚、導電性材料及びバインダーについては、上述した「金属空気電池用空気極」にて説明したものと同様とすることができるため、ここでの説明は省略する。   The negative electrode may contain only the negative electrode active material, or may contain at least one of a conductive material and a binder in addition to the negative electrode active material. For example, when the negative electrode active material has a foil shape, a negative electrode containing only the negative electrode active material can be obtained. On the other hand, when a negative electrode active material is a powder form, it can be set as the negative electrode containing a negative electrode active material and a binder. Note that the conductive material and the binder can be the same as those described in the above-mentioned “air electrode for metal-air battery”, and thus the description thereof is omitted here.

負極集電体の材料としては、導電性を有するものであれば特に限定されるものではないが、例えば銅、ステンレス、ニッケル、カーボン等を挙げることができ、中でもステンレス、ニッケルが好ましい。負極集電体の形状としては、例えば箔状、板状およびメッシュ(グリッド)状等を挙げることができる。また、後述する電池ケースが負極集電体の機能を兼ね備えていてもよい。   The material for the negative electrode current collector is not particularly limited as long as it has conductivity, and examples thereof include copper, stainless steel, nickel, carbon, etc. Among them, stainless steel and nickel are preferable. Examples of the shape of the negative electrode current collector include a foil shape, a plate shape, and a mesh (grid) shape. Moreover, the battery case mentioned later may have the function of the negative electrode collector.

負極の製造方法は特に限定されない。例えば、箔状の負極活物質と負極集電体とを重ね合わせ、必要に応じて加圧する方法が挙げられる。また、別の方法として、負極活物質とバインダーとを含有する負極用混合物を調製し、該混合物を負極集電体上に塗布又は圧延し、乾燥する方法も挙げられる。   The manufacturing method of a negative electrode is not specifically limited. For example, a method may be mentioned in which a foil-like negative electrode active material and a negative electrode current collector are superposed and pressurized as necessary. Another method includes preparing a negative electrode mixture containing a negative electrode active material and a binder, applying or rolling the mixture onto a negative electrode current collector, and drying the mixture.

(電解質層)
電解質層は、空気極と負極との間に保持され、空気極と負極との間で金属イオンを交換する働きを有する。電解質層は、金属イオン(典型的には負極活物質由来の金属イオン)を伝導可能であればよく、電解液、固体電解質、ゲル電解質等、特に限定されない。電解液、ゲル電解質、固体電解質を組み合わせてもよい。
電解液は、電解質塩を溶媒に溶解したものであり、非水系溶媒に電解質塩を溶解した非水系電解液及び水系溶媒に電解質塩を溶解した水系電解液のいずれを用いてもよい。副反応を抑制できることから、電解液の溶媒は酸素ラジカル耐性の高いものが好ましい。
以下、リチウムイオン伝導性を有する電解質を例に、電解質層について説明する。
(Electrolyte layer)
The electrolyte layer is held between the air electrode and the negative electrode, and has a function of exchanging metal ions between the air electrode and the negative electrode. The electrolyte layer is not particularly limited as long as it can conduct metal ions (typically, metal ions derived from the negative electrode active material), such as an electrolytic solution, a solid electrolyte, and a gel electrolyte. You may combine electrolyte solution, gel electrolyte, and solid electrolyte.
The electrolytic solution is obtained by dissolving an electrolyte salt in a solvent, and either a non-aqueous electrolytic solution obtained by dissolving an electrolyte salt in a non-aqueous solvent or an aqueous electrolytic solution obtained by dissolving an electrolyte salt in an aqueous solvent may be used. Since the side reaction can be suppressed, the solvent of the electrolytic solution preferably has high oxygen radical resistance.
Hereinafter, the electrolyte layer will be described taking an electrolyte having lithium ion conductivity as an example.

リチウムイオン伝導性非水系電解液は、リチウム塩及び非水溶媒を含有するものである。
リチウム塩としては、例えばLiPF、LiBF、LiClO及びLiAsF等の無機リチウム塩;LiCFSO、LiN(SOCF[略称 Li−TFSA]、LiN(SO及びLiC(SOCF等の有機リチウム塩等を挙げることができる。
非水溶媒としては、例えばエチレンカーボネート(EC)、プロピレンカーボネート(PC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、エチルカーボネート、ブチレンカーボネート、γ−ブチロラクトン、スルホラン、アセトニトリル、1,2−ジメトキシメタン、1,3−ジメトキシプロパン、ジエチルエーテル、テトラヒドロフラン、2−メチルテトラヒドロフラン及びこれらの混合物等を挙げることができる。
また、イオン性液体を非水溶媒として用いることもできる。イオン性液体としては、例えば、N,N,N−トリメチル−N−プロピルアンモニウムビス(トリフルオロメタンスルホニル)アミド[略称:TMPA−TFSA]、N−メチル−N−プロピルピペリジニウムビス(トリフルオロメタンスルホニル)アミド[略称:PP13−TFSA]、N−メチル−N−プロピルピロリジニウムビス(トリフルオロメタンスルホニル)アミド[略称:P13−TFSA]、N−メチル−N−ブチルピロリジニウムビス(トリフルオロメタンスルホニル)アミド[略称:P14−TFSA]、N,N−ジエチル−N−メチル−N−(2−メトキシエチル)アンモニウムビス(トリフルオロメタンスルホニル)アミド[略称:DEME−TFSA]等の脂肪族4級アンモニウム塩、1−エチル−3−メチルイミダゾリウムフルオロハイドロジェネート(トリフルオロメタンスルホニル)アミド[略称:emim(HF)2,3F−TFSA]等が挙げられる。
非水系電解液におけるリチウム塩の濃度は、例えば0.5mol/L〜3mol/Lの範囲内とすることができる。
The lithium ion conductive nonaqueous electrolytic solution contains a lithium salt and a nonaqueous solvent.
Examples of the lithium salt include inorganic lithium salts such as LiPF 6 , LiBF 4 , LiClO 4, and LiAsF 6 ; LiCF 3 SO 3 , LiN (SO 2 CF 3 ) 2 [abbreviation Li-TFSA], LiN (SO 2 C 2 F 5 ) Organic lithium salts such as 2 and LiC (SO 2 CF 3 ) 3 can be mentioned.
Examples of the non-aqueous solvent include ethylene carbonate (EC), propylene carbonate (PC), dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), ethyl carbonate, butylene carbonate, γ-butyrolactone, sulfolane, Examples thereof include acetonitrile, 1,2-dimethoxymethane, 1,3-dimethoxypropane, diethyl ether, tetrahydrofuran, 2-methyltetrahydrofuran, and mixtures thereof.
Moreover, an ionic liquid can also be used as a non-aqueous solvent. Examples of the ionic liquid include N, N, N-trimethyl-N-propylammonium bis (trifluoromethanesulfonyl) amide [abbreviation: TMPA-TFSA], N-methyl-N-propylpiperidinium bis (trifluoromethanesulfonyl). ) Amide [abbreviation: PP13-TFSA], N-methyl-N-propylpyrrolidinium bis (trifluoromethanesulfonyl) amide [abbreviation: P13-TFSA], N-methyl-N-butylpyrrolidinium bis (trifluoromethanesulfonyl) ) Aliphatic quaternary ammonium such as amide [abbreviation: P14-TFSA], N, N-diethyl-N-methyl-N- (2-methoxyethyl) ammonium bis (trifluoromethanesulfonyl) amide [abbreviation: DEME-TFSA] Salt, 1-ethyl-3-methyl Dazo potassium fluorohydrocarbon oxygenate (trifluoromethanesulfonyl) amide [abbreviation: emim (HF) 2,3 F- TFSA] , and the like.
The concentration of the lithium salt in the non-aqueous electrolyte solution can be set in the range of 0.5 mol / L to 3 mol / L, for example.

非水電解液にポリマーを添加してゲル化することで、非水系ゲル電解質を得ることができる。非水電解液のゲル化に用いるポリマーとしては、例えば、ポリエチレンオキシド(PEO)、ポリアクリルニトリル(PAN)またはポリメチルメタクリレート(PMMA)等が挙げられる。
水系電解質としては、水にリチウム塩を含有させた水系電解液が挙げられる。リチウム塩としては、例えばLiOH、LiCl、LiNO、CHCOLi等を挙げることができる。
固体電解質としては、例えば、Li−La−Ti−O系固体電解質等を用いることができる。
A non-aqueous gel electrolyte can be obtained by adding a polymer to the non-aqueous electrolyte and gelling. Examples of the polymer used for gelation of the non-aqueous electrolyte include polyethylene oxide (PEO), polyacrylonitrile (PAN), and polymethyl methacrylate (PMMA).
Examples of the aqueous electrolyte include an aqueous electrolytic solution in which lithium salt is contained in water. Examples of the lithium salt include LiOH, LiCl, LiNO 3 , and CH 3 CO 2 Li.
As the solid electrolyte, for example, a Li—La—Ti—O based solid electrolyte can be used.

(セパレータ)
空気極と負極との間の絶縁性を確保するために、空気極と負極との間には、絶縁性多孔質体からなるセパレータを配置することができる。典型的には、絶縁性多孔質体からなるセパレータに電解質を含浸させることで、空気極と負極との間の絶縁性及び金属イオン伝導性を確保することができる。
また、空気極−電解質層−負極の順番で配置されている積層体を、繰り返し何層も重ねる構造を取る場合には、安全性の観点から、異なる積層体に属する空気極および負極の間に、セパレータを有することが好ましい。
セパレータとしては、例えばポリエチレン、ポリプロピレン等の多孔膜;および樹脂不織布、ガラス繊維不織布等の不織布等を挙げることができる。
(Separator)
In order to ensure the insulation between the air electrode and the negative electrode, a separator made of an insulating porous material can be disposed between the air electrode and the negative electrode. Typically, by impregnating a separator made of an insulating porous body with an electrolyte, insulation between the air electrode and the negative electrode and metal ion conductivity can be ensured.
Moreover, when taking the structure which laminates | stacks the layered structure arrange | positioned in order of an air electrode-electrolyte layer-negative electrode repeatedly, it is between the air electrode and negative electrode which belong to a different laminated body from a safety viewpoint. It is preferable to have a separator.
Examples of the separator include porous films such as polyethylene and polypropylene; and nonwoven fabrics such as a resin nonwoven fabric and a glass fiber nonwoven fabric.

(電池ケース)
金属空気電池は、通常、空気極、負極、電解質層等を収納する電池ケースを有する。電池ケースの形状としては、具体的にはコイン型、平板型、円筒型、ラミネート型等を挙げることができる。電池ケースは、空気極に酸素を供給可能であれば、外部からの酸素取り込みを可能とする孔(空気孔)を有する開放型であってもよく、或いは密閉型であってもよい。
開放型の電池ケースは、少なくとも空気極が十分に酸素含有気体と接触可能な構造を有する。また、空気孔には、酸素透過膜や撥水膜を設けてもよい。一方、密閉型の電池ケースには、酸素含有気体の導入管および排気管を設けることができる。空気極に供給される酸素含有気体としては、例えば、純酸素や空気が挙げられ、酸素濃度が高いことが好ましことから、純酸素が好ましい。また、空気は低湿度の乾燥空気が好ましい。
(Battery case)
A metal-air battery usually has a battery case that houses an air electrode, a negative electrode, an electrolyte layer, and the like. Specific examples of the shape of the battery case include a coin type, a flat plate type, a cylindrical type, and a laminate type. As long as oxygen can be supplied to the air electrode, the battery case may be an open type having holes (air holes) that can take in oxygen from the outside, or may be a sealed type.
The open battery case has a structure in which at least the air electrode can sufficiently contact the oxygen-containing gas. Further, an oxygen permeable film or a water repellent film may be provided in the air hole. On the other hand, an oxygen-containing gas introduction pipe and an exhaust pipe can be provided in the sealed battery case. Examples of the oxygen-containing gas supplied to the air electrode include pure oxygen and air, and pure oxygen is preferred because it is preferable to have a high oxygen concentration. The air is preferably dry air with low humidity.

[実施例1]
(Au‐Ni合金触媒担持炭素材の作製)
以下のようにして、Au−Ni合金触媒の担持量が5重量%の炭素材を作製した。すなわち、市販の高比表面積炭素粉末(ケッチェンブラック、ケッチェンブラックインターナショナル製EPC600JD)5.2gを、純水0.5Lに加え、分散させた。この分散液に、金0.36gを含む塩化金酸溶液を滴下し、攪拌した。その後、分散液に水素バブリングを行うことで、炭素粉末に金粒子を担持させた。続いて、分散液にニッケル0.25gを含む硝酸ニッケル溶液を滴下し、攪拌した。次に、分散液に水素バブリングを行うことで、金粒子を担持した炭素粉末にニッケル粒子を担持させた。分散液をろ過し、得られた粉末を900℃で乾燥させ、金とニッケルを合金化した。
作製した触媒担持炭素材の触媒担持量、及び、AuとNiの合金比率を下記表1に示す。尚、触媒担持量は、触媒願担持炭素材の調整後、融合結合プラズマ(ICP)発光分析により測定し、AuとNiとの合金比率は、蛍光X線分析やEDX分析等の既知の手法により算出した。
(空気極の作製)
得られたAu−Ni合金触媒担持炭素材を用いて、図2に示すフローに従って空気極を作製した。すなわち、まず、Au−Ni合金触媒担持炭素材と、ポリテトラフルオロエチレン(PTFE)と、エタノールとを混合し、空気極用混合物を調製した。空気極用混合物中、Au−Ni合金触媒担持炭素材:PTFE=90重量%:10重量%とした。
続いて、空気極用混合物をロールプレスで圧延し、乾燥した後、切断した。次に、加熱真空乾燥(120℃、12時間)し、空気極を得た。
空気極には、SUS304製メッシュを集電体として貼付した。
[Example 1]
(Preparation of Au-Ni alloy catalyst-carrying carbon material)
A carbon material having an Au—Ni alloy catalyst loading of 5 wt% was produced as follows. That is, 5.2 g of commercially available high specific surface area carbon powder (Ketjen Black, EPC600JD manufactured by Ketjen Black International) was added to 0.5 L of pure water and dispersed. To this dispersion, a chloroauric acid solution containing 0.36 g of gold was added dropwise and stirred. After that, hydrogen particles were carried out on the dispersion to support the gold particles on the carbon powder. Subsequently, a nickel nitrate solution containing 0.25 g of nickel was dropped into the dispersion and stirred. Next, nickel particles were supported on the carbon powder supporting gold particles by performing hydrogen bubbling on the dispersion. The dispersion was filtered, and the resulting powder was dried at 900 ° C. to alloy gold and nickel.
The catalyst loading amount of the produced catalyst loading carbon material and the alloy ratio of Au and Ni are shown in Table 1 below. The amount of catalyst supported is measured by fusion coupled plasma (ICP) emission analysis after adjustment of the catalyst-supported carbon material, and the alloy ratio of Au and Ni is determined by a known method such as fluorescent X-ray analysis or EDX analysis. Calculated.
(Production of air electrode)
Using the obtained Au—Ni alloy catalyst-carrying carbon material, an air electrode was produced according to the flow shown in FIG. That is, first, an Au—Ni alloy catalyst-carrying carbon material, polytetrafluoroethylene (PTFE), and ethanol were mixed to prepare an air electrode mixture. In the air electrode mixture, the Au—Ni alloy catalyst-carrying carbon material: PTFE = 90 wt%: 10 wt%.
Subsequently, the air electrode mixture was rolled with a roll press, dried, and then cut. Next, it heated and vacuum-dried (120 degreeC, 12 hours), and obtained the air electrode.
A mesh made of SUS304 was attached to the air electrode as a current collector.

(空気極の評価)
上記にて作製した空気極を用いて、以下のようにしてリチウム空気電池試験用セルを作製した。
まず、負極として、金属リチウム(本城金属製)を準備した。負極には、SUS304製板を集電体として貼付した。
また、セパレータとして絶縁性材料からなる多孔質膜を準備した。
一方、Li−TFSA(キシダ化学製)とDEME−TFSA(関東化学製)とを、Li−TFSA濃度が0.35mol/kgとなるように混合し、アルゴン雰囲気下、一晩攪拌し、電解液を調製した。
次に、集電体付き空気極、セパレータ、及び集電体付き負極を用いて、図1に示す構造のリチウム空気電池試験用セルを作製した。セパレータ及び空気極には、電解液を含浸させた。
(Evaluation of air electrode)
Using the air electrode produced above, a lithium air battery test cell was produced as follows.
First, metallic lithium (made by Honjo Metal) was prepared as a negative electrode. A SUS304 plate was attached to the negative electrode as a current collector.
In addition, a porous film made of an insulating material was prepared as a separator.
On the other hand, Li-TFSA (manufactured by Kishida Chemical Co., Ltd.) and DEME-TFSA (manufactured by Kanto Chemical Co., Ltd.) are mixed so that the Li-TFSA concentration is 0.35 mol / kg, and stirred overnight in an argon atmosphere. Was prepared.
Next, a lithium-air battery test cell having the structure shown in FIG. 1 was prepared using an air electrode with a current collector, a separator, and a negative electrode with a current collector. The separator and the air electrode were impregnated with an electrolytic solution.

得られたリチウム空気電池試験用セルを、ガス置換コック付きガラスデシケータ内に収容した。該ガラスデシケータ内は酸素が導入可能であり、試験用セルの空気孔を通して空気極へ酸素を供給可能とした。   The obtained lithium-air battery test cell was housed in a glass desiccator with a gas replacement cock. Oxygen can be introduced into the glass desiccator, and oxygen can be supplied to the air electrode through the air hole of the test cell.

得られたリチウム空気電池用試験セルを用いて、下記条件下、充放電試験(2サイクル)を行った。図3に、1サイクル目の放電容量(横軸)と、2サイクル目の放電容量(縦軸)とを示す。
<充放電試験>
・充放電試験装置:マルチチャンネルポテンショスタット/ガルバノスタット VMP3(Bio−Logic社製)
・放電電流密度:0.1mA/cm
・雰囲気温度(ガラスデシケータ内温度):60℃(試験開始前に恒温槽にて3時間安置)
・セル内圧力:O1気圧
Using the obtained lithium-air battery test cell, a charge / discharge test (2 cycles) was performed under the following conditions. FIG. 3 shows the discharge capacity at the first cycle (horizontal axis) and the discharge capacity at the second cycle (vertical axis).
<Charge / discharge test>
Charge / discharge test equipment: Multichannel potentiostat / galvanostat VMP3 (manufactured by Bio-Logic)
・ Discharge current density: 0.1 mA / cm 2
・ Atmosphere temperature (temperature in glass desiccator): 60 ° C. (3 hours in a thermostatic bath before starting the test)
・ In-cell pressure: O 2 1 atm

[実施例2]
(Au‐Ni合金触媒担持炭素材の作製)
0.72gの金を含む塩化金酸溶液と、0.48gのニッケルを含む硝酸ニッケル溶液とを用いたこと以外は、実施例1と同様にして、Au−Ni合金触媒の担持量が10重量%の炭素材を作製した。
作製した触媒担持炭素材の触媒担持量、及び、AuとNiの合金比率を下記表1に示す。尚、触媒担持量及び合金比率は、実施例1と同様にして算出した。
[Example 2]
(Preparation of Au-Ni alloy catalyst-carrying carbon material)
The amount of Au—Ni alloy catalyst supported was 10 wt.% In the same manner as in Example 1 except that a chloroauric acid solution containing 0.72 g of gold and a nickel nitrate solution containing 0.48 g of nickel were used. % Carbon material was produced.
The catalyst loading amount of the produced catalyst loading carbon material and the alloy ratio of Au and Ni are shown in Table 1 below. The catalyst loading and alloy ratio were calculated in the same manner as in Example 1.

(空気極の作製と評価)
得られたAu−Ni合金触媒担持炭素材を用いて、実施例1と同様にして、空気極を作製し、空気極の評価を行った。結果を図3に示す。
(Production and evaluation of air electrode)
Using the obtained Au—Ni alloy catalyst-carrying carbon material, an air electrode was produced in the same manner as in Example 1, and the air electrode was evaluated. The results are shown in FIG.

[実施例3]
(Au‐Ni合金触媒担持炭素材の作製)
1.44gの金を含む塩化金酸溶液と、0.96gのニッケルを含む硝酸ニッケル溶液とを用いたこと以外は、実施例1と同様にして、Au−Ni合金触媒の担持量が20重量%の炭素材を作製した。
作製した触媒担持炭素材の触媒担持量、及び、AuとNiの合金比率を下記表1に示す。尚、触媒担持量及び合金比率は、実施例1と同様にして算出した。
[Example 3]
(Preparation of Au-Ni alloy catalyst-carrying carbon material)
The amount of Au—Ni alloy catalyst supported was 20 weights as in Example 1 except that a chloroauric acid solution containing 1.44 g of gold and a nickel nitrate solution containing 0.96 g of nickel were used. % Carbon material was produced.
The catalyst loading amount of the produced catalyst loading carbon material and the alloy ratio of Au and Ni are shown in Table 1 below. The catalyst loading and alloy ratio were calculated in the same manner as in Example 1.

(空気極の作製と評価)
得られたAu−Ni合金触媒担持炭素材を用いて、実施例1と同様にして、空気極を作製し、空気極の評価を行った。結果を図3に示す。
(Production and evaluation of air electrode)
Using the obtained Au—Ni alloy catalyst-carrying carbon material, an air electrode was produced in the same manner as in Example 1, and the air electrode was evaluated. The results are shown in FIG.

[比較例1]
(空気極の作製と評価)
実施例1で用いたケッチェンブラックを、触媒を担持させずにそのまま用いたこと以外は、実施例1と同様にして、空気極を作製し、空気極の評価を行った。結果を図3に示す。
[Comparative Example 1]
(Production and evaluation of air electrode)
An air electrode was prepared and the air electrode was evaluated in the same manner as in Example 1 except that the ketjen black used in Example 1 was used as it was without supporting the catalyst. The results are shown in FIG.

[比較例2]
(Au触媒担持炭素材の作製)
以下のようにして、Au触媒の担持量が5重量%の炭素材を作製した。すなわち、市販の高比表面積炭素粉末(ケッチェンブラック、ケッチェンブラックインターナショナル製EPC600JD)5.2gを、純水0.5Lに加え、分散させた。この分散液に、金0.6gを含む塩化金酸溶液を滴下し、攪拌した。その後、分散液に水素バブリングを行うことで、炭素粉末に金粒子を担持させた。分散液をろ過し、得られた粉末を900℃で乾燥させた。触媒担持炭素材の触媒担持量を下記表1に示す。
[Comparative Example 2]
(Preparation of Au catalyst-supporting carbon material)
A carbon material having an Au catalyst loading of 5% by weight was produced as follows. That is, 5.2 g of commercially available high specific surface area carbon powder (Ketjen Black, EPC600JD manufactured by Ketjen Black International) was added to 0.5 L of pure water and dispersed. A chloroauric acid solution containing 0.6 g of gold was added dropwise to the dispersion and stirred. After that, hydrogen particles were carried out on the dispersion to support the gold particles on the carbon powder. The dispersion was filtered and the resulting powder was dried at 900 ° C. The amount of catalyst supported on the catalyst-supported carbon material is shown in Table 1 below.

(空気極の作製と評価)
得られたAu触媒担持炭素材を用いて、実施例1と同様にして、空気極を作製し、空気極の評価を行った。結果を図3に示す。
(Production and evaluation of air electrode)
Using the obtained Au catalyst-carrying carbon material, an air electrode was produced in the same manner as in Example 1, and the air electrode was evaluated. The results are shown in FIG.

[比較例3]
(Au触媒担持炭素材の作製)
1.2gの金を含む塩化金酸溶液を用いたこと以外は、比較例2と同様にして、Au触媒の担持量が10重量%の炭素材を作製した。触媒担持炭素材の触媒担持量を下記表1に示す。
[Comparative Example 3]
(Preparation of Au catalyst-supporting carbon material)
A carbon material having a supported amount of Au catalyst of 10% by weight was prepared in the same manner as in Comparative Example 2 except that a chloroauric acid solution containing 1.2 g of gold was used. The amount of catalyst supported on the catalyst-supported carbon material is shown in Table 1 below.

(空気極の作製と評価)
得られたAu触媒担持炭素材を用いて、実施例1と同様にして、空気極を作製し、空気極の評価を行った。結果を図3に示す。
(Production and evaluation of air electrode)
Using the obtained Au catalyst-carrying carbon material, an air electrode was produced in the same manner as in Example 1, and the air electrode was evaluated. The results are shown in FIG.

表1及び図3に示すように、Au−Ni合金触媒担持炭素材(担持量5〜20重量%)を用いた実施例1〜3の空気極は、比較例1〜3と比べて、容量維持率、すなわちサイクル特性に優れていることが確認された。一方、触媒を担持していない炭素材を用いた比較例1と、Au触媒担持炭素材を用いた比較例2〜3と、を対比すると、Au触媒担持炭素材を用いても、サイクル特性の向上効果は得られないことが確認された。
図4に、実施例1〜3における、2サイクル目の放電容量維持率[(2サイクル目の放電容量/1サイクル目の放電容量)×100%]と、Au−Ni合金触媒の担持量との関係を示す。図4から、Au−Ni合金触媒の担持量が10重量%の炭素材を用いることで、特に容量維持率が高いことがわかる。
As shown in Table 1 and FIG. 3, the air electrodes of Examples 1 to 3 using an Au—Ni alloy catalyst-supported carbon material (supported amount of 5 to 20 wt%) have a capacity higher than that of Comparative Examples 1 to 3. It was confirmed that the retention rate, that is, the cycle characteristics were excellent. On the other hand, when Comparative Example 1 using a carbon material not supporting a catalyst and Comparative Examples 2 to 3 using an Au catalyst-supporting carbon material are compared, even if an Au catalyst-supporting carbon material is used, cycle characteristics are improved. It was confirmed that no improvement effect was obtained.
FIG. 4 shows the discharge capacity retention rate at the second cycle [(discharge capacity at the second cycle / discharge capacity at the first cycle) × 100%] in Examples 1 to 3, and the supported amount of the Au—Ni alloy catalyst. The relationship is shown. FIG. 4 shows that the capacity retention rate is particularly high by using a carbon material with a supported amount of Au—Ni alloy catalyst of 10% by weight.

1…空気極
2…負極
3…電解質層
4…空気極集電体
5…空気極缶
6…負極缶
7…ガスケット
8…空気孔
9…空気金属電池
DESCRIPTION OF SYMBOLS 1 ... Air electrode 2 ... Negative electrode 3 ... Electrolyte layer 4 ... Air electrode current collector 5 ... Air electrode can 6 ... Negative electrode can 7 ... Gasket 8 ... Air hole 9 ... Air metal battery

Claims (3)

酸素を活物質とする空気極と、負極と、前記空気極及び前記負極の間に介在する電解質層と、を有する金属空気電池を構成する空気極であって、
金とニッケルとの合金触媒、及び、該合金触媒を担持する炭素材を少なくとも含み、前記合金触媒と前記炭素材の合計量に対する前記合金触媒の割合が、5〜20重量%であることを特徴とする、金属空気電池用空気極。
An air electrode constituting a metal-air battery having an air electrode using oxygen as an active material, a negative electrode, and an electrolyte layer interposed between the air electrode and the negative electrode,
The alloy catalyst of gold and nickel and a carbon material supporting the alloy catalyst are at least included, and the ratio of the alloy catalyst to the total amount of the alloy catalyst and the carbon material is 5 to 20% by weight. An air electrode for metal-air batteries.
前記合金触媒において、金とニッケルの合計量に対するニッケルの割合が、1〜40at%である、請求項1に記載の金属空気電池用空気極。   The air electrode for metal-air batteries according to claim 1, wherein in the alloy catalyst, the ratio of nickel to the total amount of gold and nickel is 1 to 40 at%. 酸素を活物質とする空気極と、負極と、前記空気極及び前記負極の間に介在する電解質層と、を有する金属空気電池であって、
前記空気極が、請求項1又は2に記載の空気極であることを特徴とする、金属空気電池。
A metal-air battery having an air electrode using oxygen as an active material, a negative electrode, and an electrolyte layer interposed between the air electrode and the negative electrode,
A metal-air battery, wherein the air electrode is the air electrode according to claim 1 or 2.
JP2012173995A 2012-08-06 2012-08-06 Air electrode for metal air battery and metal air battery Pending JP2014032914A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012173995A JP2014032914A (en) 2012-08-06 2012-08-06 Air electrode for metal air battery and metal air battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012173995A JP2014032914A (en) 2012-08-06 2012-08-06 Air electrode for metal air battery and metal air battery

Publications (1)

Publication Number Publication Date
JP2014032914A true JP2014032914A (en) 2014-02-20

Family

ID=50282565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012173995A Pending JP2014032914A (en) 2012-08-06 2012-08-06 Air electrode for metal air battery and metal air battery

Country Status (1)

Country Link
JP (1) JP2014032914A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015151099A1 (en) 2014-03-31 2015-10-08 Technion Research & Development Foundation Limited A method for passive metal activation and uses thereof

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10216518A (en) * 1997-02-10 1998-08-18 Toyota Motor Corp Gold alloy catalyst
JP2001068120A (en) * 1999-08-26 2001-03-16 Toyota Central Res & Dev Lab Inc Electrode catalyst for fuel cell and manufacturing method
JP2003045442A (en) * 2001-08-03 2003-02-14 Toyota Motor Corp Noble metal-base metal alloy based catalyst, its evaluation and method for manufacturing it
JP2003226901A (en) * 2002-02-05 2003-08-15 Hitachi Maxell Ltd Binary alloy fine particle and production method therefor
JP2003249230A (en) * 2002-02-25 2003-09-05 Matsushita Electric Ind Co Ltd Electrode for oxygen reduction and battery using the same
US20060210864A1 (en) * 2005-03-15 2006-09-21 Tomoko Eguchi Catalyst, electrode, membrane electrode assembly and fuel cell
US20070026292A1 (en) * 2005-08-01 2007-02-01 Radoslav Adzic Electrocatalysts having gold monolayers on platinum nanoparticle cores, and uses thereof
US20080176124A1 (en) * 2007-01-18 2008-07-24 Kabushiki Kaisha Toyota Chuo Kenkyusho Lithium-air battery
WO2009104570A1 (en) * 2008-02-18 2009-08-27 独立行政法人産業技術総合研究所 Air electrode
JP2012015016A (en) * 2010-07-02 2012-01-19 Naoyoshi Kachi Air secondary battery
US20130029234A1 (en) * 2011-07-26 2013-01-31 Samsung Electronics Co., Ltd. Porous carbonaceous composite material, positive electrode and lithium air battery including porous carbonaceous composite material, and method of preparing the same

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10216518A (en) * 1997-02-10 1998-08-18 Toyota Motor Corp Gold alloy catalyst
JP2001068120A (en) * 1999-08-26 2001-03-16 Toyota Central Res & Dev Lab Inc Electrode catalyst for fuel cell and manufacturing method
JP2003045442A (en) * 2001-08-03 2003-02-14 Toyota Motor Corp Noble metal-base metal alloy based catalyst, its evaluation and method for manufacturing it
US20030044655A1 (en) * 2001-08-03 2003-03-06 Toyota Jidosha Kabushiki Kaisha Noble metal-base metal alloy catalyst, evaluation of such catalyst, and method of producing such catalyst
JP2003226901A (en) * 2002-02-05 2003-08-15 Hitachi Maxell Ltd Binary alloy fine particle and production method therefor
JP2003249230A (en) * 2002-02-25 2003-09-05 Matsushita Electric Ind Co Ltd Electrode for oxygen reduction and battery using the same
US20060210864A1 (en) * 2005-03-15 2006-09-21 Tomoko Eguchi Catalyst, electrode, membrane electrode assembly and fuel cell
JP2006260844A (en) * 2005-03-15 2006-09-28 Toshiba Corp Catalyst for fuel cell electrode, fuel cell electrode, membrane electrode assembly, and fuel cell
US20070026292A1 (en) * 2005-08-01 2007-02-01 Radoslav Adzic Electrocatalysts having gold monolayers on platinum nanoparticle cores, and uses thereof
JP2009510705A (en) * 2005-08-01 2009-03-12 ブルックヘヴン サイエンス アソシエイツ Electrocatalyst comprising a gold monoatomic layer on a platinum nanoparticle core and use thereof
US20080176124A1 (en) * 2007-01-18 2008-07-24 Kabushiki Kaisha Toyota Chuo Kenkyusho Lithium-air battery
JP2008198590A (en) * 2007-01-18 2008-08-28 Toyota Central R&D Labs Inc Lithium air battery
WO2009104570A1 (en) * 2008-02-18 2009-08-27 独立行政法人産業技術総合研究所 Air electrode
EP2254192A1 (en) * 2008-02-18 2010-11-24 National Institute of Advanced Industrial Science and Technology Air electrode
JP2012015016A (en) * 2010-07-02 2012-01-19 Naoyoshi Kachi Air secondary battery
US20130029234A1 (en) * 2011-07-26 2013-01-31 Samsung Electronics Co., Ltd. Porous carbonaceous composite material, positive electrode and lithium air battery including porous carbonaceous composite material, and method of preparing the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015151099A1 (en) 2014-03-31 2015-10-08 Technion Research & Development Foundation Limited A method for passive metal activation and uses thereof
CN106415919A (en) * 2014-03-31 2017-02-15 泰克年研究发展基金会公司 A method for passive metal activation and uses thereof
JP2017520075A (en) * 2014-03-31 2017-07-20 テクニオン・リサーチ・アンド・ディベロップメント・ファウンデーション・リミテッド Passive metal activation method and use thereof
EP3127183A4 (en) * 2014-03-31 2017-09-13 Technion Research & Development Foundation Ltd. A method for passive metal activation and uses thereof
CN109524617A (en) * 2014-03-31 2019-03-26 泰克年研究发展基金会公司 Activation of metal in the passive state method and its purposes
US10644304B2 (en) 2014-03-31 2020-05-05 Technion Research & Development Foundation Limited Method for passive metal activation and uses thereof
US11688845B2 (en) 2014-03-31 2023-06-27 Technion Research & Development Foundation Limited Method for passive metal activation and uses thereof

Similar Documents

Publication Publication Date Title
JP5755624B2 (en) Air electrode for air battery and air battery
US9048511B2 (en) Air electrode for metal-air battery and metal-air battery provided with same
US9054383B2 (en) Porous carbonaceous composite material, positive electrode and lithium air battery including the material, and method of preparing the material
CN103201884B (en) For the air electrode of metal-air cell, for having film/air electrode assembly and the metal-air cell of the metal-air cell of this air electrode
JP5056942B2 (en) Air electrode and non-aqueous air battery
JP5782170B2 (en) Air electrode for air battery and air battery
JP6731199B2 (en) Catalyst for oxygen reduction reaction and air electrode for metal-air secondary battery
CN103636058A (en) Lithium-air battery
JP6436444B2 (en) Zinc-air secondary battery air electrode catalyst, Brown mirror light type transition metal oxide as zinc-air secondary battery air electrode catalyst, zinc-air secondary battery air electrode, zinc-air secondary Secondary battery, electrode catalyst for electrolysis, electrode for electrolysis and electrolysis method
JP2014086305A (en) Electrode for battery and battery
JP6146390B2 (en) Electrocatalyst
KR101484503B1 (en) Cathode Catalyst for Lithium-Air Battery, Method of Manufacturing the Same, and Lithium-Air Battery Comprising the Same
WO2020096022A1 (en) Material for oxygen evolution (oer) electrode catalyst, and use thereof
EP3073553A1 (en) Positive electrode for lithium air battery and lithium air battery comprising same
JP2014093227A (en) Air electrode for air battery and air battery including the air electrode
JPWO2019093441A1 (en) Amorphous transition metal oxides and their uses
JP2014032914A (en) Air electrode for metal air battery and metal air battery
JP6378646B2 (en) Lithium air secondary battery
JP5755604B2 (en) Carbon material for air electrode for metal air battery, air electrode for metal air battery and metal air battery
JP2018014259A (en) Electrolyte solution for metal air battery
JP2018092831A (en) Separator and lithium air secondary battery
US20190067765A1 (en) Lithium air battery that includes nonaqueous lithium ion conductor
JP2019096451A (en) Lithium air secondary battery
JP2017103002A (en) Lithium air secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150415

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20150415

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150415

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160405

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170110