JP2014031891A - Multitubular through flow boiler - Google Patents

Multitubular through flow boiler Download PDF

Info

Publication number
JP2014031891A
JP2014031891A JP2012170705A JP2012170705A JP2014031891A JP 2014031891 A JP2014031891 A JP 2014031891A JP 2012170705 A JP2012170705 A JP 2012170705A JP 2012170705 A JP2012170705 A JP 2012170705A JP 2014031891 A JP2014031891 A JP 2014031891A
Authority
JP
Japan
Prior art keywords
water
steam
boiler
water level
storage space
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012170705A
Other languages
Japanese (ja)
Inventor
Hiroshi Takashima
博史 高島
Shigetoshi Takahata
重俊 高畠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SAMSON CO Ltd
Original Assignee
SAMSON CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SAMSON CO Ltd filed Critical SAMSON CO Ltd
Priority to JP2012170705A priority Critical patent/JP2014031891A/en
Publication of JP2014031891A publication Critical patent/JP2014031891A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable a multitubular through flow boiler to perform stable steam supply without stopping operation thereof by controlling fluctuation of a water level in a manner that promptly restores the water level inside a boiler even when the same is rapidly lowered due to abrupt load fluctuation.SOLUTION: A multitubular through flow boiler has: a can body 10 where many heat-transfer tubes 13 connect an upper header 11 and a lower header 12; and a steam separation device 7 which is connected to the upper header through a steam communication pipe 3. The multitubular through flow boiler generates steam by heating boiler water inside the heat-transfer tubes while maintaining a water level set in the middle of the heat-transfer tubes through water level control. The steam separation device 7 has a shape of a vertically elongated cylinder with a separation space 4 at an upper section thereof and a water storage space 5 at a lower section thereof. The water storage space 5 has a smaller diameter than the separation section 4 to extend a length of the steam separation device 7 without increasing a volume thereof so that the water storage space 5 reaches a position lower than a set water level of the multitubular through flow boiler.

Description

本発明は、缶内水位を伝熱管の途中に設定している多管式貫流ボイラに関するものである。   The present invention relates to a multitubular once-through boiler in which a water level in a can is set in the middle of a heat transfer tube.

上部に上部管寄せ、下部に下部管寄せを設置し、上下の管寄せ間を多数の伝熱管で連結した構成の缶体を持った多管式貫流ボイラでは、一般的に伝熱管の途中に水位を設定する。水位は伝熱管の途中までしかなくても、燃焼を行うと伝熱管内のボイラ水は飽和温度まで熱せられることで沸騰し、沸き上がりによって飽和水の持ち上がりが発生する。そのため、水位より上部にもボイラ水が存在することになり、伝熱管の過熱は防止できる。伝熱管内で沸き上がった飽和水は、上部管寄せに入り、ボイラから取り出している蒸気とともにさらに先まで持ち上がるため、飽和蒸気と飽和水に分離する必要がある。   In a multi-tube once-through boiler with a can body configured such that an upper header is installed in the upper part and a lower header is installed in the lower part, and the upper and lower headers are connected by a large number of heat transfer pipes, Set the water level. Even if the water level is only halfway through the heat transfer tube, when combustion is performed, the boiler water in the heat transfer tube is boiled by being heated to the saturation temperature, and the boiling of the saturated water occurs due to boiling. Therefore, boiler water also exists above the water level, and overheating of the heat transfer tube can be prevented. The saturated water boiled in the heat transfer tube enters the upper header and rises further together with the steam taken out from the boiler, so it must be separated into saturated steam and saturated water.

飽和蒸気と飽和水の分離は、気水分離器で行う。気水分離器は縦長の円筒容器であり、遠心力を利用して飽和蒸気と飽和水の分離を行う。飽和水を含んだ蒸気を容器内周に沿って旋回させると、重量の大きな飽和水は周壁面に沿って旋回しながら下方へ落下し、重量の小さな飽和蒸気は上昇するため、蒸気と飽和水に分離することができる。この構造の分離器では、遠心分離が有効に作用できるように空間容積を大きく確保することで蒸気質を高めることができるが、多管式貫流ボイラでは、簡易・小型・小規模の区分によって気水分離器の容積が制限されている。そのため、限られた容積を有効に活用するため、気水分離器内に飽和水がたまらないようにしている。特開2008−298309号公報に記載の発明では、気水分離器から飽和水が抜けやすくなるように形状を工夫することが記載されている。なお、ボイラの水位よりも気水分離器が低い位置にあると、上記のような工夫をしても気水分離器内の飽和水は抜けなくなる。気水分離器で分離した飽和水がボイラ缶体部へ戻るのは、気水分離器内の飽和水がボイラでの水位より高くなっているからであるため、気水分離器はボイラの設定水位より高く設置するようにしている。 Separation of saturated steam and saturated water is performed with a steam separator. The steam separator is a vertically long cylindrical container that separates saturated steam and saturated water using centrifugal force. When steam containing saturated water is swirled along the inner circumference of the container, saturated water with a large weight falls downward while swirling along the peripheral wall surface, and saturated steam with a small weight rises. Can be separated. In the separator of this structure, it is possible to improve the vapor quality by ensuring a large space volume so that the centrifugal separation can work effectively, but in a multi-tube type once-through boiler, the gas is divided into simple, small and small scales. The volume of the water separator is limited. Therefore, in order to effectively use the limited volume, saturated water is not accumulated in the steam separator. In the invention described in Japanese Patent Application Laid-Open No. 2008-298309, it is described that the shape is devised so that saturated water can easily escape from the steam separator. In addition, when the steam-water separator is at a position lower than the water level of the boiler, the saturated water in the steam-water separator cannot be removed even if the above-described device is used. The reason why the saturated water separated by the steam separator returns to the boiler can is because the saturated water in the steam separator is higher than the water level in the boiler. It is installed higher than the water level.

ところで、多管式貫流ボイラの中でも小型クラスのものでは、保有水量が少ないために起蒸時間が早いというメリットがある反面、保有水量が少ないことは負荷変動に弱いというデメリットもある。蒸気使用量の急増によって蒸気圧力値が急低下すると、ボイラ内で飽和温度にあったボイラ水は激しく蒸発し、ボイラ水の減少によってボイラ内の水位が急激に低下する場合が出てくる。保有水量が少ない場合にはその影響が大きくなり、水位が下限水位より低くなった場合には安全のためにボイラの運転を停止することになる。また、水位が低下した場合には給水を行うことで水位を回復させるが、給水を大量に行うと、給水の温度は低いためにボイラ水温度が低下し、蒸気の発生量が減少するということにもなる。それらのことで、蒸気の供給が不安定となり、運転効率の低下をもたらすことにもつながってしまう。 By the way, among the multi-tube type once-through boilers, there is a merit that the steaming time is quick because the amount of water held is small, but there is also a disadvantage that the amount of water held is weak against load fluctuation. When the steam pressure value suddenly decreases due to a rapid increase in the amount of steam used, the boiler water at the saturation temperature in the boiler evaporates violently, and the water level in the boiler may drop sharply due to a decrease in boiler water. When the amount of retained water is small, the effect becomes large, and when the water level becomes lower than the lower limit water level, the operation of the boiler is stopped for safety. Also, when the water level drops, the water level is recovered by supplying water, but if water is supplied in large quantities, the temperature of the supplied water is low, so the boiler water temperature decreases and the amount of steam generated decreases. It also becomes. As a result, the supply of steam becomes unstable, leading to a decrease in operating efficiency.

特開2008−298309号公報JP 2008-298309 A

本発明が解決しようとする課題は、多管式貫流ボイラにおいて、急な負荷変動などによってボイラ内の水位が急低下した場合でも速やかに水位を回復させて水位の変動を抑制し、ボイラの運転を停止させることなく安定的な蒸気供給が行えるようにすることにある。   The problem to be solved by the present invention is that in a multi-tube once-through boiler, even when the water level in the boiler suddenly drops due to a sudden load fluctuation or the like, the water level is quickly recovered to suppress fluctuations in the water level, It is to enable stable steam supply without stopping the operation.

請求項1に記載の発明は、上部管寄せと下部管寄せの間を多数の伝熱管でつなぐことで構成した缶体と、上部管寄せとは蒸気連絡管によって接続している気水分離器を持ち、伝熱管の途中に設定した水位を保つように水位制御を行い、伝熱管内のボイラ水を加熱することで蒸気を発生するようにしている多管式貫流ボイラであって、前記の気水分離器は縦長の円筒形状であって、気水分離器の上部に分離空間、下部には貯水空間を設けており、貯水空間は分離空間よりも径を細くし、容積を増やさずに気水分離器の長さを長くしたことにより、貯水空間はボイラの設定水位よりも低い部分まで達するようにしていることを特徴とする。   According to the first aspect of the present invention, there is provided a can body configured by connecting a plurality of heat transfer tubes between an upper header and a lower header, and a steam separator connected to the upper header by a steam communication pipe. A multi-tube once-through boiler that controls the water level so as to maintain the water level set in the middle of the heat transfer tube and generates steam by heating the boiler water in the heat transfer tube, The air / water separator has a vertically long cylindrical shape with a separation space at the top of the steam / water separator and a water storage space at the bottom. The water storage space has a smaller diameter than the separation space without increasing the volume. Since the length of the steam separator is increased, the water storage space reaches a lower part than the set water level of the boiler.

急な負荷変動などで伝熱管内の水位が急激に低下した場合、分離器下部で貯水していた高温の飽和水が速やかに伝熱管内へ送り込まれるようになるため、低水位によってボイラの運転が停止される状態を回避できる。また、温度の低い給水が多量に入ることによる伝熱管内温度低下がもたらす運転効率の低下も抑制され、安定した蒸気の供給を維持できる。 When the water level in the heat transfer tube suddenly drops due to sudden load fluctuations, etc., the high temperature saturated water stored in the lower part of the separator will be quickly sent into the heat transfer tube. Can be avoided. In addition, a decrease in operation efficiency caused by a decrease in the temperature in the heat transfer tube due to a large amount of low-temperature water supply can be suppressed, and stable steam supply can be maintained.

本発明を実施しているボイラの構成概要図Configuration outline diagram of a boiler implementing the present invention 従来ボイラの構成概要図Outline diagram of conventional boiler configuration

本発明の一実施例を図面を用いて説明する。図1は本発明を実施しているボイラの構成概要図、図2は比較のための従来ボイラの構成概要図である。   An embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a schematic configuration diagram of a boiler implementing the present invention, and FIG. 2 is a schematic configuration diagram of a conventional boiler for comparison.

ボイラは、上部に上部管寄せ11、下部に下部管寄せ12を設置し、上下の管寄せ間を多数の伝熱管13で連結することでボイラの缶体10を構成している。伝熱管13は環状に配置しており、伝熱管13で囲まれている中央部分を燃焼室14とし、燃焼室14の上方に燃焼装置15を設ける。下部管寄せ12には、ボイラ内への給水を行う給水配管8を接続し、給水配管8には途中に給水ポンプ6を設置している。缶体10の側部上方には、飽和蒸気と飽和水を分離する気水分離器7を設け、上部管寄せ11と気水分離器7の間は蒸気連絡管3で接続する。   The boiler has a boiler can body 10 by installing an upper header 11 at the upper part and a lower header 12 at the lower part, and connecting the upper and lower headers with a large number of heat transfer tubes 13. The heat transfer tube 13 is arranged in an annular shape, and a central portion surrounded by the heat transfer tube 13 is a combustion chamber 14, and a combustion device 15 is provided above the combustion chamber 14. A water supply pipe 8 for supplying water into the boiler is connected to the lower header 12, and a water supply pump 6 is installed in the water supply pipe 8 on the way. A steam separator 7 for separating saturated steam and saturated water is provided above the side of the can body 10, and the upper header 11 and the steam separator 7 are connected by the steam communication pipe 3.

多管式貫流ボイラでは、伝熱管13の途中に水位を設定する。設定水位は伝熱管13の途中までしかなくても、ボイラでの燃焼を行うと伝熱管内のボイラ水には沸き上がりが発生する。そのため、設定水位の位置より上部にもボイラ水が存在することになり、伝熱管の上部でもボイラ水によって冷却されるために伝熱管が過度に熱せられることにはならない。伝熱管内で沸き上がった飽和水は、上部管寄せを通してさらに上部まで持ち上がることになり、そのままでは飽和水を大量に含んだ乾き度の低い蒸気が取り出される。そのため、気水分離器7を設置しておき、飽和蒸気と飽和水とに分離するようにしている。蒸気連絡管3は、上部管寄せ11と気水分離器7を接続したものであり、蒸気発生部で発生した蒸気を気水分離器7内へ導入する。 In the multitubular once-through boiler, the water level is set in the middle of the heat transfer tube 13. Even if the set water level is only halfway through the heat transfer tube 13, boiling in the boiler water in the heat transfer tube occurs when combustion is performed in the boiler. Therefore, boiler water exists above the position of the set water level, and the heat transfer tube is not heated excessively because it is cooled by the boiler water even at the upper part of the heat transfer tube. The saturated water boiled in the heat transfer tube is lifted to the upper part through the upper header, and as it is, steam with a low dryness containing a large amount of saturated water is taken out. Therefore, the steam separator 7 is installed to separate saturated steam and saturated water. The steam communication pipe 3 connects the upper header 11 and the steam / water separator 7, and introduces steam generated in the steam generator into the steam / water separator 7.

気水分離器7は縦長の円筒容器であり、上部に蒸気取り出し管1、下部に還水管2、側部に蒸気連絡管3をそれぞれ接続する。気水分離器7では、飽和水を含んだ蒸気を容器内周に沿って旋回させるため、蒸気連絡管3は気水分離器内周面の接線方向に接続する。気水分離器7で分離した飽和蒸気は、上部に接続している蒸気取り出し管1を通して取り出し、気水分離器7で分離した飽和水は、下部に接続している還水管2を通して下部管寄せ12へ戻す。 The steam separator 7 is a vertically long cylindrical container, and is connected to a steam take-out pipe 1 at the upper part, a return water pipe 2 at the lower part, and a steam communication pipe 3 at the side part. In the steam / water separator 7, the steam communication pipe 3 is connected in the tangential direction of the inner peripheral surface of the steam / water separator in order to rotate the steam containing saturated water along the inner periphery of the container. The saturated steam separated by the steam separator 7 is taken out through the steam take-out pipe 1 connected to the upper part, and the saturated water separated by the steam-water separator 7 is sent to the lower header through the return water pipe 2 connected to the lower part. Return to 12.

飽和蒸気と飽和水の混合流体を気水分離器内へ導入すると、混合流体は胴内壁面に沿って旋回する。混合流体を旋回させると、液体である飽和水は単位容積当たりの重量が重いため、遠心力の作用によって胴の内壁面に沿って旋回し、そして重力の作用によって下方へ落ちていくらせん状の流れとなる。しかし、気体である蒸気は単位容積当たりの重量は軽く、遠心力や重力の影響をあまり受けないため、最初は飽和水とともに胴の内壁面に沿って流れていても飽和水から徐々に別れ、気水分離器中心の上部へと集まり、気水分離器7の上部に接続している蒸気取り出し管1を通って出ていくことになる。   When the mixed fluid of saturated steam and saturated water is introduced into the steam separator, the mixed fluid swirls along the inner wall surface. When the mixed fluid is swirled, liquid saturated water has a heavy weight per unit volume, so that it swirls along the inner wall surface of the trunk by the action of centrifugal force and falls downward by the action of gravity. It becomes a flow. However, since the vapor, which is a gas, is light in weight per unit volume and is not significantly affected by centrifugal force and gravity, even if it flows along the inner wall surface of the trunk with saturated water, it gradually separates from the saturated water. It gathers to the upper part of the center of the steam separator and exits through the steam take-out pipe 1 connected to the upper part of the steam separator 7.

気水分離器7の隣には、ボイラ内の水位を検出する水位検出筒9を設ける。水位検出筒9は、ボイラ上部の蒸気部と、ボイラ下部の液体部に接続しておく。ボイラの伝熱管内では、水面は激しく上下しているが、ボイラ上部の蒸気部とボイラ下部の水部に連通している水位検出筒9では、水面の揺れが小さくなるために水位の検出を行うことができる。水位検出筒9には、高さ位置を異ならせた複数の電極棒を設置しておき、どの電極棒まで水に接しているかを検出することで水位を判断する。ボイラの水位制御は、水位検出筒内の水位が給水開始位置まで低下すると給水ポンプ6の稼働を開始し、給水を行うことで水位検出筒内の水位が給水停止水位まで上昇すると給水ポンプ6の稼働を停止することで行う。 Next to the steam separator 7, a water level detection cylinder 9 for detecting the water level in the boiler is provided. The water level detection cylinder 9 is connected to the steam part at the upper part of the boiler and the liquid part at the lower part of the boiler. In the boiler heat transfer tube, the water level fluctuates violently, but the water level detection cylinder 9 communicating with the steam part at the upper part of the boiler and the water part at the lower part of the boiler detects the water level because the fluctuation of the water level is reduced. It can be carried out. A plurality of electrode bars with different height positions are installed in the water level detection cylinder 9, and the water level is determined by detecting which electrode bar is in contact with water. In the boiler water level control, when the water level in the water level detection cylinder drops to the water supply start position, the operation of the water supply pump 6 is started, and when the water level in the water level detection cylinder rises to the water supply stop water level by performing water supply, This is done by stopping operation.

気水分離器7は、上部に分離空間4、下部に貯水空間5を持った構造としておく。
分離空間4は飽和蒸気と飽和水に分離するための空間であり、分離空間4の径は遠心分離を行うために必要な径とする。貯水空間5は分離した飽和水をためる空間であり、貯水空間5の径は分離空間4の径よりも小さくしている。気水分離器7の設置高さと気水分離器7の容積は従前のものと同じにするが、気水分離器7の下部では径を細くしておく。そのことにより、気水分離器7の容積は同じであるが下端位置は従前のものよりも低くなるようにしておく。
The steam / water separator 7 has a structure having a separation space 4 in an upper portion and a water storage space 5 in a lower portion.
The separation space 4 is a space for separating into saturated steam and saturated water, and the diameter of the separation space 4 is set to a diameter necessary for performing centrifugation. The water storage space 5 is a space for storing separated saturated water, and the diameter of the water storage space 5 is smaller than the diameter of the separation space 4. The installation height of the steam-water separator 7 and the volume of the steam-water separator 7 are the same as the conventional one, but the diameter is narrowed at the lower part of the steam-water separator 7. Accordingly, the volume of the steam separator 7 is the same, but the lower end position is made lower than the previous one.

貯水空間5は飽和水をためる空間であり、飽和水をためるには貯水空間5をボイラの設定水位より下方にしておく必要がある。しかし、気水分離器7の設置位置は分離性能に影響を与え、設置位置を低くすると分離能力が低下し、飽和蒸気と飽和水の十分な分離が行えなくなることがある。そのため本発明では、気水分離器7の設置位置を下げることはせず、飽和蒸気と飽和水を分離する分離空間4は従前と同じにしておくことで分離能力は維持する。そして、飽和水をためる貯水空間5は、径を細くすることで容積を変えずに気水分離器を下方へ延長し、貯水空間5が低い位置になるようにしている。貯水空間5をボイラの設定水位より低くしておいた場合、ボイラの水位が設定水位にあると、ボイラの水位より低い貯水空間5には飽和水がたまることになる。気水分離器7では飽和水の分離を連続的に行うため、貯水空間5にたまる飽和水量は一定であっても中身は順次入れ替わっていく。 The water storage space 5 is a space for storing saturated water, and it is necessary to keep the water storage space 5 below the set water level of the boiler in order to collect saturated water. However, the installation position of the steam / water separator 7 affects the separation performance. If the installation position is lowered, the separation capability is lowered, and sufficient separation of saturated steam and saturated water may not be performed. Therefore, in the present invention, the installation position of the steam separator 7 is not lowered, and the separation capacity 4 is maintained by keeping the separation space 4 for separating saturated steam and saturated water the same as before. And the water storage space 5 which accumulates saturated water extends a steam-water separator below, without changing a volume by making a diameter thin, so that the water storage space 5 may become a low position. When the water storage space 5 is set lower than the set water level of the boiler, if the water level of the boiler is at the set water level, saturated water accumulates in the water storage space 5 lower than the water level of the boiler. In the steam-water separator 7, since saturated water is continuously separated, the contents are sequentially replaced even if the amount of saturated water accumulated in the water storage space 5 is constant.

ボイラでは、蒸気使用量の急増などによって蒸気圧力が急減すると、ボイラ水からの蒸発量が多くなってボイラから出ていく蒸気量が急増するため、ボイラ内の水位が低下することになる。ボイラ内の水位が低下すると、給水ポンプ6を稼働して給水を行うが、ボイラ水の減少量が大きい場合には給水が間に合わず、水位が下限水位未満まで低下することがある。ボイラでは水位が下限水位より低くなると、安全のために運転を停止する。蒸気圧力値が低下している状態でボイラの運転を停止することになると、蒸気圧力の回復がさらに遅れ、蒸気量の不足を招くことにもなっていた。 In the boiler, when the steam pressure rapidly decreases due to a rapid increase in the amount of steam used, the amount of evaporation from the boiler water increases and the amount of steam exiting the boiler increases rapidly, so the water level in the boiler decreases. When the water level in the boiler is lowered, water is supplied by operating the feed water pump 6. However, when the amount of reduction of the boiler water is large, the water supply is not in time, and the water level may fall below the lower limit water level. In the boiler, when the water level becomes lower than the lower limit water level, the operation is stopped for safety. When the operation of the boiler is stopped in a state where the steam pressure value is lowered, the recovery of the steam pressure is further delayed, resulting in a shortage of the steam amount.

図2に記載しているような従来のボイラでは、気水分離器7の大部分はボイラの設定水位より高い位置に設置するため、気水分離器7内に飽和水はほとんどたまっていないことになる。そのためにボイラ内の水位が急低下した場合には、給水ポンプを作動させて給水を行うしかない。その場合、給水が間に合わないことによってボイラ内の水量が大きく減少し、水位が下限水位より低くなった場合には、ボイラの安全を確保するために燃焼を停止することになる。また、強力な給水ポンプにて給水を大量に行うことで水位の低下を防止できたとしても、この場合にはボイラ水温度が低下することが考えられる。ボイラの水温が低下した場合にも蒸気供給が行えなくなるため、このことでも蒸気圧力値の回復が遅れるということになる。 In the conventional boiler as shown in FIG. 2, since most of the steam separator 7 is installed at a position higher than the set water level of the boiler, the saturated water is hardly accumulated in the steam separator 7. become. For this reason, when the water level in the boiler suddenly drops, the water supply pump must be operated to supply water. In that case, when the water supply is not in time, the amount of water in the boiler is greatly reduced, and when the water level becomes lower than the lower limit water level, combustion is stopped in order to ensure the safety of the boiler. Moreover, even if it can prevent the fall of a water level by performing a large amount of water supply with a powerful water supply pump, it is possible that the boiler water temperature falls in this case. This also delays the recovery of the steam pressure value because steam supply cannot be performed even when the boiler water temperature decreases.

本発明では、貯水空間5に飽和水をためておくようにしているため、ボイラ内水位が低下すると、貯水空間5にある高温の飽和水が速やかに伝熱管13内へ送り込まれる。そのため、ボイラ内水位の大幅な低下は防がれ、低水位によってボイラの運転が停止される状態を回避できる。また、貯水空間5にためておく飽和水は高温であり、貯水空間5の飽和水をボイラ缶体部へ送ってもボイラ水温度が大きく低下することはないため、蒸気の供給は滞ることなく行える。そのため運転効率の低下も抑制され、安定した蒸気の供給が維持できる。 In the present invention, since saturated water is stored in the water storage space 5, when the water level in the boiler is lowered, high-temperature saturated water in the water storage space 5 is quickly sent into the heat transfer tube 13. Therefore, a significant drop in the water level in the boiler is prevented, and a state in which the operation of the boiler is stopped due to the low water level can be avoided. Further, the saturated water stored in the water storage space 5 is high temperature, and even if the saturated water in the water storage space 5 is sent to the boiler can body part, the boiler water temperature does not greatly decrease, so the supply of steam is not delayed. Yes. Therefore, a decrease in operating efficiency is also suppressed, and stable steam supply can be maintained.

なお、本発明は以上説明した実施例に限定されるものではなく、多くの変形が本発明の技術的思想内で当分野において通常の知識を有する者により可能である。 The present invention is not limited to the embodiments described above, and many modifications can be made by those having ordinary knowledge in the art within the technical idea of the present invention.

1 蒸気取り出し管
2 還水管
3 蒸気連絡管
4 分離空間
5 貯水空間
6 給水ポンプ
7 気水分離器
8 給水配管
9 水位検出筒
10 缶体
11 上部管寄せ
12 下部管寄せ
13 伝熱管
14 燃焼室
15 燃焼装置



DESCRIPTION OF SYMBOLS 1 Steam extraction pipe 2 Return water pipe 3 Steam connection pipe 4 Separation space 5 Water storage space 6 Water supply pump 7 Air-water separator 8 Water supply pipe 9 Water level detection cylinder 10 Can body 11 Upper header 12 Lower header 13 Heat transfer tube 14 Combustion chamber 15 Combustion device



Claims (1)

上部管寄せと下部管寄せの間を多数の伝熱管でつなぐことで構成した缶体と、上部管寄せとは蒸気連絡管によって接続している気水分離器を持ち、伝熱管の途中に設定した水位を保つように水位制御を行い、伝熱管内のボイラ水を加熱することで蒸気を発生するようにしている多管式貫流ボイラであって、前記の気水分離器は縦長の円筒形状であって、気水分離器の上部に分離空間、下部には貯水空間を設けており、貯水空間は分離空間よりも径を細くし、容積を増やさずに気水分離器の長さを長くしたことにより、貯水空間はボイラの設定水位よりも低い部分まで達するようにしていることを特徴とする多管式貫流ボイラ。




A can body constructed by connecting a large number of heat transfer tubes between the upper and lower headers, and the upper header has a steam / water separator connected by a steam connection tube, set in the middle of the heat transfer tubes The multi-pipe once-through boiler is designed to generate steam by heating the boiler water in the heat transfer tube so that the water level is controlled so that the water level is maintained. However, a separation space is provided in the upper part of the steam separator, and a water storage space is provided in the lower part. The water storage space has a smaller diameter than the separation space, and the length of the steam separator is increased without increasing the volume. Therefore, the multi-tubular once-through boiler is characterized in that the water storage space reaches a portion lower than the set water level of the boiler.




JP2012170705A 2012-08-01 2012-08-01 Multitubular through flow boiler Pending JP2014031891A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012170705A JP2014031891A (en) 2012-08-01 2012-08-01 Multitubular through flow boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012170705A JP2014031891A (en) 2012-08-01 2012-08-01 Multitubular through flow boiler

Publications (1)

Publication Number Publication Date
JP2014031891A true JP2014031891A (en) 2014-02-20

Family

ID=50281863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012170705A Pending JP2014031891A (en) 2012-08-01 2012-08-01 Multitubular through flow boiler

Country Status (1)

Country Link
JP (1) JP2014031891A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111771632A (en) * 2020-07-14 2020-10-16 中国水利水电科学研究院 Reservoir hydro-fluctuation belt vegetation restoration method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6467502A (en) * 1987-09-08 1989-03-14 Babcock Hitachi Kk Steam generator
JPH10246406A (en) * 1997-03-05 1998-09-14 Mitsui Eng & Shipbuild Co Ltd Once-through boiler
JP2008298309A (en) * 2007-05-29 2008-12-11 Samson Co Ltd Steam separator

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6467502A (en) * 1987-09-08 1989-03-14 Babcock Hitachi Kk Steam generator
JPH10246406A (en) * 1997-03-05 1998-09-14 Mitsui Eng & Shipbuild Co Ltd Once-through boiler
JP2008298309A (en) * 2007-05-29 2008-12-11 Samson Co Ltd Steam separator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111771632A (en) * 2020-07-14 2020-10-16 中国水利水电科学研究院 Reservoir hydro-fluctuation belt vegetation restoration method

Similar Documents

Publication Publication Date Title
JP6092188B2 (en) Heat recovery steam generator and multi-drum evaporator
US2862479A (en) Vapor generating unit
JP5008134B2 (en) Water supply preheating boiler
JP2014031891A (en) Multitubular through flow boiler
JP2013155962A (en) Boiler
CN203549778U (en) Heat accumulating type steam pocket
JP2011252632A (en) Once-through boiler
JP6084485B2 (en) Absorption heat pump and operation method of absorption heat pump
JP2008298309A (en) Steam separator
CN103953912A (en) Waste heat boiler drum internal device
RU2661121C2 (en) Shell-and-tube apparatus for heat recovery from hot process stream
JP6187005B2 (en) Boiler system
JP2014190639A (en) Feed water preheating boiler
US2923377A (en) Liquid vapor separating vessel
JP6394896B2 (en) Steam generation system
KR200290993Y1 (en) Steam boiler
CN207584746U (en) A kind of gas fired-boiler stand-by heat activation system
JP6172984B2 (en) Water supply preheating boiler
US8851023B2 (en) Continuous steam generator
CN203823729U (en) Inside device of waste heat boiler drum
JP2015117839A (en) Multi-can installation boiler
WO2018215161A1 (en) Vapour and liquid drum for a shell-and-tube heat exchanger
EP3497369B1 (en) Evaporator system
JP5712636B2 (en) Once-through boiler
WO2014038249A1 (en) Boiler

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150703

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160520

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160603

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20161201