JP2014028340A - Superfine microbubble generation device - Google Patents

Superfine microbubble generation device Download PDF

Info

Publication number
JP2014028340A
JP2014028340A JP2012170037A JP2012170037A JP2014028340A JP 2014028340 A JP2014028340 A JP 2014028340A JP 2012170037 A JP2012170037 A JP 2012170037A JP 2012170037 A JP2012170037 A JP 2012170037A JP 2014028340 A JP2014028340 A JP 2014028340A
Authority
JP
Japan
Prior art keywords
flow
gas
liquid
piece
ultrafine bubble
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012170037A
Other languages
Japanese (ja)
Inventor
Takashi Hata
隆志 秦
Yusuke Nishiuchi
悠祐 西内
Kaori Tada
佳織 多田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of National Colleges of Technologies Japan
Original Assignee
Institute of National Colleges of Technologies Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of National Colleges of Technologies Japan filed Critical Institute of National Colleges of Technologies Japan
Priority to JP2012170037A priority Critical patent/JP2014028340A/en
Publication of JP2014028340A publication Critical patent/JP2014028340A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a superfine micro bubble generation device capable of: generating superfine micro bubbles by uniformly diminishing bubbles into to a nano-level with a simple structure at a reasonable cost; and achieving stable generation of the superfine micro bubbles with reduced vibration and noise through reduction (control) of gas pulsation.SOLUTION: In a cylindrical casing body 50 which has an introduction port 30 to introduce fluid at one end and a lead-out port 40 to lead out the fluid at the other end, a superfine micro bubble generation device has: a flow rate increase section 70 which increases a flow rate of the fluid in series as the same flows from the introduction port to the lead-out port; a gas suction section 80 which allows external gas to be sucked into the casing body 50 where pressure therein is reduced by a fluid flow with the flow rate thereof increased in the flow rate increase section 70; and a superfine micro bubble containing fluid generation section 90 which generates the fluid mixed with superfine micro bubbles in a manner that shears the gas sucked through the gas suction section 80 by the fluid flow with the flow rate thereof increased in the flow rate increase section 70. The gas suction section 80 is provided with a pulsation control body 85 to control pulsation of the sucked gas.

Description

本発明は、分散相としての気体と連続相としての液体を混合して気液混相となすとともに、分散された気泡を超微細化かつ均一化させて生成することが可能な超微細気泡発生器に関する。   The present invention relates to an ultrafine bubble generator capable of producing a gas-liquid mixed phase by mixing a gas as a dispersed phase and a liquid as a continuous phase, and generating dispersed bubbles by making them finer and uniform. About.

従来、微細気泡発生器の一形態として、特許文献1に開示されたものがある。すなわち、特許文献1には、一端に液体を導入する導入口を有するとともに、他端に液体を導出する導出口を有する筒状のケーシング体内に、導入口から導出口に向けて順次、ケーシング体の周壁に開口した吸気孔から気体を導入して液体と混合させる気液混合部と、気液混合部から導出口側へ漸次拡径する拡径流路形成部と、拡径流路形成部の終端部に接続して気液混合相を旋回流となす旋回流形成部と、旋回流形成部で形成された旋回流を一時的に滞留させる一時滞留部とを備えたマイクロバブル発生装置が開示されている。   Conventionally, there exists what was disclosed by patent document 1 as one form of a fine bubble generator. That is, in Patent Document 1, a casing body is provided in order from an inlet to an outlet in a cylindrical casing body having an inlet for introducing a liquid at one end and an outlet for leading out a liquid at the other end. A gas-liquid mixing part that introduces gas from the intake hole opened in the peripheral wall of the gas and mixes it with the liquid, a diameter-enlarging channel forming part that gradually expands from the gas-liquid mixing part to the outlet side, and a terminal end of the diameter-enlarging channel forming part Disclosed is a microbubble generator including a swirl flow forming unit that is connected to a part to make a gas-liquid mixed phase a swirl flow, and a temporary retention unit that temporarily retains the swirl flow formed by the swirl flow formation unit ing.

かかるマイクロバブル発生装置では、次のようにしてマイクロバブルが形成される。すなわち、導入口から導入した液体と吸気孔から導入した気体とを気液混合部で混合して気液混合相となし、気液混合相を拡径流路形成部を通して減速させながら気液混合流となす。そして、気液混合流を旋回流形成部に案内して旋回流となす。この際、気液混合流を形成する気体は微細な気泡となって分散される。さらに、旋回流は一時滞留部で一時的に流動しながら滞留されて、比較的大きな気泡は粉砕される。その後、微細な気泡(マイクロバブル)を含有する旋回流は導出口から導出される。   In such a microbubble generator, microbubbles are formed as follows. That is, the liquid introduced from the inlet and the gas introduced from the intake port are mixed in the gas-liquid mixing part to form a gas-liquid mixing phase, and the gas-liquid mixing flow is decelerated through the enlarged diameter flow path forming part. And And a gas-liquid mixed flow is guided to a swirl flow formation part, and is made into a swirl flow. At this time, the gas forming the gas-liquid mixed flow is dispersed as fine bubbles. Further, the swirl flow is retained while temporarily flowing in the temporary retention portion, and relatively large bubbles are crushed. Thereafter, the swirling flow containing fine bubbles (microbubbles) is led out from the outlet.

特開2007−21343JP2007-21343

ところが、前記したマイクロバブル発生装置では、生成される気泡はマイクロレベル(数十〜数百μm)であり、さらに微細化かつ均一化されたナノレベル(1μm未満)の気泡は生成されない。そのため、かかるマイクロバブル発生装置は、ナノレベルの気泡が求められる産業分野では利用できないという不具合がある。
また、マイクロバブル発生装置に液体を圧送するポンプ又は他の要因により振動する現象が発生している。そのため、吸気孔から気体が導入される際にその流動が脈動となって、系全体の不安定性、振動又は騒音の起因となっている。
However, in the above-described microbubble generator, the generated bubbles are at the micro level (several tens to several hundreds μm), and the nano-level (less than 1 μm) bubbles that are further miniaturized and uniform are not generated. Therefore, such a microbubble generator has a problem that it cannot be used in industrial fields where nano-level bubbles are required.
In addition, a vibration phenomenon occurs due to a pump for pumping liquid to the microbubble generator or other factors. Therefore, when gas is introduced from the intake hole, the flow becomes pulsation, which causes instability of the entire system, vibration, or noise.

そこで、本発明は、ナノレベルに超微細化するとともに均一化した気泡を構造簡易で安価に発生させることができるとともに、気体の脈動を低減(抑制)して、超微細気泡の安定的生成と振動又は騒音の低減が可能な超微細気泡発生器を提供することを目的とする。   Therefore, the present invention can generate bubbles that are ultra-fine to the nano level and uniformized at a low cost with a simple structure, and reduce (suppress) the pulsation of gas, thereby stably generating ultra-fine bubbles. An object of the present invention is to provide an ultrafine bubble generator capable of reducing vibration or noise.

請求項1記載の発明に係る超微細気泡発生器は、一端に液体を導入する導入口を有するとともに、他端に液体を導出する導出口を有する筒状のケーシング体内に、導入口から導出口に向けて順次、導入口から導入した液体の流速を増速させる流速増速部と、流速増速部にて流速が増速された液流により圧力降下されたケーシング体内に外部から気体を吸引する気体吸引部と、気体吸引部にて吸引された気体が流速増速部にて流速を増速された液流によりせん断されて超微細な気泡混じりの液体が生成される超微細気泡含有液体生成部とを備え、気体吸引部には吸引される気体の脈動を抑制する脈動抑制体を配設していることを特徴とする。   The ultrafine bubble generator according to the invention described in claim 1 has a lead-out port from the lead-in port into a cylindrical casing having a lead-in port for introducing the liquid at one end and a lead-out port for leading the liquid at the other end. In order to increase the flow rate of the liquid introduced from the inlet, the gas flow from the outside is sucked into the casing body that has been pressure-reduced by the liquid flow whose flow rate has been increased by the flow rate accelerating unit. And a superfine bubble-containing liquid in which the gas sucked by the gas suction unit is sheared by the liquid flow whose flow velocity is increased by the flow velocity accelerating portion to generate a liquid containing ultrafine bubbles. And a pulsation suppressing body that suppresses pulsation of the sucked gas is provided in the gas suction unit.

かかる超微細気泡発生器では、導入口から導入した液体を流速増速部により増速させることができる。この際、流速増速部にて増速された液流によりケーシング体内の流速増速部における圧力は降下する。そのため、気体吸引部ではベンチュリ効果により外部から気体を吸引することができる。さらには、超微細気泡含有液体生成部において、気体吸引部にて吸引された気体が流速増速部にて増速された液流によりせん断されて超微細な気泡混じりの液体が生成される。しかも、気体吸引部には脈動抑制体を配設して、吸引される気体の脈動を脈動抑制体により抑制するようにしている。そのため、気体の脈動を低減(抑制)して、超微細気泡の安定的生成と振動又は騒音の低減を実現することができる。   In such an ultrafine bubble generator, the liquid introduced from the inlet can be accelerated by the flow velocity accelerating unit. At this time, the pressure in the flow velocity accelerating portion in the casing body drops due to the liquid flow accelerated by the flow velocity accelerating portion. Therefore, gas can be sucked from the outside by the venturi effect in the gas suction portion. Further, in the ultrafine bubble-containing liquid generation unit, the gas sucked by the gas suction unit is sheared by the liquid flow accelerated by the flow velocity accelerating unit, and an ultrafine bubble mixed liquid is generated. In addition, a pulsation suppressor is provided in the gas suction unit so that the pulsation of the sucked gas is suppressed by the pulsation suppressor. Therefore, it is possible to reduce (suppress) the pulsation of the gas, and to realize stable generation of ultrafine bubbles and reduction of vibration or noise.

請求項2記載の発明に係る超微細気泡発生器は、請求項1記載の発明に係る超微細気泡発生器であって、脈動抑制体はケーシング体に接続される気体吸引部の基端部近傍に配設していることを特徴とする。   An ultrafine bubble generator according to a second aspect of the present invention is the ultrafine bubble generator according to the first aspect of the present invention, wherein the pulsation suppressing body is in the vicinity of the proximal end portion of the gas suction portion connected to the casing body. It is characterized by being arranged.

かかる超微細気泡発生器では、脈動抑制体をケーシング体に接続される気体吸引部の基端部近傍に配設しているため、気体の脈動を堅実に低減(抑制)することができる。その結果、超微細気泡の安定的生成と振動又は騒音の低減を堅実に実現することができる。   In such an ultrafine bubble generator, since the pulsation suppressing body is disposed in the vicinity of the base end portion of the gas suction portion connected to the casing body, the pulsation of gas can be reduced (suppressed) steadily. As a result, stable generation of ultrafine bubbles and reduction of vibration or noise can be realized steadily.

請求項3記載の発明に係る超微細気泡発生器は、請求項1又は2記載の発明に係る超微細気泡発生器であって、脈動抑制体は気体が吸引される方向に連通する連通流路を有して、連通流路を通して気体がケーシング体内に吸引されるようにしていることを特徴とする。   The ultrafine bubble generator according to the invention described in claim 3 is the ultrafine bubble generator according to claim 1 or 2, wherein the pulsation suppressor communicates in the direction in which the gas is sucked. And gas is sucked into the casing body through the communication channel.

かかる超微細気泡発生器では、気体が吸引される方向に連通する脈動抑制体の連通流路を通して気体がケーシング体内に吸引されるようにしているため、気体が脈動していても連通流路を通過する際に気体の脈動が堅実に低減(抑制)される。そのため、超微細気泡の安定的生成と振動又は騒音の低減を堅実に実現することができる。   In such an ultrafine bubble generator, the gas is sucked into the casing body through the communication flow path of the pulsation suppressing body communicating in the direction in which the gas is sucked. Gas pulsation is steadily reduced (suppressed) when passing. Therefore, stable generation of ultrafine bubbles and reduction of vibration or noise can be realized steadily.

請求項4記載の発明に係る超微細気泡発生器は、請求項1〜3のいずれか1項記載の発明に係る超微細気泡発生器であって、脈動抑制体は多孔質部材により成形していることを特徴とする。   The ultrafine bubble generator according to the invention described in claim 4 is the ultrafine bubble generator according to any one of claims 1 to 3, wherein the pulsation suppressor is formed of a porous member. It is characterized by being.

かかる超微細気泡発生器では、脈動抑制体を多孔質部材、例えば、スポンジ、軽石、セラミックス、陶器により成形しているため、軽量かつ安価に連通流路を有する脈動抑制体を成形することができる。   In such an ultrafine bubble generator, since the pulsation suppressor is formed of a porous member, for example, sponge, pumice, ceramics, or ceramics, a pulsation suppressor having a communication channel can be formed at a light weight and at a low cost. .

請求項5記載の発明に係る超微細気泡発生器は、請求項1〜4のいずれか1項記載の発明に係る超微細気泡発生器であって、流速増速部の上流側に導入口から導入した液体を旋回流となす旋回流形成部を備えるとともに、旋回流形成部は、通過する液体を旋回流となす旋回手段と、旋回手段の下流側にケーシング体の軸線に沿って伸延する旋回流案内流路とを具備することを特徴とする。   The ultrafine bubble generator according to the invention described in claim 5 is the ultrafine bubble generator according to any one of claims 1 to 4, wherein an inlet is provided upstream of the flow velocity accelerating portion. The swirl flow forming unit includes a swirl flow forming unit that turns the introduced liquid into a swirl flow, the swirl unit that turns the passing liquid into a swirl flow, and a swirl that extends downstream of the swirl unit along the axis of the casing body. And a flow guide channel.

かかる超微細気泡発生器では、旋回流形成部の旋回手段が通過する流体を旋回流となして、旋回手段の下流側においてケーシング体の軸線に沿って伸延する旋回流案内流路が旋回流を下流側へ案内する。この際、旋回流となっている液体の旋回強さの大きい外周部が、その外周を流動する気体に高せん断力を及ぼすことになる。その結果、超微細気泡含有液体生成流路では超微細化かつ均一化された気泡混じりの液体が効率的にかつ堅実に生成されて、導出口から導出される。   In such an ultrafine bubble generator, the swirl flow is passed by the swirl flow guide channel extending along the axis of the casing body on the downstream side of the swirl means, while the swirl means of the swirl flow forming unit passes the swirl flow. Guide to the downstream side. At this time, the outer peripheral portion of the swirling flow having a large swirl strength exerts a high shear force on the gas flowing on the outer periphery. As a result, in the ultrafine bubble-containing liquid generation flow path, the ultrafine and uniform bubble-mixed liquid is efficiently and consistently generated and led out from the outlet.

請求項6記載の発明に係る超微細気泡発生器は、請求項1〜5のいずれか1項記載の発明に係る超微細気泡発生器であって、流速増速部は、ケーシング体の流路断面よりも小さい流路断面となして、ケーシング体の軸線と同軸的に伸延する流速増速流路を具備し、気体吸引部は、ケーシング体の周壁の中途部に開口した吸気孔と、吸気孔に基端開口部が連通して流速増速流路の外周に同心円的に伸延する筒状の気体吸引流路とを具備し、超微細気泡含有液体生成部は、気体吸引流路の先端開口部と流速増速流路の先端開口部とが吸気孔から一定幅だけ下流側で連通するとともに、両先端開口部よりも下流側である導出口に向けて伸延する超微細気泡含有液体生成流路を具備することを特徴とする。   The ultrafine bubble generator according to the invention described in claim 6 is the ultrafine bubble generator according to any one of claims 1 to 5, wherein the flow velocity accelerating portion is a flow path of the casing body. A flow passage speed increasing flow path that has a flow path cross section smaller than the cross section and extends coaxially with the axis of the casing body, and the gas suction portion includes an intake hole opened in a midway portion of the peripheral wall of the casing body, And a cylindrical gas suction channel that is concentrically extended on the outer periphery of the flow velocity accelerating channel with the proximal end opening communicating with the hole, and the ultrafine bubble-containing liquid generating unit is provided at the distal end of the gas suction channel. Ultrafine bubble-containing liquid generation in which the opening and the opening at the tip of the flow velocity accelerating channel communicate with each other downstream by a certain width from the intake hole and extend toward the outlet opening downstream from both the openings. A flow path is provided.

かかる超微細気泡発生器では、流速増速部が具備する流速増速流路は、旋回流案内流路の流路断面よりも小さい流路断面となして、ケーシング体の軸線と同軸的に伸延させているため、旋回流の流速を堅実に増大させることができる。また、気体吸引部が具備する吸気孔から気体を吸入するとともに、気体吸引流路を通して流速増速流路の外周に同心円的に気体を流入させることができる。超微細気泡含有液体生成部が具備する超微細気泡含有液体生成流路において、旋回流となっている液体と、その外周を囲繞するように筒状に流動する気体とが混合される。この際、超微細気泡含有液体生成流路は、気体吸引流路の先端開口部と流速増速流路の先端開口部とが吸気孔から一定幅だけ下流側で連通するとともに、両先端開口部よりも下流側である導出口に向けて伸延しているため、増速されて旋回流となっている液体の旋回強さの大きい外周部が、その外周を筒状に流動する気体に高せん断力を及ぼすことになる。その結果、超微細気泡含有液体生成流路では超微細化かつ均一化された気泡混じりの液体が効率的にかつ堅実(安定的)に生成されて、導出口から導出される。   In such an ultrafine bubble generator, the flow velocity accelerating channel provided in the flow velocity accelerating portion has a smaller channel cross section than the flow channel cross section of the swirl flow guide channel, and extends coaxially with the axis of the casing body. Therefore, the flow velocity of the swirl flow can be steadily increased. In addition, the gas can be sucked into the outer periphery of the flow velocity accelerating flow path through the gas suction flow path, and the gas can be flowed concentrically through the suction hole provided in the gas suction section. In the ultrafine bubble-containing liquid generation flow path included in the ultrafine bubble-containing liquid generation unit, the liquid that is swirling and the gas that flows in a cylindrical shape so as to surround the outer periphery thereof are mixed. At this time, the ultrafine bubble-containing liquid generation flow path is such that the front end opening of the gas suction flow path and the front end opening of the flow velocity accelerating flow path communicate with each other on the downstream side by a certain width from the intake hole. Since the outer periphery of the liquid, which is accelerated and swirled, has a high swirl strength, it is highly sheared into a gas that flows in a cylindrical shape. Will exert power. As a result, in the ultrafine bubble-containing liquid generation flow path, the ultrafine and uniform bubble-mixed liquid is efficiently and steadily (stable) generated and led out from the outlet.

本発明は次のような効果を奏する。すなわち、本発明に係る超微細気泡発生器は、超微細化かつ均一化されたナノレベル(1μm未満)の気泡を短時間に大量生成して安定提供することができる。また、超微細気泡発生器は、合成樹脂により安価にかつ軽量にかつコンパクトに製造することができる。そのため、かかる超微細気泡発生器は、ナノレベルの気泡が求められる産業分野において幅広く利用することができる。しかも、吸引される気体の脈動を低減(抑制)することができて、超微細気泡を安定的に生成することができるとともに、振動又は騒音を堅実に低減することができる。   The present invention has the following effects. That is, the ultrafine bubble generator according to the present invention can stably provide a large amount of ultrafine and uniform nano-level (less than 1 μm) bubbles in a short time. In addition, the ultrafine bubble generator can be manufactured inexpensively, lightly and compactly with a synthetic resin. Therefore, such an ultrafine bubble generator can be widely used in industrial fields where nano-level bubbles are required. In addition, the pulsation of the sucked gas can be reduced (suppressed), the ultrafine bubbles can be stably generated, and vibration or noise can be reduced steadily.

第1実施形態としての超微細気泡発生装置の説明図。Explanatory drawing of the ultrafine bubble generator as 1st Embodiment. 第1実施形態としての超微細気泡発生器の斜視説明図。The perspective explanatory view of the ultrafine bubble generator as a 1st embodiment. 第1実施形態としての超微細気泡発生器の正面説明図。Front explanatory drawing of the ultrafine bubble generator as 1st Embodiment. 第1実施形態としての超微細気泡発生器の断面正面説明図。Cross-sectional front explanatory drawing of the ultrafine bubble generator as 1st Embodiment. 第1実施形態としての超微細気泡発生器の拡大断面正面説明図。The expanded cross-section front explanatory drawing of the ultrafine bubble generator as 1st Embodiment. 第1実施形態としての超微細気泡発生器の流れ状態の拡大断面正面説明図。The expanded cross-section front explanatory drawing of the flow state of the ultrafine bubble generator as 1st Embodiment. 第1実施形態としての超微細気泡発生器の斜視分解説明図。The perspective exploded explanatory view of the ultrafine bubble generator as a 1st embodiment. 第2実施形態としての超微細気泡発生装置の説明図。Explanatory drawing of the ultrafine bubble generator as 2nd Embodiment. 第2実施形態としての超微細気泡発生器の斜視説明図。The perspective explanatory drawing of the ultrafine bubble generator as 2nd Embodiment. 第2実施形態としての超微細気泡発生器の正面説明図。Front explanatory drawing of the ultrafine bubble generator as 2nd Embodiment. 第2実施形態としての超微細気泡発生器の断面正面説明図。Cross-sectional front explanatory drawing of the ultrafine bubble generator as 2nd Embodiment. 第2実施形態としての超微細気泡発生器の拡大断面正面説明図。The expanded cross-section front explanatory drawing of the ultrafine bubble generator as 2nd Embodiment. 第2実施形態としての超微細気泡発生器の流れ状態の拡大断面正面説明図。The expanded cross-section front explanatory drawing of the flow state of the ultrafine bubble generator as 2nd Embodiment. 第2実施形態としての超微細気泡発生器の斜視分解説明図。The perspective exploded explanatory drawing of the ultrafine bubble generator as 2nd Embodiment. 旋回手段の側面説明図。Side surface explanatory drawing of a turning means. 第1変形例としての旋回手段の取付斜視説明図。The attachment perspective view explanatory drawing of the turning means as a 1st modification. 第1変形例としての旋回手段の上流側斜視図(a)、下流側斜視図(b)、正面図(c)、上流側側面図(d)、下流側側面図(e)。The upstream perspective view (a), the downstream perspective view (b), the front view (c), the upstream side view (d), and the downstream side view (e) of the turning means as the first modification. 第2変形例としての旋回手段の取付斜視説明図。The attachment perspective view explanatory drawing of the turning means as a 2nd modification. 第2変形例としての旋回手段の上流側斜視図(a)、下流側斜視図(b)、正面図(c)、上流側側面図(d)、下流側側面図(e)。The upstream perspective view (a), the downstream perspective view (b), the front view (c), the upstream side view (d), and the downstream side view (e) of the turning means as the second modification. 脈動抑制体を収容配置した吸気パイプの断面説明図。Cross-sectional explanatory drawing of the intake pipe which accommodated and arrange | positioned the pulsation suppression body. 吸気パイプの変形例としての接続構造の断面説明図。Sectional explanatory drawing of the connection structure as a modification of an intake pipe. 第2実施形態の変形例としての超微細気泡発生器の断面正面説明図。Cross-sectional front explanatory drawing of the ultrafine bubble generator as a modification of 2nd Embodiment. 第2実施形態の変形例としての超微細気泡発生器の分解正面説明図。The decomposition | disassembly front explanatory drawing of the ultrafine bubble generator as a modification of 2nd Embodiment. 上流側半部の平面図(a)と側面図(b)と断面正面図(c)。The top view (a), side view (b), and sectional front view (c) of the upstream half. 下流側半部の平面図(a)と側面図(b)と断面正面図(c)。The top view (a), side view (b), and sectional front view (c) of the downstream half. 増速流路形成体の断面正面図。The cross-sectional front view of an acceleration flow path formation body. ねじれ角が60°の旋回手段の上流側側面図(a)と正面図(b)と下流側側面図(c)と斜視図(d)と外形説明図(e)。The upstream side view (a), the front view (b), the downstream side view (c), the perspective view (d), and the outer shape explanatory view (e) of the turning means having a twist angle of 60 °. ねじれ角が90°の旋回手段の上流側側面図(a)と正面図(b)と下流側側面図(c)と斜視図(d)。The upstream side view (a), the front view (b), the downstream side view (c), and the perspective view (d) of the turning means having a twist angle of 90 °. ホース接続型の超微細気泡発生器の正面説明図。Front explanatory drawing of a hose connection type ultrafine bubble generator. 水中ポンプ搭載型の超微細気泡発生器の正面説明図。Front explanatory drawing of a submersible pump-mounted ultrafine bubble generator. 第2実施形態に係る超微細気泡発生装置により生成された混合流体が含有する超微細気泡の粒子径の測定結果を示すグラフ。The graph which shows the measurement result of the particle diameter of the ultrafine bubble which the mixed fluid produced | generated by the ultrafine bubble generator which concerns on 2nd Embodiment contains. 第1実施形態に係る超微細気泡発生装置と、第1変形例としての旋回手段を装備した第2実施形態に係る超微細気泡発生装置の超微細気泡含有液体生成流路における自吸空気圧を検出した結果を示すグラフ。Self-priming air pressure is detected in the ultrafine bubble-containing liquid generation flow path of the ultrafine bubble generation device according to the second embodiment equipped with the ultrafine bubble generation device according to the first embodiment and the turning means as the first modification. Graph showing the results. 脈動抑制体付設の有無による脈動現象を示すグラフ。The graph which shows the pulsation phenomenon by the presence or absence of pulsation suppression body attachment.

以下に、本発明に係る第1実施形態と第2実施形態とそれらの変形例を、図面を参照しながら説明する。   Below, 1st Embodiment which concerns on this invention, 2nd Embodiment, and those modifications are described, referring drawings.

[第1実施形態]
図1に示す1は第1実施形態としての超微細気泡発生装置であり、超微細気泡発生装置1は、図1に示すように、連続相としての液体F1と分散相として気体F2を混合するとともに、気体F2を超微細かつ均一な気泡となして、気液混合相としての混合流体F3を生成する装置である。ここで、本実施形態では、液体F1は水であり、気体F2は空気である。そして、混合流体F3は超微細な気泡混じりの液体(超微細気泡含有液体)である。
[First Embodiment]
1 is an ultrafine bubble generator as a first embodiment, and the ultrafine bubble generator 1 mixes a liquid F1 as a continuous phase and a gas F2 as a dispersed phase as shown in FIG. At the same time, the gas F2 is converted into ultrafine and uniform bubbles to generate a mixed fluid F3 as a gas-liquid mixed phase. Here, in the present embodiment, the liquid F1 is water and the gas F2 is air. The mixed fluid F3 is a liquid containing ultrafine bubbles (liquid containing ultrafine bubbles).

(第1実施形態としての超微細気泡発生装置1の説明)
第1実施形態としての超微細気泡発生装置1は、図1に示すように、第1実施形態としての超微細気泡発生器2と、超微細気泡発生器2に供給するための液体F1を収容する液体収容部3と、超微細気泡発生器2により生成された混合流体F3を収容する混合流体収容部4とを備えている。超微細気泡発生器2の一端側(基端側)には、第1連通路としての第1連通パイプ5を介して、ポンプPの吐出口(図示せず)を連通連結している。ポンプPの吸込口(図示せず)には、第2連通路としての第2連通パイプ6を介して、液体F1を収容した液体収容部3を連通連結している。超微細気泡発生器2の他端側(先端側)には、第3連通路としての第3連通パイプ7を介して、混合流体F3を収容する混合流体収容部4を連通連結している。
(Description of the ultrafine bubble generating apparatus 1 as the first embodiment)
As shown in FIG. 1, an ultrafine bubble generator 1 as a first embodiment contains an ultrafine bubble generator 2 as a first embodiment and a liquid F1 to be supplied to the ultrafine bubble generator 2. And a mixed fluid storage unit 4 that stores the mixed fluid F3 generated by the ultrafine bubble generator 2. A discharge port (not shown) of the pump P is connected to one end side (base end side) of the ultrafine bubble generator 2 through a first communication pipe 5 as a first communication path. The suction port (not shown) of the pump P is connected in communication with the liquid storage portion 3 that stores the liquid F1 via a second communication pipe 6 serving as a second communication path. The other end side (front end side) of the ultrafine bubble generator 2 is connected in communication with a mixed fluid storage portion 4 that stores the mixed fluid F3 through a third communication pipe 7 serving as a third communication path.

このように構成して、ポンプPを作動させることで、第2連通パイプ6を通して液体収容部3内の液体F1をポンプPの吸込口から吸い込むとともに、ポンプPの吐出口から液体F1を超微細気泡発生器2に吐出することができる。そして、加圧された液体F1が超微細気泡発生器2内に導入される一方、超微細気泡発生器2内には別途気体F2が吸入されて、超微細気泡発生器2内で液体F1と気体F2とが混合されて混合流体F3が生成されるようにしている。そして、混合流体F3は第3連通パイプ7を通して混合流体収容部4に収容されるようにしている。また、混合流体F3は、混合流体収容部4から回収することができる。   In this way, by operating the pump P, the liquid F1 in the liquid storage unit 3 is sucked from the suction port of the pump P through the second communication pipe 6, and the liquid F1 is ultrafine from the discharge port of the pump P. It can be discharged to the bubble generator 2. Then, while the pressurized liquid F1 is introduced into the ultrafine bubble generator 2, the gas F2 is separately sucked into the ultrafine bubble generator 2, and the liquid F1 is combined with the liquid F1 in the ultrafine bubble generator 2. The mixed fluid F3 is generated by mixing with the gas F2. The mixed fluid F3 is accommodated in the mixed fluid accommodating portion 4 through the third communication pipe 7. Further, the mixed fluid F3 can be recovered from the mixed fluid storage unit 4.

(第1実施形態としての超微細気泡発生器2の説明)
第1実施形態としての超微細気泡発生器2は、図2〜図4に示すように、接続体10と気泡発生器本体20を、同一軸線上に直状に配置するとともに連通連結して形成している。
(Description of the ultrafine bubble generator 2 as the first embodiment)
As shown in FIGS. 2 to 4, the ultrafine bubble generator 2 as the first embodiment is formed by connecting and connecting the connecting body 10 and the bubble generator main body 20 in a straight line on the same axis. doing.

接続体10は、第1連通パイプ5に気泡発生器本体20を連通状態に接続するためのものである。すなわち、接続体10は、第1接続片11と第2接続片12と第3接続片13とから構成している。   The connection body 10 is for connecting the bubble generator main body 20 to the first communication pipe 5 in a communication state. In other words, the connection body 10 includes the first connection piece 11, the second connection piece 12, and the third connection piece 13.

第1接続片11は、円筒状の第1接続本片11aと、第1接続本片11aの外周面中途部に外方へ張り出し鍔状に形成した第1係止用鍔片11bとを合成樹脂により一体成形している。第1接続本片11aの基端部は、可撓性樹脂により成形した第1連通パイプ5の先端部に着脱自在に嵌入させて接続可能としている。第1接続片11は、第1係止用鍔片11bが後述する第2接続本片12aの基端側端面に当接して係止される。   The first connection piece 11 is composed of a cylindrical first connection piece 11a and a first locking hook piece 11b formed outwardly in the middle of the outer peripheral surface of the first connection piece 11a. It is integrally molded with resin. The base end portion of the first connection piece 11a is detachably fitted into the tip end portion of the first communication pipe 5 formed of a flexible resin so as to be connectable. The first connecting piece 11 is locked by the first locking collar piece 11b coming into contact with the proximal end surface of the second connecting book piece 12a described later.

第2接続片12は、円筒状に形成した第2接続本片12aと、第2接続本片12aの外周面基端部に外方張り出し鍔状に形成した第2係止用鍔片12bとを弾性ゴム素材により一体成形している。第2接続本片12aには、第1接続本片11aの先端部を着脱自在に嵌入させて接続可能としている。第2接続片12は、第2係止用鍔片12bが後述する第3接続片13の基端部側半部13a端面に当接して係止される。   The second connection piece 12 includes a second connection piece 12a formed in a cylindrical shape, and a second locking piece 12b formed in an outwardly protruding manner at the base end portion of the outer peripheral surface of the second connection piece 12a. Is integrally formed of an elastic rubber material. The second connection piece 12a can be connected by detachably fitting the tip of the first connection piece 11a. The second connecting piece 12 is locked by the second locking hook piece 12b coming into contact with the end face of the base end side half 13a of the third connecting piece 13 described later.

第3接続片13は、合成樹脂により円筒状に形成するとともに、基端部側半部13aの内径を第2接続本片12aの外径と略同一に形成する一方、先端部側半部13bを基端部側半部13aよりもやや小径に縮径させて形成している。基端部側半部13aには、第2接続本片12aの先端部を着脱自在に嵌入させて接続可能としている。先端部側半部13bには、後述する気泡発生器本体20の第1分割片51を着脱自在に嵌入させて接続可能としている。   The third connection piece 13 is formed in a cylindrical shape from a synthetic resin, and the inner diameter of the base end side half 13a is formed substantially the same as the outer diameter of the second connection piece 12a, while the tip end side half 13b. Is formed to have a diameter slightly smaller than that of the base end side half 13a. The proximal end side half 13a is detachably fitted with a distal end portion of the second connecting piece 12a so as to be connectable. A first divided piece 51 of a bubble generator main body 20 to be described later is detachably fitted into the distal end side half 13b so as to be connectable.

気泡発生器本体20は、図2〜図7に示すように、一端に液体F1を導入する導入口30を有するとともに、他端に混合流体F3を導出する導出口40を有する直状かつ円筒状のケーシング体50内に、導入口30から導出口40に向けて順次、流速増速部70と気体吸引部80と超微細気泡含有液体生成部90とを備えている。   As shown in FIGS. 2 to 7, the bubble generator body 20 has a straight and cylindrical shape having an inlet 30 for introducing the liquid F1 at one end and an outlet 40 for deriving the mixed fluid F3 at the other end. In the casing body 50, a flow velocity accelerating unit 70, a gas suction unit 80, and an ultrafine bubble-containing liquid generation unit 90 are sequentially provided from the inlet 30 to the outlet 40.

流速増速部70は、ケーシング体50内に導入された液流を増速させるようにしており、ケーシング体50内の流路断面よりも小さい流路断面となして、ケーシング体50の軸線と同軸的に伸延する流速増速流路71を具備している。   The flow velocity accelerating unit 70 is configured to accelerate the liquid flow introduced into the casing body 50, has a channel cross section smaller than the channel cross section in the casing body 50, and the axis of the casing body 50 A flow velocity increasing flow path 71 extending coaxially is provided.

気体吸引部80は、流速増速部70にて増速された液流により圧力降下された(大気圧に対して真空圧となる)ケーシング体50内に、外部から気体F2をベンチュリ効果で吸引するようにしている。すなわち、気体吸引部80は、ケーシング体50の周壁の中途部に開口した吸気孔81と、吸気孔81に基端部が連通して流速増速流路71の外周に同心円的に伸延する円筒状の気体吸引流路82と、吸気孔81に連通連結して立設した吸気接続パイプ83と、吸気接続パイプ83の上端部に接続して上端開口部から外気である空気を吸引することができる吸気パイプ84とを具備している。ここで、気体F2の吸入量は、第1連通パイプ5中を流れる液体F1の流量の2%〜4%、望ましくは3%前後(STP;0℃、1気圧)に設定することができる。また、吸気パイプ84には流量調節弁(図示せず)を取り付けることで気体F2の吸入量を可変可能とすることができる。   The gas suction unit 80 sucks the gas F2 from the outside by the venturi effect into the casing body 50 whose pressure has been reduced by the liquid flow increased by the flow velocity acceleration unit 70 (which is a vacuum pressure relative to the atmospheric pressure). Like to do. That is, the gas suction part 80 includes a suction hole 81 opened in the middle part of the peripheral wall of the casing body 50 and a cylinder concentrically extending to the outer periphery of the flow velocity accelerating flow channel 71 with the base end part communicating with the suction hole 81. A gas-like gas suction channel 82, an intake connection pipe 83 that is connected and connected to the intake hole 81, and an upper end portion of the intake connection pipe 83 to suck air that is outside air from the upper end opening. And an intake pipe 84 that can be used. Here, the suction amount of the gas F2 can be set to 2% to 4%, preferably around 3% (STP; 0 ° C., 1 atm) of the flow rate of the liquid F1 flowing through the first communication pipe 5. Further, the intake pipe 84 can be provided with a flow rate adjusting valve (not shown) so that the intake amount of the gas F2 can be varied.

気体吸引部80の吸気パイプ84内には、吸引される気体F2の脈動を抑制する脈動抑制体85を配設している。すなわち、脈動抑制体85は、図20にも示すように、外形状を吸気パイプ84内に挿入可能な円柱状に形成して、ケーシング体50の第4分割片54に接続される気体吸引部80の基端部近傍、つまり、吸気接続パイプ83の先端部(上端部)に下端面を当接させて可及的に吸気孔81の近傍位置に配設している。脈動抑制体85は気体F2が吸引される方向(吸気パイプ84を通して吸気孔81から気体吸引流路82内に吸引される方向)に連通する連通流路86を有している。そして、連通流路86を通して気体F2がケーシング体50の気体吸引流路82内に吸引されるようにしている。ここで、脈動抑制体85は多孔質部材により成形することで、屈曲した細管状の連通流路86を保持させることができる。多孔質部材としては、例えば、スポンジ、軽石、セラミックス、陶器がある。また、脈動抑制体85はセルロース繊維やガラス繊維等を絡み合わせて形成することもでき、吸気パイプ84の基端部内に詰め込むことで充填・配置することができる。   In the intake pipe 84 of the gas suction unit 80, a pulsation suppressing body 85 that suppresses the pulsation of the sucked gas F2 is disposed. That is, as shown in FIG. 20, the pulsation suppressing body 85 is formed in a cylindrical shape whose outer shape can be inserted into the intake pipe 84 and connected to the fourth divided piece 54 of the casing body 50. In the vicinity of the base end portion of 80, that is, the tip end portion (upper end portion) of the intake connection pipe 83, the lower end surface is brought into contact with the intake hole 81 as much as possible. The pulsation suppressing body 85 has a communication channel 86 that communicates in a direction in which the gas F2 is sucked (a direction in which the gas F2 is sucked into the gas suction channel 82 from the suction hole 81 through the suction pipe 84). The gas F <b> 2 is sucked into the gas suction channel 82 of the casing body 50 through the communication channel 86. Here, the pulsation suppressing body 85 can be formed of a porous member to hold the bent tubular communication channel 86. Examples of the porous member include sponge, pumice, ceramics, and ceramics. Further, the pulsation suppressing body 85 can be formed by entwining cellulose fibers, glass fibers, or the like, and can be filled and arranged by being packed in the proximal end portion of the intake pipe 84.

このように構成して、吸引される気体F2の脈動を脈動抑制体85により抑制するようにしているため、気体F2の脈動を低減(抑制)して、超微細気泡の安定的生成と振動又は騒音の低減を実現することができる。この際、脈動抑制体85は第4分割片54に接続される吸気孔81の近傍位置に配設しているため、気体F2の脈動を堅実に低減(抑制)することができる。その結果、超微細気泡の安定的生成と振動又は騒音の低減を堅実に実現することができる。しかも、気体F2は吸引される方向に連通する脈動抑制体85の連通流路86を通してケーシング体50の気体吸引流路82内に吸引されるようにしているため、気体F2が脈動していても連通流路86を通過する際に気体F2の脈動が堅実に低減(抑制)される。そのため、超微細気泡の安定的生成と振動又は騒音の低減を堅実に実現することができる。また、脈動抑制体85は多孔質部材、例えば、スポンジ、軽石、セラミックス、陶器により成形しているため、軽量かつ安価に連通流路86を有する脈動抑制体85を成形することができる。   With this configuration, the pulsation of the sucked gas F2 is suppressed by the pulsation suppressor 85, so that the pulsation of the gas F2 is reduced (suppressed), and stable generation and vibration or Noise reduction can be realized. At this time, since the pulsation suppressing body 85 is disposed in the vicinity of the intake hole 81 connected to the fourth divided piece 54, the pulsation of the gas F2 can be steadily reduced (suppressed). As a result, stable generation of ultrafine bubbles and reduction of vibration or noise can be realized steadily. Moreover, since the gas F2 is sucked into the gas suction flow path 82 of the casing body 50 through the communication flow path 86 of the pulsation suppressing body 85 that communicates in the suction direction, even if the gas F2 pulsates. When passing through the communication channel 86, the pulsation of the gas F2 is steadily reduced (suppressed). Therefore, stable generation of ultrafine bubbles and reduction of vibration or noise can be realized steadily. Further, since the pulsation suppressing body 85 is formed of a porous member, for example, sponge, pumice, ceramics, or earthenware, the pulsation suppressing body 85 having the communication flow path 86 can be formed at a light weight and at a low cost.

超微細気泡含有液体生成部90は、気体吸引部80にて吸引された気体F2が流速増速部70にて増速された液流によりせん断されて超微細な気泡混じりの液体、つまり混合流体F3が生成されるようにしており、気体吸引流路82の先端部と流速増速流路71の先端部とが連通して、導出口40に向けて伸延する超微細気泡含有液体生成流路91を具備している。   The ultrafine bubble-containing liquid generation unit 90 is a liquid containing ultrafine bubbles, that is, a mixed fluid, in which the gas F2 sucked by the gas suction unit 80 is sheared by the liquid flow accelerated by the flow velocity accelerating unit 70. F3 is generated, and the tip of the gas suction channel 82 and the tip of the flow velocity accelerating channel 71 communicate with each other, and the ultrafine bubble-containing liquid generation channel that extends toward the outlet 40 is formed. 91.

ケーシング体50は、円筒状の第1分割片51と、第1分割片51の外周面先端部に嵌合する円筒状の第2分割片52と、第2分割片52の内周面先端部に嵌合する円筒状の第3分割片53と、第3分割片53の外周面先端部に嵌合する円筒状の第4分割片54と、第4分割片54の内周面先端部に嵌合する円筒状の第5分割片55とを具備している。そして、第4分割片54は、中途部の縮径部56を介して基端部側よりも先端部側を縮径させて形成している。   The casing body 50 includes a cylindrical first divided piece 51, a cylindrical second divided piece 52 fitted to the outer peripheral surface tip of the first divided piece 51, and an inner peripheral surface tip of the second divided piece 52. A cylindrical third divided piece 53 that fits to the outer peripheral surface of the third divided piece 53, a fourth cylindrical piece 54 fitted to the distal end of the outer peripheral surface of the third divided piece 53, and an inner peripheral surface of the fourth divided piece 54 A cylindrical fifth divided piece 55 to be fitted is provided. And the 4th division | segmentation piece 54 reduces the diameter of the front-end | tip part side rather than the base end part side via the diameter-reduction part 56 of the middle part.

流速増速流路71は、図5に示すように、第4分割片54内に増速流路形成体72を配置して形成している。すなわち、増速流路形成体72は、第4分割片54の先端部側の内径よりも外径が小径で円筒状の流路形成片73と、流路形成片73の外周面基端部から下流側に張り出し状に形成した傘状支持片74とを具備している。そして、傘状支持片74の先端周縁部を第4分割片54の縮径部56に当接させるとともに、流路形成片73の先端部を第4分割片54の先端部内に同心円的に配置している。流路形成片73の先端部は、上流側から下流側に漸次縮径させて、内周テーパー面92と外周テーパー面93を形成している。図5中、L1は流路形成片73の長手幅(筒長)、L2は円筒状に形成された気体吸引流路82の筒長、つまり、吸気孔81の中心位置から流路形成片73の先端開口部までの一定幅、W1は流路形成片73の基端開口部の内径、W2は流路形成片73の先端開口部の内径、W3は第5分割片55の内径、W4は第5分割片55の外径、W5は流路形成片73の外周面と第5分割片55の内周面との最小間隔、W6は流路形成片73の外周テーパー面93と第5分割片55の内周面との間に形成される最大間隔である。   As shown in FIG. 5, the flow velocity accelerating channel 71 is formed by disposing an accelerating channel forming body 72 in the fourth divided piece 54. That is, the speed increasing flow path forming body 72 includes a cylindrical flow path forming piece 73 whose outer diameter is smaller than the inner diameter on the distal end side of the fourth divided piece 54 and the outer peripheral surface proximal end portion of the flow path forming piece 73. And an umbrella-like support piece 74 formed in a protruding shape on the downstream side. And the front-end | tip peripheral part of the umbrella-shaped support piece 74 is contact | abutted to the reduced diameter part 56 of the 4th division | segmentation piece 54, and the front-end | tip part of the flow path formation piece 73 is concentrically arrange | positioned in the front-end | tip part of the 4th division | segmentation piece 54 doing. The tip of the flow path forming piece 73 is gradually reduced in diameter from the upstream side to the downstream side to form an inner peripheral tapered surface 92 and an outer peripheral tapered surface 93. 5, L1 is the longitudinal width (cylinder length) of the flow path forming piece 73, L2 is the cylindrical length of the gas suction flow path 82 formed in a cylindrical shape, that is, the flow path forming piece 73 from the center position of the intake hole 81. W1 is the inner diameter of the proximal end opening of the flow path forming piece 73, W2 is the inner diameter of the distal end opening of the flow path forming piece 73, W3 is the inner diameter of the fifth divided piece 55, and W4 is The outer diameter of the fifth divided piece 55, W5 is the minimum distance between the outer peripheral surface of the flow passage forming piece 73 and the inner peripheral surface of the fifth divided piece 55, and W6 is the outer peripheral tapered surface 93 of the flow passage forming piece 73 and the fifth divided piece. This is the maximum distance formed between the inner peripheral surface of the piece 55.

このように構成して、流路形成片73の先端部の内部を流動する液流は内周テーパー面92に沿って流速を増大させながら流動する一方、流路形成片73の先端部の外部を流動する気流は外周テーパー面93に沿って流速を減速させるとともに流量を増大させながら流動する。そのため、流速が増大された液流と流量が増大された気流が合流した際には、液流が気流に大きなせん断力を付与して超微細かつ均一な気泡を大量に生成することができる。つまり、内周テーパー面92と外周テーパー面93のテーパー角を調整することで気泡の大きさと量を制御することができる。   With this configuration, the liquid flow flowing inside the tip of the flow path forming piece 73 flows while increasing the flow velocity along the inner peripheral tapered surface 92, while the outside of the tip of the flow path forming piece 73 is outside. The airflow flowing through the airflow flows along the outer peripheral tapered surface 93 while reducing the flow velocity and increasing the flow rate. Therefore, when a liquid flow with an increased flow rate and an air stream with an increased flow rate merge, the liquid flow can apply a large shearing force to the air flow to generate a large amount of ultrafine and uniform bubbles. That is, the size and amount of the bubbles can be controlled by adjusting the taper angles of the inner peripheral tapered surface 92 and the outer peripheral tapered surface 93.

気体吸引流路82は、流路形成片73の外周面と第4分割片54の先端部の内周面との間に形成される間隙、そして、流路形成片73の外周面と第5分割片55の先端部の内周面との間に形成される間隙であり、気体吸引流路82は、流速増速流路71の先端部側の外周に円筒状に形成されている。つまり、気体吸引流路82は、円筒状に形成された筒長L2(吸気孔81の中心位置から流路形成片73の先端開口部までの一定幅)を有している。ここで、一定幅である筒長L2は第5分割片55の内径W3よりも幅広(本実施形態では内径W3の略4倍)に形成している。そのため、吸気孔81から気体吸引流路82内に吸入された気体F2は、流路形成片73の先端開口部に至るまで、つまり、少なくとも筒長L2の長さ分は流路形成片73の外周面に沿って流動して、堅実にかつ安定して円筒状に形成される。そして、流路形成片73の先端開口部において、棒状に流出される液体F1の外周面を安定して円筒状に形成された気体F2が覆うように面接触する。したがって、液体F1とその外周面を覆う気体F2との接触面積、つまり、せん断面積が大きく確保されて、分散相としての気体F2が連続相としての液体F1により効果的にせん断される。その結果、超微細気泡含有液体生成流路91において、気体F2は均一に超微細化されて、超微細気泡混じりの液体、つまり、混合流体F3が生成される。   The gas suction flow channel 82 includes a gap formed between the outer peripheral surface of the flow channel forming piece 73 and the inner peripheral surface of the tip of the fourth divided piece 54, and the outer peripheral surface of the flow channel forming piece 73 and the fifth The gas suction channel 82 is formed in a cylindrical shape on the outer periphery of the flow velocity accelerating channel 71 on the distal end side. That is, the gas suction channel 82 has a cylindrical length L2 (a constant width from the center position of the intake hole 81 to the tip opening of the channel forming piece 73) formed in a cylindrical shape. Here, the cylinder length L2 having a constant width is formed wider than the inner diameter W3 of the fifth divided piece 55 (in this embodiment, approximately four times the inner diameter W3). Therefore, the gas F2 sucked into the gas suction flow path 82 from the suction hole 81 reaches the tip opening of the flow path forming piece 73, that is, at least the length of the cylinder length L2 of the flow path forming piece 73. It flows along the outer peripheral surface and is formed into a solid and stable cylindrical shape. And in the front-end | tip opening part of the flow-path formation piece 73, surface contact is carried out so that the gas F2 formed stably cylindrically may cover the outer peripheral surface of the liquid F1 which flows out in the rod shape. Therefore, a large contact area between the liquid F1 and the gas F2 covering the outer peripheral surface thereof, that is, a shearing area is ensured, and the gas F2 as the dispersed phase is effectively sheared by the liquid F1 as the continuous phase. As a result, in the ultrafine bubble-containing liquid generation flow channel 91, the gas F2 is uniformly made ultrafine and a liquid containing ultrafine bubbles, that is, a mixed fluid F3 is generated.

第1実施形態は、上記のように構成しているものであり、次のような作用効果を奏する。すなわち、図4及び図6に示すように、超微細気泡発生器2では、導入口30から導入した液体F1が流速増速部70により増速される。すなわち、流速増速部70が具備する流速増速流路71は、旋回流案内流路62の流路断面の略四分の一である小さい流路断面となして、ケーシング体50の軸線と同軸的に伸延させているため、液体F1の液流の流速を堅実に増大させることができる。ここで、液流の流速の調整は、流速増速流路71の流路断面を適宜調整することで行うことができる。したがって、緩速的な流速で導入された液体F1であっても、液流は適宜増速させて所望の混合液体F3を生成することができる。   1st Embodiment is comprised as mentioned above and there exists the following effect. That is, as shown in FIGS. 4 and 6, in the ultrafine bubble generator 2, the liquid F <b> 1 introduced from the inlet 30 is accelerated by the flow velocity accelerating unit 70. That is, the flow velocity accelerating channel 71 included in the flow velocity accelerating unit 70 has a small channel cross section that is approximately a quarter of the channel cross section of the swirl flow guide channel 62, and the axis of the casing body 50 Since it is extended coaxially, the flow velocity of the liquid flow of the liquid F1 can be steadily increased. Here, the adjustment of the flow rate of the liquid flow can be performed by appropriately adjusting the cross section of the flow rate accelerating flow channel 71. Therefore, even with the liquid F1 introduced at a slow flow rate, the liquid flow can be appropriately increased to produce the desired mixed liquid F3.

そして、流速増速部70にて増速された液流により、ケーシング体50内の流速増速部70における圧力は降下する。そのため、気体吸引部80では吸気孔81を通してベンチュリ効果により外部から外気である気体F2を吸入するとともに、気体吸引流路82を通して流速増速流路71の外周に同心円的に気体F2を流入させることができる。   And the pressure in the flow velocity acceleration part 70 in the casing body 50 falls by the liquid flow accelerated by the flow velocity acceleration part 70. Therefore, in the gas suction part 80, the gas F2 that is the outside air is sucked from the outside through the suction hole 81 due to the venturi effect, and the gas F2 is caused to flow concentrically into the outer periphery of the flow velocity acceleration channel 71 through the gas suction channel 82. Can do.

さらには、超微細気泡含有液体生成部90において、気体吸引部80にて吸引された気体F2が流速増速部70にて流速が増速された液流によりせん断されて超微細な気泡混じりの液体が生成される。すなわち、超微細気泡含有液体生成流路91において、増速液流となっている液体F1の外周は、吸引された気体により円筒状に囲繞される。そして、囲繞している円筒状の気体F2にはその内方から増速液流の外周部が引き摺るように高せん断力を及ぼす。つまり、旋回流の中心側ではなく、それよりも比較的旋回力の強い外周側において、その外周を囲繞している円筒状の気体F2の全内周面に高せん断力を全面的に作用させることができる。そのため、超微細気泡含有液体生成流路91では、吸引された気体F2が効率良く超微細化かつ均一化される。その結果、超微細気泡含有液体生成流路91では超微細化かつ均一化された気泡混じりの液体(混合流体F3)が堅実に生成されて、導出口40から混合流体F3が導出される。   Further, in the ultrafine bubble-containing liquid generation unit 90, the gas F2 sucked by the gas suction unit 80 is sheared by the liquid flow whose flow velocity is increased by the flow velocity accelerating unit 70 and is mixed with ultrafine bubbles. A liquid is produced. That is, in the ultrafine bubble-containing liquid generation flow channel 91, the outer periphery of the liquid F1 that is the accelerating liquid flow is surrounded in a cylindrical shape by the sucked gas. A high shear force is exerted on the surrounding cylindrical gas F2 so that the outer peripheral portion of the accelerating liquid flow is dragged from the inside thereof. That is, a high shear force is applied to the entire inner peripheral surface of the cylindrical gas F2 surrounding the outer periphery, not on the center side of the swirling flow, but on the outer peripheral side where the swirling force is relatively strong. be able to. Therefore, in the ultrafine bubble-containing liquid generation flow path 91, the sucked gas F2 is efficiently made ultrafine and uniform. As a result, in the ultrafine bubble-containing liquid generation flow path 91, the ultrafine and uniform bubble-mixed liquid (mixed fluid F3) is steadily generated, and the mixed fluid F3 is led out from the outlet 40.

ここで、ケーシング体50は、円筒状の第1〜第5分割片51〜55を嵌合状態に接続することで形成しており、第4分割片54は中途部の縮径部56を介して基端部側よりも先端部側を縮径させて形成している。   Here, the casing body 50 is formed by connecting the cylindrical first to fifth divided pieces 51 to 55 in a fitted state, and the fourth divided piece 54 is interposed through a reduced diameter portion 56 in the middle part. Thus, the diameter of the distal end portion side is smaller than that of the proximal end portion side.

流速増速流路71は、傘状支持片74の先端周縁部を第4分割片54の縮径部56に当接させるとともに、流路形成片73の先端部を第4分割片54の先端部内に同心円的に配置して、気体吸引流路82を流路形成片73の外周面と第4分割片54の先端部の内周面との間隙に円筒状に形成することができる。つまり、増速流路形成体72を第4分割片54内に配置するだけで、旋回流案内流路62と流速増速流路71と気体吸引流路82と超微細気泡含有液体生成流路91を簡単かつ堅実に区画して形成することができる。   The flow velocity accelerating channel 71 abuts the peripheral edge portion of the umbrella-shaped support piece 74 against the reduced diameter portion 56 of the fourth divided piece 54, and the distal end portion of the flow path forming piece 73 to the distal end of the fourth divided piece 54. The gas suction flow channel 82 can be formed in a cylindrical shape in the gap between the outer peripheral surface of the flow channel forming piece 73 and the inner peripheral surface of the distal end portion of the fourth divided piece 54 by being arranged concentrically in the section. That is, only by disposing the speed increasing flow path forming body 72 in the fourth divided piece 54, the swirl flow guiding flow path 62, the flow speed increasing flow path 71, the gas suction flow path 82, and the ultrafine bubble-containing liquid generation flow path. 91 can be formed in a simple and solid manner.

[第2実施形態]
図8に示す1は第2実施形態としての超微細気泡発生装置であり、超微細気泡発生装置1は、基本的構造を第1実施形態としての超微細気泡発生装置1と同じくしているが、第1実施形態としての超微細気泡発生器2に代えて第2実施形態としての超微細気泡発生器2を採用している点で異なる。
[Second Embodiment]
Reference numeral 1 shown in FIG. 8 denotes an ultrafine bubble generator as a second embodiment. The ultrafine bubble generator 1 has the same basic structure as the ultrafine bubble generator 1 as the first embodiment. The difference is that an ultrafine bubble generator 2 as a second embodiment is employed instead of the ultrafine bubble generator 2 as a first embodiment.

(第2実施形態としての超微細気泡発生器2の説明)
第2実施形態としての超微細気泡発生器2は、図2〜図4に示すように、基本的構造を第1実施形態としての超微細気泡発生器2と同じくするが、旋回流形成部60を具備している点で異なる。
(Description of the ultrafine bubble generator 2 as the second embodiment)
The ultrafine bubble generator 2 as the second embodiment has the same basic structure as the ultrafine bubble generator 2 as the first embodiment as shown in FIGS. It differs in that it has.

すなわち、気泡発生器本体20は、図9〜図15に示すように、一端に液体F1を導入する導入口30を有するとともに、他端に混合流体F3を導出する導出口40を有する直状かつ円筒状のケーシング体50内に、導入口30から導出口40に向けて順次、旋回流形成部60と流速増速部70と気体吸引部80と超微細気泡含有液体生成部90とを備えている。   That is, as shown in FIGS. 9 to 15, the bubble generator main body 20 has a straight port having an introduction port 30 for introducing the liquid F1 at one end and a discharge port 40 for deriving the mixed fluid F3 at the other end. In the cylindrical casing body 50, a swirl flow forming unit 60, a flow velocity accelerating unit 70, a gas suction unit 80, and an ultrafine bubble-containing liquid generating unit 90 are sequentially provided from the inlet 30 to the outlet 40. Yes.

旋回流形成部60は、導入口30から導入した液体F1を旋回流となすようにしており、通過する流体F1を旋回流となす旋回手段61と、旋回手段61の下流側にケーシング体50の軸線に沿って伸延する旋回流案内流路62とを具備している。旋回流案内流路62はケーシング体50の一部を形成する第3分割片53の内周面に沿って直状に形成されている。   The swirling flow forming unit 60 turns the liquid F1 introduced from the introduction port 30 into a swirling flow. The swirling means 61 turns the fluid F1 passing therethrough into a swirling flow, and the casing body 50 on the downstream side of the swirling means 61. And a swirl flow guide channel 62 extending along the axis. The swirling flow guide channel 62 is formed in a straight shape along the inner peripheral surface of the third divided piece 53 that forms a part of the casing body 50.

旋回手段61は、図6にも示すように、第2分割片52の内周面中途部に嵌合する略円筒状の支持片63と、支持片63の先端縁部から軸線方向に向けて捩れ状に対向させて形成した一対の旋回流形成片64,64とを具備している。支持片63は、第2分割片52内で第1分割片51と第3分割片53とにより軸線方向で挟持されて位置決めされる。液体F1は、捩れ状に対向する一対の旋回流形成片64,64間を通過する際に、旋回流形成片64,64から捩れ作用を受けて旋回流となる。そして、旋回流は旋回流案内流路62を通して下流側の流速増速部70に案内されるようにしている。   As shown also in FIG. 6, the swivel means 61 has a substantially cylindrical support piece 63 that fits in the middle portion of the inner peripheral surface of the second divided piece 52, and an axial direction from the tip edge of the support piece 63. It has a pair of swirl flow forming pieces 64, 64 formed in a twisted manner. The support piece 63 is positioned in the second divided piece 52 by being sandwiched between the first divided piece 51 and the third divided piece 53 in the axial direction. The liquid F1 undergoes a twisting action from the swirl flow forming pieces 64 and 64 when it passes between the pair of swirl flow forming pieces 64 and 64 that are oppositely twisted, and becomes a swirl flow. Then, the swirl flow is guided to the downstream speed increasing portion 70 through the swirl flow guide channel 62.

第2実施形態は、上記のように構成しているものであり、次のような作用効果を奏する。すなわち、図11及び図13に示すように、超微細気泡発生器2では、導入口30から導入した液体F1を旋回流形成部60により旋回流となすことができる。この際、旋回流形成部60の旋回手段61が通過する液体F1を旋回流となして、旋回手段61の下流側においてケーシング体50の軸線に沿って伸延する旋回流案内流路62が旋回流を下流側へ案内する。   The second embodiment is configured as described above, and has the following effects. That is, as shown in FIGS. 11 and 13, in the ultrafine bubble generator 2, the liquid F <b> 1 introduced from the inlet 30 can be turned into a swirl flow by the swirl flow forming unit 60. At this time, the swirl flow guide channel 62 extending along the axis of the casing body 50 on the downstream side of the swirl means 61 is converted into a swirl flow by the liquid F1 passing through the swirl means 61 of the swirl flow forming unit 60. To the downstream side.

旋回流形成部60にて形成された旋回流は、流速増速部70により増速される。すなわち、流速増速部70が具備する流速増速流路71は、旋回流案内流路62の流路断面の略四分の一である小さい流路断面となして、ケーシング体50の軸線と同軸的に伸延させているため、旋回流の流速を堅実に増大させることができる。ここで、旋回流の流速の調整は、流速増速流路71の流路断面を適宜調整することで行うことができる。したがって、緩速的な流速で導入された液体F1の液流であっても、液流を旋回流となし、さらには、旋回流を適宜増速させることができる。   The swirl flow formed by the swirl flow forming unit 60 is accelerated by the flow velocity accelerating unit 70. That is, the flow velocity accelerating channel 71 included in the flow velocity accelerating unit 70 has a small channel cross section that is approximately a quarter of the channel cross section of the swirl flow guide channel 62, and the axis of the casing body 50 Since it is extended coaxially, the flow velocity of the swirl flow can be steadily increased. Here, the flow velocity of the swirl flow can be adjusted by appropriately adjusting the cross section of the flow velocity accelerating flow channel 71. Therefore, even with the liquid flow of the liquid F1 introduced at a slow flow rate, the liquid flow can be made a swirl flow, and further the swirl flow can be appropriately increased.

そして、流速増速部70にて増速された旋回流により、ケーシング体50内の流速増速部70における圧力はより一層降下される。そのため、気体吸引部80では吸気孔81を通してベンチュリ効果により外部から外気である気体F2を吸入するとともに、気体吸引流路82を通して流速増速流路71の外周に同心円的に円筒状の気体F2を流入させることができる。この際、圧力降下の大きさに比例して吸気パイプ84を通して流入される気体F2の脈動が大きくなるが、吸気パイプ84の基端部には脈動抑制体85を配設しているため、脈動抑制体85の連通流路86中を気体F2が流動する際に脈動が低減(抑制)される。その結果、超微細気泡を安定的に生成することができるとともに、振動又は騒音を低減することができる。   The pressure in the flow velocity accelerating portion 70 in the casing body 50 is further lowered by the swirl flow accelerated by the flow velocity accelerating portion 70. For this reason, the gas suction unit 80 sucks the gas F2 that is outside air from the outside through the suction hole 81 due to the venturi effect, and concentrically cylindrically flows the gas F2 to the outer periphery of the flow velocity acceleration channel 71 through the gas suction channel 82. Can flow in. At this time, the pulsation of the gas F2 flowing through the intake pipe 84 increases in proportion to the magnitude of the pressure drop. However, since the pulsation suppressing body 85 is disposed at the proximal end of the intake pipe 84, the pulsation is reduced. Pulsation is reduced (suppressed) when the gas F2 flows through the communication channel 86 of the suppressor 85. As a result, ultrafine bubbles can be stably generated, and vibration or noise can be reduced.

さらには、超微細気泡含有液体生成部90において、気体吸引部80にて吸引された気体F2が流速増速部70にて増速された旋回流によりせん断されて超微細な気泡混じりの液体が生成される。すなわち、超微細気泡含有液体生成流路91において、増速旋回流となっている液体F1の外周は、吸引された気体により円筒状に囲繞される。そして、囲繞している円筒状の気体F2にはその内方から旋回力の強い旋回流の外周部が高せん断力を及ぼす。つまり、旋回流の中心側ではなく、それよりも比較的旋回力の強い外周側において、その外周を囲繞している円筒状の気体F2の全内周面に高せん断力を全面的に作用させることができる。そのため、超微細気泡含有液体生成流路91では、吸引された気体F2が効率良く超微細化かつ均一化される。その結果、超微細気泡含有液体生成流路91では超微細化かつ均一化された気泡混じりの液体(混合流体F3)が堅実に生成されて、導出口40から混合流体F3が導出される。   Further, in the ultrafine bubble-containing liquid generation unit 90, the gas F2 sucked by the gas suction unit 80 is sheared by the swirling flow accelerated by the flow velocity accelerating unit 70, and the ultrafine bubble mixed liquid is obtained. Generated. That is, in the ultrafine bubble-containing liquid generation flow channel 91, the outer periphery of the liquid F1 that is a speed-up swirl flow is surrounded in a cylindrical shape by the sucked gas. Then, the outer peripheral portion of the swirl flow having a strong swirl force from the inside exerts a high shear force on the surrounding cylindrical gas F2. That is, a high shear force is applied to the entire inner peripheral surface of the cylindrical gas F2 surrounding the outer periphery, not on the center side of the swirling flow, but on the outer peripheral side where the swirling force is relatively strong. be able to. Therefore, in the ultrafine bubble-containing liquid generation flow path 91, the sucked gas F2 is efficiently made ultrafine and uniform. As a result, in the ultrafine bubble-containing liquid generation flow path 91, the ultrafine and uniform bubble-mixed liquid (mixed fluid F3) is steadily generated, and the mixed fluid F3 is led out from the outlet 40.

旋回手段61が具備する円筒状の支持片63は、第2分割片52の内周面中途部に嵌合するとともに、支持片63を第2分割片52内で第1分割片51と第3分割片53とにより軸線方向で挟持して簡単に位置決めすることができる。つまり、旋回手段61の組み付け作業(第2実施形態としての超微細気泡発生器2となす場合)と、取り外し作業(第1実施形態としての超微細気泡発生器2となす場合)を簡単かつ堅実に行うことができる。   The cylindrical support piece 63 included in the turning means 61 is fitted in the middle portion of the inner peripheral surface of the second divided piece 52, and the support piece 63 is connected to the first divided piece 51 and the third piece in the second divided piece 52. It can be easily positioned by being sandwiched between the split pieces 53 in the axial direction. That is, the assembling work of the swivel means 61 (when it becomes the ultrafine bubble generator 2 as the second embodiment) and the removal work (when it becomes the ultrafine bubble generator 2 as the first embodiment) are simple and solid. Can be done.

(第1変形例としての旋回手段61の説明)
図16は、第1変形例としての旋回手段61を示している。かかる旋回手段61は、図17にも示すように、直状に伸延する棒状の軸芯部100と、軸芯部100の周面から半径方向(放射線方向)に突設した複数(本実施形態では4片)の板状の旋回流形成案内片101とを、合成樹脂(例えば、ポリブチレンテレフタレート(PBT))を削出加工して、表面を滑らかに(液体F1である水との摩擦が少ないように)成形している。すなわち、旋回手段61は、棒状の軸芯部100の周面から肉厚板状の4つの案内本片102を一定の間隔をあけて延設して断面十字状に形成し、各案内本片102の両側面には基端部から先端部にかけて円弧状凹面103を形成するとともに、隣接する案内本片102同士の円弧状凹面103の基端縁部が連続する円弧面となしている。そして、各案内本片102の中途部が最小肉厚で、各案内本片102の先端部が最大肉厚となるように形成している。
(Description of the turning means 61 as a first modification)
FIG. 16 shows a turning means 61 as a first modification. As shown in FIG. 17, the swivel means 61 includes a rod-shaped shaft core portion 100 that extends in a straight shape, and a plurality of (this embodiment) projecting radially from the peripheral surface of the shaft core portion 100 (radiation direction). Then, 4 pieces of plate-like swirl flow forming guide pieces 101 are cut out of a synthetic resin (for example, polybutylene terephthalate (PBT)) so that the surface is smooth (the friction with water which is the liquid F1). Molded so that there are few. That is, the swivel means 61 is formed by extending four thick guide plate pieces 102 from the peripheral surface of the rod-shaped shaft core portion 100 at a predetermined interval to form a cross-shaped cross section. An arcuate concave surface 103 is formed on both side surfaces of the arc 102 from the base end portion to the tip end portion, and the base end edge portions of the arcuate concave surfaces 103 of the adjacent guide book pieces 102 are continuous arcuate surfaces. The middle part of each guide book piece 102 is formed to have a minimum thickness, and the tip part of each guide book piece 102 is formed to have a maximum thickness.

しかも、旋回手段61の上流側の端面と下流側の端面は、一定のねじれ角θ(例えば、θ=45°〜180°)を形成するように、旋回流形成案内片101の上流側から下流側への伸延方向を軸芯部100の軸線方向とねじれの位置に配置している。軸芯部100の軸線方向とねじれの位置に配置した4つの旋回流形成案内片101は、ほぼ並行させて配置されるとともに、隣接する旋回流形成案内片101間に軸芯部100の軸線廻りに捩れ状の旋回流形成案内路104が4本形成されるようにしている。   Moreover, the upstream end surface and the downstream end surface of the swirling means 61 are downstream from the upstream side of the swirl flow forming guide piece 101 so as to form a constant twist angle θ (for example, θ = 45 ° to 180 °). The extending direction to the side is arranged at the axial direction of the shaft core portion 100 and the position of twist. The four swirl flow forming guide pieces 101 arranged in the axial direction and torsional position of the shaft core part 100 are arranged substantially in parallel and between the adjacent swirl flow forming guide pieces 101 around the axis line of the shaft core part 100. Four twisting swirl flow forming guide paths 104 are formed.

各案内本片102の先端部の上流側部には係合用位置決め用の膨出部105を形成している。また、第2分割片52の内周面の上流側端部には膨出部105と整合して、膨出部105が係合自在の係合凹部106を周面周りに4つ形成している。   An bulging portion 105 for positioning for engagement is formed on the upstream side portion of the distal end portion of each guide book piece 102. In addition, four upstream end portions of the inner peripheral surface of the second divided piece 52 are aligned with the bulging portion 105, and four engaging recesses 106 that can be engaged with the bulging portion 105 are formed around the peripheral surface. Yes.

上記のように構成して、第2分割片52内に旋回手段61を上流側から下流側に挿入するとともに、各係合凹部106に膨出部105を挿入して係合させて位置決めする。同状態にて、旋回手段61の上流側端面に第1分割片51の下流側端面を当接させることで、旋回手段61が軸線方向ないしは周面周りに移動するのを規制することができる。この際、旋回流形成案内片101の先端面は、第2分割片52の内周面に密着状に面接している。そのため、第2分割片52内に流入した液流は、第2分割片52内に配置された旋回流形成案内路104に沿って上流側から下流側へ流動されることで、堅実に旋回流となされる。   With the configuration as described above, the turning means 61 is inserted into the second divided piece 52 from the upstream side to the downstream side, and the bulging portions 105 are inserted into the respective engagement recesses 106 to be engaged and positioned. In this state, the downstream end surface of the first split piece 51 is brought into contact with the upstream end surface of the swiveling means 61, whereby the swiveling means 61 can be restricted from moving in the axial direction or around the circumferential surface. At this time, the distal end surface of the swirl flow forming guide piece 101 is in close contact with the inner peripheral surface of the second divided piece 52. Therefore, the liquid flow that has flowed into the second divided piece 52 flows from the upstream side to the downstream side along the swirl flow forming guide path 104 disposed in the second divided piece 52, so that the swirl flow is steadily performed. It is made.

(第2変形例としての旋回手段61の説明)
図18は、第2変形例としての旋回手段61を示している。かかる旋回手段61は、図19にも示すように、直状に伸延する棒状の軸芯部100と、軸芯部100の周面から半径方向(放射線方向)に突設した複数(本実施形態では4片)の板状の旋回流形成案内片101とを、合成樹脂(例えば、ABS樹脂)により一体に積層製作している。すなわち、旋回手段61は、断面正八角形の棒状の軸芯部100の周面から均一肉厚の四角形板状の4つの案内本片102を軸芯部100の一つおきの各片から延設して断面十字状に形成している。
(Description of turning means 61 as a second modification)
FIG. 18 shows a turning means 61 as a second modification. As shown in FIG. 19, the swivel means 61 includes a rod-shaped shaft core portion 100 that extends straight, and a plurality of (this embodiment) projecting in a radial direction (radiation direction) from the peripheral surface of the shaft core portion 100. Then, four pieces of plate-shaped swirl flow forming guide pieces 101 are integrally laminated with a synthetic resin (for example, ABS resin). That is, the swivel means 61 extends four guide plate pieces 102 having a uniform wall thickness from every other piece of the shaft core portion 100 from the circumferential surface of the rod-shaped shaft core portion 100 having a regular octagonal cross section. The cross section is formed in a cross shape.

しかも、旋回手段61の上流側の端面と下流側の端面は、一定のねじれ角θ(例えば、θ=45°〜180°)を形成するように配置し、案内本片102の上流側半部は上流側から下流側への伸延方向を軸芯部100の軸線方向と平行に配置するとともに、案内本片102の下流側半部は上流側から下流側への伸延方向を軸芯部100の軸線方向とねじれの位置に配置している。つまり、軸芯部100の軸線方向とねじれの位置に配置した4つの旋回流形成案内片101は、「へ」の字状に屈曲させて形成して、案内本片102の上流側半部が軸芯部100の軸線とほぼ並行させて配置されるとともに、案内本片102の下流側半部が軸芯部100の軸線廻りに捩れ状にほぼ並行させて配置されて、隣接する旋回流形成案内片101間に案内本片102の中途部が屈曲された旋回流形成案内路104が4本形成されるようにしている。   In addition, the upstream end surface and the downstream end surface of the swivel means 61 are arranged so as to form a constant twist angle θ (for example, θ = 45 ° to 180 °), and the upstream half of the guide main piece 102. Is arranged such that the extending direction from the upstream side to the downstream side is parallel to the axial direction of the shaft core portion 100, and the downstream half of the guide main piece 102 has the extending direction from the upstream side to the downstream side of the shaft core portion 100. They are arranged in the axial direction and in the position of twist. That is, the four swirl flow forming guide pieces 101 arranged at the positions of the axial direction and the twist of the shaft core part 100 are formed to be bent in a “he” shape, and the upstream half of the guide main piece 102 is formed. The shaft portion 100 is arranged substantially in parallel with the axis of the shaft core portion 100, and the downstream half of the guide main piece 102 is arranged in a substantially twisted manner around the axis of the shaft core portion 100 to form an adjacent swirling flow. Four swirl flow forming guide paths 104 are formed between the guide pieces 101, with the middle portion of the guide main piece 102 bent.

各案内本片102の先端部の上流側部には係合用位置決め用の膨出部106を形成している。また、第2分割片52の内周面の上流側端部には膨出部105と整合して、膨出部105が係合自在の係合凹部106を周面周りに4つ形成している。   An bulging portion 106 for positioning for engagement is formed on the upstream side portion of the distal end portion of each guide book piece 102. In addition, four upstream end portions of the inner peripheral surface of the second divided piece 52 are aligned with the bulging portion 105, and four engaging recesses 106 that can be engaged with the bulging portion 105 are formed around the peripheral surface. Yes.

上記のように構成して、第2分割片52内に旋回手段61を上流側から下流側に挿入するとともに、各係合凹部106に膨出部105を挿入して係合させて位置決めする。同状態にて、旋回手段61の上流側端面に第1分割片51の下流側端面を当接させることで、旋回手段61が軸線方向ないしは周面周りに移動するのを規制することができる。この際、旋回流形成案内片101の先端面は、第2分割片52の内周面に密着状に面接している。そのため、第2分割片52内に流入した液流は、第2分割片52内に配置された旋回流形成案内路104に沿って上流側から下流側へ流動されることで、堅実に旋回流となされる。   With the configuration as described above, the turning means 61 is inserted into the second divided piece 52 from the upstream side to the downstream side, and the bulging portions 105 are inserted into the respective engagement recesses 106 to be engaged and positioned. In this state, the downstream end surface of the first split piece 51 is brought into contact with the upstream end surface of the swiveling means 61, whereby the swiveling means 61 can be restricted from moving in the axial direction or around the circumferential surface. At this time, the distal end surface of the swirl flow forming guide piece 101 is in close contact with the inner peripheral surface of the second divided piece 52. Therefore, the liquid flow that has flowed into the second divided piece 52 flows from the upstream side to the downstream side along the swirl flow forming guide path 104 disposed in the second divided piece 52, so that the swirl flow is steadily performed. It is made.

なお、第1・第2実施形態の吸気接続パイプ83は空気以外の気体源に接続することもできるが、気体源以外の流体源、例えば、液体源に接続することもできる。すなわち、第1・第2実施形態の超微細気泡発生器は、連続相としての液体源に接続体10を接続する一方、分散相としての液体源に吸気接続パイプ83を接続することにより、連続相としての液体と分散相としての液体を混合して液・液混相となすとともに、分散された液体を超微細化かつ均一化させて生成する超微細液滴発生器としても適用することができる。   The intake connection pipe 83 of the first and second embodiments can be connected to a gas source other than air, but can also be connected to a fluid source other than the gas source, for example, a liquid source. That is, the ultrafine bubble generators of the first and second embodiments connect the connecting body 10 to the liquid source as the continuous phase, while connecting the intake connection pipe 83 to the liquid source as the dispersed phase. It can be applied as an ultra-fine droplet generator that mixes a liquid as a phase and a liquid as a dispersed phase to form a liquid-liquid mixed phase and generates the dispersed liquid by making it fine and uniform. .

図21は吸気パイプ84の変形例としての接続構造を示している。すなわち、吸気パイプ84は、図21に示すように、パイプ接続体87を介して第4分割片54に形成した吸気孔81に接続している。そして、吸気パイプ84中の基端部には連通流路86を有する脈動抑制体85を配置している。パイプ接続体87は、上下方向に軸線を向けた円筒状の接続本片87aと、接続本片87aの下端に段付き小径状に一体成形した段付き小径片87bと、段付き小径片87bの下端に段付き小径状に一体成形した筒状雄ネジ片87cと、接続本片87a内にその内周面に沿わせて配置した筒状の固定側絞扼作用片87dと、固定側絞扼作用片87d内にその内周面に沿わせて配置するとともに、その軸線方向に一定幅だけ摺動自在となした筒状の可動側絞扼作用片87eとを同一軸線上に配置して構成している。可動側絞扼作用片87eは上端縁部に鍔状の操作片87fを形成して、操作片87fを固定側絞扼作用片87d及び接続本片87aの上方外部に配置している。そして、吸気パイプ84の接続切断操作は、次のようにして行うことができるようにしている。すなわち、可動側絞扼作用片87e内に吸気パイプ84の基端部を挿入し、同状態にて、操作片87fを介して可動側絞扼作用片87eを上方へ一定幅だけ摺動移動させると、固定側絞扼作用片87dと可動側絞扼作用片87eとが協働して吸気パイプ84を絞扼するとともに固定するようにしている。また、操作片87fを介して可動側絞扼作用片87eを下方へ一定幅だけ摺動移動させると、固定側絞扼作用片87dと可動側絞扼作用片87eとが協働して吸気パイプ84を絞扼解除するようにしている。その結果、吸気パイプ84をパイプ接続体87から上方へ引き抜いて切断状態となすことができる。また、筒状雄ネジ片87cの外周面には雄ネジ部を形成する一方、吸気孔81の内周面には雌ネジ部を形成して、吸気孔81の雌ネジ部に筒状雄ネジ片87cの雄ネジ部を着脱自在に螺着している。88はガスケットである。   FIG. 21 shows a connection structure as a modification of the intake pipe 84. That is, the intake pipe 84 is connected to an intake hole 81 formed in the fourth divided piece 54 via a pipe connecting body 87 as shown in FIG. A pulsation suppressing body 85 having a communication flow path 86 is disposed at the proximal end portion in the intake pipe 84. The pipe connecting body 87 includes a cylindrical connecting piece 87a having an axis line in the vertical direction, a stepped small diameter piece 87b integrally formed in a stepped small diameter at the lower end of the connecting piece 87a, and a stepped small diameter piece 87b. A cylindrical male screw piece 87c integrally formed to have a stepped small diameter at the lower end, a cylindrical fixed side squeezing action piece 87d arranged along the inner peripheral surface in the connecting main piece 87a, and a fixed side squeezed Arranged along the inner peripheral surface of the action piece 87d, and a cylindrical movable side strangling action piece 87e that is slidable by a fixed width in the axial direction is arranged on the same axis. doing. The movable side squeezing action piece 87e is formed with a hook-like operation piece 87f at the upper edge, and the operation piece 87f is disposed above and outside the fixed side squeezing action piece 87d and the connecting main piece 87a. The connection disconnection operation of the intake pipe 84 can be performed as follows. That is, the proximal end portion of the intake pipe 84 is inserted into the movable side strangling action piece 87e, and in this state, the movable side strangling action piece 87e is slid and moved upward by a certain width via the operation piece 87f. Then, the stationary side strangling action piece 87d and the movable side strangling action piece 87e cooperate to squeeze and fix the intake pipe 84. Further, when the movable side squeezing action piece 87e is slid and moved downward by a predetermined width via the operation piece 87f, the fixed side squeezing action piece 87d and the movable side squeezing action piece 87e cooperate to suck the intake pipe. No. 84 is released. As a result, the intake pipe 84 can be pulled upward from the pipe connection body 87 to be in a cut state. In addition, a male screw portion is formed on the outer peripheral surface of the cylindrical male screw piece 87 c, while a female screw portion is formed on the inner peripheral surface of the intake hole 81, and the cylindrical male screw is formed on the female screw portion of the intake hole 81. The male screw portion of the piece 87c is screwed in a detachable manner. Reference numeral 88 denotes a gasket.

このように構成して、吸気パイプ84中の基端部に脈動抑制体85を配置し、可動側絞扼作用片87e内に吸気パイプ84の基端部を挿入して、同状態にて操作片87fを介して可動側絞扼作用片87eを上方へ一定幅だけ摺動移動させることで、パイプ接続体87に吸気パイプ84を接続状態に固定する。そうすることで、吸気パイプ84中に配置した脈動抑制体85を可及的かつ堅実に吸気孔81の近傍に配置することができる。そして、気体F2を吸気パイプ84→脈動抑制体85の連通流路86→段付き小径片87b→筒状雄ネジ片87c→気体吸引流路82に円滑かつ堅実に流入させることができるとともに、気体F2の脈動を脈動抑制体85により低減(抑制)することができる。   With this configuration, the pulsation suppressing body 85 is disposed at the proximal end portion in the intake pipe 84, the proximal end portion of the intake pipe 84 is inserted into the movable side strangling action piece 87e, and the operation is performed in the same state. The intake pipe 84 is fixed to the pipe connection body 87 in a connected state by sliding the movable side strangling action piece 87e upward by a certain width via the piece 87f. By doing so, the pulsation suppressing body 85 arranged in the intake pipe 84 can be arranged in the vicinity of the intake hole 81 as much as possible. Then, the gas F2 can be smoothly and steadily introduced into the intake pipe 84 → the communication flow path 86 of the pulsation suppressing body 85 → the stepped small diameter piece 87b → the cylindrical male screw piece 87c → the gas suction flow path 82, and the gas The pulsation of F2 can be reduced (suppressed) by the pulsation suppressor 85.

[第1・第2実施形態の変形例]
次に、第1・第2実施形態の変形例としての気泡発生器本体20について、図22〜図28を参照しながら説明する。すなわち、第1・第2実施形態の変形例としての気泡発生器本体20は、図22及び図23に示すように、第1・第2実施形態としての気泡発生器本体20と基本的構造を同じくするが、ケーシング体50をコンパクトに2分割形成している点で異なる。ここで、第2実施形態としての気泡発生器本体20の基本的構造は、一端に液体F1を導入する導入口30を有するとともに、他端に混合流体F3を導出する導出口40を有する直状かつ円筒状のケーシング体50内に、導入口30から導出口40に向けて順次、旋回流形成部60と流速増速部70と気体吸引部80と超微細気泡含有液体生成部90とを備えている点にあり、その形態から旋回流形成部60の旋回手段61を取り外した形態が第1実施形態としての気泡発生器本体20の基本的構造となるので、以下には、第2実施形態としての気泡発生器本体20の変形例について説明し、それから旋回手段61を取り外した第1実施形態としての気泡発生器本体20の変形例については説明を省略する。
[Modification of First and Second Embodiments]
Next, a bubble generator body 20 as a modified example of the first and second embodiments will be described with reference to FIGS. That is, the bubble generator main body 20 as a modified example of the first and second embodiments has a basic structure with the bubble generator main body 20 as the first and second embodiments, as shown in FIGS. Although it is the same, it is different in that the casing body 50 is formed in two compactly. Here, the basic structure of the bubble generator main body 20 as the second embodiment has a straight shape having an inlet 30 for introducing the liquid F1 at one end and an outlet 40 for deriving the mixed fluid F3 at the other end. In addition, a swirl flow forming unit 60, a flow velocity accelerating unit 70, a gas suction unit 80, and an ultrafine bubble-containing liquid generating unit 90 are sequentially provided in the cylindrical casing body 50 from the inlet 30 to the outlet 40. Since the configuration in which the swirl means 61 of the swirl flow forming unit 60 is removed from the form is the basic structure of the bubble generator body 20 as the first embodiment, the second embodiment will be described below. The bubble generator main body 20 as a modified example will be described, and the description of the modified example of the bubble generator main body 20 as the first embodiment in which the turning means 61 is removed will be omitted.

(第2実施形態の変形例としての気泡発生器本体20の説明)
気泡発生器本体20は、図22及び図23に示すように、直状かつ円筒状のケーシング体50を上流側半部110と下流側半部111とに着脱自在に2分割形成している。そして、上流側半部110内には旋回流形成部60と流速増速部70の上流側部を形成する一方、下流側半部111内には流速増速部70の下流側部と気体吸引部80と超微細気泡含有液体生成部90を形成している。
(Description of the bubble generator body 20 as a modification of the second embodiment)
As shown in FIGS. 22 and 23, the bubble generator main body 20 is formed by splitting a straight and cylindrical casing body 50 into an upstream half 110 and a downstream half 111 so as to be detachable in two. The upstream half 110 forms the swirl flow forming portion 60 and the upstream portion of the flow velocity accelerating portion 70, while the downstream half portion 111 forms the downstream side portion of the flow velocity accelerating portion 70 and gas suction. The part 80 and the ultrafine bubble-containing liquid generation part 90 are formed.

旋回流形成部60は、図24に示すように、上流側半部110の上流側端部の内周面に係合凹部106を形成し、係合凹部106の下流側に旋回手段嵌入部112を連通させて形成し、旋回手段嵌入部112の下流側に上流側接続部113を連通させて形成している。係合凹部106内には短幅円柱状の凹部空間を形成して、係合凹部106に旋回手段61の膨出部105を上流側から下流側に向けて係合可能としている。旋回手段嵌入部112は係合凹部106からその下流側に向けて段付き小径状の円柱状に形成して、旋回手段嵌入部112には旋回手段61の旋回流形成案内片101を上流側から下流側に向けて嵌入可能としている。上流側接続部113は旋回手段嵌入部112からその下流側に向けて段付き大径状でかつ下流側に開口する筒状に形成している。上流側接続部113の内周面には接続用雌ネジ部114を形成している。上流側半部110の上流側外周面には連結用雄ネジ部115を形成している。   As shown in FIG. 24, the swirling flow forming portion 60 forms an engaging recess 106 on the inner peripheral surface of the upstream end portion of the upstream half 110, and the swiveling means insertion portion 112 on the downstream side of the engaging recess 106. The upstream connection portion 113 is formed in communication with the downstream side of the swivel means insertion portion 112. A short cylindrical recess space is formed in the engagement recess 106 so that the bulging portion 105 of the turning means 61 can be engaged with the engagement recess 106 from the upstream side toward the downstream side. The turning means insertion portion 112 is formed in a stepped small diameter cylindrical shape from the engaging recess 106 toward the downstream side thereof, and the turning flow forming guide piece 101 of the turning means 61 is provided in the turning means insertion portion 112 from the upstream side. It can be inserted toward the downstream side. The upstream side connection portion 113 is formed in a cylindrical shape having a stepped large diameter from the turning means insertion portion 112 toward the downstream side thereof and opening on the downstream side. A connecting female thread portion 114 is formed on the inner peripheral surface of the upstream connection portion 113. A connecting male thread 115 is formed on the upstream outer peripheral surface of the upstream half 110.

下流側半部111は、図25に示すように、上流側端部に下流側に開口する筒状の下流側接続部120を形成し、下流側接続部120の外周面に接続用雄ネジ部121を形成している。そして、上流側接続部113の接続用雌ネジ部114に下流側接続部120の接続用雄ネジ部121を着脱自在に螺着している。下流側接続部120からはその下流側に向けて段付き小径状の案内片収容部122を形成して、案内片収容部122の内部を横長円柱状の空間となし、案内片収容部122の終端から下流側半部111の下流端まで下流側に向けて漸次拡径する混合流体形成面部123を形成している。   As shown in FIG. 25, the downstream half 111 forms a cylindrical downstream connection portion 120 that opens downstream at the upstream end, and a connection external thread portion on the outer peripheral surface of the downstream connection portion 120. 121 is formed. Then, the connecting male screw portion 121 of the downstream connecting portion 120 is detachably screwed to the connecting female screw portion 114 of the upstream connecting portion 113. A stepped small-diameter guide piece accommodating portion 122 is formed from the downstream side connecting portion 120 toward the downstream side, and the inside of the guide piece accommodating portion 122 is formed as a horizontally long cylindrical space. A mixed fluid forming surface portion 123 that gradually increases in diameter toward the downstream side from the terminal end to the downstream end of the downstream half portion 111 is formed.

増速流路形成体72は、図26に示すように、上流側を形成する漸次縮径増速案内片130と下流側を形成する同径増速案内片131とを同一軸線上に連通させて一体成形している。同径増速案内片131の内径は、漸次縮径増速案内片130の下流側端部の内径と同一に形成している。同径増速案内片131の外径は、漸次縮径増速案内片130の外径から段付き小径状に形成しており、案内片収容部122の内径よりも小径となしている。同径増速案内片131の下流側端面にはOリング収容溝132をリング状に形成して、Oリング収容溝132内にOリング133を収容している(図22及び図23参照)。   As shown in FIG. 26, the speed increasing flow path forming body 72 communicates the gradually reduced diameter increasing speed guide piece 130 forming the upstream side and the same diameter speed increasing guide piece 131 forming the downstream side on the same axis. Are integrally molded. The inner diameter of the same-diameter speed increasing guide piece 131 is formed to be the same as the inner diameter of the downstream end of the gradually reduced diameter increasing speed guide piece 130. The outer diameter of the same-diameter speed increasing guide piece 131 is formed in a stepped small diameter from the outer diameter of the gradually reduced diameter increasing speed guide piece 130, and is smaller than the inner diameter of the guide piece housing portion 122. An O-ring housing groove 132 is formed in a ring shape on the downstream end face of the same-diameter speed increasing guide piece 131, and the O-ring 133 is housed in the O-ring housing groove 132 (see FIGS. 22 and 23).

漸次縮径増速案内片130は、図22及び図23に示すように、上流側接続部113内に下流側から挿入して、上流側接続部113の上流側端壁に漸次縮径増速案内片130の上流側端縁部を当接させるとともに、上流側接続部113の接続用雌ネジ部114に下流側半部111の接続用雄ネジ部121を螺着させて、下流側半部111の上流側端縁部と上流側接続部113の上流側端壁とで漸次縮径増速案内片130の上流側縁部を挟持状態に位置決めするようにしている。この際、同径増速案内片131は下流側半部111の案内片収容部122中に挿通した状態で同心円的に支持されるようにしている。このように、上流側接続部113と下流側接続部120により増速流路形成体72を支持することで、流速増速部70を形成している。   As shown in FIGS. 22 and 23, the gradually reduced diameter increasing guide piece 130 is inserted into the upstream connecting portion 113 from the downstream side, and gradually increased in diameter at the upstream end wall of the upstream connecting portion 113. The upstream end edge portion of the guide piece 130 is brought into contact with the connection-side female screw portion 114 of the upstream-side connection portion 113, and the connection-use male screw portion 121 of the downstream-side half portion 111 is screwed into the downstream-side half portion. The upstream edge of 111 and the upstream end wall of the upstream connecting portion 113 are positioned so that the upstream edge of the gradually reducing diameter increasing guide piece 130 is sandwiched. At this time, the same-diameter speed increasing guide piece 131 is concentrically supported while being inserted into the guide piece accommodating portion 122 of the downstream half portion 111. In this way, the speed increasing portion 70 is formed by supporting the speed increasing flow path forming body 72 by the upstream connecting portion 113 and the downstream connecting portion 120.

図22及び図23に示すように、案内片収容部122の内周面と同径増速案内片131の外周面との間には間隙が形成されるようにして、その間隙を円筒状の気体吸引流路82となしている。下流側半部111の中途部にはその表面から軸線方向と直交する方向に伸延する吸気孔81を形成して、吸気孔81を気体吸引流路82と連通させている。吸気孔81にはパイプ接続体87を介して吸気パイプ84を接続して、ケーシング体50内に、外部から気体F2をベンチュリ効果で吸引する気体吸引部80を形成している。そして、吸気パイプ84中の基端部には連通流路86を有する脈動抑制体85を配置して、吸気パイプ84中を流動する気体F2の脈動を低減(抑制)している。   As shown in FIGS. 22 and 23, a gap is formed between the inner peripheral surface of the guide piece accommodating portion 122 and the outer peripheral surface of the same-diameter speed increasing guide piece 131, and the gap is formed in a cylindrical shape. A gas suction channel 82 is provided. An intake hole 81 extending from the surface thereof in a direction orthogonal to the axial direction is formed in the middle portion of the downstream half 111, and the intake hole 81 communicates with the gas suction channel 82. An intake pipe 84 is connected to the intake hole 81 via a pipe connection body 87, and a gas suction portion 80 that sucks the gas F2 from the outside by the venturi effect is formed in the casing body 50. A pulsation suppressing body 85 having a communication channel 86 is arranged at the base end portion in the intake pipe 84 to reduce (suppress) pulsation of the gas F2 flowing in the intake pipe 84.

このように構成した気泡発生器本体20では、同径増速案内片131内を増速されながら旋回流動される液体F1と、その外周面を被覆するように筒長L2だけ流動される気体F2は、同径増速案内片131の下流端開口部から液体F1が流出されると、旋回流動される液体F1の外周面は円筒状に流動される気体F2の内周面と面接触して堅実にせん断作用する。そのため、気体F2は超微細化かつ均一化されて液体F1に混合されることで混合液体F3となる。そして、旋回流動される混合液体F3は下流側に向けて漸次拡径する混合流体形成面部123に沿って導出される超微細気泡含有液体生成部90が形成されるため、超微細気泡含有液体生成部90では混合液体F3が導出口40から円滑に導出される。   In the bubble generator main body 20 configured as described above, the liquid F1 swirling while being accelerated in the same-diameter speed increasing guide piece 131, and the gas F2 flowing by the cylinder length L2 so as to cover the outer peripheral surface thereof. When the liquid F1 flows out from the downstream end opening of the same-diameter speed increasing guide piece 131, the outer peripheral surface of the swirling fluid F1 comes into surface contact with the inner peripheral surface of the gas F2 flowing in a cylindrical shape. Steady shearing action. Therefore, the gas F2 becomes ultra-fine and uniform and is mixed with the liquid F1 to become the mixed liquid F3. Then, the mixed liquid F3 that is swirled and flowed forms the ultrafine bubble-containing liquid generation unit 90 that is led out along the mixed fluid forming surface portion 123 that gradually expands toward the downstream side. In the unit 90, the mixed liquid F3 is smoothly led out from the outlet 40.

以下に、前記した気泡発生器本体20の構成をより具体的に説明する。すなわち、上流側半部110は、図24の平面図(a)と側面図(b)と断面正面図(c)に示すように、外周面の中途部に回動操作時における手掛かり用ないしは工具係止用の一対の上流側平面140を上流側半部110の軸線を中心に点対称の位置に形成している。L4は上流側平面140の軸線方向幅、L5は上流側接続部113の軸線方向幅、L6は上流側半部110の軸線方向幅、L7は係合凹部106の軸線方向幅、L8は段差幅、L9は旋回手段嵌入部112の軸線方向幅、L10は上流側接続部113の軸線方向幅、L11は接続用雌ネジ部114の軸線方向幅、W8は上流側接続部113の外径、W9は一対の上流側平面140同士の間隔、W10は係合凹部106の内径、W11は旋回手段嵌入部112の内径、W12は上流側接続部113の内径である。   Below, the structure of the above-mentioned bubble generator main body 20 is demonstrated more concretely. That is, as shown in the plan view (a), the side view (b), and the sectional front view (c) in FIG. A pair of locking upstream planes 140 are formed at point-symmetric positions about the axis of the upstream half 110. L4 is the axial width of the upstream plane 140, L5 is the axial width of the upstream connecting portion 113, L6 is the axial width of the upstream half 110, L7 is the axial width of the engaging recess 106, and L8 is the step width. , L9 is the axial width of the swivel insertion portion 112, L10 is the axial width of the upstream connecting portion 113, L11 is the axial width of the connecting female screw portion 114, W8 is the outer diameter of the upstream connecting portion 113, W9 Is the distance between the pair of upstream planes 140, W10 is the inner diameter of the engaging recess 106, W11 is the inner diameter of the turning means insertion portion 112, and W12 is the inner diameter of the upstream connection portion 113.

下流側半部111は、図25の平面図(a)と側面図(b)と断面正面図(c)に示すように、案内片収容部122の上流側部を円筒状に形成し、案内片収容部122の下流側部と混合流体形成面部123の外周面を下流側に向けて連続させて先細り状の円弧面に形成している。案内片収容部122の上流側部には吸気孔81を形成している。141は一対の下流側平面である。L12は下流側接続部120の軸線方向幅、L13は下流側半部111の上流端から吸気孔81の中心位置までの軸線方向幅、L14は案内片収容部122の上流側部の軸線方向幅、L15は下流側接続部120の接続用雄ネジ部121の軸線方向幅、L16は案内片収容部122の軸線方向幅、L17は混合流体形成面部123の軸線方向幅、W13は吸気孔81の伸延幅、W14は下流側接続部120の開口端部径、W15は下流側接続部120の内径、W16は案内片収容部122の内径、W17は混合流体形成面部123の開口端部内径、θ1は混合流体形成面部123のテーパー角度である。   As shown in a plan view (a), a side view (b), and a cross-sectional front view (c) of FIG. 25, the downstream half 111 is formed in a cylindrical shape on the upstream side of the guide piece housing 122. The downstream side part of the piece accommodating part 122 and the outer peripheral surface of the mixed fluid formation surface part 123 are continuously formed toward the downstream side to form a tapered arc surface. An intake hole 81 is formed in the upstream side portion of the guide piece housing portion 122. 141 is a pair of downstream planes. L12 is the axial width of the downstream connection portion 120, L13 is the axial width from the upstream end of the downstream half 111 to the center position of the intake hole 81, and L14 is the axial width of the upstream portion of the guide piece housing portion 122. , L15 is the axial width of the connecting male screw portion 121 of the downstream connection portion 120, L16 is the axial width of the guide piece housing portion 122, L17 is the axial width of the mixed fluid forming surface portion 123, and W13 is the intake hole 81. W14 is the opening end diameter of the downstream connection portion 120, W15 is the inner diameter of the downstream connection portion 120, W16 is the inner diameter of the guide piece housing portion 122, W17 is the opening end portion inner diameter of the mixed fluid forming surface portion 123, θ1 Is the taper angle of the mixed fluid forming surface 123.

増速流路形成体72は、図26に示すように、円筒状に形成した漸次縮径増速案内片130の上流側部よりも下流側部をやや小径に形成して、下流側部に下流側接続部120を外嵌可能としている。漸次縮径増速案内片130の内周面は上流側から下流側へ漸次縮径するテーパー面状に形成して、円筒状に形成した同径増速案内片131の上流側端に滑らかに接続している。つまり、漸次縮径増速案内片130のテーパー面に沿って増速されながら下流側に流動する液体F1が、円滑に同径増速案内片131中を下流側に流動するようにラッパ状に形成している。L18は増速流路形成体72の軸線方向幅、L19は漸次縮径増速案内片130の軸線方向幅、L20は同径増速案内片131の軸線方向幅、L21は漸次縮径増速案内片130の上流側部の軸線方向幅、L22は漸次縮径増速案内片130の下流側部の軸線方向幅、W18は漸次縮径増速案内片130の下流側部の外径、W19は同径増速案内片131の外径、W20は同径増速案内片131の内径、W21は漸次縮径増速案内片130の上流側部の外径、W22は漸次縮径増速案内片130の上流側開口端部内径、θ2は漸次縮径増速案内片130の上流側部の外周面の縮径角度、θ3は漸次縮径増速案内片130の上流側部の内周面の縮径角度である。   As shown in FIG. 26, the speed increasing flow path forming body 72 is formed so that the downstream side portion is slightly smaller in diameter than the upstream side portion of the gradually reduced diameter increasing speed increasing guide piece 130 formed in a cylindrical shape. The downstream connection portion 120 can be fitted externally. The inner circumferential surface of the gradually increasing diameter increasing guide piece 130 is formed in a tapered surface shape that gradually decreases in diameter from the upstream side to the downstream side, and smoothly on the upstream end of the cylindrically increasing speed increasing guide piece 131. Connected. In other words, the liquid F1 flowing downstream while being gradually increased along the taper surface of the diameter-reducing / accelerating guide piece 130 is formed in a trumpet shape so as to smoothly flow downstream in the same-diameter increasing / accelerating guide piece 131. Forming. L18 is the axial width of the speed increasing flow path forming body 72, L19 is the axial width of the gradually increasing diameter increasing guide piece 130, L20 is the axial width of the same diameter increasing guide piece 131, and L21 is gradually increasing diameter increasing speed. The axial width of the upstream side portion of the guide piece 130, L22 is the axial width of the downstream side portion of the gradually reduced diameter increasing guide piece 130, W18 is the outer diameter of the downstream side portion of the gradually reduced speed increasing guide piece 130, W19. Is the outer diameter of the same diameter speed increasing guide piece 131, W20 is the inner diameter of the same diameter speed increasing guide piece 131, W21 is the outer diameter of the upstream side portion of the gradually reduced diameter increasing speed guide piece 130, and W22 is the gradually reduced diameter speed increasing guide. The upstream opening end inner diameter of the piece 130, θ2 is the diameter reduction angle of the outer peripheral surface of the upstream side portion of the gradually reduced diameter increasing guide piece 130, and θ3 is the inner peripheral surface of the upstream side portion of the gradually reduced diameter increasing guide piece 130. This is the angle of diameter reduction.

図27の上流側側面図(a)と正面図(b)と下流側側面図(c)と斜視図(d)と外形説明図(e)に示す旋回手段61は、前記した第1変形例としての旋回手段61と基本的構造を同じくして、ねじれ角θを60°となしたものである。L23は旋回手段61の軸線方向幅、L24は膨出部105の軸線方向幅、L25は段差幅、L26は旋回流形成案内片101の軸線方向幅、W23は軸芯部100の外径、W24は旋回流形成案内路104の半径方向の深さ幅、W25は旋回手段61の膨出部105の外径、W26は旋回流形成案内片101の外径である。図28の上流側側面図(a)と正面図(b)と下流側側面図(c)と斜視図(d)に示す旋回手段61は、前記した第1変形例としての旋回手段61と基本的構造を同じくして、ねじれ角θを90°となしたものである。   The swiveling means 61 shown in the upstream side view (a), front view (b), downstream side view (c), perspective view (d), and outer shape explanatory view (e) of FIG. The twisting angle θ is set to 60 ° in the same basic structure as the turning means 61. L23 is the axial width of the swiveling means 61, L24 is the axial width of the bulging portion 105, L25 is the step width, L26 is the axial width of the swirling flow forming guide piece 101, W23 is the outer diameter of the shaft core portion 100, and W24. Is the depth width in the radial direction of the swirling flow forming guide path 104, W25 is the outer diameter of the bulging portion 105 of the swirling means 61, and W26 is the outer diameter of the swirling flow forming guide piece 101. The swiveling means 61 shown in the upstream side view (a), the front view (b), the downstream side view (c), and the perspective view (d) of FIG. 28 is basically the same as the swiveling means 61 as the first modified example. The twisted angle θ is 90 ° with the same structure.

図29は気泡発生器本体20の上流側半部110の上流側外周面に形成した連結用雄ネジ部115に接続体10を介して第1連結パイプ5を接続したホース接続型の超微細気泡発生器2を示している。かかるホース接続型の超微細気泡発生器2は、第1連通パイプ5をポンプPの吐出口(図示せず)に連通連結するとともに、ポンプPの吸込口(図示せず)に第2連通パイプ6を連通連結して、第2連通パイプ6に液体F1を収容した液体収容部3を連通連結している(これらは図示せず)。   FIG. 29 shows a hose connection type ultrafine bubble in which the first connection pipe 5 is connected to the connection external thread 115 formed on the upstream outer peripheral surface of the upstream half 110 of the bubble generator body 20 via the connection body 10. The generator 2 is shown. The hose connection type ultrafine bubble generator 2 connects the first communication pipe 5 to the discharge port (not shown) of the pump P and the second communication pipe to the suction port (not shown) of the pump P. 6 are connected in communication, and the liquid storage portion 3 storing the liquid F1 is connected in communication with the second communication pipe 6 (these are not shown).

このように構成して、ポンプPにより液体収容部3に収容した液体F1をコンパクトに構成した気泡発生器本体20内に圧送し、ベンチュリ効果により外部から気体F2を吸引して、連続相としての液体F1と分散相としての気体F2を混合させて混合流体F3となした後に導出口40から混合流体F3を放出するようにしている。   Constructed in this way, the liquid F1 accommodated in the liquid accommodating part 3 by the pump P is pumped into the bubble generator main body 20 configured compactly, and the gas F2 is sucked from the outside by the venturi effect, and is used as a continuous phase. After the liquid F1 and the gas F2 as the dispersed phase are mixed to form the mixed fluid F3, the mixed fluid F3 is discharged from the outlet 40.

図30は水中ポンプP1の吐出口部160に気泡発生器本体20を上流側半部110の上流側外周面に形成した連結用雄ネジ部115を介して起立状に接続した水中ポンプ搭載型の超微細気泡発生器2を示している。161は液体F1を吸入する水中ポンプP1の吸入口部である。かかる水中ポンプ搭載型の超微細気泡発生器2は、水中ポンプP1の吸入口部161から液体F1を吸入するとともに、吐出口部160から気泡発生器本体20内圧送し、ベンチュリ効果により外部から気体F2を吸引して、連続相としての液体F1と分散相としての気体F2を混合させて混合流体F3となした後に導出口40から混合流体F3を放出するようにしている。水中ポンプ搭載型の超微細気泡発生器2では水中ポンプP1と気泡発生器本体20を一体となしているため、手軽に搬送して容易に設置することができる。   FIG. 30 shows a submersible pump mounted type in which the bubble generator body 20 is connected to the discharge port portion 160 of the submersible pump P1 in an upright manner via a connecting male screw portion 115 formed on the upstream outer peripheral surface of the upstream half 110. An ultrafine bubble generator 2 is shown. Reference numeral 161 denotes a suction port portion of the submersible pump P1 that sucks the liquid F1. The submersible pump-mounted ultrafine bubble generator 2 sucks the liquid F1 from the suction port portion 161 of the submersible pump P1, and sends the pressure inside the bubble generator body 20 from the discharge port portion 160, and gas from the outside due to the venturi effect. F2 is sucked to mix the liquid F1 as the continuous phase and the gas F2 as the disperse phase into the mixed fluid F3, and then the mixed fluid F3 is discharged from the outlet 40. In the submersible pump-mounted ultrafine bubble generator 2, the submersible pump P1 and the bubble generator main body 20 are integrated, so that they can be easily transported and installed.

[第1実施例]
第1実施例では、第2実施形態に係る超微細気泡発生装置1を使用して混合流体F3を生成する実験を行った。ここで、使用した増速流路形成体72の流路形成片73の長手幅L1=85mm、流路形成片73の基端開口部の内径W1=14mm、流路形成片73の先端開口部の内径W2=8mm、第5分割片55の内径W3=13mm、第5分割片55の外径W4=18mm、最小間隔W5=0.8mmである。
である。
[First embodiment]
In the first example, an experiment for generating the mixed fluid F3 using the ultrafine bubble generating device 1 according to the second embodiment was performed. Here, the longitudinal width L1 of the flow passage forming piece 73 of the used speed increasing flow passage forming body 72 is 85 mm, the inner diameter W1 of the proximal end opening of the flow passage forming piece 73 is 14 mm, and the distal end opening of the flow passage forming piece 73. Inner diameter W2 = 8 mm, inner diameter W3 = 5 mm of the fifth divided piece 55, outer diameter W4 = 18 mm of the fifth divided piece 55, and minimum interval W5 = 0.8 mm.
It is.

また、液体F1(連続相)として水道水を使用し、気体F2(分散相)として外気(空気)を使用した。そして、ポンプPの吐水量を40リットル/分に設定して、気体F2の吸入量が1リットル/分となる条件下で、1分当たり35リットルの混合流体F3を生成した。   Further, tap water was used as the liquid F1 (continuous phase), and outside air (air) was used as the gas F2 (dispersed phase). Then, the water discharge amount of the pump P was set to 40 liters / minute, and 35 liters of mixed fluid F3 was generated per minute under the condition that the suction amount of the gas F2 was 1 liter / minute.

この実験で生成した混合流体F3に含有されている超微細気泡の大きさ(粒子径)は、レーザー回折式粒度分布測定装置(SALD−2200、株式会社島津製作所製)を用いて測定した。その測定結果を図31に示す。   The size (particle diameter) of the ultrafine bubbles contained in the mixed fluid F3 generated in this experiment was measured using a laser diffraction particle size distribution analyzer (SALD-2200, manufactured by Shimadzu Corporation). The measurement results are shown in FIG.

図31のグラフに示すように、本実施例では混合流体F3に含まれる超微細気泡は、その粒子径が0.3μm(300nm)程度の粒子量が全体の80%(相対値)を占めていた。   As shown in the graph of FIG. 31, in this example, the ultrafine bubbles contained in the mixed fluid F3 account for 80% (relative value) of the amount of particles having a particle size of about 0.3 μm (300 nm). It was.

この測定結果より、本実施形態の超微細気泡発生装置1は、ナノレベルの超微細な気泡混じりの混合流体F3を生成することができるという優れた性能を有していることが分かった。   From this measurement result, it was found that the ultrafine bubble generating device 1 of the present embodiment has an excellent performance of being able to generate a mixed fluid F3 containing nanoscale ultrafine bubbles.

[第2実施例]
第2実施例では、第1実施形態に係る超微細気泡発生装置1と、第1変形例としての旋回手段61を装備した第2実施形態に係る超微細気泡発生装置1の超微細気泡含有液体生成流路91における自吸空気圧(kPa)をそれぞれ検出して、空気を引き込む力(自吸効果)を比較実験した。ここで、液体F1(連続相)として水道水を使用し、気体F2(分散相)として外気(空気)を使用した。旋回手段61のねじれ角θは60°、90°、120°にそれぞれ設定した。
[Second Embodiment]
In the second example, the ultrafine bubble-containing liquid of the ultrafine bubble generation apparatus 1 according to the second embodiment equipped with the ultrafine bubble generation apparatus 1 according to the first embodiment and the turning means 61 as the first modification. A self-priming air pressure (kPa) in the generation flow path 91 was detected, and a comparative experiment was conducted on the force for drawing air (self-priming effect). Here, tap water was used as the liquid F1 (continuous phase), and outside air (air) was used as the gas F2 (dispersed phase). The twist angle θ of the turning means 61 was set to 60 °, 90 °, and 120 °, respectively.

第1実施形態に係る超微細気泡発生装置1(旋回手段61無)では、図32の一点鎖線のグラフに示すような測定結果が得られた。超微細気泡含有液体生成流路91内の水流量(L/min)が70L/minを越えたところで自吸空気圧(kPa)が−15kPaに達した。   In the ultrafine bubble generating device 1 according to the first embodiment (without the turning means 61), the measurement results as shown in the dashed line graph of FIG. 32 were obtained. The self-priming air pressure (kPa) reached −15 kPa when the water flow rate (L / min) in the ultrafine bubble-containing liquid generation flow path 91 exceeded 70 L / min.

これに対して、第2実施形態に係る超微細気泡発生装置1(旋回手段61有:θ=60°)では、図32の二点鎖線のグラフに示すような測定結果が得られた。超微細気泡含有液体生成流路91内の水流量(L/min)が72L/minを越えたところで自吸空気圧(kPa)が−30kPaに達した。旋回手段61のθ=90°では、図32の点線のグラフに示すような測定結果が得られた。超微細気泡含有液体生成流路91内の水流量(L/min)が73L/minを越えたところで自吸空気圧(kPa)が−32kPaに達した。旋回手段61のθ=120°では、図32の実線のグラフに示すような測定結果が得られた。超微細気泡含有液体生成流路91内の水流量(L/min)が72L/minを越えたところで自吸空気圧(kPa)が−48kPaに達した。   On the other hand, in the ultrafine bubble generating device 1 (with the turning means 61: θ = 60 °) according to the second embodiment, the measurement results as shown in the two-dot chain line graph of FIG. 32 were obtained. The self-priming air pressure (kPa) reached −30 kPa when the water flow rate (L / min) in the ultrafine bubble-containing liquid generation flow path 91 exceeded 72 L / min. When θ = 90 ° of the turning means 61, a measurement result as shown by the dotted line graph in FIG. 32 was obtained. The self-priming air pressure (kPa) reached −32 kPa when the water flow rate (L / min) in the ultrafine bubble-containing liquid generation flow path 91 exceeded 73 L / min. When θ = 120 ° of the turning means 61, a measurement result as shown by a solid line graph in FIG. 32 was obtained. The self-priming air pressure (kPa) reached −48 kPa when the water flow rate (L / min) in the ultrafine bubble-containing liquid generation flow path 91 exceeded 72 L / min.

その結果、旋回手段61を装備して旋回流を形成するようにした方が超微細気泡含有液体生成流路91において空気を引き込む力(自吸効果)が高いことが分かった。そして、ねじれ角が大きい程、自吸効果が大きいことが分かった。したがって、旋回手段61を装備し、かつ、ねじれ角を大きくした方が空気の取り込み量が増えて、気泡の数が増大することが分かった。また、自吸空気圧は、(水)流量によってねじれ角θの最適値が異なる結果が得られた。例えば、自吸空気圧は流量50L/minではθ=120°が最大となり、流量60L/minではθ=180°が最大となった。   As a result, it was found that the force (self-priming effect) for drawing air in the ultrafine bubble-containing liquid generation flow path 91 is higher when the swirl means 61 is provided to form a swirl flow. And it turned out that a self-priming effect is so large that a twist angle is large. Therefore, it was found that when the turning means 61 is provided and the twist angle is increased, the amount of air taken in increases and the number of bubbles increases. In addition, the self-priming air pressure obtained the result that the optimum value of the twist angle θ differs depending on the (water) flow rate. For example, for self-priming air pressure, θ = 120 ° is maximum at a flow rate of 50 L / min, and θ = 180 ° is maximum at a flow rate of 60 L / min.

[第3実施例]
第3実施例では、第2実施形態の変形例としての超微細気泡発生装置1を使用して第2実施例と同様に混合液体F3を生成した。そして、超微細気泡発生装置1に取り付けた気体導入部である気体吸引部80の基端部近傍の脈動現象、つまり、吸気孔81の近傍における空気(気体F2)の脈動現象を、脈動抑制体85を配設した場合と配設しない場合とで比較実験した。
[Third embodiment]
In the third example, the mixed liquid F3 was generated in the same manner as in the second example using the ultrafine bubble generating device 1 as a modification of the second embodiment. Then, the pulsation phenomenon in the vicinity of the base end portion of the gas suction unit 80 which is a gas introduction unit attached to the ultrafine bubble generating device 1, that is, the pulsation phenomenon of air (gas F2) in the vicinity of the intake hole 81, A comparative experiment was performed with and without 85.

ここで、L3=5mm、L4=13mm、L5=17mm、L6=50mm、L7=8.5mm、L8=1mm、L9=22.5mm、L10=18mm、L11=13mm、L12=14mm、L13=13mm、L14=20mm、L15=64mm、L16=26.214mm、L17=23.786mm、L18=40mm、L19=18mm、L20=22mm、L21=7.621mm、L22=10.379mm、L23=25mm、L24=3.5mm、L25=1mm、L26=20.5mm、W7=26mm、W8=34.5mm、W9=32mm、W10=26mm、W11=24mm、W12=30mm、W13=10.179mm、W14=27mm、W15=24mm、W16=15mm、W17=19.812mm、W18=24mm、W19=13mm、W20=10mm、W21=27mm、W22=24mm、W23=7mm、W24=9.5mm、W25=26mm、W26=24mm、θ=90°、θ1=12°、θ2=40°、θ3=60°に形成した。脈動抑制体85としては直径が6mm(吸気パイプ84の内径と略同一径)で長手幅が5mmの円柱状に形成したスポンジを使用した。また、気体導入部の負圧(kPa)を測定して脈動現象をグラフ化する測定器としてSMC株式会社製のZSE30AFを使用した。   Here, L3 = 5 mm, L4 = 13 mm, L5 = 17 mm, L6 = 50 mm, L7 = 8.5 mm, L8 = 1 mm, L9 = 22.5 mm, L10 = 18 mm, L11 = 13 mm, L12 = 14 mm, L13 = 13 mm L14 = 20 mm, L15 = 64 mm, L16 = 26.214 mm, L17 = 23.786 mm, L18 = 40 mm, L19 = 18 mm, L20 = 22 mm, L21 = 7.621 mm, L22 = 10.379 mm, L23 = 25 mm, L24 = 3.5mm, L25 = 1mm, L26 = 20.5mm, W7 = 26mm, W8 = 34.5mm, W9 = 32mm, W10 = 26mm, W11 = 24mm, W12 = 30mm, W13 = 10.179mm, W14 = 27mm , W15 = 24mm, W16 = 15mm, W17 = 19.812mm, W18 24 mm, W19 = 13 mm, W20 = 10 mm, W21 = 27 mm, W22 = 24 mm, W23 = 7 mm, W24 = 9.5 mm, W25 = 26 mm, W26 = 24 mm, θ = 90 °, θ1 = 12 °, θ2 = 40 ° , Θ3 = 60 °. As the pulsation suppressing body 85, a sponge formed in a columnar shape having a diameter of 6 mm (substantially the same diameter as the inner diameter of the intake pipe 84) and a longitudinal width of 5 mm was used. Further, ZSE30AF manufactured by SMC Co., Ltd. was used as a measuring instrument for measuring the negative pressure (kPa) of the gas introduction part and graphing the pulsation phenomenon.

気体吸引部80の基端部近傍に脈動抑制体85を配設しない場合(脈動抑制体付設前の場合)の脈動現象のグラフを図33に細い実線で示す。また、気体吸引部80の基端部近傍に脈動抑制体85を配設した場合(脈動抑制体付設後の場合)の脈動現象のグラフを図33に太い実線で示す。なお、図33中の縦補助目盛間隔は−2kPaである。   A graph of the pulsation phenomenon when the pulsation suppressing body 85 is not disposed near the proximal end portion of the gas suction unit 80 (before the pulsation suppressing body is attached) is shown by a thin solid line in FIG. Further, a graph of the pulsation phenomenon when the pulsation suppressing body 85 is disposed in the vicinity of the proximal end portion of the gas suction unit 80 (after the pulsation suppressing body is attached) is shown by a thick solid line in FIG. The vertical auxiliary scale interval in FIG. 33 is -2 kPa.

脈動抑制体付設前では、図33に細い実線で示す動脈現象のグラフから略4kPaの振幅で吸気(空気)が脈動していることが分かった。これに対して、脈動抑制体付設後では、図33に太い実線で示す動脈現象のグラフから略0.5kPaの振幅で吸気(空気)が脈動していることが分かった。つまり、脈動抑制体85が付設されている場合は、吸気(空気)の脈動が大幅(略8分の1)に低減(抑制)されていることが分かった。   Before the pulsation suppressor was attached, it was found from the graph of arterial phenomenon indicated by a thin solid line in FIG. 33 that the intake air (air) pulsated with an amplitude of about 4 kPa. On the other hand, after the pulsation suppressor was attached, it was found from the graph of arterial phenomenon indicated by a thick solid line in FIG. 33 that the intake air (air) pulsated with an amplitude of approximately 0.5 kPa. That is, when the pulsation suppression body 85 is attached, it turns out that the pulsation of intake (air) is significantly reduced (suppressed).

1 超微細気泡発生装置
2 超微細気泡発生器
3 液体収容部
4 混合流体収容部
30 導入口
40 導出口
50 ケーシング体
60 旋回流形成部
70 流速増速部
80 気体吸引部
85 脈動抑制体
90 超微細気泡含有液体生成部
DESCRIPTION OF SYMBOLS 1 Ultrafine bubble generator 2 Ultrafine bubble generator 3 Liquid storage part 4 Mixed fluid storage part 30 Inlet port 40 Outlet port 50 Casing body 60 Swirling flow formation part 70 Flow velocity acceleration part 80 Gas suction part 85 Pulsation suppression body Over 90 Microbubble-containing liquid generator

Claims (6)

一端に液体を導入する導入口を有するとともに、他端に液体を導出する導出口を有する筒状のケーシング体内に、導入口から導出口に向けて順次、
導入口から導入した液体の流速を増速させる流速増速部と、
流速増速部にて流速が増速された液流により圧力降下されたケーシング体内に外部から気体を吸引する気体吸引部と、
気体吸引部にて吸引された気体が流速増速部にて流速を増速された液流によりせん断されて超微細な気泡混じりの液体が生成される超微細気泡含有液体生成部と
を備え、
気体吸引部には吸引される気体の脈動を抑制する脈動抑制体を配設している
ことを特徴とする超微細気泡発生器。
In the cylindrical casing body having an inlet for introducing liquid at one end and an outlet for discharging liquid at the other end, sequentially from the inlet to the outlet,
A flow velocity accelerating portion for increasing the flow velocity of the liquid introduced from the inlet,
A gas suction part for sucking gas from the outside into the casing body which has been pressure-dropped by the liquid flow whose flow speed has been increased by the flow rate acceleration part;
The gas sucked in the gas suction unit is sheared by the liquid flow whose flow rate is increased in the flow rate accelerating unit, and includes an ultrafine bubble-containing liquid generation unit in which a liquid containing ultrafine bubbles is generated.
An ultrafine bubble generator, characterized in that a pulsation suppressing body that suppresses pulsation of a sucked gas is disposed in the gas suction unit.
脈動抑制体はケーシング体に接続される気体吸引部の基端部近傍に配設していることを特徴とする請求項1記載の超微細気泡発生器。   2. The ultrafine bubble generator according to claim 1, wherein the pulsation suppressing body is disposed in the vicinity of a proximal end portion of a gas suction portion connected to the casing body. 脈動抑制体は気体が吸引される方向に連通する連通流路を有して、連通流路を通して気体がケーシング体内に吸引されるようにしていることを特徴とする請求項1又は2記載の超微細気泡発生器。   3. The super pulsation suppressor has a communication channel that communicates in a direction in which gas is sucked, and gas is sucked into the casing through the communication channel. Fine bubble generator. 脈動抑制体は多孔質部材により成形していることを特徴とする請求項3記載の超微細気泡発生器。   4. The ultrafine bubble generator according to claim 3, wherein the pulsation suppressing body is formed of a porous member. 流速増速部の上流側に導入口から導入した液体を旋回流となす旋回流形成部を備えるとともに、旋回流形成部は、通過する液体を旋回流となす旋回手段と、旋回手段の下流側にケーシング体の軸線に沿って伸延する旋回流案内流路とを具備する
ことを特徴とする請求項1〜4のいずれか1項記載の超微細気泡発生器。
A swirl flow forming unit that turns the liquid introduced from the introduction port into a swirl flow upstream of the flow velocity accelerating unit, and the swirl flow forming unit, a swirling unit that turns the passing liquid into a swirl flow, and a downstream side of the swirl unit The ultrafine bubble generator according to any one of claims 1 to 4, further comprising a swirling flow guide channel extending along an axis of the casing body.
流速増速部は、ケーシング体の流路断面よりも小さい流路断面となして、ケーシング体の軸線と同軸的に伸延する流速増速流路を具備し、
気体吸引部は、ケーシング体の周壁の中途部に開口した吸気孔と、吸気孔に基端開口部が連通して流速増速流路の外周に同心円的に伸延する筒状の気体吸引流路とを具備し、
超微細気泡含有液体生成部は、気体吸引流路の先端開口部と流速増速流路の先端開口部とが吸気孔から一定幅だけ下流側で連通するとともに、両先端開口部よりも下流側である導出口に向けて伸延する超微細気泡含有液体生成流路を具備する
ことを特徴とする請求項1〜5のいずれか1項記載の超微細気泡発生器。
The flow velocity accelerating portion includes a flow velocity accelerating flow channel that is smaller than the flow channel cross section of the casing body and extends coaxially with the axis of the casing body,
The gas suction part has an intake hole that opens in the middle of the peripheral wall of the casing body, and a cylindrical gas suction flow path that concentrically extends to the outer periphery of the flow velocity accelerating flow path with the proximal end opening communicating with the intake hole. And
The ultrafine bubble-containing liquid generating unit is configured such that the tip opening of the gas suction channel and the tip opening of the flow velocity accelerating channel communicate with a certain width downstream from the intake hole and are further downstream than both tip openings. The ultrafine bubble generator according to any one of claims 1 to 5, further comprising an ultrafine bubble-containing liquid generation channel that extends toward the outlet port.
JP2012170037A 2012-07-31 2012-07-31 Superfine microbubble generation device Pending JP2014028340A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012170037A JP2014028340A (en) 2012-07-31 2012-07-31 Superfine microbubble generation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012170037A JP2014028340A (en) 2012-07-31 2012-07-31 Superfine microbubble generation device

Publications (1)

Publication Number Publication Date
JP2014028340A true JP2014028340A (en) 2014-02-13

Family

ID=50201341

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012170037A Pending JP2014028340A (en) 2012-07-31 2012-07-31 Superfine microbubble generation device

Country Status (1)

Country Link
JP (1) JP2014028340A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015150548A (en) * 2014-02-19 2015-08-24 独立行政法人国立高等専門学校機構 Microbubble generator
JP2016195988A (en) * 2015-04-03 2016-11-24 株式会社ミューカンパニーリミテド Mixing element and manufacturing method for the same
JP2018134587A (en) * 2017-02-21 2018-08-30 株式会社富士計器 Microbubble generator
JP2019025451A (en) * 2017-08-02 2019-02-21 株式会社富士計器 Fine bubble water generator
JP2019035332A (en) * 2017-08-10 2019-03-07 いすゞ自動車株式会社 Lubricating oil supply device
JP2021178266A (en) * 2020-05-11 2021-11-18 株式会社丸山製作所 Pump with air bubble generating mechanism
JP7012399B1 (en) 2021-06-03 2022-02-14 トーフレ株式会社 Fine bubble generation unit and water supply system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001327958A (en) * 2000-05-19 2001-11-27 Kajima Corp Apparatus for reducing dissolved oxygen in water
JP2007296420A (en) * 2006-04-27 2007-11-15 Sharp Corp Gas-liquid mixing device
JP2010504195A (en) * 2006-09-21 2010-02-12 ビーエーエスエフ ソシエタス・ヨーロピア Method for mixing liquid and particulate solids present in a closed container, container for this, ejector jet nozzle, and use of such a nozzle
JP2010162149A (en) * 2009-01-15 2010-07-29 Shibaura Mechatronics Corp Fine air bubble generating device for bathtub and method of generating fine air bubbles for bathtub
JP2012120997A (en) * 2010-12-09 2012-06-28 Hideyuki Nishizawa Method for producing microbubble and device therefor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001327958A (en) * 2000-05-19 2001-11-27 Kajima Corp Apparatus for reducing dissolved oxygen in water
JP2007296420A (en) * 2006-04-27 2007-11-15 Sharp Corp Gas-liquid mixing device
JP2010504195A (en) * 2006-09-21 2010-02-12 ビーエーエスエフ ソシエタス・ヨーロピア Method for mixing liquid and particulate solids present in a closed container, container for this, ejector jet nozzle, and use of such a nozzle
JP2010162149A (en) * 2009-01-15 2010-07-29 Shibaura Mechatronics Corp Fine air bubble generating device for bathtub and method of generating fine air bubbles for bathtub
JP2012120997A (en) * 2010-12-09 2012-06-28 Hideyuki Nishizawa Method for producing microbubble and device therefor

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015150548A (en) * 2014-02-19 2015-08-24 独立行政法人国立高等専門学校機構 Microbubble generator
JP2016195988A (en) * 2015-04-03 2016-11-24 株式会社ミューカンパニーリミテド Mixing element and manufacturing method for the same
JP2018134587A (en) * 2017-02-21 2018-08-30 株式会社富士計器 Microbubble generator
JP2019025451A (en) * 2017-08-02 2019-02-21 株式会社富士計器 Fine bubble water generator
JP7012482B2 (en) 2017-08-02 2022-01-28 株式会社富士計器 Fine bubble water generator
JP2019035332A (en) * 2017-08-10 2019-03-07 いすゞ自動車株式会社 Lubricating oil supply device
JP2021178266A (en) * 2020-05-11 2021-11-18 株式会社丸山製作所 Pump with air bubble generating mechanism
JP7390660B2 (en) 2020-05-11 2023-12-04 株式会社丸山製作所 Pump with bubble generation mechanism
JP7012399B1 (en) 2021-06-03 2022-02-14 トーフレ株式会社 Fine bubble generation unit and water supply system
JP2022185901A (en) * 2021-06-03 2022-12-15 トーフレ株式会社 Fine bubble generation unit and water supply system

Similar Documents

Publication Publication Date Title
JP2014028340A (en) Superfine microbubble generation device
JP5669031B2 (en) Ultrafine bubble generator
JP5573879B2 (en) Microbubble generator
JP2008086868A (en) Microbubble generator
JP6310359B2 (en) Microbubble generator and method for generating the same
CN107530650A (en) Micro air bubble generating means
JP6048841B2 (en) Fine bubble generator
WO2013094522A1 (en) Liquid atomization device
TWM552842U (en) Micro-bubble generator
JP5006273B2 (en) Micro bubble generator
JP6449531B2 (en) Microbubble generator
JP2007000848A (en) Method for generating fine bubble
TWI690364B (en) Progressive-perforation-type crushing and refining structure
JP6151555B2 (en) Fluid suction mixing device
JP2018030094A (en) Fine bubble generation device
CN209901060U (en) Device for doping micro-nano bubbles into fluid
JP2019166493A (en) Fine bubble generation nozzle
JP2010029774A (en) Fine bubble generating apparatus
JP2009178661A (en) Apparatus for discharging liquid
JP6344841B2 (en) Microbubble generator
JP2013139024A (en) Microbubble generation device
EP2650034A1 (en) Entrainment cover and intake module having the same
JP2017064685A (en) Microbubble generator, microgeneration apparatus, and system of the same
JP2015009046A (en) Oral cavity washing device
JP2022180121A (en) Fine bubble generation device and fine bubble generation method using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150717

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20150717

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20150811

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150818

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160105