JP2014025141A - METHOD OF RECOVERING GALLIUM FROM InGa WASTE MATERIAL - Google Patents

METHOD OF RECOVERING GALLIUM FROM InGa WASTE MATERIAL Download PDF

Info

Publication number
JP2014025141A
JP2014025141A JP2012168948A JP2012168948A JP2014025141A JP 2014025141 A JP2014025141 A JP 2014025141A JP 2012168948 A JP2012168948 A JP 2012168948A JP 2012168948 A JP2012168948 A JP 2012168948A JP 2014025141 A JP2014025141 A JP 2014025141A
Authority
JP
Japan
Prior art keywords
gallium
zinc
liquid
indium
ingazn
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012168948A
Other languages
Japanese (ja)
Other versions
JP6017877B2 (en
Inventor
Norihiko Yasuda
紀彦 安田
Satoshi Okada
智 岡田
Masaki Miyagawa
昌樹 宮川
Tokio Kamoshita
時男 鴨下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Materials Eco-Refining Co Ltd
Original Assignee
Mitsubishi Materials Corp
Materials Eco-Refining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp, Materials Eco-Refining Co Ltd filed Critical Mitsubishi Materials Corp
Priority to JP2012168948A priority Critical patent/JP6017877B2/en
Publication of JP2014025141A publication Critical patent/JP2014025141A/en
Application granted granted Critical
Publication of JP6017877B2 publication Critical patent/JP6017877B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Electrolytic Production Of Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a processing method of efficiently recovering gallium at low cost with the minimum amount of alkali hydroxide in an alkali fusion method for recovering gallium from an InGaZn waste material.SOLUTION: A method of recovering gallium includes pulverizing an InGaZn waste material into 5 mm square or less, adding and mixing alkali hydroxide of 1 to 2.5 times mol equivalent of 2 times total amount of gallium molar quantity and zinc molar quantity contained in the InGaZn waste material and then heating it to 250°C or more to obtain slurry, further adding water to exudate gallium and zinc, filtering to separate and collect gallium zinc-containing solution from indium-containing residue, adding an acid to the gallium zinc-containing solution to adjust pH to 12 to 13 for making zinc and indium in the solution to be a hydroxide precipitate and separating solid and liquid, then adding a sulfurizing agent to the solution to precipitate zinc in the solution as sulfide, applying solid liquid separation to recover the high purity gallium solution.

Description

本発明は、ガリウムとインジウムを主成分とする廃材(InGa廃材と云う)からガリウムを効率よく回収する方法に関する。 The present invention relates to a method for efficiently recovering gallium from a waste material containing gallium and indium as main components (referred to as an InGa waste material).

In、Ga、およびZnを含む複合酸化物半導体(In−Ga−Zn複合酸化物半導体、IGZO半導体)は、アモルファスシリコンを使用した液晶モニターに比べ、明るく、消費電力が低く、高精細化(高解像度化)が見込まれるなどの利点を有することから、近年、開発が活発化しており、これに伴い、IGZO半導体の製造工程や使用済みIGZO廃材などからインジウムおよびガリウムを効率よく回収することが求められている。 A complex oxide semiconductor containing In, Ga, and Zn (In-Ga-Zn complex oxide semiconductor, IGZO semiconductor) is brighter, consumes less power, and has higher definition (higher resolution) than a liquid crystal monitor using amorphous silicon. In recent years, development has become active, and accordingly, it is required to efficiently recover indium and gallium from IGZO semiconductor manufacturing processes and used IGZO waste materials. It has been.

IGZO廃材からインジウムやガリウムを回収する方法として、例えば、IGZO廃材を酸に溶解した後に、水酸化アルカリまたはアンモニア水を添加し、pHを11〜14に調整してインジウムおよび亜鉛を水酸化物として沈殿させ、これを固液分離してガリウム含有液を回収する酸溶解法が従来から知られている。得られたガリウム含有液をそのまま電解して金属ガリウムを得ることができる。一方、残渣に含まれるインジウムや亜鉛の水酸化物は塩酸などに溶解し、亜鉛を用いたセメンテーションなどによって金属インジウムを回収することができる。 As a method for recovering indium and gallium from IGZO waste materials, for example, after dissolving the IGZO waste materials in acid, alkali hydroxide or ammonia water is added and the pH is adjusted to 11 to 14 to convert indium and zinc into hydroxides. An acid dissolution method in which precipitation is performed and solid-liquid separation is performed to recover a gallium-containing liquid is conventionally known. The obtained gallium-containing liquid can be electrolyzed as it is to obtain metal gallium. On the other hand, indium and zinc hydroxide contained in the residue are dissolved in hydrochloric acid and the like, and metal indium can be recovered by cementation using zinc or the like.

しかし、従来の酸溶解法は、溶液のpHを11〜14に調整する際に大量の水酸化アルカリを使用する必要があり、また生成する水酸化インジウム沈澱、水酸化亜鉛沈澱は微細であるため固液分離性に劣り、操業上問題になる場合がある。 However, in the conventional acid dissolution method, it is necessary to use a large amount of alkali hydroxide when adjusting the pH of the solution to 11 to 14, and the resulting indium hydroxide precipitate and zinc hydroxide precipitate are fine. It is inferior in solid-liquid separation and may cause operational problems.

インジウムおよびガリウムを含有する原料(InGa原料と云う)を酸溶解してから溶媒抽出(特許文献1)や樹脂吸着(特許文献2)によってインジウム、ガリウムを回収する方法も知られている。しかし、従来の溶媒抽出法、樹脂吸着法は特殊な溶媒や樹脂を必要としたり防爆設備にする必要があることから薬品費高、設備費高になる問題がある。 A method is also known in which a raw material containing indium and gallium (referred to as an InGa raw material) is acid-dissolved and then indium and gallium are recovered by solvent extraction (Patent Document 1) or resin adsorption (Patent Document 2). However, the conventional solvent extraction method and resin adsorption method require a special solvent and resin or need to be an explosion-proof facility, which causes a problem of high chemical costs and equipment costs.

一方、InGa原料を水酸化アルカリと混合して加熱し、水を加えてガリウムを選択的に溶出し、インジウムを分離濃縮するアルカリ溶解法も知られている(特許文献3)。この方法は、上記酸溶解法とは違い、中和工程を必要としないため、薬液コストを削減できる可能性がある。なお、インジウム残渣は例えば塩酸などに溶解し、亜鉛やアルミニウムなどを用いたセメンテーションにて金属インジウムを回収することができる(特許文献4)。 On the other hand, an alkali dissolution method is also known in which an InGa raw material is mixed with an alkali hydroxide and heated, water is added to selectively elute gallium, and indium is separated and concentrated (Patent Document 3). Unlike the above acid dissolution method, this method does not require a neutralization step, so there is a possibility that the cost of the chemical solution can be reduced. The indium residue can be dissolved in, for example, hydrochloric acid and the metal indium can be recovered by cementation using zinc, aluminum, or the like (Patent Document 4).

特開2011−63882号公報JP 2011-638882 A 特開2010−179205号公報JP 2010-179205 A 特開2007−56337号公報JP 2007-56337 A 特開2008−56999号公報JP 2008-56999 A

従来のアルカリ溶融法(特許文献3)は、ガリウムの浸出率を上げるために大量のアルカリを使用している。具体的にはInGa原料の等倍質量以上の水酸化ナトリウムを添加している。この水酸化ナトリウムの添加量はモル当量に換算すると約8.9倍モル当量であり、このように大量の水酸化アルカリを添加すると、コスト的に不利なうえに、ガリウム以外の不純物も原料から溶出するので不純物の除去処理に手間取る問題がある。例えば、ガリウムを浸出させた液に硫化剤を添加して不純物を沈殿させる場合、液が強アルカリ性では不純物が硫化物として沈殿し難いため、適切なpH域になるように、酸を添加して過剰なアルカリを中和する必要がある。 The conventional alkali melting method (Patent Document 3) uses a large amount of alkali in order to increase the leaching rate of gallium. Specifically, sodium hydroxide having an equal mass or more of InGa raw material is added. The amount of sodium hydroxide added is about 8.9 times the molar equivalent in terms of molar equivalent. Adding a large amount of alkali hydroxide in this way is disadvantageous in terms of cost, and impurities other than gallium are also derived from the raw material. Since it elutes, there is a problem that it takes time to remove impurities. For example, when a sulfidizing agent is added to a solution in which gallium has been leached to precipitate impurities, if the solution is strongly alkaline, it is difficult for the impurities to precipitate as sulfides. It is necessary to neutralize excess alkali.

本発明は、InGaZn廃材からガリウムを回収するアルカリ溶融法において、大量の水酸化アルカリを使用せず、最小限の水酸化アルカリ量によって、低コストで効率よくガリウムを回収する処理方法を提供する。 The present invention provides a processing method for efficiently recovering gallium at a low cost by using a minimum amount of alkali hydroxide without using a large amount of alkali hydroxide in an alkali melting method for recovering gallium from InGaZn waste material.

本発明の処理方法は、上記課題を解決する手段として以下の構成を有するガリウムの回収方法である。
〔1〕インジウムとガリウムと亜鉛を主成分とするInGaZn廃材を5mm角以下に粉砕し、該InGaZn廃材に含まれるガリウムモル量と亜鉛モル量の2倍の合計量に対して1〜2.5倍モル当量の水酸化アルカリを添加した後250℃以上に加熱してスラリーとし、ガリウムと亜鉛のアルカリ塩を生成させ、さらに水を加えてガリウムと亜鉛を浸出させ後に、酸を加えてpH12〜13に調整して液中の亜鉛と液中に残留するインジウムを水酸化物沈澱にして固液分離し、この液分に硫化剤を加えて液中の亜鉛を硫化物として沈澱させ、これを固液分離して高純度のガリウム液を回収することを特徴とするガリウムの回収方法。
〔2〕InGaZn廃材を0.001mm角〜0.5mm角に粉砕し、該InGaZn廃材に含まれるガリウムモル量と亜鉛モル量の2倍の合計量に対して1.5〜2.0倍モル当量の水酸化ナトリウムと水酸化ナトリウム重量の1〜5倍の水を添加してスラリーにし、該スラリーを大気下または酸化雰囲気下で280℃〜400℃に加熱してガリウムおよび亜鉛のナトリウム塩を生成させ、さらに水を加えてガリウムおよび亜鉛を浸出させる上記[1]に記載するガリウムの回収方法。
〔3〕ガリウムと亜鉛が浸出した水浸出液、または該水浸出液からインジウム残渣を固液分離して回収したガリウム亜鉛含有液に、酸を加えてpH12〜13に調整して液中の亜鉛と液中に残留するインジウムを水酸化物沈澱にし、これを固液分離する上記[1]または上記[2]に記載するガリウムの回収方法。
〔4〕インジウムと亜鉛の水酸化物を固液分離したガリウム含有液に、液中の亜鉛量に対して2倍〜5倍モル当量の硫化剤を加えて硫化亜鉛を沈澱させる上記[1]〜上記[3]の何れかに記載するガリウムの回収方法。
〔5〕硫化処理して回収した高純度ガリウム液を電解処理して金属ガリウムを回収する上記[1]〜上記[4]の何れかに記載するガリウムの回収方法。
〔6〕水浸出後に固液分離したインジウム残渣を塩酸に溶解し、この溶解液に亜鉛またはアルミニウムを添加して金属インジウムを析出させて回収する上記[1]〜上記[5]の何れかに記載するガリウムの回収方法。
The treatment method of the present invention is a gallium recovery method having the following configuration as means for solving the above-mentioned problems.
[1] InGaZn waste material mainly composed of indium, gallium and zinc is pulverized to 5 mm square or less, and 1 to 2.5 times the total amount of gallium mole and zinc mole contained in the InGaZn waste After adding a molar equivalent of alkali hydroxide, the mixture is heated to 250 ° C. or higher to form a slurry to form an alkali salt of gallium and zinc. Further, water is added to leach out gallium and zinc, and then an acid is added to adjust the pH to 12-13. The zinc in the liquid and the indium remaining in the liquid are precipitated by hydroxide precipitation and separated into solid and liquid, and a sulfiding agent is added to the liquid to precipitate the zinc in the liquid as a sulfide, which is solidified. A method for recovering gallium, characterized by recovering a high-purity gallium liquid by liquid separation.
[2] InGaZn waste material is ground to 0.001 mm square to 0.5 mm square, and 1.5 to 2.0 times molar equivalent to the total amount of gallium mole and zinc mole contained in the InGaZn waste 1 to 5 times the weight of sodium hydroxide and sodium hydroxide is added to form a slurry, and the slurry is heated to 280 ° C. to 400 ° C. in the air or in an oxidizing atmosphere to form sodium salts of gallium and zinc. The method for recovering gallium according to the above [1], further comprising adding water to leach out gallium and zinc.
[3] A water leaching solution in which gallium and zinc are leached, or a gallium zinc-containing solution recovered by solid-liquid separation of an indium residue from the water leaching solution, and adjusting the pH to 12 to 13 by adding an acid, to the zinc and liquid in the solution The method for recovering gallium according to the above [1] or [2], wherein indium remaining therein is subjected to hydroxide precipitation, and this is solid-liquid separated.
[4] The above-mentioned [1], wherein a gallium-containing liquid obtained by solid-liquid separation of indium and zinc hydroxide is added with a sulfating agent in a molar equivalent of 2 to 5 times the amount of zinc in the liquid to precipitate zinc sulfide. The method for recovering gallium according to any one of [3] above.
[5] The gallium recovery method according to any one of [1] to [4] above, wherein the high-purity gallium liquid recovered by sulfidation is subjected to electrolytic treatment to recover metal gallium.
[6] The indium residue solid-liquid separated after leaching with water is dissolved in hydrochloric acid, and zinc or aluminum is added to the solution to precipitate and recover metallic indium. Any one of [1] to [5] The gallium recovery method described.

〔具体的な説明〕
本発明の処理工程の一例を図1に示す。InGaZn廃材を5mm角以下に粉砕する(粉砕工程)。好ましくは、0.001mm角〜0.5mm角に粉砕する。InGaZn廃材が5mm角より大きいと、水酸化アルカリとの接触面積が小さくなり、溶解反応が遅いので、ガリウムの浸出率が低下し、ガリウム浸出率を高くするには多量の水酸化アルカリを必要とし、また処理時間を長くする必要がある。なお、InGaZn廃材を0.001mmより小さく粉砕すると、次工程での濾過性が低下する。粉砕手段は限定されず、ボールミル、ロッドミル等を使用することができる。
[Specific description]
An example of the processing steps of the present invention is shown in FIG. The InGaZn waste material is pulverized to 5 mm square or less (a pulverization step). Preferably, it grind | pulverizes to 0.001 square mm-0.5 square mm. If the InGaZn waste material is larger than 5 mm square, the contact area with the alkali hydroxide is reduced and the dissolution reaction is slow, so that the gallium leaching rate is reduced and a large amount of alkali hydroxide is required to increase the gallium leaching rate. Also, it is necessary to lengthen the processing time. In addition, when the InGaZn waste material is pulverized to be smaller than 0.001 mm, the filterability in the next step is lowered. A grinding | pulverization means is not limited, A ball mill, a rod mill, etc. can be used.

InGaZn廃材は、例えば、IGZO半導体の製造工程やIGZO廃棄物処理工程などにおいて生じたインジウムおよびガリウムおよび亜鉛を主成分とした廃棄物などである。
具体的には、例えば、ガリウム含有量が概ね20質量%〜26質量%のIn−Ga−Zn複合酸化物(IGZO)廃材などを原料に用いることができる。
なお、従来知られているアルカリ溶融法(特許文献3)では、インジウム含有量とガリウム含有量がほぼ同程度のものを原料としているが、本発明の処理方法によれば、ガリウム含有量がインジウム含有量よりも少ない原料、例えば、IGZO廃材(In量約37〜42wt%、Ga量約20〜26wt%、Zn量約12〜21wt%、O量約20〜21wt%)についても、低コストで効率よく高純度のガリウムを回収することができる。
The InGaZn waste material is, for example, a waste mainly composed of indium, gallium, and zinc generated in an IGZO semiconductor manufacturing process, an IGZO waste treatment process, or the like.
Specifically, for example, an In—Ga—Zn composite oxide (IGZO) waste material having a gallium content of approximately 20% by mass to 26% by mass can be used as a raw material.
In addition, in the conventionally known alkali melting method (Patent Document 3), the raw material has approximately the same indium content and gallium content. However, according to the treatment method of the present invention, the gallium content is indium. Even raw materials with less content, such as IGZO waste (In amount of about 37-42 wt%, Ga amount of about 20-26 wt%, Zn amount of about 12-21 wt%, O amount of about 20-21 wt%) at low cost High-purity gallium can be efficiently recovered.

粉砕したInGaZn廃材にNaOH、KOHなどの水酸化アルカリを混合し熱処理を行う(アルカリ溶融工程)。NaOHを用いればコスト的に有利である。水酸化アルカリに水酸化ナトリウム重量の1〜5倍の水を加え水酸化アルカリ水溶液にして、あるいは水酸化アルカリと共に水をInGaZn廃材に加えて混合しスラリーにすると、ガリウムおよび亜鉛が均一に水酸化アルカリと反応してガリウムと亜鉛の浸出率が向上するので好ましい。 The ground InGaZn waste material is mixed with an alkali hydroxide such as NaOH or KOH and subjected to heat treatment (alkali melting step). Use of NaOH is advantageous in terms of cost. When water is added to alkali hydroxide in an amount of 1 to 5 times the weight of sodium hydroxide to form an aqueous alkali hydroxide solution, or water is added to the InGaZn waste together with the alkali hydroxide and mixed to form a slurry, gallium and zinc are uniformly hydroxylated. This is preferable because the leaching rate of gallium and zinc is improved by reacting with an alkali.

例えば、水酸化アルカリとしてNaOHを用い、InGaZn廃材に混合して加熱すると次式(1)〜(3)に示すようにインジウム、ガリウム、亜鉛は酸化物になり、次式(4)(5)に示すように、酸化ガリウムと酸化亜鉛はNaOHと反応してアルカリ塩を生成する。さらに、水浸出時には、次式(6)(7)に示すように、このアルカリ塩が水に溶解する。一方、酸化インジウムはNaOHとほとんど反応しないので、インジウムの大部分は固形物中に残留する。 For example, when NaOH is used as an alkali hydroxide and mixed with InGaZn waste material and heated, indium, gallium and zinc become oxides as shown in the following formulas (1) to (3). As shown in FIG. 2, gallium oxide and zinc oxide react with NaOH to produce an alkali salt. Furthermore, at the time of water leaching, as shown in the following formulas (6) and (7), this alkali salt is dissolved in water. On the other hand, since indium oxide hardly reacts with NaOH, most of the indium remains in the solid.

2In + 1.5O → InO (1)
2Ga + 1.5O → GaO (2)
Zn + 0.5O → ZnO (3)
GaO + 2NaOH → 2NaGaO + HO (4)
ZnO + 2NaOH → 2NaZnO + HO (5)
NaGaO + 2HO → NaGa(OH) (6)
NaZnO + 2HO → NaZn(OH) (7)
2In + 1.5O 2 → In 2 O 3 (1)
2Ga + 1.5O 2 → Ga 2 O 3 (2)
Zn + 0.5O 2 → ZnO (3)
Ga 2 O 3 + 2NaOH → 2NaGaO 2 + H 2 O (4)
ZnO + 2NaOH → 2Na 2 ZnO 2 + H 2 O (5)
NaGaO 2 + 2H 2 O → NaGa (OH) 4 (6)
Na 2 ZnO 2 + 2H 2 O → Na 2 Zn (OH) 4 (7)

本発明の処理方法では、水酸化アルカリをInGaZn廃材に含まれるガリウムモル量と亜鉛モル量の2倍の合計量に対して1〜2.5倍モル当量、好ましくは1.5〜2.0倍モル当量の水酸化ナトリウム水溶液を添加する。
アルカリ溶融反応において、式(4)(5)に示すように、ガリウム1モルに対してNaOHは1モル当量反応し、亜鉛1モルに対してNaOHは2モル当量反応する。従って、InGaZn廃材中のガリウムのモル量[Ga]、亜鉛のモル量[Zn]に対して、その合計量([Ga]+2[Zn])の1〜2.5倍モル当量の水酸化ナトリウム水溶液を添加する。
In the treatment method of the present invention, the alkali hydroxide is 1 to 2.5 times molar equivalent, preferably 1.5 to 2.0 times the total amount of gallium mole and zinc mole contained in the InGaZn waste. A molar equivalent of aqueous sodium hydroxide is added.
In the alkali melting reaction, as shown in formulas (4) and (5), 1 mole equivalent of NaOH reacts with 1 mole of gallium, and 2 mole equivalents of NaOH reacts with 1 mole of zinc. Therefore, the molar amount of gallium [Ga] and the molar amount [Zn] of zinc in the InGaZn waste material is 1 to 2.5 times the molar equivalent of sodium hydroxide, the total amount ([Ga] +2 [Zn]). Add aqueous solution.

水酸化アルカリ添加量が上記合計量の1倍モル当量より少ないとガリウムの浸出率が低下する。一方、水酸化アルカリ添加量が2.5倍モル当量より多いと、ガリウム浸出率は横ばいであり、コスト的に不利であるうえ、高pHのためにインジウムの溶解量が増え、インジウムを除去する手間が増える。しかも水酸化アルカリ量が多くpHが高い液性下では、硫化剤を加えて亜鉛を硫化物として沈澱させるときに、硫化亜鉛が沈澱し難い。硫化亜鉛が沈澱しやすいpH域まで下げるには大量の酸を必要とし、コスト的に不利になる。さらに、水酸化アルカリ量が多いと、ガリウム亜鉛含有液の粘性が高くなり次工程の濾過性が悪化する。 If the amount of alkali hydroxide added is less than 1 molar equivalent of the total amount, the gallium leaching rate decreases. On the other hand, if the amount of alkali hydroxide added is more than 2.5 times the molar equivalent, the gallium leaching rate will be flat and disadvantageous in terms of cost, and the amount of indium dissolved will increase due to high pH, and indium will be removed. More time and effort. Moreover, when the amount of alkali hydroxide is large and the pH is high, zinc sulfide is difficult to precipitate when zinc is precipitated as sulfide by adding a sulfurizing agent. A large amount of acid is required to lower the pH range where zinc sulfide is likely to precipitate, which is disadvantageous in terms of cost. Furthermore, when there is much alkali hydroxide amount, the viscosity of a gallium zinc containing liquid will become high and the filterability of the following process will deteriorate.

InGaZn廃材に含まれるインジウム、ガリウム、亜鉛が金属状態や合金状態であるときには、式(1)〜(5)に示すように、これらを酸化してアルカリと反応させるため、大気下または酸素を含む酸化雰囲気下で熱処理を行う。熱処理は250℃以上にて行う。熱処理が250℃より低いとガリウムが十分に反応しないので、ガリウム浸出率が低下する。熱処理温度は280〜400℃が好ましい。400℃以上ではガリウム浸出率が横ばいであり熱量のコストが不利である。加熱時間は概ね0.5〜2時間が適当である。0.5時間より短いと反応が不十分であり、2時間を超えるとガリウム浸出率が横ばいである。 When indium, gallium, and zinc contained in the InGaZn waste material are in a metal state or an alloy state, as shown in the formulas (1) to (5), these are oxidized and reacted with an alkali. Heat treatment is performed in an oxidizing atmosphere. The heat treatment is performed at 250 ° C. or higher. If the heat treatment is lower than 250 ° C., gallium does not sufficiently react, and the gallium leaching rate is reduced. The heat treatment temperature is preferably 280 to 400 ° C. Above 400 ° C, the gallium leaching rate is flat and the heat cost is disadvantageous. The heating time is generally 0.5 to 2 hours. If it is shorter than 0.5 hour, the reaction is insufficient, and if it exceeds 2 hours, the gallium leaching rate is flat.

熱処理後、冷却した後に水を添加してガリウムおよび亜鉛を浸出させる(水浸出工程)。水の添加量はInGaZn廃材体積の2〜10倍が好ましい。ガリウムおよび亜鉛が十分に浸出するように、水を添加して30分〜1時間撹拌するとよい。
式(6)(7)に示すように、アルカリ溶融で生じたガリウムと亜鉛のアルカリ塩は水と反応して水酸化物になり、これが水に溶解してガリウムと亜鉛が浸出した水浸出液を生じる。一方、インジウムの大部分はアルカリ溶解せずに酸化インジウムとして固形分に含まれるので、上記水浸出液からインジウム残渣を固液分離してガリウム亜鉛含有液を回収する。
After heat treatment, after cooling, water is added to leach out gallium and zinc (water leaching step). The amount of water added is preferably 2 to 10 times the InGaZn waste volume. Water may be added and stirred for 30 minutes to 1 hour so that gallium and zinc are sufficiently leached.
As shown in formulas (6) and (7), the alkali salt of gallium and zinc generated by alkali melting reacts with water to form a hydroxide, which dissolves in water and leaches out gallium and zinc. Arise. On the other hand, most of indium is not dissolved in alkali but is contained in solid content as indium oxide, so that the indium residue is separated from the water leaching solution by solid-liquid separation to recover the gallium zinc-containing solution.

なお、アルカリ溶融の際に、式(4)(5)の反応性の相違に基き、Ga23はZnOより多く浸出され、ZnOの一部はインジウム残渣中に残留する。また、インジウム残渣には浸出されなかったガリウムが微量含まれるので、必要に応じて、このインジウム残渣をアルカリ溶融工程に戻し、再び水酸化アルカリと混合して加熱処理することによってガリウム回収率を上げることができる。 During alkali melting, Ga 2 O 3 is more leached than ZnO based on the difference in reactivity of formulas (4) and (5), and part of ZnO remains in the indium residue. Further, since the indium residue contains a small amount of gallium that has not been leached out, the indium residue is returned to the alkali melting step if necessary, and again mixed with alkali hydroxide and heat-treated to increase the gallium recovery rate. be able to.

また、インジウム残渣は塩酸などに溶解し、その溶解液に亜鉛やアルミニウムなどを添加してセメンテーションによって金属インジウムを回収することができる。 Indium residue can be dissolved in hydrochloric acid or the like, and zinc or aluminum can be added to the solution to recover metal indium by cementation.

上記ガリウム亜鉛含有液は概ねpH13〜14の強アルカリ性であり、ガリウムと共に亜鉛が溶解しており、また少量のインジウムが含まれている。具体的には、例えば、亜鉛を0.5〜20g/L、インジウムを5〜10mg/L程度含んでいる。このガリウム亜鉛含有液をそのまま電解処理するとインジウムと亜鉛を含んだ低純度の金属ガリウムが析出する。 The gallium zinc-containing liquid is strongly alkaline having a pH of 13 to 14, and zinc is dissolved together with gallium, and a small amount of indium is contained. Specifically, for example, it contains 0.5 to 20 g / L of zinc and 5 to 10 mg / L of indium. When this gallium zinc-containing liquid is subjected to electrolytic treatment as it is, low-purity metallic gallium containing indium and zinc is deposited.

そこで、上記ガリウム亜鉛含有液に塩酸や硫酸を加えてpHを12〜13に調整して液中の亜鉛とインジウムを水酸化物沈澱にする。pH12〜13で水酸化亜鉛および水酸化インジウムは沈澱するが、ガリウムは水酸化物の沈澱を形成せずに液中に残る。これを固液分離し、亜鉛とインジウムを除去したガリウム含有液を回収する(水酸化処理工程)。
ガリウム亜鉛含有液のpHが12未満になると水酸化ガリウムが沈澱するようになり、pHが13より高いと、インジウムおよび亜鉛の水酸化物が十分に沈澱しないので好ましくない。なお、上記水浸出後にインジウム残渣を固液分離せずに、そのままスラリーのpHを12〜13に調整して水酸化亜鉛および水酸化インジウムを沈澱させた後に、固液分離してガリウム含有液を回収してもよい。
Therefore, hydrochloric acid or sulfuric acid is added to the gallium zinc-containing solution to adjust the pH to 12 to 13 to precipitate hydroxide and zinc in the solution. At pH 12-13, zinc hydroxide and indium hydroxide precipitate, but gallium remains in the liquid without forming a hydroxide precipitate. This is subjected to solid-liquid separation, and a gallium-containing liquid from which zinc and indium have been removed is recovered (hydroxylation process).
When the pH of the gallium zinc-containing liquid is less than 12, gallium hydroxide starts to precipitate. When the pH is higher than 13, the indium and zinc hydroxides are not sufficiently precipitated, which is not preferable. In addition, after the leaching of water, the indium residue was not solid-liquid separated, and the pH of the slurry was adjusted to 12 to 13 to precipitate zinc hydroxide and indium hydroxide, followed by solid-liquid separation to obtain a gallium-containing liquid. It may be recovered.

回収したガリウム含有液にはまだ亜鉛が微量(1〜10mg/L)含まれているので、硫化剤を加えて液中の亜鉛を硫化物として沈澱させ、これを固液分離して高純度のガリウム液を回収する(硫化処理工程)。硫化剤は水硫化ソーダ(NaHS)、硫化ソーダ(Na2S)などが低コストで有利である。硫化剤の添加量はガリウム含有液に残留する亜鉛の2倍〜5倍モル当量が好ましい。硫化剤が2倍モル当量より少ないと硫化亜鉛の生成が不十分であるため亜鉛の除去効果が低く、5倍モル当量より多くても亜鉛の除去効果は横ばいである。 Since the recovered gallium-containing liquid still contains a trace amount of zinc (1 to 10 mg / L), a sulfidizing agent is added to precipitate zinc in the liquid as a sulfide, which is separated into solid and liquid for high purity. The gallium liquid is recovered (sulfurization process). As the sulfiding agent, sodium hydrosulfide (NaHS), sodium sulfide (Na 2 S), etc. are advantageous at low cost. The addition amount of the sulfurizing agent is preferably 2 to 5 times the molar equivalent of zinc remaining in the gallium-containing liquid. If the sulfiding agent is less than 2 times the molar equivalent, zinc sulfide is not sufficiently produced, so that the effect of removing zinc is low, and if it is more than 5 times the molar equivalent, the effect of removing zinc is flat.

上記硫化処理後に硫化銅沈澱を固液分離し、銅含有量の少ない高純度ガリウム液を回収する。この高純度ガリウム液の電解処理によって、ガリウム純度99.999%以上の金属ガリウムを得ることができる(電解工程)。 After the sulfiding treatment, the copper sulfide precipitate is separated into solid and liquid, and a high-purity gallium liquid having a small copper content is recovered. By electrolytic treatment of this high-purity gallium liquid, metal gallium having a gallium purity of 99.999% or more can be obtained (electrolysis step).

本発明のガリウム回収方法は、従来の溶媒抽出法や樹脂吸着法のような特殊な溶媒や樹脂を用いたり、防爆設備にする必要がなく、また、従来のアルカリ溶融法に比較して水酸化アルカリ量が格段に少なく、従って、共存する亜鉛やインジウムをガリウムと分離するのが容易であり、低コストで効率よく高純度のガリウムを回収することができる。 The gallium recovery method of the present invention does not require the use of a special solvent or resin such as the conventional solvent extraction method or resin adsorption method, and does not require an explosion-proof facility. The amount of alkali is remarkably small. Therefore, it is easy to separate coexisting zinc and indium from gallium, and high-purity gallium can be recovered efficiently at low cost.

本発明の一例を示す処理工程図Process diagram showing an example of the present invention

以下、本発明の実施例を比較例と共に示す。なお、Ga、In、Znの浸出率、In、Znの除去率はおのおの原料(InGaZn廃材)に含まれるGa量、In量、Zn量に対する割合である。 Examples of the present invention are shown below together with comparative examples. Note that the leaching rates of Ga, In, and Zn and the removal rates of In and Zn are ratios to the amounts of Ga, In, and Zn contained in each raw material (InGaZn waste material).

〔実施例1〕
IGZO廃材(In35wt%、Ga20wt%、Zn20wt%)100gを5mm角以下に粉砕した後、NaOHを57.5g(Gaのモル量[Ga]とZnのモル量[Zn]の2倍の合計[Ga]+2[Zn]の1.6倍モル当量)混合し、大気中、400℃で2時間加熱した後、室温まで冷却してから、さらに水500ml添加して30分〜1時間時間経過した後に濾過し、GaZn含有液とIn残渣に分離した。回収したGaZn含有液のGa濃度は36.8g/L、Zn濃度は10g/L、In濃度は4mg/Lであり、従ってGaの浸出率は92%、Znの浸出率は25%、Inの浸出率は0.006%であった。
[Example 1]
After pulverizing 100g of IGZO waste (In35wt%, Ga20wt%, Zn20wt%) to 5mm square or less, 57.5g of NaOH (total amount of Ga [Ga] and Zn molar amount [Zn] is doubled [Ga] ] +2 [Zn] 1.6 times the molar equivalent), heated in the atmosphere at 400 ° C. for 2 hours, cooled to room temperature, added with 500 ml of water and filtered after 30 minutes to 1 hour. And separated into GaZn-containing liquid and In residue. The recovered GaZn-containing liquid has a Ga concentration of 36.8 g / L, a Zn concentration of 10 g / L, and an In concentration of 4 mg / L. Therefore, the Ga leaching rate is 92%, the Zn leaching rate is 25%, and the In concentration The leach rate was 0.006%.

〔実施例2〕
IGZO廃材(In35wt%、Ga20wt%、Zn20wt%)100gを0.001mm角〜0.5mm角に粉砕した後、NaOHを57.5g(Gaのモル量[Ga]とZnのモル量[Zn]の2倍の合計[Ga]+2[Zn]の1.6倍モル当量)と、水50mlを混合してスラリーとした後、大気中、400℃で2時間加熱した後、室温まで冷却してから、さらに水500ml添加して30分〜1時間時間経過した後に濾過し、GaZn含有液とIn残渣に分離した。回収したGaZn含有液のGa濃度は38.4g/L、Zn濃度は14g/L、In濃度は5mg/Lであり、従ってGaの浸出率は96%、Znの浸出率は35%、Inの浸出率は0.007%であった。
[Example 2]
After pulverizing 100 g of IGZO waste (In 35 wt%, Ga 20 wt%, Zn 20 wt%) to 0.001 mm square to 0.5 mm square, 57.5 g of NaOH (the molar amount of Ga [Ga] and the molar amount of Zn [Zn] 2 times total [Ga] +2 [Zn] 1.6 times molar equivalent) and 50 ml of water were mixed to form a slurry, heated in the atmosphere at 400 ° C. for 2 hours, cooled to room temperature, Further, 500 ml of water was added and 30 minutes to 1 hour passed, followed by filtration to separate a GaZn-containing liquid and In residue. The recovered GaZn-containing liquid has a Ga concentration of 38.4 g / L, a Zn concentration of 14 g / L, and an In concentration of 5 mg / L. Therefore, the Ga leaching rate is 96%, the Zn leaching rate is 35%, and the In concentration The leach rate was 0.007%.

〔実施例3〕
実施例2で得たGaZn含有液のpHは13.5であったので、98%濃度の硫酸27mlを添加してpHを12.6に調整した。pH調整後、固液分離して高純度のガリウム液を得た。この高純度Ga液(530ml)のGa濃度は36.2g/Lであり、Zn濃度は20mg/L、In濃度は0.1mg/Lであり、GaZn含有液からのガリウム回収率は99.9%、In除去率、Zn除去率はそれぞれ97.9%、99.8%であった。
Example 3
Since the pH of the GaZn-containing liquid obtained in Example 2 was 13.5, 27 ml of 98% strength sulfuric acid was added to adjust the pH to 12.6. After pH adjustment, solid-liquid separation was performed to obtain a high purity gallium liquid. This high-purity Ga liquid (530 ml) has a Ga concentration of 36.2 g / L, a Zn concentration of 20 mg / L, an In concentration of 0.1 mg / L, and a gallium recovery rate from the GaZn-containing liquid is 99.9. %, In removal rate, and Zn removal rate were 97.9% and 99.8%, respectively.

〔実施例4〕
実施例3で得たGa含有液に、NaHSを18.2mg(Ga含有液中Znの2倍モル当量)添加し、十分に攪拌した後、濾過して高純度Ga液を得た。高純度Ga液(530ml)中のIn濃度、Ga濃度、Zn濃度はそれぞれ0.1mg/L、36.2g/L、0.1mg/Lであり、Ga含有液からのGa回収率は100%、In除去率、Zn除去率はそれぞれ0%、99.5%であった。また、この高純度Ga液を電解して得た金属Gaの純度は99.999%以上であった。
Example 4
To the Ga-containing liquid obtained in Example 3, 18.2 mg (2 molar equivalents of Zn in the Ga-containing liquid) was added and stirred sufficiently, followed by filtration to obtain a high-purity Ga liquid. The In concentration, Ga concentration, and Zn concentration in high-purity Ga liquid (530 ml) are 0.1 mg / L, 36.2 g / L, and 0.1 mg / L, respectively, and the Ga recovery rate from the Ga-containing liquid is 100%. The In removal rate and the Zn removal rate were 0% and 99.5%, respectively. Moreover, the purity of metal Ga obtained by electrolyzing this high-purity Ga liquid was 99.999% or more.

〔実施例5〕
実施例2で得たIn残渣を、35%濃度の塩酸を187mlと水105mlを加えた300mlに溶解した後、この溶解液にZn板とAl板を投入してセメンテーションを行い、金属Inを得た。得られた金属Inは35.4g(In99.1wt%、Zn0.9wt%)であり、In回収率は99.9%以上であった。
Example 5
The In residue obtained in Example 2 was dissolved in 300 ml of 187 ml of 35% strength hydrochloric acid and 105 ml of water, and then a Zn plate and an Al plate were added to the solution to perform cementation. Obtained. The obtained metal In was 35.4 g (In 99.1 wt%, Zn 0.9 wt%), and the In recovery rate was 99.9% or more.

〔実施例6〕
NaOHを35.9g(Gaのモル量[Ga]とZnのモル量[Zn]の2倍の合計[Ga]+2[Zn]の1モル当量)添加し、大気下、250℃で8時間加熱した以外は実施例2と同じ処理を行ったところ、水浸出後に固液分離して回収したGaZn含有液のGa濃度は34g/L、Zn濃度は8g/Lであり、Ga浸出率は85%、Zn浸出率は20%であった。
Example 6
Add 35.9 g of NaOH (1 molar equivalent of total [Ga] +2 [Zn] twice the molar amount of Ga [Ga] and Zn molar amount [Zn]) for 8 hours at 250 ° C. in air. When the same treatment as in Example 2 was performed except for heating, the GaZn-containing liquid recovered by solid-liquid separation after water leaching had a Ga concentration of 34 g / L, a Zn concentration of 8 g / L, and a Ga leaching rate of 85. %, Zn leaching rate was 20%.

〔比較例1〕
IGZO廃材を5mm角〜10mm角に粉砕した原料を使用した以外は実施例2と同じ処理を行なったところ、In、Ga、Znの浸出率はそれぞれ0%、10%、5%であった。
[Comparative Example 1]
When the same treatment as in Example 2 was performed except that a raw material obtained by pulverizing IGZO waste material to 5 mm square to 10 mm square was used, the leaching rates of In, Ga, and Zn were 0%, 10%, and 5%, respectively.

〔比較例2〕
NaOHを28.7g(Gaモル量[Ga]とZnモル量[Zn]の2倍の合計量〔[Ga]+2[Zn]〕に対して0.8倍モル当量)を添加した以外は実施例2と同じ処理を行なったところ、In、Ga、Znの浸出率はそれぞれ0%、77%、2%であった。
[Comparative Example 2]
Implemented except that 28.7 g of NaOH (0.8 molar equivalent to the total amount [[Ga] +2 [Zn]] twice the Ga molar amount [Ga] and Zn molar amount [Zn]) was added. When the same treatment as in Example 2 was performed, the leaching rates of In, Ga, and Zn were 0%, 77%, and 2%, respectively.

〔比較例3〕
NaOHを359g(Gaモル量[Ga]とZnモル量[Zn]の2倍の合計量〔[Ga]+2[Zn]〕に対して10倍モル当量)を添加した以外は実施例2と同じ処理を行なったところIn、Ga、Znの浸出収率はそれぞれ0%、95%、95%であった。GaZn含有液をpH=12.6まで中和してZnとInを水酸化物として除去する際、使用した98%濃度の硫酸量は227mlであった。
[Comparative Example 3]
Same as Example 2 except that 359 g of NaOH (10 times the molar equivalent of the total amount [[Ga] +2 [Zn]] twice the Ga molar amount [Ga] and Zn molar amount [Zn]) was added. When the treatment was performed, the leaching yields of In, Ga, and Zn were 0%, 95%, and 95%, respectively. When the GaZn-containing liquid was neutralized to pH = 12.6 and Zn and In were removed as hydroxides, the amount of 98% sulfuric acid used was 227 ml.

Claims (6)

インジウムとガリウムと亜鉛を主成分とするInGaZn廃材を5mm角以下に粉砕し、該InGaZn廃材に含まれるガリウムモル量と亜鉛モル量の2倍の合計量に対して1〜2.5倍モル当量の水酸化アルカリを添加した後250℃以上に加熱してスラリーとし、ガリウムと亜鉛のアルカリ塩を生成させ、さらに水を加えてガリウムと亜鉛を浸出させ後に、酸を加えてpH12〜13に調整して液中の亜鉛と液中に残留するインジウムを水酸化物沈澱にして固液分離し、この液分に硫化剤を加えて液中の亜鉛を硫化物として沈澱させ、これを固液分離して高純度のガリウム液を回収することを特徴とするガリウムの回収方法。
The InGaZn waste material containing indium, gallium and zinc as main components is pulverized to 5 mm square or less, and 1 to 2.5 times the molar equivalent of the total amount of gallium and zinc contained in the InGaZn waste material. After adding alkali hydroxide, it is heated to 250 ° C. or more to form a slurry to form an alkali salt of gallium and zinc. Further, water is added to leach out gallium and zinc, and then an acid is added to adjust the pH to 12-13. Then, zinc in the liquid and indium remaining in the liquid are separated into solid and liquid by hydroxide precipitation, and a sulfurizing agent is added to the liquid to precipitate zinc in the liquid as sulfides, which are separated into solid and liquid. And collecting a high-purity gallium liquid.
InGaZn廃材を0.001mm角〜0.5mm角に粉砕し、該InGaZn廃材に含まれるガリウムモル量と亜鉛モル量の2倍の合計量に対して1.5〜2.0倍モル当量の水酸化ナトリウムと水酸化ナトリウム重量の1〜5倍の水を添加してスラリーにし、該スラリーを大気下または酸化雰囲気下で280℃〜400℃に加熱してガリウムおよび亜鉛のナトリウム塩を生成させ、さらに水を加えてガリウムおよび亜鉛を浸出させる請求項1に記載するガリウムの回収方法。
The InGaZn waste material is pulverized to 0.001 mm square to 0.5 mm square, and 1.5 to 2.0 times molar equivalent of hydroxylation with respect to the total amount of gallium mole and zinc mole contained in the InGaZn waste. 1 to 5 times the weight of sodium and sodium hydroxide is added to form a slurry, and the slurry is heated to 280 ° C. to 400 ° C. in the air or in an oxidizing atmosphere to form sodium salts of gallium and zinc, The method for recovering gallium according to claim 1, wherein gallium and zinc are leached by adding water.
ガリウムと亜鉛が浸出した水浸出液、または該水浸出液からインジウム残渣を固液分離して回収したガリウム亜鉛含有液に、酸を加えてpH12〜13に調整して液中の亜鉛と液中に残留するインジウムを水酸化物沈澱にし、これを固液分離する請求項1または請求項2に記載するガリウムの回収方法。
A gallium zinc-containing liquid that has been leached of gallium and zinc, or a gallium zinc-containing liquid recovered by solid-liquid separation of indium residues from the water leached liquid, is adjusted to pH 12-13 by adding an acid, and remains in the liquid and zinc. The method for recovering gallium according to claim 1 or 2, wherein the indium to be formed is subjected to hydroxide precipitation, and this is solid-liquid separated.
pH調整してインジウムと亜鉛の水酸化物を固液分離したガリウム含有液に、液中の亜鉛量に対して2倍〜5倍モル当量の硫化剤を加えて硫化亜鉛を沈澱させる請求項1〜請求項3の何れかに記載するガリウムの回収方法。
2. A zinc sulfide is precipitated by adding a sulfating agent having a molar equivalent of 2 to 5 times the amount of zinc in the gallium-containing liquid obtained by solid-liquid separation of indium and zinc hydroxide by pH adjustment. The method for recovering gallium according to any one of claims 3 to 4.
硫化処理して回収した高純度ガリウム液を電解処理して金属ガリウムを回収する請求項1〜請求項4の何れかに記載するガリウムの回収方法。
The method for recovering gallium according to any one of claims 1 to 4, wherein the high-purity gallium liquid recovered by sulfidation is subjected to electrolytic treatment to recover metal gallium.
水浸出後に固液分離したインジウム残渣を塩酸に溶解し、この溶解液に亜鉛またはアルミニウムを添加して金属インジウムを析出させて回収する請求項1〜請求項5の何れかに記載するガリウムの回収方法。 6. The recovery of gallium according to any one of claims 1 to 5, wherein the indium residue solid-liquid separated after water leaching is dissolved in hydrochloric acid, and zinc or aluminum is added to the solution to precipitate and recover metallic indium. Method.
JP2012168948A 2012-07-30 2012-07-30 Method for recovering gallium from InGa waste Expired - Fee Related JP6017877B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012168948A JP6017877B2 (en) 2012-07-30 2012-07-30 Method for recovering gallium from InGa waste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012168948A JP6017877B2 (en) 2012-07-30 2012-07-30 Method for recovering gallium from InGa waste

Publications (2)

Publication Number Publication Date
JP2014025141A true JP2014025141A (en) 2014-02-06
JP6017877B2 JP6017877B2 (en) 2016-11-02

Family

ID=50199044

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012168948A Expired - Fee Related JP6017877B2 (en) 2012-07-30 2012-07-30 Method for recovering gallium from InGa waste

Country Status (1)

Country Link
JP (1) JP6017877B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103993331A (en) * 2014-05-29 2014-08-20 珠海经济特区方源有限公司 Method for treating gallium electrolysis tail liquid
JP2014214358A (en) * 2013-04-26 2014-11-17 アサヒプリテック株式会社 Method of separating gallium from zinc
KR101546611B1 (en) 2014-03-14 2015-08-27 희성금속 주식회사 Method of manufacturing gallium oxide for oxide semiconductor through wet recycling of indium, gallium, zinc oxide target
JP2016156065A (en) * 2015-02-25 2016-09-01 Jx金属株式会社 Method for recovering indium and gallium
KR101731062B1 (en) * 2015-11-03 2017-04-27 (주)코리아테크노브레인 Method for recovering valuable metal from target waste containing valuable metal
JP2020050943A (en) * 2018-09-21 2020-04-02 日立金属株式会社 Recovery method of gallium
JP2020132911A (en) * 2019-02-14 2020-08-31 日立金属株式会社 Method of recovering gallium

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59193230A (en) * 1983-04-18 1984-11-01 Dowa Mining Co Ltd Preparation of ga or in from substance containing minute amount of ga or in
JPS6345334A (en) * 1986-08-12 1988-02-26 Nippon Light Metal Co Ltd Method for recovering gallium
JP2007056337A (en) * 2005-08-25 2007-03-08 Dowa Holdings Co Ltd Method for collecting indium
JP2007270262A (en) * 2006-03-31 2007-10-18 Dowa Holdings Co Ltd Method for collecting indium

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59193230A (en) * 1983-04-18 1984-11-01 Dowa Mining Co Ltd Preparation of ga or in from substance containing minute amount of ga or in
JPS6345334A (en) * 1986-08-12 1988-02-26 Nippon Light Metal Co Ltd Method for recovering gallium
JP2007056337A (en) * 2005-08-25 2007-03-08 Dowa Holdings Co Ltd Method for collecting indium
JP2007270262A (en) * 2006-03-31 2007-10-18 Dowa Holdings Co Ltd Method for collecting indium

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014214358A (en) * 2013-04-26 2014-11-17 アサヒプリテック株式会社 Method of separating gallium from zinc
KR101546611B1 (en) 2014-03-14 2015-08-27 희성금속 주식회사 Method of manufacturing gallium oxide for oxide semiconductor through wet recycling of indium, gallium, zinc oxide target
CN103993331A (en) * 2014-05-29 2014-08-20 珠海经济特区方源有限公司 Method for treating gallium electrolysis tail liquid
JP2016156065A (en) * 2015-02-25 2016-09-01 Jx金属株式会社 Method for recovering indium and gallium
KR101731062B1 (en) * 2015-11-03 2017-04-27 (주)코리아테크노브레인 Method for recovering valuable metal from target waste containing valuable metal
WO2017078315A1 (en) * 2015-11-03 2017-05-11 (주)코리아테크노브레인 Method for recovering valuable metals from valuable metal-containing target waste
JP2020050943A (en) * 2018-09-21 2020-04-02 日立金属株式会社 Recovery method of gallium
JP7205275B2 (en) 2018-09-21 2023-01-17 日立金属株式会社 Gallium recovery method
JP2020132911A (en) * 2019-02-14 2020-08-31 日立金属株式会社 Method of recovering gallium
JP7196669B2 (en) 2019-02-14 2022-12-27 日立金属株式会社 Gallium recovery method

Also Published As

Publication number Publication date
JP6017877B2 (en) 2016-11-02

Similar Documents

Publication Publication Date Title
JP6017877B2 (en) Method for recovering gallium from InGa waste
CN104017995B (en) A kind of from containing the method reclaiming copper-indium-galliun-selenium copper-indium-galliun-selenium waste material
JP3999805B1 (en) Arsenic-containing solution processing method
WO2013077296A1 (en) Method for producing high-purity nickel sulfate
AU2013238535B2 (en) Method for producing high-purity nickel sulfate
JP2015140480A (en) Method for manufacturing nickel powder
CN108467942B (en) Method for selectively leaching zinc, lead, gallium and germanium from zinc replacement slag
JP4852720B2 (en) Indium recovery method
JP5760954B2 (en) Method for recovering copper from sulfide minerals containing copper and iron
JP4734603B2 (en) Indium recovery method
JP4999058B2 (en) Method for recovering indium from indium-containing material
JP2010138490A (en) Method of recovering zinc
JP6026332B2 (en) Method for recovering In-Ga-Zn oxide from IGZO-based sintered body
JP5628610B2 (en) Indium recovery method
CN102650000A (en) Method for recovering bismuth and arsenic from bismuth and arsenic-containing solution
JP5291313B2 (en) Tin recovery method
JP2015086436A (en) Method for recovering valuable material
JP4615561B2 (en) Arsenic-containing solution processing method
JP5156992B2 (en) Method for recovering indium from indium-containing material
JP4087433B2 (en) Arsenic-containing solution processing method
JP6017876B2 (en) A method for recovering gallium from waste copper gallium.
JP5339762B2 (en) Method for producing indium metal
JP6373772B2 (en) Method for recovering indium and gallium
JP2007039798A (en) Method for recovering indium, and its use
JP4806820B2 (en) Method for indium sulfide from indium-containing material and method for recovering indium

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150729

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160713

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160914

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160929

R150 Certificate of patent or registration of utility model

Ref document number: 6017877

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees