JP2014026885A - 非水二次電池用電解液及び二次電池 - Google Patents

非水二次電池用電解液及び二次電池 Download PDF

Info

Publication number
JP2014026885A
JP2014026885A JP2012167705A JP2012167705A JP2014026885A JP 2014026885 A JP2014026885 A JP 2014026885A JP 2012167705 A JP2012167705 A JP 2012167705A JP 2012167705 A JP2012167705 A JP 2012167705A JP 2014026885 A JP2014026885 A JP 2014026885A
Authority
JP
Japan
Prior art keywords
compound
group
secondary battery
electrolyte
organic group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012167705A
Other languages
English (en)
Other versions
JP5921982B2 (ja
Inventor
Kunihiko Kodama
邦彦 児玉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2012167705A priority Critical patent/JP5921982B2/ja
Priority to PCT/JP2013/069866 priority patent/WO2014017464A1/ja
Publication of JP2014026885A publication Critical patent/JP2014026885A/ja
Priority to US14/601,321 priority patent/US10312546B2/en
Application granted granted Critical
Publication of JP5921982B2 publication Critical patent/JP5921982B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

【課題】高温で保存しても容量の劣化が小さく、かつ高レート放電特性に優れる二次電池およびこれに用いられる非水二次電池用電解液を提供する。
【解決手段】電解質と、下式(I−1)〜(I−3)のいずれかで表される化合物(A)とを有機溶媒中に含有する非水二次電池用電解液。
Figure 2014026885

(式(I−1)において、Xは、ハロゲン原子で置換されたアルキル基を表す。Yは、水素原子または有機基を表す。maは1〜6の整数を表す。式(I−2)において、Xは、酸素原子を有する基を表す。Yは、水素原子または有機基を表す。mbは、1〜6の整数を表す。式(I−3)において、Yは、炭素数4以上の有機基、または酸素原子もしくは窒素原子を有する有機基を表す。mcは1〜6の整数を表す。)
【選択図】なし

Description

本発明は、有機溶媒を含む非水二次電池用電解液、およびそれを用いた二次電池に関する。
昨今、注目を集めているリチウムイオン電池と呼ばれる二次電池は、充放電反応にリチウムの吸蔵および放出を利用する二次電池(いわゆるリチウムイオン二次電池)と、リチウムの析出および溶解を利用する二次電池(いわゆるリチウム金属二次電池)とに大別される。これらは、鉛電池やニッケルカドミウム電池と比較して大きなエネルギー密度が得られる。この特性を利用して、近年、カメラ一体型VTR(video tape recorder)、携帯電話あるいはノートパソコンなどのポータブル電子機器用の電源として広く普及している。アプリケーションの一層の拡充に伴い、ポータブル電子機器の電源として、軽量で高エネルギー密度が得られるリチウムイオン二次電池の開発が進められている。さらに昨今では、自動車用の電源用途を含め、耐久性、長寿命、安全性も強く求められている。
リチウムイオン二次電池やリチウム金属二次電池(以下、これらを総称して単にリチウム二次電池ということがある。)の電解液としては、導電率が高く電位的にも安定であるため、炭酸プロピレンあるいは炭酸ジエチルなどの炭酸エステル系の溶媒と、六フッ化リン酸リチウムなどの電解質塩との組み合わせが広く用いられている。
一方、電解液の添加成分に関して、サイクル特性などの改善を目的として、電解液中に各種添加剤を含有させる技術が提案されている。例えば、特許文献1においては、シアノアクリル酸エチルなどを添加することにより、電池性能の改善が試みられている。
特開2003−086248号公報
しかしながら、自動車用途への拡大も含め、その要求は益々高性能化および多機能化へと向かっている。とくに二次電池の充放電・保管が様々な温度領域で行われる傾向にあり、そのような環境下でも高性能を実現することが望まれる。そこで、本発明者は満充電状態で高温保存を行うときの電池容量の維持性や、高温保存後の高レート放電特性に着目した。一般に、そうした問題に対しては未だその改善のための取り組みが不十分である。
本発明はかかる点に鑑みてなされたもので、その目的は、高温で保存しても容量の劣化が小さく、かつ高レート放電特性に優れる二次電池およびこれに用いられる非水二次電池用電解液を提供することにある。
すなわち上記の課題は以下の手段により解決された。
〔1〕電解質と、下式(I−1)〜(I−3)のいずれかで表される化合物(A)とを有機溶媒中に含有する非水二次電池用電解液。
Figure 2014026885
(式(I−1)において、Xは、ハロゲン原子で置換されたアルキル基を表す。Yは、水素原子または有機基を表す。maは1〜6の整数を表す。)
(式(I−2)において、Xは、酸素原子を有する基を表す。Yは、水素原子または有機基を表す。mbは、1〜6の整数を表す。)
(式(I−3)において、Yは、炭素数4以上の有機基、または酸素原子もしくは窒素原子を有する有機基を表す。mcは1〜6の整数を表す。)
〔2〕更に、酸化または還元により(I−1)〜(I−3)のいずれかで表される化合物(A)と反応する活性種を放出する化合物(B)を含有する〔1〕記載の非水二次電池用電解液。
〔3〕化合物(A)の含有率が電解液全量に対して0.001〜10質量%である〔1〕または〔2〕に記載の非水二次電池用電解液。
〔4〕化合物(B)の含有率が電解液全量に対して0.0001〜10質量%である〔2〕または〔3〕のいずれかに記載の非水二次電池用電解液。
〔5〕化合物(A)と化合物(B)との添加量の比率(A/B)が、100/1〜1/10である〔2〕〜〔4〕のいずれかに記載の非水二次電池用電解液。
〔6〕Xが、フッ素原子で置換されたアルキル基である〔1〕〜〔5〕のいずれかに記載の非水二次電池用電解液。
〔7〕Xが、アルコキシ基、アルコキシメチル基、アシルオキシ基、またはアシルオキシメチル基である〔1〕〜〔5〕のいずれかに記載の非水二次電池用電解液。
〔8〕Y、Y、Yが、それぞれ独立に、2価以上の有機基、あるいは酸素原子、窒素原子またはフッ素原子の少なくとも1つを有する1価の有機基である〔1〕〜〔7〕のいずれかに記載の非水二次電池用電解液。
〔9〕化合物(B)が、ケトン化合物である〔2〕〜〔8〕のいずれかに記載の非水二次電池用電解液。
〔10〕ケトン化合物が、芳香族ケトン化合物である〔9〕に記載の非水二次電池用電解液。
〔11〕芳香族ケトン化合物が、アセトフェノン化合物、ベンゾフェノン化合物、9−フルオレノン化合物、アントロン化合物、キサントン化合物、ジベンゾスベロン化合物、ジベンゾスベレロン化合物、アントラキノン化合物、ビアントロニル化合物、ビアントロン化合物、およびジベンゾイル化合物からなる群から選ばれる少なくとも一種の化合物からなる〔10〕に記載の非水二次電池用電解液。
〔12〕正極、負極、および〔1〕〜〔11〕のいずれか1項に記載の非水二次電池用電解液を具備する非水電解液二次電池。
〔13〕ニッケル、コバルトもしくはマンガンのうち少なくとも1種を有する化合物を正極の活物質として用いた〔12〕に記載の非水電解液二次電池。
〔14〕チタン酸リチウム(LTO)または炭素材料を負極の活物質として用いた〔12〕または〔13〕に記載の非水電解液二次電池。
〔15〕下式(I−1)〜(I−3)のいずれかで表される化合物を含む薬剤と、電解質を含む薬剤とを組み合わせた非水二次電池電解液用キット。
Figure 2014026885
(式(I−1)において、Xは、ハロゲン原子で置換されたアルキル基を表す。Yは、水素原子または有機基を表す。maは1〜6の整数を表す。)
(式(I−2)において、Xは、酸素原子を有する基を表す。Yは、水素原子または有機基を表す。mbは、1〜6の整数を表す。)
(式(I−3)において、Yは、炭素数4以上の有機基、または酸素原子もしくは窒素原子を有する有機基を表す。mcは1〜6の整数を表す。)
〔16〕下式(I−1)〜(I−3)のいずれかで表される化合物からなる非水二次電池電解液用添加剤。
Figure 2014026885
(式(I−1)において、Xは、ハロゲン原子で置換されたアルキル基を表す。Yは、水素原子または有機基を表す。maは1〜6の整数を表す。)
(式(I−2)において、Xは、酸素原子を有する基を表す。Yは、水素原子または有機基を表す。mbは、1〜6の整数を表す。)
(式(I−3)において、Yは、炭素数4以上の有機基、または酸素原子もしくは窒素原子を有する有機基を表す。mcは1〜6の整数を表す。)
本発明の非水電解液および非水二次電池は、高温で保存しても容量の劣化が小さく、かつ高レート放電特性に優れる。
本発明の好ましい実施形態に係るリチウム二次電池の機構を模式化して示す断面図である。 本発明の好ましい実施形態に係るリチウム二次電池の具体的な構成を示す断面図である。
以下、本発明の実施の形態について詳細に説明するが、本発明の構成が、この内容により限定して解釈されるものではない。
[非水二次電池用電解液]
(化合物(A))
本発明の非水二次電池用電解液は下式(I−1)〜(I−3)のいずれかで表される化合物(A)を少なくとも1種含有する。
Figure 2014026885
各式において各置換基は下記の意味である。
・X
は、ハロゲン原子で置換されたアルキル基であり、フッ素原子で置換されたアルキル基が好ましい。好ましくは炭素数1〜4のハロゲン原子(好ましくはフッ素原子)で置換されたアルキル基であり、更に好ましくはトリフロロメチル基である。
・X
は、酸素原子を有する基であり、好ましくはアルコキシ基(好ましくは炭素数1〜10)、アルコキシメチル基(好ましくは炭素数2〜10)、アシルオキシ基(好ましくは炭素数2〜10)、アシルオキシメチル基(好ましくは炭素数3〜11)である。
・ma、mb、mc
ma、mb、およびmcはそれぞれ1〜6の整数を表し、好ましくは1〜4、更に好ましくは1又は2である。
・Y,Y
およびYは、それぞれ独立に、水素原子または有機基であり、有機基として好ましくは炭素数3以上の有機基である。当該有機基は、ma,mb価以上の置換基をとる構造であり、ma,mb価の基であることが好ましい。このことは後記Yとmcとの関係においても同義である。
およびYは、なかでも、2価以上の有機基、あるいは酸素原子、窒素原子またはフッ素原子の少なくとも1つを有する1価の有機基であることが好ましい。
1価の有機基として好ましくは、ハロゲン化アルキル基(好ましくは炭素数1〜6)もしくはシアノ基を有することのある鎖状もしくは鎖状炭化水素基(好ましくは総炭素数1〜20)が挙げられる。あるいは、鎖状または環状カーボネート基(好ましくは炭素数2〜4)を有する基、鎖状または環状エーテル基(好ましくは炭素数3〜6)を有する基、鎖状または環状エステル基(好ましくは炭素数3〜6)を有する基、鎖状または環状アミド基(好ましくは炭素数3〜6)を有する基、鎖状または環状カーバメート基(好ましくは炭素数3〜6)を有する基を有する1価の有機基(好ましくは総炭素数2〜10)が挙げられる。1価の有機基としてより好ましくは、カーボネート基、エーテル基、エステル基、ラクトン基、アミド基、カーバメート基、ニトリル基、またはこれらを組合せて有する基(好ましくは炭素数1〜20)である。
2価以上の有機基としては、鎖状炭化水素基、芳香族基またはこれらを組み合わせた2〜4価の連結基(好ましくは炭素数1〜20)であることが好ましい。炭化水素基については、その鎖中に酸素原子および/または窒素原子を有する連結基を含んでいてもよい。Y,Yの中に、酸素原子もしくは窒素原子を含むときその数は特に限定されないが、それぞれ、1〜10個であることが好ましい。2価以上の連結基として好ましくはアルキレン基(好ましくは炭素数2〜12、具体的にはエチレン基、プロピレン基、ブチレン基、ヘキシレン基、ネオペンチレン基、オクチレン基、)、ポリオキシアルキレン基(好ましくはオキシアルキレン構造を2〜20有する。具体的にはポリエチレングリコール、ポリプロピレングリコール)、アリーレン基(具体的にはo,m,p−フェニレン基、2,2’−ビフェニレン基、4,4’−ビフェニレン基)アラルキレン基(具体的にはo,m,p−キシリレン基、4,4’−ビフェニルメチレン基)が挙げられる。
,Yは、さらに、下記式(Ex−1)〜(Ex−5)のいずれかで表される構造であることが好ましい。
Figure 2014026885
・L
式中、Lは単結合または連結基であり、連結基としては、置換基Tを有していてもよいアルキレン基(炭素数1〜6が好ましい)であることが好ましい。式Ex−3中、LはXから延びる連結基であってもよい。
・R
は、任意の置換基(例えば後記置換基T)であり、アルキル基(好ましくは炭素数1〜6)、ハロゲン原子(好ましくはフッ素原子)、フッ化アルキル基(好ましくは炭素数1〜6)であることが好ましい。
・X
は、酸素原子もしくはメチレン基(−CR−)を表す。このとき、Rは水素原子もしくは後述の置換基Tの例が挙げられ、置換基のときは、なかでもそのアルキル基が好ましい。
・na
naは0〜2の整数である。
・nbは式(I−1)〜(I−3)のma、mb、mcに対応して定まる数であり、1〜3の整数を表す。
・R
式中、Rは、1価もしくは2価以上の有機基であり、ハロゲン化アルキル基(好ましくは炭素数1〜6)もしくはシアノ基を有することのある鎖状もしくは環状炭化水素基(好ましくは総炭素数1〜20)である。このとき、炭化水素基の鎖中に、酸素原子(好ましくは1〜100個)、エステル連結基(−COO−)(好ましくは1〜10個)、もしくはカーボネート連結基(−OCOO−)(好ましくは1〜10個)を介在していてもよい。また、Rは途中で分岐した構造を有していてもよく、その末端にLを有する構造が介在していてもよい。
・Y
は、炭素数4以上の有機基、または、酸素原子もしくは窒素原子を有する有機基である。
炭素数4以上の有機基としては、炭素数4〜20の炭化水素基(好ましくは鎖状炭化水素基)が挙げられる。この炭化水素基は置換基を有していてもよく、当該置換基としてはハロゲン原子、ハロゲン化アルキル基(好ましくは炭素数1〜6)、もしくはシアノ基が挙げられる。
酸素原子もしくは窒素原子を有する有機基において、1価の有機基として好ましくは、鎖状または環状カーボネート基(好ましくは炭素数2〜4)を有する基、鎖状または環状エーテル基(好ましくは炭素数3〜6)を有する基、鎖状または環状エステル基(好ましくは炭素数3〜6)を有する基、鎖状または環状アミド基(好ましくは炭素数3〜6)を有する基、鎖状または環状カーバメート基(好ましくは炭素数3〜6)を有する基を有する1価の有機基(好ましくは総炭素数2〜10)が挙げられる。1価の有機基としてより好ましくは、カーボネート基、エーテル基、エステル基、ラクトン基、アミド基、カーバメート基、ニトリル基、またはこれらを組合せて有する基(好ましくは炭素数1〜20)である。
2価以上の連結基としては、炭素数4以上の炭化水素基(好ましくは炭素数4〜20)、芳香族基(好ましくは炭素数6〜24)またはこれらを組み合わせた2〜4価の連結基であることが好ましい。炭化水素基については、その鎖中に酸素原子および/または窒素原子を有する連結基を含んでいてもよい。Yの中に、酸素原子もしくは窒素原子を含むときその数は特に限定されないが、それぞれ、1〜10個であることが好ましい。
は、さらに、下記式(Ex−1)〜(Ex−5)のいずれかで表される構造であることが好ましい。ただし、式(Ex−5)においてRは下記のR’と読み替える。
・R
式中、R’は、1価もしくは2価以上の有機基であり、ハロゲン化アルキル基(好ましくは炭素数1〜6)もしくはシアノ基を有することのある鎖状もしくは環状炭化水素基(好ましくは炭素数4〜20)である。このとき、炭化水素基の鎖中に、酸素原子(好ましくは1〜100個)、エステル連結基(−COO−)(好ましくは1〜10個)、もしくはカーボネート連結基(−OCOO−)(好ましくは1〜10個)を介在していてもよい。また、R’は途中で分岐した構造を有していてもよく、その末端にLを有する構造をとっていてもよい。
式(I−1)で表される化合物の具体例を以下に示すが、本発明がこれにより限定して解釈されるものではない。
Figure 2014026885
式(I−2)で表される化合物の具体例を以下に示すが、本発明がこれにより限定して解釈されるものではない。
Figure 2014026885
Me:メチル基
Ac:アセチル基
Ph:フェニル基
式(I−3)で表される化合物の具体例を以下に示すが、本発明がこれにより限定して解釈されるものではない。
Figure 2014026885
本発明の電解液において、化合物(A)としては、なかでも式(I−1)で表される化合物が好ましい。
式(I−1)〜(I−3)のいずれかで表される化合物(A)の添加量は全電解液に対し、0.001質量%以上が好ましく、0.003質量%以上がより好ましく、0.005質量%以上が更に好ましい。上限としては、10質量%以下が好ましく、1質量%以下がより好ましく、0.5質量%以下が特に好ましい。この添加量を上記の範囲とすることで、良好な放電性能を維持して、所望の高温容量維持性および高レート特性を高いレベルで達成することができ好ましい。
(化合物(B))
本発明の非水二次電池用電解液は更に酸化または還元により式(I−1)〜(I−3)のいずれかで表される化合物(A)と反応する活性種を放出する化合物(B)を含有していることが好ましい。これにより、前記化合物(A)がより効率的に機能し、少量の添加で不可逆容量の発生を抑制しつつ電池性能が向上する。化合物(B)が酸化または還元により放出する活性種としてはラジカル、アニオンまたはカチオンが好ましく、ラジカル及び/またはアニオンがより好ましい。特に負極で還元されてアニオンラジカルを生成する化合物。または負極で還元されてアニオンラジカルを生成し、更に分解してアニオン及び/又はラジカルを生成する化合物が好ましい。
このような化合物としてはケトン化合物、オキシムエステル化合物、オキシムエーテル化合物、スルホニウム塩、ヨードニウム塩が好ましく、芳香族ケトン化合物がより好ましい。より好ましくはアセトフェノン化合物、ベンゾフェノン化合物、9−フルオレノン化合物、アントロン化合物、キサントン化合物、ジベンゾスベロン化合物、ジベンゾスベレロン化合物、アントラキノン化合物、ビアントロニル化合物、ビアントロン化合物、ジベンゾイル化合物であり、これらは置換基を有していてもよい。好ましい置換基としてはアルキル基、アルコキシ基、アシル基、アシルオキシ基、シアノ基、アルコキシカルボニル基、ハロゲン原子、アリール基、アラルキル基があげられる。
前記化合物(B)の添加量は全電解液に対し、0.0001質量%以上が好ましく、0.0005質量%以上がより好ましく、0.001質量%以上が更に好ましい。上限としては、10質量%以下が好ましく、1質量%以下がより好ましく、0.1質量%以下が特に好ましい。
前記化合物(A)と化合物(B)の添加量比率(A/B)は質量比で100/1以下が好ましく、50/1以下が更に好ましい。下限としては、1/10以上が好ましく、1/1以上がより好ましく、5/1以上が特に好ましい。
なお、本明細書において化合物の表示(例えば、化合物と末尾に付して呼ぶとき)については、当該化合物そのもののほか、その塩、そのイオンを含む意味に用いる。また、所望の効果を奏する範囲で、置換基を導入するなど一部を変化させた誘導体を含む意味である。
本明細書において置換・無置換を明記していない置換基(連結基についても同様)については、その基に任意の置換基を有していてもよい意味である。これは置換・無置換を明記していない化合物についても同義である。好ましい置換基としては、下記置換基Tが挙げられる。
置換基Tとしては、下記のものが挙げられる。
アルキル基(好ましくは炭素原子数1〜20のアルキル基、例えばメチル、エチル、イソプロピル、t−ブチル、ペンチル、ヘプチル、1−エチルペンチル、ベンジル、2−エトキシエチル、1−カルボキシメチル等)、アルケニル基(好ましくは炭素原子数2〜20のアルケニル基、例えば、ビニル、アリル、オレイル等)、アルキニル基(好ましくは炭素原子数2〜20のアルキニル基、例えば、エチニル、ブタジイニル、フェニルエチニル等)、シクロアルキル基(好ましくは炭素原子数3〜20のシクロアルキル基、例えば、シクロプロピル、シクロペンチル、シクロヘキシル、4−メチルシクロヘキシル等)、アリール基(好ましくは炭素原子数6〜26のアリール基、例えば、フェニル、1−ナフチル、4−メトキシフェニル、2−クロロフェニル、3−メチルフェニル等)、ヘテロ環基(好ましくは炭素原子数2〜20のヘテロ環基、好ましくは、少なくとも1つの酸素原子、硫黄原子、窒素原子を有する5または6員環のヘテロ環基が好ましく、例えば、2−ピリジル、4−ピリジル、2−イミダゾリル、2−ベンゾイミダゾリル、2−チアゾリル、2−オキサゾリル等)、アルコキシ基(好ましくは炭素原子数1〜20のアルコキシ基、例えば、メトキシ、エトキシ、イソプロピルオキシ、ベンジルオキシ等)、アリールオキシ基(好ましくは炭素原子数6〜26のアリールオキシ基、例えば、フェノキシ、1−ナフチルオキシ、3−メチルフェノキシ、4−メトキシフェノキシ等)、アルコキシカルボニル基(好ましくは炭素原子数2〜20のアルコキシカルボニル基、例えば、エトキシカルボニル、2−エチルヘキシルオキシカルボニル等)、アミノ基(好ましくは炭素原子数0〜20のアミノ基、アルキルアミノ基、アリールアミノ基を含み、例えば、アミノ、N,N−ジメチルアミノ、N,N−ジエチルアミノ、N−エチルアミノ、アニリノ等)、スルファモイル基(好ましくは炭素原子数0〜20のスルホンアミド基、例えば、N,N−ジメチルスルファモイル、N−フェニルスルファモイル等)、アシル基(好ましくは炭素原子数1〜20のアシル基、例えば、アセチル、プロピオニル、ブチリル、ベンゾイル等)、アシルオキシ基(好ましくは炭素原子数1〜20のアシルオキシ基、例えば、アセチルオキシ、ベンゾイルオキシ等)、カルバモイル基(好ましくは炭素原子数1〜20のカルバモイル基、例えば、N,N−ジメチルカルバモイル、N−フェニルカルバモイル等)、アシルアミノ基(好ましくは炭素原子数1〜20のアシルアミノ基、例えば、アセチルアミノ、ベンゾイルアミノ等)、スルホンアミド基((好ましくは炭素原子数0〜20のスルファモイル基、例えば、メタンスルホンアミド、ベンゼンスルホンアミド、N−メチルメタンスルスルホンアミド、N−エチルベンゼンスルホンアミド等)、アルキルチオ基(好ましくは炭素原子数1〜20のアルキルチオ基、例えば、メチルチオ、エチルチオ、イソプロピルチオ、ベンジルチオ等)、アリールチオ基(好ましくは炭素原子数6〜26のアリールチオ基、例えば、フェニルチオ、1−ナフチルチオ、3−メチルフェニルチオ、4−メトキシフェニルチオ等)、アルキルもしくはアリールスルホニル基(好ましくは炭素原子数1〜20のアルキルもしくはアリールスルホニル基、例えば、メチルスルホニル、エチルスルホニル、ベンゼンスルホニル等)、ヒドロキシル基、シアノ基、ハロゲン原子(例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子等)であり、より好ましくはアルキル基、アルケニル基、アリール基、ヘテロ環基、アルコキシ基、アリールオキシ基、アルコキシカルボニル基、アミノ基、アシルアミノ基、ヒドロキシル基またはハロゲン原子であり、特に好ましくはアルキル基、アルケニル基、ヘテロ環基、アルコキシ基、アルコキシカルボニル基、アミノ基、アシルアミノ基またはヒドロキシル基である。
また、これらの置換基Tで挙げた各基は、上記の置換基Tがさらに置換していてもよい。
化合物ないし置換基・連結基等がアルキル基・アルキレン基、アルケニル基・アルケニレン基等を含むとき、これらは環状でも鎖状でもよく、また直鎖でも分岐していてもよく、上記のように置換されていても無置換でもよい。またアリール基、ヘテロ環基等を含むとき、それらは単環でも縮環でもよく、同様に置換されていても無置換でもよい。
(有機溶媒)
本発明に用いられる有機溶媒としては、例えば、炭酸エチレン、炭酸プロピレン、炭酸ブチレンなどの環状炭酸エステル、炭酸ジメチル、炭酸ジエチル、炭酸エチルメチル、炭酸メチルプロピルなどの鎖状炭酸エステル、γ−ブチロラクトン、γ−バレロラクトンなどの環状エステル、1,2−ジメトキシエタン、ジエチレングリコールジメチルエーテルなどの鎖状エーテル、テトラヒドロフラン、2−メチルテトラヒドロフラン、テトラヒドロピラン、1,3−ジオキソラン、4−メチル−1,3−ジオキソラン、1,3−ジオキサン、1,4−ジオキサンなどの環状エーテル、酢酸メチル、酢酸エチル、プロピオン酸メチル、プロピオン酸エチル、酪酸メチル、イソ酪酸メチル、トリメチル酢酸メチル、トリメチル酢酸エチルなどの鎖上エステル、アセトニトリル、グルタロニトリル、アジポニトリル、メトキシアセトニトリル、3−メトキシプロピオニトリルなどのニトリル化合物、N,N−ジメチルホルムアミド、N−メチルピロリジノン、N−メチルオキサゾリジノン、N,N’−ジメチルイミダゾリジノン、ニトロメタン、ニトロエタン、スルホラン、燐酸トリメチル、ジメチルスルホキシドあるいはジメチルスルホキシド燐酸などが挙げられる。これらは、一種単独で用いても2種以上を併用してもよい。中でも、環状炭酸エステル(好ましくは炭酸エチレン、炭酸プロピレン)、鎖状炭酸エステル(好ましくは炭酸ジメチル、炭酸ジエチルおよび炭酸エチルメチル)、環状エステル(好ましくはγ−ブチロラクトン)からなる群のうちの少なくとも1種を含有していることが好ましく、より好ましくは環状炭酸エステルと鎖状炭酸エステルを含む溶剤、または環状炭酸エステルと環状エステルを含む溶剤であり、特に好ましくは、炭酸エチレンあるいは炭酸プロピレンなどの高粘度(高誘電率)溶媒(例えば、比誘電率ε≧30)と炭酸ジメチル、炭酸エチルメチルあるいは炭酸ジエチル、γ−ブチロラクトンなどの低粘度溶媒(例えば、粘度≦1mPa・s)との組み合わせである。電解質塩の解離性およびイオンの移動度が向上するからである。
しかしながら、本発明に用いられる有機溶媒(非水溶媒)は、上記例示によって限定されるものではない。
(電解質)
本発明の電解液に用いることができる電解質としては金属イオンもしくはその塩が挙げられ、周期律表第一族又は第二族に属する金属イオンもしくはその塩が好ましい。電解液の使用目的により適宜選択される、例えば、リチウム塩、カリウム塩、ナトリウム塩、カルシウム塩、マグネシウム塩などが挙げられ、二次電池などに使用される場合には、出力の観点からリチウム塩が好ましい。本発明の電解液をリチウム二次電池用非水系電解液の電解質として用いる場合には、金属イオンの塩としてリチウム塩を選択すればよい。リチウム塩としては、リチウム二次電池用非水系電解液の電解質に通常用いられるリチウム塩であれば特に制限はないが、例えば、以下に述べるものが好ましい。
(L−1)無機リチウム塩:LiPF、LiBF、LiAsF、LiSbF等の無機フッ化物塩;LiClO、LiBrO、LiIO等の過ハロゲン酸塩;LiAlCl等の無機塩化物塩等。
(L−2)含フッ素有機リチウム塩:LiCFSO等のパーフルオロアルカンスルホン酸塩;LiN(CFSO、LiN(CFCFSO、LiN(FSO、LiN(CFSO)(CSO)等のパーフルオロアルカンスルホニルイミド塩;LiC(CFSO等のパーフルオロアルカンスルホニルメチド塩;Li[PF(CFCFCF)]、Li[PF(CFCFCF]、Li[PF(CFCFCF]、Li[PF(CFCFCFCF)]、Li[PF(CFCFCFCF]、Li[PF(CFCFCFCF]等のフルオロアルキルフッ化リン酸塩等。
(L−3)オキサラトボレート塩:リチウムビス(オキサラト)ボレート、リチウムジフルオロオキサラトボレート等。
これらのなかで、LiPF、LiBF、LiAsF、LiSbF、LiClO、Li(RfSO)、LiN(RfSO、LiN(FSO、及びLiN(RfSO)(RfSOが好ましく、LiPF、LiBF、LiN(RfSO、LiN(FSO、及びLiN(RfSO)(RfSOなどのリチウムイミド塩がさらに好ましい。ここで、Rf、Rfはそれぞれパーフルオロアルキル基を示す。
なお、電解液に用いるリチウム塩は、1種を単独で使用しても、2種以上を任意に組み合わせてもよい。
電解液における周期律表第一族又は第二族に属する金属のイオンもしくはその金属塩の含有量は、以下に電解液の調製法で述べる好ましい塩濃度となるよう量で添加される。塩濃度は電解液の使用目的により適宜選択されるが、一般的には電解液全質量中10質量%〜50質量%であり、さらに好ましくは15質量%〜30質量%である。なお、イオンの濃度として評価するときには、その好適に適用される金属との塩換算で算定されればよい。
(その他成分)
本発明による電解液には、電池の性能や安全性、耐久性を向上させるため、本発明の効果を損なわない限りにおいて、目的に応じて各種の添加剤を用いることができる。このような添加剤として、過充電防止剤、負極被膜形成剤、正極保護剤、難燃剤等のこのような機能性添加剤を用いてもよい。
具体的には、ビニレンカーボネート、ビニルエチレンカーボネート、フロロエチレンカーボネート、ジフロロエチレンカーボネートなどのカーボネート化合物、エチレンサルファイト、プロパンサルトン、スルホン酸エステルなどの含硫黄化合物、ビフェニル、シクロヘキシルベンゼン、t−アミルベンゼンなどの芳香族化合物、リン酸エステルなどのリン化合物が挙げられる。非水系電解液中におけるこれらその他の添加剤の含有割合は特に限定はないが、非水系電解液の有機成分全体に対し、それぞれ、0.01質量%以上が好ましく、特に好ましくは0.1質量%以上、更に好ましくは0.2質量%以上であり、上限は、5質量%以下が好ましく、特に好ましくは3質量%以下、更に好ましくは2質量%以下である。これらの化合物を添加することにより、過充電による異常時に電池の破裂・発火を抑制したり、高温保存後の容量維持特性やサイクル特性を向上させたりすることができる。
[電解液の調製方法等]
本発明の非水二次電池用電解液は、金属イオンの塩としてリチウム塩を用いた例を含め、前記各成分を前記非水電解液溶媒に溶解して、常法により調製される。
本発明において、「非水」とは水を実質的に含まないことをいい、発明の効果を妨げない範囲で微量の水を含んでいてもよい。良好な特性を得ることを考慮して言うと、水の含有量が200ppm以下であることが好ましく、100ppm以下であることがより好ましい。下限値は特にないが、不可避的な混入を考慮すると、10ppm以上であることが実際的である。本発明の電解液の粘度は特に限定されないが、25℃において、10〜0.1mPa・sであることが好ましく、5〜0.5mPa・sであることがより好ましい。
[二次電池]
本発明においては前記非水電解液を含有する非水二次電池とすることが好ましい。好ましい実施形態として、リチウムイオン二次電池についてその機構を模式化して示した図1を参照して説明する。本実施形態のリチウムイオン二次電池10は、上記本発明の非水二次電池用電解液5と、リチウムイオンの挿入放出が可能な正極C(正極集電体1,正極活物質層2)と、リチウムイオンの挿入放出又は溶解析出が可能な負極A(負極集電体3,負極活物質層4)とを備える。これら必須の部材に加え、電池が使用される目的、電位の形状などを考慮し、正極と負極の間に配設されるセパレータ9、集電端子(図示せず)、及び外装ケース等(図示せず)を含んで構成されてもよい。必要に応じて、電池の内部及び電池の外部の少なくともいずれかに保護素子を装着してもよい。このような構造とすることにより、電解液5内でリチウムイオンの授受a,bが生じ、充電α、放電βを行うことができ、回路配線7を介して動作機構6を介して運転あるいは蓄電を行うことができる。以下、本発明の好ましい実施形態であるリチウム二次電池の構成について、さらに詳細に説明する。
(電池形状)
本実施形態のリチウム二次電池が適用される電池形状には、特に制限はなく、例えば、有底筒型形状、有底角型形状、薄型形状、シート形状、及び、ペーパー形状などが挙げられ、これらのいずれであってもよい。また、組み込まれるシステムや機器の形を考慮した馬蹄形や櫛型形状等の異型のものであってもよい。なかもで、電池内部の熱を効率よく外部に放出する観点から、比較的平らで大面積の面を少なくとも一つを有する有底角型形状や薄型形状などの角型形状が好ましい。
有底筒型形状の電池では、充填される発電素子に対する外表面積が小さくなるので、充電や放電時に内部抵抗による発生するジュール発熱を効率よく外部に逃げる設計にすることが好ましい。また、熱伝導性の高い物質の充填比率を高め、内部での温度分布が小さくなるように設計することが好ましい。図2は、有底筒型形状リチウム二次電池100の例である。この電池は、セパレータ12を介して重ね合わせた正極シート14、負極シート16を巻回して外装缶18内に収納した有底筒型リチウム二次電池100となっている。
有底角型形状では、一番大きい面の面積S(端子部を除く外形寸法の幅と高さとの積、単位cm)の2倍と電池外形の厚さT(単位cm)との比率2S/Tの値が100以上であることが好ましく、200以上であることが更に好適である。最大面を大きくすることにより高出力かつ大容量の電池であってもサイクル性や高温保存等の特性を向上させるとともに、異常発熱時の放熱効率を上げることができ、後述する「弁作動」や「破裂」という危険な状態になることを抑制することができる。
(電池を構成する部材)
本実施形態のリチウム二次電池は、図1に基づいて言うと、電解液5、正極及び負極の電極合剤C,A、セパレータの基本部材9を具備して構成される。以下、これらの各部材について述べる。本発明の非水二次電池は、電解液として、少なくとも前記本発明の非水電池用電解液を含む。
(電極合材)
電極合材は、集電体(電極基材)上に活物質と導電剤、結着剤、フィラーなどの分散物を塗布したものであり、リチウム電池においては、活物質が正極活物質である正極合材と活物質が負極活物質である負極合材が使用されることが好ましい。次に、電極合材を構成する分散物(電極用組成物)中の各成分等について説明する。
・正極活物質
正極活物質には、粒子状の正極活性物質を用いてもよい。具体的に、可逆的にリチウムイオンを挿入・放出できる遷移金属酸化物を用いることができるが、リチウム含有遷移金属酸化物を用いるのが好ましい。正極活物質として好ましく用いられるリチウム含有遷移金属酸化物としては、リチウム含有Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Mo、Wを含む酸化物等が好適に挙げられる。またリチウム以外のアルカリ金属(周期律表の第1(Ia)族、第2(IIa)族の元素)、及び/又はAl、Ga、In、Ge、Sn、Pb、Sb、Bi、Si、P、Bなどを混合してもよい。混合量としては、遷移金属に対して0〜30mol%が好ましい。
前記正極活物質として好ましく用いられるリチウム含有遷移金属酸化物の中でも、リチウム化合物/遷移金属化合物(ここで遷移金属とは、Ti、V、Cr、Mn、Fe、Co、Ni、Mo、Wから選ばれる少なくとも1種のことをいう。)の合計のモル比が0.3〜2.2になるように混合して合成されたものが、より好ましい。
さらに、前記リチウム化合物/遷移金属化合物の中でも、LiM3O(M3はCo、Ni、Fe、及びMnから選択される1種以上の元素を表す。gは、0〜1.2を表す。)を含む材料、又はLiM4O(M4はMnを表す。hは、0〜2を表す。)で表されるスピネル構造を有する材料が特に好ましい。前記M3、M4としては、遷移金属以外にAl、Ga、In、Ge、Sn、Pb、Sb、Bi、Si、P、Bなどを混合してもよい。混合量は遷移金属に対して0〜30mol%が好ましい。
前記LiM3Oを含む材料、LiM4Oで表されるスピネル構造を有する材料の中でも、LiCoO、LiNiO、LiMnO、LiCoNi1−j、LiMn、LiNiMn1−j、LiCoNiAl1−j−h、LiCoNiMn1−j−h、LiMnAl2−h、LiMnNi2−h(ここでgは0.02〜1.2を表す。jは0.1〜0.9を表す。hは0〜2を表す。)が特に好ましく、もっとも好ましくはLiCoO2、LiMn、LiNi0.85Co0.01Al0.05、及びLiNi0.33Co0.33Mn0.33である。高容量、高出力の観点で上記のうちNiを含む電極が更に好ましい。ここで、前記g値及びh値は、充放電開始前の値であり、充放電により増減する値である。具体的には、
LiCoO、LiNi0.5Mn0.5、LiNi0.85Co0.01Al0.05
LiNi0.33Co0.33Mn0.33、LiMn1.8Al0.2
LiMn1.5Ni0.5等が挙げられる。
リチウム含有遷移金属リン酸化合物の遷移金属としては、V、Ti、Cr、Mn、Fe、Co、Ni、Cu等が好ましく、具体例としては、例えば、LiFePO、LiFe(PO、LiFeP等のリン酸鉄類、LiCoPO等のリン酸コバルト類、これらのリチウム遷移金属リン酸化合物の主体となる遷移金属原子の一部をAl、Ti、V、Cr、Mn、Fe、Co、Li、Ni、Cu、Zn、Mg、Ga、Zr、Nb、Si等の他の金属で置換したもの等が挙げられる。
本発明の非水二次電池において、用いられる前記正極活物質の平均粒子サイズは特に限定されないが、0.1μm〜50μmが好ましい。比表面積としては特に限定されないが、BET法で0.01m/g〜50m/gであるのが好ましい。また、正極活物質5gを蒸留水100mlに溶かした時の上澄み液のpHとしては、7以上12以下が好ましい。
前記正極活性物質を所定の粒子サイズにするには、良く知られた粉砕機や分級機が用いられる。例えば、乳鉢、ボールミル、振動ボールミル、振動ミル、衛星ボールミル、遊星ボールミル、旋回気流型ジェットミルや篩などが用いられる。前記焼成法によって得られた正極活物質は、水、酸性水溶液、アルカリ性水溶液、有機溶剤にて洗浄した後使用してもよい。
本発明において、正極活物質には4.25V以上の充電領域を有する材料を用いることが好ましい。
前記特定の充電領域を有する正極活物質としては下記のものが挙げられる。
(i)LiNiMnCo(x>0.2,y>0.2,z≧0,x+y+z=1)、
代表的なもの:
LiNi1/3Mn1/3Co1/3(LiNi0.33Mn0.33Co0.33とも記載)
LiNi1/2Mn1/2(LiNi0.5Mn0.5とも記載)
(ii)LiNiCoAl(x>0.7,y>0.1,0.1>z>0.05,x+y+z=1)
代表的なもの:
LiNi0.8Co0.15Al0.05
前記特定の充電領域を有する正極活物質として下記のものを用いることもできる。
(a) LiCoMnO
(b) LiFeMn
(c) LiCuMn
(d) LiCrMn
(e) LiNiMn
更に、5V近い高電位と250mAh/gを超える非常に高い比容量を示す固溶体系正極材料(例えばLiMnO‐LiMO(M:Ni,Co,Mnなどの金属)が,次世代のリチウムイオン電池の正極材料として大きな注目を集めている。本発明の電解液はこれら固溶体系正極材料と組合せることも好ましい。
・負極活物質
負極活物質としては、可逆的にリチウムイオンを挿入・放出できるものであれば、特に制限はなく、炭素質材料、酸化錫や酸化ケイ素等の金属酸化物、金属複合酸化物、リチウム単体やリチウムアルミニウム合金等のリチウム合金、及び、SnやSi等のリチウムと合金形成可能な金属等が挙げられる。
これらは、1種を単独で用いても、2種以上を任意の組み合わせ及び比率で併用しても良い。なかでも炭素質材料又はリチウム複合酸化物が安全性の点から好ましく用いられる。
また、金属複合酸化物としては、リチウムを吸蔵、放出可能であれば特には制限されないが、構成成分としてチタン及び/又はリチウムを含有していることが、高電流密度充放電特性の観点で好ましい。
負極活物質として用いられる炭素質材料とは、実質的に炭素からなる材料である。例えば、石油ピッチ、天然黒鉛、気相成長黒鉛等の人造黒鉛、及びPAN系の樹脂やフルフリルアルコール樹脂等の各種の合成樹脂を焼成した炭素質材料を挙げることができる。さらに、PAN系炭素繊維、セルロース系炭素繊維、ピッチ系炭素繊維、気相成長炭素繊維、脱水PVA系炭素繊維、リグニン炭素繊維、ガラス状炭素繊維、活性炭素繊維等の各種炭素繊維類、メソフェーズ微小球体、グラファイトウィスカー、平板状の黒鉛等を挙げることもできる。
これらの炭素質材料は、黒鉛化の程度により難黒鉛化炭素材料と黒鉛系炭素材料に分けることもできる。また炭素質材料は、特開昭62−22066号公報、特開平2−6856号公報、同3−45473号公報に記載される面間隔や密度、結晶子の大きさを有することが好ましい。炭素質材料は、単一の材料である必要はなく、特開平5−90844号公報記載の天然黒鉛と人造黒鉛の混合物、特開平6−4516号公報記載の被覆層を有する黒鉛等を用いることもできる。
本発明の非水二次電池において用いられる負極活物質である金属酸化物及び金属複合酸化物は、これらの少なくとも1種を含んでいればよい。金属酸化物及び金属複合酸化物としては、特に非晶質酸化物が好ましく、さらに金属元素と周期律表第16族の元素との反応生成物であるカルコゲナイトも好ましく用いられる。ここでいう非晶質とは、CuKα線を用いたX線回折法で、2θ値で20°〜40°の領域に頂点を有するブロードな散乱帯を有するものを意味し、結晶性の回折線を有してもよい。2θ値で40°以上70°以下に見られる結晶性の回折線の内最も強い強度が、2θ値で20°以上40°以下に見られるブロードな散乱帯の頂点の回折線強度の100倍以下であるのが好ましく、5倍以下であるのがより好ましく、結晶性の回折線を有さないことが特に好ましい。
前記非晶質酸化物及びカルコゲナイドからなる化合物群のなかでも、半金属元素の非晶質酸化物、及びカルコゲナイドがより好ましく、周期律表第13(IIIB)族〜15(VB)族の元素、Al、Ga、Si、Sn、Ge、Pb、Sb、Biの一種単独あるいはそれらの2種以上の組み合わせからなる酸化物、及びカルコゲナイドが特に好ましい。好ましい非晶質酸化物及びカルコゲナイドの具体例としては、例えば、Ga、SiO、GeO、SnO、SnO、PbO、PbO、Pb、Pb、Pb、Sb、Sb、Sb、Bi、Bi、SnSiO、GeS、SnS、SnS、PbS、PbS、Sb、Sb、SnSiSなどが好ましく挙げられる。また、これらは、酸化リチウムとの複合酸化物、例えば、LiSnOであってもよい。
本発明の非水二次電池において、用いられる前記負極活物質の平均粒子サイズは、0.1μm〜60μmが好ましい。所定の粒子サイズにするには、よく知られた粉砕機や分級機が用いられる。例えば、乳鉢、ボールミル、サンドミル、振動ボールミル、衛星ボールミル、遊星ボールミル、旋回気流型ジェットミルや篩などが好適に用いられる。粉砕時には水、あるいはメタノール等の有機溶媒を共存させた湿式粉砕も必要に応じて行うことができる。所望の粒径とするためには分級を行うことが好ましい。分級方法としては特に限定はなく、篩、風力分級機などを必要に応じて用いることができる。分級は乾式、湿式ともに用いることができる。
前記焼成法により得られた化合物の化学式は、測定方法として誘導結合プラズマ(ICP)発光分光分析法、簡便法として、焼成前後の粉体の質量差から算出できる。
本発明において、Sn、Si、Geを中心とする非晶質酸化物負極活物質に併せて用いることができる負極活物質としては、リチウムイオン又はリチウム金属を吸蔵・放出できる炭素材料や、リチウム、リチウム合金、リチウムと合金可能な金属が好適に挙げられる。
本発明の電解液は好ましい様態として高電位負極(好ましくはリチウム・チタン酸化物、電位1.55V対Li金属)との組合せ、及び低電位負極(好ましくは炭素材料、電位約0.1V対Li金属)との組合せのいずれにおいても優れた特性を発現する。更に高容量化に向けて開発が進んでいるリチウムと合金形成可能な金属または金属酸化物負極(好ましくはSi、酸化Si、Si/酸化Si、Sn、酸化Sn、SnB、Cu/Snおよびこれらのうち複数の複合体)、及びこれらの金属または金属酸化物と炭素材料の複合体を負極とする電池においても好ましく用いることが出来る。
本発明においては、チタン酸リチウム、より具体的にはリチウム・チタン酸化物(Li[Li1/3Ti5/3]O)を負極の活物質として用いることも好ましい。これを負極活物質として用いることにより、前記式(I−1)〜(I−3)で表される化合物ないしこれと化合物(B)との組合せによる効果が一段と高まり、一層優れた電池性能を発揮させることができる。
・導電材
導電材は、構成された二次電池において、化学変化を起こさない電子伝導性材料であれば何を用いてもよく、公知の導電材を任意に用いることができる。通常、天然黒鉛(鱗状黒鉛、鱗片状黒鉛、土状黒鉛など)、人工黒鉛、カーボンブラック、アセチレンブラック、ケッチェンブラック、炭素繊維や金属粉(銅、ニッケル、アルミニウム、銀(特開昭63−10148,554号に記載)等)、金属繊維あるいはポリフェニレン誘導体(特開昭59−20,971号に記載)などの導電性材料を1種又はこれらの混合物として含ませることができる。その中でも、黒鉛とアセチレンブラックの併用がとくに好ましい。前記導電剤の添加量としては、1〜50質量%が好ましく、2〜30質量%がより好ましい。カーボンや黒鉛の場合は、2〜15質量%が特に好ましい。
・結着剤
本発明では、前記電極合材を保持するための結着剤を用いることが好ましい。
結着剤としては、多糖類、熱可塑性樹脂及びゴム弾性を有するポリマーなどが挙げられ、その中でも、例えば、でんぷん、カルボキシメチルセルロース、セルロース、ジアセチルセルロース、メチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、アルギン酸ナトリウム、ポリアクリル酸、ポリアクリル酸ナトリウム、ポリビニルフェノール、ポリビニルメチルエーテル、ポリビニルアルコール、ポリビニルピロリドン、ポリアクリロニトリル、ポリアクリルアミド、ポリヒドロキシ(メタ)アクリレート、スチレン−マレイン酸共重合体等の水溶性ポリマー、ポリビニルクロリド、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、テトラフロロエチレン−ヘキサフロロプロピレン共重合体、ビニリデンフロライド−テトラフロロエチレン−ヘキサフロロプロピレン共重合体、ポリエチレン、ポリプロピレン、エチレン−プロピレン−ジエンターポリマー(EPDM)、スルホン化EPDM、ポリビニルアセタール樹脂、メチルメタアクリレート、2−エチルヘキシルアクリレート等の(メタ)アクリル酸エステルを含有する(メタ)アクリル酸エステル共重合体、(メタ)アクリル酸エステル−アクリロニトリル共重合体、ビニルアセテート等のビニルエステルを含有するポリビニルエステル共重合体、スチレン−ブタジエン共重合体、アクリロニトリル−ブタジエン共重合体、ポリブタジエン、ネオプレンゴム、フッ素ゴム、ポリエチレンオキシド、ポリエステルポリウレタン樹脂、ポリエーテルポリウレタン樹脂、ポリカーボネートポリウレタン樹脂、ポリエステル樹脂、フェノール樹脂、エポキシ樹脂等のエマルジョン(ラテックス)あるいはサスペンジョンが好ましく、ポリアクリル酸エステル系のラテックス、カルボキシメチルセルロース、ポリテトラフロロエチレン、ポリフッ化ビニリデンが、より好ましい。
結着剤は、一種単独又は二種以上を混合して用いることができる。結着剤の添加量が少ないと、電極合剤の保持力・凝集力が弱くなる。多すぎると電極体積が増加し電極単位体積あるいは単位質量あたりの容量が減少する。このような理由で結着剤の添加量は1〜30質量%が好ましく、2〜10質量%がより好ましい。
・フィラー
電極合材は、フィラーを含んでいてもよい。フィラーを形成する材料は、本発明の二次電池において、化学変化を起こさない繊維状材料であれば何でも用いることができる。通常、ポリプロピレン、ポリエチレンなどのオレフィン系ポリマー、ガラス、炭素などの材料からなる繊維状のフィラーが用いられる。フィラーの添加量は特に限定されないが、分散物中、0〜30質量%が好ましい。
・集電体
正・負極の集電体としては、本発明の非水電解質二次電池において化学変化を起こさない電子伝導体が用いられる。正極の集電体としては、アルミニウム、ステンレス鋼、ニッケル、チタンなどの他にアルミニウムやステンレス鋼の表面にカーボン、ニッケル、チタンあるいは銀を処理させたものが好ましく、その中でも、アルミニウム、アルミニウム合金がより好ましい。
負極の集電体としては、アルミニウム、銅、ステンレス鋼、ニッケル、チタンが好ましく、アルミニウム、銅、銅合金がより好ましい。
前記集電体の形状としては、通常フィルムシート状のものが使用されるが、ネット、パンチされたもの、ラス体、多孔質体、発泡体、繊維群の成形体なども用いることができる。前記集電体の厚みとしては、特に限定されないが、1μm〜500μmが好ましい。また、集電体表面は、表面処理により凹凸を付けることも好ましい。
これらの材料から適宜選択した部材によりリチウム二次電池の電極合材が形成される。
(セパレータ)
本発明の非水二次電池に用いられるセパレータは、正極と負極を電子的に絶縁する機械的強度、イオン透過性、及び正極と負極の接触面で酸化・還元耐性のある材料であれば特に限定されることはない。このような材料として多孔質のポリマー材料や無機材料、有機無機ハイブリッド材料、あるいはガラス繊維などが用いられる。これらセパレータは安全性確保のためのシャットダウン機能、すなわち、80℃以上で隙間を閉塞して抵抗を上げ、電流を遮断する機能、を持つことが好ましく、閉塞温度は90℃以上、180℃以下であることが好ましい。
前記セパレータの孔の形状は、通常は円形や楕円形で、大きさは0.05μm〜30μmであり、0.1μm〜20μmが好ましい。さらに延伸法、相分離法で作った場合のように、棒状や不定形の孔であってもよい。これらの隙間の占める比率すなわち気孔率は、20%〜90%であり、35%〜80%が好ましい。
前記ポリマー材料としては、セルロース不織布、ポリエチレン、ポリプロピレンなどの単一の材料を用いたものでも、2種以上の複合化材料を用いたものであってもよい。孔径、気孔率や孔の閉塞温度などを変えた2種以上の微多孔フィルムを積層したものが、好ましい。
前記無機物としては、アルミナや二酸化珪素等の酸化物類、窒化アルミや窒化珪素等の窒化物類、硫酸バリウムや硫酸カルシウム等の硫酸塩類が用いられ、粒子形状もしくは繊維形状のものが用いられる。形態としては、不織布、織布、微多孔性フィルム等の薄膜形状のものが用いられる。薄膜形状では、孔径が0.01μm〜1μm、厚さが5μm〜50μmのものが好適に用いられる。前記の独立した薄膜形状以外に、前記無機物の粒子を含有する複合多孔層を樹脂製の結着剤を用いて正極及び/又は負極の表層に形成させてなるセパレータを用いることができる。例えば、正極の両面に90%粒径が1μm未満のアルミナ粒子をフッ素樹脂の結着剤を用いて多孔層として形成させることが挙げられる。
(非水二次電池の作製)
本発明の非水二次電池の形状としては、既述のように、シート状、角型、シリンダー状などいずれの形にも適用できる。正極活物質や負極活物質の合剤は、集電体の上に、塗布(コート)、乾燥、圧縮されて、主に用いられる。
以下、図2により、有底筒型形状リチウム二次電池100を例に挙げて、その構成及び作製方法について説明する。有底筒型形状の電池では、充填される発電素子に対する外表面積が小さくなるので、充電や放電時に内部抵抗による発生するジュール発熱を効率よく外部に逃げる設計にすることが好ましい。また、熱伝導性の高い物質の充填比率を高め、内部での温度分布が小さくなるように設計することが好ましい。図2は、有底筒型形状リチウム二次電池100を例である。この電池は、セパレータ12を介して重ね合わせた正極シート14、負極シート16を巻回して外装缶18内に収納した有底筒型リチウム二次電池100となっている。その他、図中の20が絶縁板、22が封口板、24が正極集電、26がガスケット、28が圧力感応弁体、30が電流遮断素子である。なお、拡大した円内の図示は視認性を考慮しハッチングを変えているが、各部材は符号により全体図と対応している。
まず、負極活物質と、所望により用いられる結着剤やフィラーなどを有機溶剤に溶解したものを混合して、スラリー状あるいはペースト状の負極合剤を調製する。得られた負極合剤を集電体としての金属芯体の両面の全面にわたって均一に塗布し、その後、有機溶剤を除去して負極合材層を形成する。さらに、集電体と負極合材層との積層体をロールプレス機等により圧延して、所定の厚みに調製して負極シート(電極シート)を得る。このとき、各剤の塗布方法や塗布物の乾燥、正・負極の電極の形成方法は定法によればよい。
本実施形態では、円筒形の電池を例に挙げたが、本発明はこれに制限されず、例えば、前記方法で作製された正・負の電極シートを、セパレータを介して重ね合わせた後、そのままシート状電池に加工するか、或いは、折りまげた後角形缶に挿入して、缶とシートを電気的に接続した後、電解質を注入し、封口板を用いて開口部を封止して角形電池を形成してもよい。
いずれの実施形態においても、安全弁を開口部を封止するための封口板として用いることができる。また、封口部材には、安全弁の他、従来知られている種々の安全素子を備えつけてもよい。例えば、過電流防止素子として、ヒューズ、バイメタル、PTC素子などが好適に用いられる。
また、前記安全弁のほかに電池缶の内圧上昇の対策として、電池缶に切込を入れる方法、ガスケット亀裂方法あるいは封口板亀裂方法あるいはリード板との切断方法を利用することができる。また、充電器に過充電や過放電対策を組み込んだ保護回路を具備させるか、あるいは独立に接続させてもよい。
缶やリード板は、電気伝導性をもつ金属や合金を用いることができる。例えば、鉄、ニッケル、チタン、クロム、モリブデン、銅、アルミニウムなどの金属あるいはそれらの合金が好適に用いられる。
キャップ、缶、シート、リード板の溶接法は、公知の方法(例、直流又は交流の電気溶接、レーザー溶接、超音波溶接)を用いることができる。封口用シール剤は、アスファルトなどの従来知られている化合物や混合物を用いることができる。
[非水二次電池の用途]
本発明の非水二次電池はサイクル性良好な二次電池を作製することができるため、種々の用途に適用される。
適用態様には特に限定はないが、例えば、電子機器に搭載する場合、ノートパソコン、ペン入力パソコン、モバイルパソコン、電子ブックプレーヤー、携帯電話、コードレスフォン子機、ページャー、ハンディーターミナル、携帯ファックス、携帯コピー、携帯プリンター、ヘッドフォンステレオ、ビデオムービー、液晶テレビ、ハンディークリーナー、ポータブルCD、ミニディスク、電気シェーバー、トランシーバー、電子手帳、電卓、メモリーカード、携帯テープレコーダー、ラジオ、バックアップ電源、メモリーカードなどが挙げられる。その他民生用として、自動車、電動車両、モーター、照明器具、玩具、ゲーム機器、ロードコンディショナー、時計、ストロボ、カメラ、医療機器(ペースメーカー、補聴器、肩もみ機など)などが挙げられる。更に、各種軍需用、宇宙用として用いることができる。また、太陽電池と組み合わせることもできる。
本発明の非水二次電池用電解液の適用態様は限定されないが、特にその高温保存性および高レート放電特性の利点を発揮する観点から、高温使用が想定されるアプリケーションに適用されることが好ましい。例えば電気自動車などは充電された状態で屋外で高温下にさらされることが想定される。また、電気自動車は発進、加速時には高レートでの放電が必要であり、高温で保存しても高レート放電容量が劣化しないことが重要になる。本発明によれば、このような使用形態に好適に対応してその優れた効果を発揮することができる。
以下、本発明の実施例を説明するが、本発明はこれらの実施例によって、何ら限定されるものではない。
<実施例1・比較例1>
電解液の調整
1M LiBFの炭酸エチレン/γ−ブチロラクトンの体積比3対7電解液に、表1に示した成分を、表中に記載の量で加え実施例用電解液、及び比較例用電解液を調製した。調製した電解液の25℃における粘度は全て5mPa・s以下であった。
<電池(1)の作製>
正極は活物質:ニッケルマンガンコバルト酸リチウム(LiNi1/3Mn1/3Co1/3) 85質量%、導電助剤:カーボンブラック 7質量%、バインダー:PVDF 8質量%で作製し、負極は活物質:チタン酸リチウム(LiTi12) 94質量%、導電助剤:カーボンブラック 3質量%、バインダー:PVDF 3質量%で作製した。セパレータはセルロース製50μm厚である。上記の正負極、セパレータを使用し、各試験用電解液について、2032形コイン電池を作製し、下記項目の評価を行った。結果を表1に示している。
高温保存後の放電容量維持率
<1C放電容量維持率[1C放電]>
30℃の恒温槽中電池電圧が2.75Vになるまで0.1C定電流充電した後、2.75V定電圧において電流値が0.12mAになる、または2時間充電を行った。次に30℃の恒温槽中、電池電圧が1.2Vになるまで1C定電流放電を行い、初期1C放電容量を測定した。再度前述の条件で充電を行った後、この電池を60℃の恒温槽中10日間保管し、その後30℃の恒温槽中、電池電圧が1.2Vになるまで1C定電流放電を行い、保存後1C放電容量を測定した。下記式にて1C放電容量維持率を算出した。値が大きいほど高温保存しても容量劣化が小さく良好である。

1C放電容量維持率(%)
={(保存後1C放電容量)/(初期1C放電容量)}×100
<4C放電容量維持率[4C放電]>
定電流放電を4Cで行った以外は1C放電容量維持率と同様の方法にて初期4C放電容量と保存後4C放電容量を測定した。下記式にて4C放電容量維持率を算出した。

4C放電容量維持率(%)
={(保存後4C放電容量)/(初期4C放電容量)}×100
Figure 2014026885
<表の注記>
試験No.:cで始まるものは比較例、それ以外は本発明例
Comp:化合物の例示番号(下記化学式参照)
Conc.:電解液全量に対する濃度
Figure 2014026885
上記の結果より、本発明の非水二次電池用電解液によれば、公知例に見られる化合物(X1,X2)を利用したものに比べ、高温保存後の容量維持性および高レート放電特性において優れた性能を発揮することが分かる。
<実施例2・比較例2>
・電解液の調製
1M LiPFの炭酸エチレン/炭酸メチルエチルの体積比1対2電解液に、表2に示した成分を、表中に記載の量で加え各試験No.に対応した電解液を調製した。調製した電解液の25℃における粘度は全て5mPa・s以下であった。
・電池(2)の作製
前記電池(1)の正極活物質を、コバルト酸リチウム(LiCoO)に代えた。負極については、活物質:黒鉛 86質量%、導電助剤:カーボンブラック 6質量%、バインダー:PVDF 8質量%で作製した。セパレータはポリプロピレン製25μm厚に代えた。上記の正負極、セパレータを使用し、各試験No.の電解液について、2032形コイン電池を作製し、下記項目の評価を行った。結果を表2に示している。
<1C放電容量維持率>
充電後の電圧を2.75Vから4.2Vに変更し、定電流放電時の電圧を1.2Vから2.75Vにした以外、前記と同様にして試験を行った。容量維持率(%)の算定式も同様である。
<4C放電容量維持率>
これも、上記1C放電容量維持率と同様に実施例1から変更し、測定を行った。その結果を下表に示す。
Figure 2014026885
上記の結果より、本発明の非水二次電池用電解液によれば、作動電位がより低電位でより厳しい条件となる炭素系負極を用いても、公知例に見られる化合物(X1,X2)を利用したものに比べ、高温保存後の容量維持性および高レート放電特性において優れた性能を発揮することが分かる。
上記実施例において本発明の電解液をリチウム・チタン酸化物負極あるいは炭素材料負極と組み合わせて用いた電池において優れた特性を発現することを示したが、本発明の電解液は高容量化に向けて開発が進んでいるリチウムと合金形成可能な金属または金属酸化物負極(好ましくはSi、酸化Si、Si/酸化Si、Sn、酸化Sn、SnB、Cu/Snおよびこれらのうち複数の複合体)、及びこれらの金属または金属酸化物と炭素材料の複合体を負極とする電池においても同様の優れた効果を発現するものと推測できる。
1 正極導電材
2 正極活物質
3 負極導電材
4 負極活物質
5 電解液
6 動作手段
7 配線
9 セパレータ
10 リチウムイオン二次電池
12 セパレータ
14 正極シート
16 負極シート
18 負極を兼ねる外装缶
20 絶縁板
22 封口板
24 正極集電
26 ガスケット
28 圧力感応弁体
30 電流遮断素子
100 有底筒型形状リチウム二次電池

Claims (16)

  1. 電解質と、下式(I−1)〜(I−3)のいずれかで表される化合物(A)とを有機溶媒中に含有する非水二次電池用電解液。
    Figure 2014026885
    (式(I−1)において、Xは、ハロゲン原子で置換されたアルキル基を表す。Yは、水素原子または有機基を表す。maは1〜6の整数を表す。)
    (式(I−2)において、Xは、酸素原子を有する基を表す。Yは、水素原子または有機基を表す。mbは、1〜6の整数を表す。)
    (式(I−3)において、Yは、炭素数4以上の有機基、または酸素原子もしくは窒素原子を有する有機基を表す。mcは1〜6の整数を表す。)
  2. 更に、酸化または還元により(I−1)〜(I−3)のいずれかで表される化合物(A)と反応する活性種を放出する化合物(B)を含有する請求項1記載の非水二次電池用電解液。
  3. 前記化合物(A)の含有率が電解液全量に対して0.001〜10質量%である請求項1または2に記載の非水二次電池用電解液。
  4. 前記化合物(B)の含有率が電解液全量に対して0.0001〜10質量%である請求項2または3のいずれかに記載の非水二次電池用電解液。
  5. 前記化合物(A)と化合物(B)との添加量の比率(A/B)が、100/1〜1/10である請求項2〜4のいずれかに記載の非水二次電池用電解液。
  6. 前記Xが、フッ素原子で置換されたアルキル基である請求項1〜5のいずれかに記載の非水二次電池用電解液。
  7. 前記Xが、アルコキシ基、アルコキシメチル基、アシルオキシ基、またはアシルオキシメチル基である請求項1〜5のいずれかに記載の非水二次電池用電解液。
  8. 前記Y、Y、Yが、それぞれ独立に、2価以上の有機基、あるいは酸素原子、窒素原子またはフッ素原子の少なくとも1つを有する1価の有機基である請求項1〜7のいずれかに記載の非水二次電池用電解液。
  9. 前記化合物(B)が、ケトン化合物である請求項2〜8のいずれかに記載の非水二次電池用電解液。
  10. 前記ケトン化合物が、芳香族ケトン化合物である請求項9に記載の非水二次電池用電解液。
  11. 前記芳香族ケトン化合物が、アセトフェノン化合物、ベンゾフェノン化合物、9−フルオレノン化合物、アントロン化合物、キサントン化合物、ジベンゾスベロン化合物、ジベンゾスベレロン化合物、アントラキノン化合物、ビアントロニル化合物、ビアントロン化合物、およびジベンゾイル化合物からなる群から選ばれる少なくとも一種の化合物からなる請求項10に記載の非水二次電池用電解液。
  12. 正極、負極、および請求項1〜11のいずれか1項に記載の非水二次電池用電解液を具備する非水電解液二次電池。
  13. ニッケル、コバルトもしくはマンガンのうち少なくとも1種を有する化合物を前記正極の活物質として用いた請求項12に記載の非水電解液二次電池。
  14. チタン酸リチウム(LTO)または炭素材料を前記負極の活物質として用いた請求項12または13に記載の非水電解液二次電池。
  15. 下式(I−1)〜(I−3)のいずれかで表される化合物を含む薬剤と、電解質を含む薬剤とを組み合わせた非水二次電池電解液用キット。
    Figure 2014026885
    (式(I−1)において、Xは、ハロゲン原子で置換されたアルキル基を表す。Yは、水素原子または有機基を表す。maは1〜6の整数を表す。)
    (式(I−2)において、Xは、酸素原子を有する基を表す。Yは、水素原子または有機基を表す。mbは、1〜6の整数を表す。)
    (式(I−3)において、Yは、炭素数4以上の有機基、または酸素原子もしくは窒素原子を有する有機基を表す。mcは1〜6の整数を表す。)
  16. 下式(I−1)〜(I−3)のいずれかで表される化合物からなる非水二次電池電解液用添加剤。
    Figure 2014026885
    (式(I−1)において、Xは、ハロゲン原子で置換されたアルキル基を表す。Yは、水素原子または有機基を表す。maは1〜6の整数を表す。)
    (式(I−2)において、Xは、酸素原子を有する基を表す。Yは、水素原子または有機基を表す。mbは、1〜6の整数を表す。)
    (式(I−3)において、Yは、炭素数4以上の有機基、または酸素原子もしくは窒素原子を有する有機基を表す。mcは1〜6の整数を表す。)
JP2012167705A 2012-07-27 2012-07-27 非水二次電池用電解液及び二次電池 Expired - Fee Related JP5921982B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012167705A JP5921982B2 (ja) 2012-07-27 2012-07-27 非水二次電池用電解液及び二次電池
PCT/JP2013/069866 WO2014017464A1 (ja) 2012-07-27 2013-07-23 非水二次電池用電解液及び二次電池
US14/601,321 US10312546B2 (en) 2012-07-27 2015-01-21 Non-aqueous liquid electrolyte for secondary battery and secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012167705A JP5921982B2 (ja) 2012-07-27 2012-07-27 非水二次電池用電解液及び二次電池

Publications (2)

Publication Number Publication Date
JP2014026885A true JP2014026885A (ja) 2014-02-06
JP5921982B2 JP5921982B2 (ja) 2016-05-24

Family

ID=49997274

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012167705A Expired - Fee Related JP5921982B2 (ja) 2012-07-27 2012-07-27 非水二次電池用電解液及び二次電池

Country Status (3)

Country Link
US (1) US10312546B2 (ja)
JP (1) JP5921982B2 (ja)
WO (1) WO2014017464A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2945211A3 (en) * 2014-05-15 2016-02-24 Saft Groupe S.A. Lithium titanate oxide as negative electrode in li-ion cells
WO2018088743A1 (ko) * 2016-11-08 2018-05-17 삼성에스디아이 주식회사 리튬 이차 전지용 전해질 및 이를 포함하는 리튬 이차 전지
WO2021070717A1 (ja) * 2019-10-07 2021-04-15 三菱ケミカル株式会社 非水系電解液及び非水系電解液二次電池
WO2023008970A1 (ko) * 2021-07-29 2023-02-02 주식회사 엘지에너지솔루션 젤 폴리머 전해질 및 이를 포함하는 리튬 이차 전지

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6633283B2 (ja) * 2014-07-31 2020-01-22 株式会社東芝 非水電解質電池、非水電解質電池の製造方法及び電池パック
CN108475820A (zh) 2015-09-23 2018-08-31 国轩高科美国研究院 作为锂离子电池电解质添加剂的氟化丙烯酸酯
WO2019113527A1 (en) * 2017-12-07 2019-06-13 Enevate Corporation Silicon-based energy storage devices with cyclic carbonate containing electrolyte additives
US20220255133A1 (en) * 2021-02-03 2022-08-11 Kabushiki Kaisha Toshiba Nonaqueous electrolyte, secondary battery, battery pack, vehicle, and stationary power supply
JP7486886B2 (ja) * 2021-07-15 2024-05-20 エルジー エナジー ソリューション リミテッド 電解質組成物、ゲルポリマー電解質、およびそれを含むリチウム二次電池
JP7446666B2 (ja) * 2021-09-10 2024-03-11 エルジー エナジー ソリューション リミテッド リチウム二次電池用非水電解液およびそれを含むリチウム二次電池
WO2024029954A1 (ko) * 2022-08-04 2024-02-08 주식회사 엘지에너지솔루션 이차전지용 전해질 및 이를 포함하는 리튬 이차전지

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003086248A (ja) * 2001-09-14 2003-03-20 Mitsubishi Chemicals Corp 非水系電解液二次電池及び電解液
JP2009123499A (ja) * 2007-11-14 2009-06-04 Sony Corp 非水電解液二次電池および非水電解液組成物
JP2013122901A (ja) * 2011-05-24 2013-06-20 Fujifilm Corp 非水二次電池用電解液及び二次電池

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5853917A (en) * 1997-03-06 1998-12-29 Mitsubishi Chemical Corporation Electrolytic cell having a controlled electrode surface interface
US7026074B2 (en) * 2002-02-15 2006-04-11 The University Of Chicago Lithium ion battery with improved safety
KR100713622B1 (ko) * 2006-01-09 2007-05-02 제일모직주식회사 디페닐에테르계 화합물을 포함하는 비수성 전해액 및 이를포함하는 리튬 2차 전지
US8673508B2 (en) * 2008-04-02 2014-03-18 Ube Industries, Ltd. Nonaqueous electrolyte for lithium battery and lithium battery using same
JP5636338B2 (ja) * 2011-06-28 2014-12-03 シャープ株式会社 非水系二次電池及びその難燃剤

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003086248A (ja) * 2001-09-14 2003-03-20 Mitsubishi Chemicals Corp 非水系電解液二次電池及び電解液
JP2009123499A (ja) * 2007-11-14 2009-06-04 Sony Corp 非水電解液二次電池および非水電解液組成物
JP2013122901A (ja) * 2011-05-24 2013-06-20 Fujifilm Corp 非水二次電池用電解液及び二次電池

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2945211A3 (en) * 2014-05-15 2016-02-24 Saft Groupe S.A. Lithium titanate oxide as negative electrode in li-ion cells
WO2018088743A1 (ko) * 2016-11-08 2018-05-17 삼성에스디아이 주식회사 리튬 이차 전지용 전해질 및 이를 포함하는 리튬 이차 전지
WO2021070717A1 (ja) * 2019-10-07 2021-04-15 三菱ケミカル株式会社 非水系電解液及び非水系電解液二次電池
WO2023008970A1 (ko) * 2021-07-29 2023-02-02 주식회사 엘지에너지솔루션 젤 폴리머 전해질 및 이를 포함하는 리튬 이차 전지

Also Published As

Publication number Publication date
WO2014017464A1 (ja) 2014-01-30
US10312546B2 (en) 2019-06-04
JP5921982B2 (ja) 2016-05-24
US20150132639A1 (en) 2015-05-14

Similar Documents

Publication Publication Date Title
JP5798954B2 (ja) 非水二次電池用電解液及び二次電池
JP5921982B2 (ja) 非水二次電池用電解液及び二次電池
JP5992345B2 (ja) 非水二次電池および非水二次電池用電解液
JP6130637B2 (ja) 非水二次電池用電解液及び二次電池
JP2014127354A (ja) 非水二次電池用電解液および非水二次電池、電解液用添加剤
JP5902034B2 (ja) 非水二次電池用電解液および非水二次電池
WO2014046283A1 (ja) 非水二次電池用電解液および非水二次電池
JP5764526B2 (ja) 非水二次電池用電解液及び二次電池
WO2013183673A1 (ja) 非水電解液二次電池および非水電解液
JP2014154247A (ja) 非水二次電池用電解液および非水二次電池、電解液用添加剤
JP6088934B2 (ja) 非水電解液および非水二次電池
JP2014235986A (ja) 非水二次電池用電解液および非水二次電池
JP2015026589A (ja) 非水二次電池用電解液および非水二次電池
JP2015018667A (ja) 非水二次電池用電解液、非水二次電池及び非水電解液用添加剤
JP2013191486A (ja) 非水二次電池用電解液及び二次電池
JP5886160B2 (ja) 非水二次電池用電解液、非水二次電池電解液用キット及び非水電解液二次電池
JP6485956B2 (ja) 非水電解液および非水二次電池
JP2014013719A (ja) 非水二次電池用電解液及び二次電池
JP2014063668A (ja) 非水二次電池用電解液及び二次電池
JP6150987B2 (ja) 非水二次電池用電解液及び二次電池
JP5756771B2 (ja) 非水二次電池用電解液、二次電池及び機能性添加剤
JP2014099321A (ja) 非水電解液二次電池
JP6391028B2 (ja) 電解液、リチウムイオン電池およびリチウムイオンキャパシタ
JP2015026587A (ja) 非水二次電池用電解液、非水二次電池電解液用添加剤及び非水二次電池

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141010

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151006

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160413

R150 Certificate of patent or registration of utility model

Ref document number: 5921982

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees