JP2014022506A - Iii族窒化物半導体レーザ素子、iii族窒化物半導体レーザ素子を作製する方法 - Google Patents

Iii族窒化物半導体レーザ素子、iii族窒化物半導体レーザ素子を作製する方法 Download PDF

Info

Publication number
JP2014022506A
JP2014022506A JP2012158683A JP2012158683A JP2014022506A JP 2014022506 A JP2014022506 A JP 2014022506A JP 2012158683 A JP2012158683 A JP 2012158683A JP 2012158683 A JP2012158683 A JP 2012158683A JP 2014022506 A JP2014022506 A JP 2014022506A
Authority
JP
Japan
Prior art keywords
group iii
nitride semiconductor
iii nitride
light guide
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012158683A
Other languages
English (en)
Other versions
JP5626279B2 (ja
Inventor
Tetsuya Kumano
哲弥 熊野
Takashi Kyono
孝史 京野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2012158683A priority Critical patent/JP5626279B2/ja
Publication of JP2014022506A publication Critical patent/JP2014022506A/ja
Application granted granted Critical
Publication of JP5626279B2 publication Critical patent/JP5626279B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

【課題】所望の電流閉じ込め性及び光閉じ込め性に半導体レーザ素子の特性を近づけることを可能にする構造を有するIII族窒化物半導体レーザ素子を提供する。
【解決手段】III族窒化物半導体レーザ素子11では、第2III族窒化物半導体領域17はリッジ構造35を有し、このリッジ構造35は、その幅に応じて活性層15へ電流を閉じ込めることができると共に、第2III族窒化物半導体領域17における光閉じ込めにも影響する。第2光ガイド層25aの厚さは第1光ガイド層21aの厚さより薄く、また第1III族窒化物半導体領域内13の第1光ガイド層21aが370nm以上の厚さを有する。III族窒化物半導体レーザ素子11における光閉じ込め特性に関して、リッジ構造35の幅に起因する影響を低減でき、電流の閉じ込めは、主にリッジ構造35の幅WRに応じて達成される。光の閉じ込めは、リッジ構造35に加えて厚い第1光ガイド層21aに依存する。
【選択図】図1

Description

本発明は、III族窒化物半導体レーザ素子、及びIII族窒化物半導体レーザ素子を製造する方法に関する。
特許文献1には、窒化物半導体レーザ素子が記載されており、この窒化物半導体レーザ素子は、430nm以上の波長の光を生成する。窒化物半導体レーザ素子は、動作電圧の低減、外部量子効率の増大、発振しきい値電流密度の低減などの特性改善を図ることができる。
特開2010−129676号公報
特許文献1の窒化物半導体レーザ素子は、n型AlGaNクラッド層、GaN層、第1のInGaN光ガイド層、発光層、第2のInGaN光ガイド層、窒化物半導体中間層、p型AlGaN層、およびp型AlGaNクラッド層を備え、これらが、この順に窒化物半導体基板上に設けられる。n型AlGaNクラッド層は3%以上5%以下のAl組成比と1.8μm以上2.5μm以下の厚さを有し、第1及び第2のInGaN光ガイド層は3%以上6%以下のIn組成比を有する。第1の光ガイド層の厚さは120nm以上160nm以下である。p型AlGaN層はp型AlGaNクラッド層に接しかつそのAl組成比はp型クラッド層に比べて高くて10%以上35%以下である。
リッジ構造を有する窒化物半導体レーザ素子では、そのしきい値電流を下げるためには、リッジ構造の幅を狭くして光導波路の幅を小さくすることができる。光導波路の幅を小さくすることは、電流狭窄能力を高めることに有効である。しかし光導波路幅を狭くすると、電流閉じ込めだけでなく光閉じ込めもまた強くなる。過度の光閉じ込めは、レーザモードを不安定にしたり、また出射レーザ光の広がり角(FarField Pattern:FFP)を大きくしたりする。したがって、窒化物半導体レーザ素子の作製において、光導波路幅の変更は、半導体レーザ素子におけるいくつかの特性に影響があり、電流閉じ込めのために独立して変更できるデバイス構造ではない。同様に、窒化物半導体レーザ素子において、リッジ構造の幅を広くすること及び/又はリッジ構造の底を浅くすること(リッジ形成におけるエッチング掘り量を浅くすること)により、半導体レーザ素子における横方向のFFPの広がり角を制御できる。しかしながら、既に説明したことが理解されるように、リッジ構造の幅を広くすること及びリッジ構造の底を浅くすることのいずれの手法を用いても、半導体レーザ素子における電流閉じ込め能力が変化する。
本発明では、所望の電流閉じ込め性及び所望の光閉じ込め性に半導体レーザ素子の特性を近づけることを可能にする構造を有するIII族窒化物半導体レーザ素子を提供することを目的とし、またこのIII族窒化物半導体レーザ素子を作製する方法を提供することを目的とする。
本発明に係るIII族窒化物半導体レーザ素子は、(a)六方晶系のIII族窒化物半導体からなり半極性面を有する第1III族窒化物半導体領域と、(b)前記第1III族窒化物半導体領域の前記半極性面上に設けられた活性層と、(c) 前記第1III族窒化物半導体領域の前記半極性面上に設けられた第2III族窒化物半導体領域とを備える。前記活性層は前記第1III族窒化物半導体領域と前記第2III族窒化物半導体領域との間に設けられ、前記活性層の発振波長は400nm以上550nm以下の範囲にあり、前記第1III族窒化物半導体領域は、第1導電型のIII族窒化物半導体からなる第1クラッド層と第1光ガイド層とを含み、前記第1光ガイド層は、III族構成元素としてインジウムを含む窒化ガリウム半導体を備え、前記第2III族窒化物半導体領域は、第2導電型のIII族窒化物半導体からなる第2クラッド層と第2光ガイド層とを含み、前記第2光ガイド層の厚さは、前記第1光ガイド層の厚さより薄く、前記第1光ガイド層の厚さは370nm以上であり、前記第2III族窒化物半導体領域はリッジ構造を有する。
このIII族窒化物半導体レーザ素子によれば、第2III族窒化物半導体領域はリッジ構造を有しており、リッジ構造は、その幅に応じて活性層へ電流を閉じ込めることができると共に、第2III族窒化物半導体領域における光閉じ込めにも影響する。このIII族窒化物半導体レーザ素子における第2光ガイド層の厚さは第1光ガイド層の厚さより薄く、また第1III族窒化物半導体領域内の第1光ガイド層が370nm以上の厚さを有する。これ故に、このIII族窒化物半導体レーザ素子における光閉じ込め特性に関して、リッジ構造の幅に起因する影響を低減できる。このIII族窒化物半導体レーザ素子の電流の閉じ込めは、主にリッジ構造の幅に応じて達成される。また、光の閉じ込めは、リッジ構造に加えて厚い第1光ガイド層に依存する。
本発明に係るIII族窒化物半導体レーザ素子では、前記第1光ガイド層の膜厚は550nm以下であることが好ましい。
このIII族窒化物半導体レーザ素子によれば、膜厚550nmを超える第1光ガイド層はしきい値電流の増加に至ることがある。
本発明に係るIII族窒化物半導体レーザ素子では、前記第1III族窒化物半導体領域の前記半極性面の法線は、前記第1III族窒化物半導体領域の前記III族窒化物半導体のc軸に対して傾斜を成し、前記傾斜の傾斜角は10度以上80度以下の範囲にあることができる。
このIII族窒化物半導体レーザ素子によれば、III族窒化物半導体のc軸の傾斜が10度未満であるとき、III族窒化物半導体が極性面に近い性質を示す。III族窒化物半導体のc軸の傾斜が80度を超えるとき、III族窒化物半導体が無極性面に近い性質を示す。
本発明に係るIII族窒化物半導体レーザ素子では、前記リッジ構造の底は、前記第2III族窒化物半導体領域内の前記第2光ガイド層に位置することが好ましい。
このIII族窒化物半導体レーザ素子によれば、リッジ構造の底が第2III族窒化物半導体領域内の第2光ガイド層に位置するとき、第2III族窒化物半導体領域内における電流を活性層の近くまでガイドして、電流の拡がりを制御できる。
本発明に係るIII族窒化物半導体レーザ素子では、前記リッジ構造の底と前記活性層との間隔は150nm以下であることが好ましい。
このIII族窒化物半導体レーザ素子によれば、リッジ構造の底と活性層との間隔は150nm以下であるとき、リッジ構造の幅が電流閉じ込めだけでなく、光閉じ込めにも比較的大きく寄与する。
本発明に係るIII族窒化物半導体レーザ素子では、前記活性層の発振波長は480nm以上550nm以下の範囲にあることができる。
このIII族窒化物半導体レーザ素子によれば、比較的長波長のレーザ光を提供できる。
本発明に係るIII族窒化物半導体レーザ素子では、前記活性層の発振波長は510nm以上540nm以下の範囲にあることが好ましい。
このIII族窒化物半導体レーザ素子によれば、長波長のレーザ光を提供できる。長波長にあるが故に、半導体材料差に基づく屈折率差だけでなく、リッジ構造により光閉じ込めが有効である。また、リッジ構造は電流閉じ込め及び光閉じ込めの両方に寄与するので、電流閉じ込めを大きく変更することなく、第1III族窒化物半導体領域の厚い第1光ガイド層は当該III族窒化物半導体レーザ素子における光閉じ込めの調整を容易にできる。
本発明に係るIII族窒化物半導体レーザ素子では、前記リッジ構造は、前記第1III族窒化物半導体領域の前記半極性面の法線と、前記第1III族窒化物半導体領域の前記III族窒化物半導体のm軸とにより規定されるm−n面に沿って延在することができる。
このIII族窒化物半導体レーザ素子によれば、リッジ構造がm−n面に沿って延在するとき、しきい値電流を低くできる光学遷移をレーザ発振に利用できる。これは、リッジ構造だけでなく、しきい値電流の低減に寄与できる。
本発明に係るIII族窒化物半導体レーザ素子では、前記第1光ガイド層は三元InGaNからなり、前記活性層は三元InGaN層を含むことができる。
このIII族窒化物半導体レーザ素子によれば、三元InGaNからなる第1光ガイド層は、三元InGaN層を含む活性層に好適である。
本発明に係るIII族窒化物半導体レーザ素子では、前記活性層はInGaN井戸層を含み、前記第1光ガイド層のインジウム組成は、前記InGaN井戸層のインジウム組成より小さく、前記第1光ガイド層のインジウム組成は2%以上であることができる。
このIII族窒化物半導体レーザ素子によれば、インジウム組成2%以上の第1光ガイド層は、第1光ガイド層と基板との間に設けられる半導体層に対する屈折率差を提供できる。
本発明に係るIII族窒化物半導体レーザ素子では、前記活性層は、InGaN井戸層を含み、前記第1光ガイド層のインジウムの組成は6%以下であり、前記InGaN井戸層のインジウム組成より小さいことが良い。
このIII族窒化物半導体レーザ素子によれば、インジウム組成6%以下の第1光ガイド層は、レーザ導波路を伝搬する光に対して、第1光ガイド層と基板との間に設けられる半導体層と活性層との間の屈折率を提供ができる。
本発明に係るIII族窒化物半導体レーザ素子では、前記第1III族窒化物半導体領域は、第3光ガイド層を更に含み、前記第3光ガイド層はInGaNと異なる材料を備え、前記第3光ガイド層は前記第1光ガイド層と前記第1クラッド層との間に設けられ、前記第1光ガイド層の厚さは前記第3光ガイド層の厚さより大きいことができる。
このIII族窒化物半導体レーザ素子によれば、第1III族窒化物半導体領域は、複数の光ガイド層を含むことができる。
本発明に係るIII族窒化物半導体レーザ素子は、前記リッジ構造の上面に設けられたオーミック電極を更に備えることができる。前記第2III族窒化物半導体領域は、第2導電型のIII族窒化物半導体からなるコンタクト層を更に含み、前記第2クラッド層は、前記コンタクト層と前記第2光ガイド層との間に設けられ、前記オーミック電極は前記コンタクト層に接触を成すことができる。
このIII族窒化物半導体レーザ素子によれば、オーミック電極がリッジ構造の上面のコンタクト層に接触を成すので、オーミック電極からのキャリアがリッジ構造の幅に応じて閉じ込め可能になる。
本発明に係るIII族窒化物半導体レーザ素子では、前記オーミック電極はパラジウムを備えることが好ましい。
このIII族窒化物半導体レーザ素子によれば、パラジウムは、コンタクト層のIII族窒化物半導体に良好な接触を提供できる。
本発明に係るIII族窒化物半導体レーザ素子は、前記リッジ構造の上面に合わせた開口を有すると共に前記第1III族窒化物半導体領域の表面を覆う保護膜と、前記オーミック電極の上面を覆うと共に前記保護膜上に設けられたパッド電極とを更に備えることができる。前記保護膜は前記リッジ構造の側面を覆っており、前記保護膜の屈折率は前記第2III族窒化物半導体領域の屈折率より小さく、前記オーミック電極は、前記保護膜の前記開口を介して前記第2III族窒化物半導体領域に接触を成す。
このIII族窒化物半導体レーザ素子によれば、保護膜の屈折率が第2III族窒化物半導体領域の屈折率より小さいので、リッジ構造の側面を覆う保護膜が光閉じ込めに関係する。
本発明に係るIII族窒化物半導体レーザ素子は、六方晶系のIII族窒化物からなる半極性主面を有する基板を更に備えることができる。前記第1III族窒化物半導体領域、前記活性層及び前記第2III族窒化物半導体領域は、前記基板の前記半極性主面の法線方向に配置される。
本発明に係るIII族窒化物半導体レーザ素子では、前記基板の前記半極性主面の法線は、前記基板の前記III族窒化物半導体のc軸に対して傾斜を成し、前記傾斜の傾斜角は63度以上80度以下の範囲にあることが好ましい。
このIII族窒化物半導体レーザ素子によれば、63度以上80度以下の範囲のc軸傾斜を有する基板は、長い波長のレーザ発振に好適な活性層の作製に好適な面方位を提供できる。長波長領域では、III族窒化物半導体における屈折率差が小さくなり、所望の光閉じ込めを達成することは容易ではなくなる。
本発明に係るIII族窒化物半導体レーザ素子では、前記基板は、GaN、InGaN、AlGaN、及びInAlGaNのいずれかである、六方晶系の導電性III族窒化物を備えることができる。
このIII族窒化物半導体レーザ素子によれば、GaN、InGaN、AlGaN、及びInAlGaNのいずれかである基板を利用可能である。
本発明に係るIII族窒化物半導体レーザ素子では、前記第1クラッド層は、n導電性のInX1AlY1Ga1−X1−Y1N(0<X1<0.05、0<Y1<0.20)であることができる。
このIII族窒化物半導体レーザ素子によれば、第1クラッド層は、光ガイド層に対して良好な光閉じ込めを提供できる。
本発明に係るIII族窒化物半導体レーザ素子では、前記第2クラッド層は、p導電性のInX2AlY2Ga1−X2−Y2N(0<X2<0.05、0<Y2<0.20)であることができる。
このIII族窒化物半導体レーザ素子によれば、第2クラッド層は、光ガイド層に対して良好な光閉じ込めを提供できる。
本発明に係るIII族窒化物半導体レーザ素子を製造する方法は、(a)六方晶系のIII族窒化物半導体からなり半極性面を有する第1クラッド層を成長する工程と、(b)前記第1クラッド層の前記半極性面上に第1光ガイド層を成長する工程と、(c)前記第1光ガイド層の成長の後に、窒化ガリウム系半導体の活性層を形成する工程と、(d)前記活性層の成長の後に、リッジ構造を有する第2III族窒化物半導体領域を形成する工程とを備える。前記活性層の発振波長は、400nm以上550nm以下であり、前記第1光ガイド層の厚さより薄く、前記第1光ガイド層の厚さは370nm以上である。
本発明に係る作製方法では、前記第1光ガイド層の膜厚は550nm以下であることが好ましい。この作製方法によれば、膜厚550nmを超える第1光ガイド層はしきい値電流の増加に至ることがある。
本発明に係る作製方法では、前記第1III族窒化物半導体領域の前記半極性面の法線は、前記第1III族窒化物半導体領域の前記III族窒化物半導体のc軸に対して傾斜を成し、前記傾斜の傾斜角は10度以上80度以下の範囲にあることができる。この作製方法によれば、III族窒化物半導体のc軸の傾斜が10度未満であるとき、III族窒化物半導体が極性面に近い性質を示す。III族窒化物半導体のc軸の傾斜が80度を超えるとき、III族窒化物半導体が無極性面に近い性質を示す。
本発明に係る作製方法では、前記リッジ構造の底は、前記第2III族窒化物半導体領域内の前記第2光ガイド層に位置することが好ましい。この作製方法によれば、リッジ構造の底が第2III族窒化物半導体領域内の第2光ガイド層に位置するとき、第2III族窒化物半導体領域内における電流を活性層の近くまでガイドして、電流の拡がりを制御できる。
本発明に係る作製方法では、前記リッジ構造の底と前記活性層との間隔は150nm以下であることが好ましい。この作製方法によれば、リッジ構造の底と活性層との間隔は150nm以下であるとき、リッジ構造の幅が電流閉じ込めだけでなく、光閉じ込めにも比較的大きく寄与する。
本発明に係るIII族窒化物半導体レーザ素子を製造する方法は、(a)六方晶系のIII族窒化物からなる主面を有する複数の基板を準備する工程と、(b)第1クラッド層及び第1光ガイド層を有する第1III族窒化物半導体領域、窒化ガリウム系半導体からなる活性層、並びに、第2クラッド層及び第2光ガイド層を有する第2III族窒化物半導体領域を含む半導体積層を各基板の前記主面上に成長して、前記第1光ガイド層の厚さが互いに異なる複数の試行用エピタキシャル基板を作製する工程と、(c)前記複数の試行用エピタキシャル基板にリッジ構造及び電極を形成して、複数の試行用基板生産物を作製する工程と、(d)前記複数の試行用基板生産物の遠視野像の評価を行って、前記遠視野像と前記第1光ガイド層の前記厚さとの関係を得る工程と、(e)前記評価の結果を用いて、当該窒化ガリウム系半導体レーザ素子のための第1光ガイド層の厚さを決定する工程と、(f)前記第1光ガイド層が前記決定された厚さを有するように、当該窒化ガリウム系半導体レーザ素子のためのエピタキシャル基板を作製する工程とを備える。
この窒化ガリウム系半導体レーザ素子を製造する方法によれば、所望の光閉じ込め性に半導体レーザ素子の特性を近づけることを可能にする構造を有するIII族窒化物半導体レーザ素子を提供できる。
本発明に係る作製方法では、前記第1III族窒化物半導体領域の前記半極性面の法線は、前記第1III族窒化物半導体領域の前記III族窒化物半導体のc軸に対して傾斜を成し、前記傾斜の傾斜角は10度以上80度以下の範囲にあることができる。この作製方法によれば、III族窒化物半導体のc軸の傾斜が10度未満であるとき、III族窒化物半導体が極性面に近い性質を示す。III族窒化物半導体のc軸が傾斜が80度を超えるとき、III族窒化物半導体が無極性面に近い性質を示す。
本発明に係る作製方法では、前記リッジ構造の底は、前記第2III族窒化物半導体領域内の前記第2光ガイド層に位置することが好ましい。この作製方法によれば、リッジ構造の底が第2III族窒化物半導体領域内の第2光ガイド層に位置するとき、第2III族窒化物半導体領域内における電流を活性層の近くまでガイドして、電流の拡がりを制御できる。
本発明に係る作製方法では、前記リッジ構造の底と前記活性層との間隔は150nm以下であることが好ましい。この作製方法によれば、リッジ構造の底と活性層との間隔は150nm以下であるとき、リッジ構造の幅が電流閉じ込めだけでなく、光閉じ込めにも比較的大きく寄与する。
本発明に係る作製方法は、前記複数の試行用基板生産物のレーザ発振のためのしきい値電流の評価を行って、前記しきい値電流と前記第1光ガイド層の前記厚さとの関係を得る工程を更に備えることができる。前記第1光ガイド層の厚さを決定する前記工程では、前記遠視野像の評価結果及び前記しきい値電流の評価結果を利用して、前記第1光ガイド層の前記厚さを決定することができる。
この窒化ガリウム系半導体レーザ素子を製造する方法によれば、所望の電流閉じ込め性及び所望の光閉じ込め性に半導体レーザ素子の特性を近づけることを可能にする構造を有するIII族窒化物半導体レーザ素子を提供できる。
本発明の上記の目的および他の目的、特徴、並びに利点は、添付図面を参照して進められる本発明の好適な実施の形態の以下の詳細な記述から、より容易に明らかになる。
以上説明したように、本発明によれば、所望の電流閉じ込め性及び所望の光閉じ込め性に半導体レーザ素子の特性を近づけることを可能にする構造を有するIII族窒化物半導体レーザ素子を提供でき、またこのIII族窒化物半導体レーザ素子を作製する方法を提供できる。
図1は、本実施の形態に係る窒化物半導体発光素子に係る構造を示す図面である。 図2は、リッジ構造と光閉じ込め層との関係を説明するための図面である。 図3は、実施例において作製されるIII族窒化物半導体レーザ素子を示す図面である。 図4は、本実施の形態に係る窒化物半導体レーザ素子を作製する方法における主要な工程を模試的に示す図面である。 図5は、本実施の形態に係る窒化物半導体レーザ素子を作製する方法における主要な工程を模試的に示す図面である。 図6は、本実施の形態に係る窒化物半導体レーザ素子を作製する方法における主要な工程を模試的に示す図面である。 図7は、本実施例に係るレーザ構造を示す図面である。 図8は、本実施例に係るレーザ構造におけるFFP広がり角、しきい値電流密度を示す図面である。 図9は、シミュレーション結果を示す図面である。 図10は、本実施の形態に係るIII族窒化物半導体レーザ素子を作製する方法における主要な工程フローを示す図面である。 図11は、本実施の形態に係る窒化物半導体発光素子を作製する方法における主要な工程フローを示す図面である。
添付図面を参照しながら、III族窒化物半導体レーザ素子、及びIII族窒化物半導体レーザ素子を製造する方法に係る本発明の実施の形態を説明する。可能な場合には、同一の部分には同一の符号を付する。
図1は、本実施の形態に係る窒化物半導体発光素子に係る構造を示す図面である。図1には、XYZ座標系S及び結晶座標系CRが記載されている。結晶座標系CRはc軸、a軸及びm軸を有する。
III族窒化物半導体レーザ素子11は、第1III族窒化物半導体領域13、活性層15、及び第2III族窒化物半導体領域17を含む。第1III族窒化物半導体領域13は、六方晶系のIII族窒化物半導体からなる半極性面13aを有する。活性層15は、第1III族窒化物半導体領域13の半極性面13a上に設けられる。第2III族窒化物半導体領域17は第1III族窒化物半導体領域13の半極性面13a上に設けられる。活性層15は第1III族窒化物半導体領域13と第2III族窒化物半導体領域17との間に設けられる。活性層15の発振波長は400nm以上550nm以下の範囲にあることができる。発振波長は480nm以上550nm以下の範囲にあることが好ましく、またより好ましくは、活性層15の発振波長は510nm以上540nm以下の範囲にある。活性層15は、例えば単一量子井戸構造又は多重量子井戸構造といった量子井戸構造を有することができる。第1III族窒化物半導体領域13、活性層15及び第2III族窒化物半導体領域17は、積層軸Ax(座標系SのZ軸の方法)に沿って順に配列される。電極19は、第2III族窒化物半導体領域17上に設けられ、また第2III族窒化物半導体領域17のコンタクト層29に接触を成す。半極性面13a(基板主面も同様に)は、座標系SのX軸及びY軸により規定される平面に実質的に平行に設けられる。
第1III族窒化物半導体領域13は、光ガイド層21及び第1クラッド層23を含む。光ガイド層21はn型クラッド層23上に設けられる。活性層15は、光ガイド層21上に設けられる。第1クラッド層23は第1導電型(例えばn型)のIII族窒化物半導体からなる。光ガイド層21は、活性層15と第1クラッド層23との間に設けられ、また活性層15に接している。光ガイド層21は、第1光ガイド層21aを含み、またIII族構成元素としてインジウムを含む窒化ガリウム半導体を備える。第2III族窒化物半導体領域17は活性層15上に設けられる。第2III族窒化物半導体領域17は、別の光ガイド層25と第2クラッド層27とを含む。第2クラッド層27は、第2導電型(例えばp型)のIII族窒化物半導体からなり、また光ガイド層25上に設けられる。光ガイド層25は、活性層15と第2クラッド層27との間に設けられ、また活性層15に接することができる。光ガイド層27は、第2光ガイド層25aを含み、またIII族構成元素としてインジウムを含む窒化ガリウム半導体を備える。第2III族窒化物半導体領域17はリッジ構造35を有する。必要な場合には、光ガイド層25はキャリアブロック層25cを含むことができる。
光ガイド層21は、第1光ガイド層21aに加えて第3光ガイド層21bを含む。第1光ガイド層21aは第3光ガイド層21bと活性層15との間に位置し、また活性層15に接している。第3光ガイド層21bは第1光ガイド層21aの半導体材料と異なる半導体からなり、第3光ガイド層21bのバンドギャップは第1光ガイド層21aのバンドギャップより大きい。
別の光ガイド層25は、第2光ガイド層25aに加えて第4光ガイド層25bを含む。第2光ガイド層25aは第4光ガイド層25bと活性層15との間に位置し、また活性層15に接している。第4光ガイド層25bは第2光ガイド層25aの半導体材料と異なる半導体からなり、第4光ガイド層25bのバンドギャップは第2光ガイド層25aのバンドギャップより大きい。
一実施例では、光ガイド層21の厚さは光ガイド層25の厚さより大きい。また、第2光ガイド層25aの厚さは第1光ガイド層21aの厚さより薄い。第1光ガイド層21aの厚さは370nm以上であることが好ましい。
光ガイド層21、活性層15及び別の光ガイド層25はコア領域31を構成し、コア領域31はn型クラッド層23とp型クラッド層27との間に設けられる。n型クラッド層23、コア領域31及びp型クラッド層27は光導波路構造を構成する。
活性層15と光ガイド層21とは第1接合HJ1を構成する。n型クラッド層23はIII族窒化物半導体からなり、第1接合HJ1は、n型クラッド層23のIII族窒化物半導体のc面に沿って延在する基準面Scに対して、ゼロより大きい傾斜角Angleで傾斜する。図1では、n型クラッド層23における基準面は、結晶座標系CRのc軸の方向を示す軸(ベクトルVCで示される軸)に実質的に直交する。活性層15と光ガイド層25とは第2接合HJ2を構成する。第2接合HJ2は、n型クラッド層23のIII族窒化物半導体のc面に沿って延在する基準面Scに対して、ゼロより大きい傾斜角Angleで傾斜する。
また、半導体リッジ35は、光ガイド層25とp型クラッド層27との第3接合HJ3を含む。第3接合HJ3は、n型クラッド層23のIII族窒化物半導体のc面に沿って延在する基準面Scに対して、ゼロより大きい傾斜角ANGLEで傾斜する。第3接合HJ3は、半導体リッジ35の側面35bで終端する。半導体リッジ35は上端TOP及び底BOTTOMを有する。半導体リッジ35の上面35aは電極19に接合J0を成す。半導体リッジ35の底BOTTOMと活性層15の上面15aとの距離Dは150nm以下であることができる。これ以上大きいとリッジによる電流狭窄能力が不十分となるからである。また、距離Dは20nm以上であることができる。これ以上小さいとリッジ形成時のRIE処理により活性層にダメージが与えられ劣化してしまうからである。
活性層15は、少なくとも1つの井戸層33aを含み、この井戸層33aは例えば窒化ガリウム系半導体からなる。一実施例では、井戸層33aは三元InGaN層を含むことができる。井戸層33aは圧縮歪みを内包する。井戸層33aは例えばInGaN層を含むことができる。活性層15は、必要な場合には、複数の井戸層33a及び少なくとも1つの障壁層33bを含むことができる。隣り合う井戸層33aの間には障壁層33bが設けられる。活性層15の最外層は、井戸層からなることができる。障壁層33bは、例えばGaN又はInGaNからなることができる。
既に説明したように、第2III族窒化物半導体領域17は半導体リッジ35を有する。半導体リッジ35は、光ガイド層25の一部と、p型クラッド層27と、p型コンタクト層29とを含む。光ガイド層25はp型クラッド層27に接して設けられ、このp型クラッド層27に接してp型コンタクト層29が設けられる。本実施例では、半導体リッジ35は、n型クラッド層23のIII族窒化物半導体のc軸及びm軸によって規定されるm−c面(或いは、c軸及びa軸によって規定されるa−c面)にそって延在する。また、本実施例では、半導体リッジ35は、n型クラッド層23の主面の法線軸(或いは基板主面39aの法線方向)及びm軸によって規定されるm−n面(或いは、上記の法線軸びa軸によって規定されるa−n面)にそって延在する。III族窒化物半導体のc軸は、m−n面(或いはa−n面)にそって傾斜することができる。半導体発光素子11は端面37a及び37bを含み、一実施例では、端面37a及び37bは光共振器を構成することができる。端面37a及び37bの少なくとも一方には、誘電体多層膜47を設けることができる。また、リッジ構造35がm−n面に沿って延在するとき、しきい値電流を低くできる光学遷移をレーザ発振に利用できる。これは、リッジ構造35に係る閉じ込め能力だけでなく、しきい値電流の低減に寄与できる。
このIII族窒化物半導体レーザ素子11によれば、第2III族窒化物半導体領域17はリッジ構造35を有しており、リッジ構造35は、その幅に応じて活性層15へ電流を閉じ込めることができると共に、第2III族窒化物半導体領域17における光閉じ込めにも影響する。このIII族窒化物半導体レーザ素子11における第1光ガイド層21aの厚さは第2光ガイド層25aの厚さより厚く、また第1III族窒化物半導体領域内13の第1光ガイド層21aが370nm以上の厚さを有する。これ故に、このIII族窒化物半導体レーザ素子11における光閉じ込め特性に関して、リッジ構造35の幅に起因する影響を低減できる。このIII族窒化物半導体レーザ素子11の電流の閉じ込めは、主にリッジ構造35の幅WRに応じて達成される。また、光の閉じ込めは、リッジ構造35に加えて厚い第1光ガイド層21aに依存する。
図2は、リッジ構造と光閉じ込め層との関係を説明するための図面である。III族窒化物半導体レーザ素子のしきい値電流を下げるためには、図2の(a)部に示されるように、共振器端面間に延在するレーザ導波路の幅をリッジ構造の幅を狭くして電流閉じ込め能力を強めることが有効である。しかし、狭くしすぎた導波路幅は、光の閉じ込めもまた強くなる。そうすると、例えば以下のような実用上の不具合が生じることがある:レーザ発振のモードが不安定になる;出射レーザの広がり角、つまり遠視野像(Far Field Pattern:FFP)が大きくなる。これは、リッジ構造の幅の調整により導波路幅を広くすること、及び/又はリッジ構造の深さの調整によりリッジ掘り量を浅くすること、といった構造の調整を行って、横方向のFFP広がり角を制御できることを意味する。例えば、図2の(a)部に示されるように、リッジ構造の深さの調整により掘り量を浅くすることによって、レーザ導波路の伝搬光の広がりが、図2の(b)部に示されるリッジ構造における広がりから変更される。しかしながら、この方法では電流狭窄能力が悪化し、これはしきい値電流を悪化させる。
一方、本実施形態に係るIII族窒化物半導体レーザ素子では、電流閉じ込め能力と独立して横方向の光の閉じ込めを調整することができる。リッジ構造における掘り量は維持したまま、光の分布を全体的にn側へずらす。掘り量は、例えば、リッジ構造を規定する掘り込み部における半導体層の厚さが活性層上において規定され、この膜厚(図1におけるシンボルD)として規定される。この半導体レーザのリッジ構造はp側半導体領域に形成されており、これ故にn側には横方向に光を閉じ込めのための構造が設けられていない。リッジ構造の幅(BOTTOM)は例えば1.2μm以上から10μm以下の範囲にある。
そこで、図2の(c)部に示されるように、レーザ導波路の伝搬光の広がりをp側からn側にシフトさせるように、n側の光ガイド層の厚さを調整する。レーザ導波路の伝搬光の広がりが活性層から外れないように、n側の半導体領域へ光を引き出して、光の横方向閉じ込めを弱くする。
レーザ導波路における光の強度振幅のプロファイル(縦軸方向のプロファイル)をn側半導体にずらすために、活性層と基板との間に設けられる三元InGaN光ガイド層の膜厚を大きくする。発明者の知見によれば、InGaN光ガイド層の厚さは、当初の予測を大きく超えた厚さになる。
III族窒化物半導体レーザ素子11では、リッジ構造35の底BOTTOMは、第2III族窒化物半導体領域17内の光ガイド層25に位置することが好ましい。リッジ構造35の底BOTTOMが第2III族窒化物半導体領域17内の光ガイド層25に位置するとき、第2III族窒化物半導体領域17内における電流を活性層15の近くまでガイドして、電流の拡がりを制御できる。
また、リッジ構造35の底BOTTOMと活性層15との間隔Dは150nm以下であることが好ましい。この値の範囲では、リッジ構造35の幅が電流閉じ込めだけでなく、光閉じ込めにも比較的大きく影響する。
リッジ構造35の底BOTTOMと活性層15との間隔Dは20nm以上であるとき、第2III族窒化物半導体領域17内における電流を活性層15の近くまでガイドできると共に、第2III族窒化物半導体領域17の厚さDの残膜が活性層15を保護できる。
再び図1を参照しながら、本実施の形態に係るIII族窒化物半導体レーザ素子11を説明する。窒化物半導体発光素子11は、基板39を更に備えることができる。基板39は、III族窒化物半導体からなる半極性の主面39a及び裏面39bを有する。この半極性主面39aは、III族窒化物半導体のc軸の方向の延在する軸(ベクトルVCで示される軸Cx)に直交する基準面Scに対して傾斜する。半極性主面39aと基準面Scとの成す角度(実質的に角度ANGLEに等しい角度)は、10度以上80度以下又は100度以上170度以下の範囲にあることができる。第1III族窒化物半導体領域13、活性層15及び第2III族窒化物半導体領域17は、半極性主面39a上にその法線軸に沿って配置される。上記の基板39上にエピタキシャル成長されるIII族窒化物半導体層は、個々の半導体層の表面は、基板39の半極性面の面方位を引き継ぎ、また半極性の性質を有する。これ故に、第1III族窒化物半導体領域13、活性層15及び第2III族窒化物半導体領域17の表面は、基板39の半極性面の面方位に対応した面方位を有することができる。
III族窒化物半導体レーザ素子11は、基板39の裏面39bに接触を成す電極41を備える。基板39は、例えばGaN、InGaN、AlGaN、及びInAlGaNのいずれかである、六方晶系の導電性III族窒化物を備えることができる。III族窒化物半導体レーザ素子11には、GaN、InGaN、AlGaN、及びInAlGaNのいずれかを適用可能である。基板39は例えばGaNからなることができる。GaN基板上にコヒーレントにエピタキシャル成長されるInGaN層には、圧縮歪みが内包される。
また、c軸に係る傾斜角ANGLEは、m−n面に沿った傾斜では63度以上80度以下の範囲にあることができる。上記の傾斜角Angleの半極性面39aは、均質なIn取り込み及び高In組成の窒化ガリウム系半導体の成長を可能にする。また、基板39の半極性主面39aと基準面Scとの成す角度が63度以上80度以下の範囲にあることができる。このIII族窒化物半導体レーザ素子11によれば、63度以上80度以下の範囲のc軸傾斜を有する基板39は、長い波長のレーザ発振に好適な活性層15の作製に好適な面方位を提供できる。長波長領域では、III族窒化物半導体における屈折率差が小さくなり、所望の光閉じ込めを達成することは容易ではなくなる。
III族窒化物半導体レーザ素子11では、第1光ガイド層21aの膜厚は370nm以上550nm以下であることが好ましい。膜厚550nmを超える光ガイド層21aはしきい値電流の増加に至ることがある。
III族窒化物半導体レーザ素子11では、基板39の主面39aの法線は、基板39のIII族窒化物のc軸に対して傾斜を成し、この傾斜の傾斜角は10度以上80度以下の範囲にあることができる。III族窒化物のc軸の傾斜が10度未満であるとき、主面39aが極性面に近い性質を示す。III族窒化物半導体のc軸の傾斜が80度を超えるとき、主面39aが無極性面に近い性質を示す。
活性層15の発振波長は480nm以上550nm以下の範囲にあることができる。このIII族窒化物半導体レーザ素子11によれば、比較的長波長のレーザ光を提供できる。また、活性層15は、500nm以上550nm以下の範囲内にピーク波長を有する発光スペクトルを生成するように設けられることができる。500nm以上550nm以下の範囲内にピーク波長を有する発光スペクトルを生成する活性層15は、半極性面を利用して作製される。さらに、活性層15の発振波長は510nm以上540nm以下の範囲にあることが好ましい。このIII族窒化物半導体レーザ素子11によれば、長波長のレーザ光を提供できる。長波長にあるが故に、半導体材料差に基づく屈折率差だけでなく、リッジ構造35により光閉じ込めが有効である。また、リッジ構造35は電流閉じ込め及び光閉じ込めの両方に寄与するので、電流閉じ込めを大きく変更することなく、第1III族窒化物半導体領域13の厚い光ガイド層21aは当該III族窒化物半導体レーザ素子11における光閉じ込めと電流閉じ込めとの調整を容易にできる。
活性層15はInGaN井戸層を含み、光ガイド層21aのインジウム組成は、InGaN井戸層のインジウム組成より小さく、光ガイド層21aのインジウム組成は2%以上であることができる。この構造では、インジウム組成2%以上の光ガイド層21aは、光ガイド層21aと基板39との間に設けられる半導体層に対する屈折率差を提供ができる。また、光ガイド層21aのインジウムの組成は6%以下であり、三元InGaN井戸層のインジウム組成より小さいことが良い。インジウム組成6%以下の光ガイド層21aは、レーザ導波路を伝搬する光に対して、光ガイド層21aと基板39との間に設けられる半導体層と活性層15との間の屈折率を提供ができる。
第1III族窒化物半導体領域13は、複数の光ガイド層を含むことができる。光ガイド層21は、例えば光ガイド層21a、21bを含み、光ガイド層21bはInGaNと異なる材料(例えばGaN)を備える。光ガイド層21bは光ガイド層21aと第1クラッド層23との間に設けられ、光ガイド層21aの厚さは光ガイド層21bの厚さより大きいことができる。
III族窒化物半導体レーザ素子11は、リッジ構造35の上面35aに設けられたオーミック電極19を更に備えることができる。第2III族窒化物半導体領域17は、第2導電型のIII族窒化物半導体からなるコンタクト層29を更に含み、第2クラッド層27は、コンタクト層29と光ガイド層25との間に設けられ、オーミック電極19はコンタクト層29に接触を成すことができる。オーミック電極19がリッジ構造35の上面35aのコンタクト層29に接触を成すので、オーミック電極19からのキャリアがリッジ構造35の幅に応じて閉じ込め可能になる。オーミック電極19は例えばパラジウム(Pd)を備えることが好ましい。パラジウムは、コンタクト層29のIII族窒化物半導体に良好な接触を提供できる。
III族窒化物半導体レーザ素子11は、保護膜43と、パッド電極45とを更に備えることができる。保護膜43は、リッジ構造35の上面35aに位置合わせした開口43aを有すると共に第2III族窒化物半導体領域17の表面17aを覆う。パッド電極45は、オーミック電極19の上面を覆うと共に保護膜43上に設けられる。保護膜43は、またリッジ構造35の側面35bを覆っており、保護膜43の屈折率は第2III族窒化物半導体領域17の屈折率より小さい。オーミック電極19は、保護膜43の開口43aを介して第2III族窒化物半導体領域17の上面17a(43a)に接触を成す。保護膜43の屈折率が第2III族窒化物半導体領域17の屈折率より小さいので、リッジ構造35の側面35bを覆う保護膜43が光閉じ込めに関係する。
III族窒化物半導体レーザ素子11では、第1クラッド層23は、n導電性のInX1AlY1Ga1−X1−Y1N(0<X1<0.05、0<Y1<0.20)であることができる。この第1クラッド層23は、光ガイド層21に対して良好な光閉じ込めを提供できる。また、第2クラッド層27は、p導電性のInX2AlY2Ga1−X2−Y2N(0<X2<0.05、0<Y2<0.20)であることができる。この第2クラッド層27は、光ガイド層に対して良好な光閉じ込めを提供できる。
(実施例1)
この実施例では、図3に示されるIII族窒化物半導体レーザ素子11aを作製する。まず、図4の(a)部に示されるように、エピタキシャル基板Eを準備する。半極性GaN基板(例えばウエハ状の基板)を準備する。この半極性GaN基板の主面は例えば{20−21}面を有する。{20−21}面では、基板のGaNのc軸はこの基板主面の法線に対してGaNのm軸の方向に75度の角度で傾斜している。GaN基板のサーマルクリーニングを行う。サーマルクリーニングは、アンモニア(NH)及び水素(H)を含む雰囲気中で行われ、熱処理温度は、摂氏1050度である。この前処理の後に、まず、第1のIII族窒化物半導体領域を成長する。GaN基板の半極性主面上に、n型GaN層を成長する。n型GaN層の厚さは例えば1100nmである。成長温度は摂氏1050度である。基板温度を摂氏840度に下げた後に、このn型GaN層上にn型クラッド層を成長する。本実施例では、n型クラッド層として、厚さ1200nmのn型InAlGaNクラッド層を成長する。このn型InAlGaNクラッド層のIn組成は0.03であり、Al組成は0.14である。摂氏840度の基板温度において、n型InAlGaNクラッド層上に、GaN光ガイド層を成長する。GaN光ガイド層はn型であり、その厚さは200nmである。このGaN光ガイド層上に、InGaN光ガイド層を成長する。InGaN光ガイド層はn型又はアンドープであり、その厚さは400nmである。このInGaN層のIn組成は例えば0.025である。これらの光ガイド層からなるn側の内側半導体層を形成した後に、この内側半導体層上に活性層を成長する。この実施例では、活性層として、摂氏790度の基板温度においてInGaN層を成長する。このInGaN層のIn組成は例えば0.255であり、InGaN層の厚さは3nmである。活性層上に、第2III族窒化物半導体領域を成長する。例えば、基板温度を摂氏840度に上昇した後に、活性層上にアンドープ光ガイド層を成長する。アンドープ光ガイド層はGaN及び/又はInGaNからなることができる。InGaN光ガイド層のIn組成は例えば0.025である。アンドープ光ガイド層上に、p型GaN光ガイド層を成長する。これらの光ガイド層からなるp側の内側半導体層を形成した後に、この内側半導体層上に厚さ400nmのp型AlGaNクラッド層を成長する。このp型AlGaNクラッド層のAl組成は0.04である。基板温度を摂氏1000度に上昇した後に、p型AlGaNクラッド層上に、厚さ50nmのp型GaNコンタクト層を成長する。これらの工程によりエピタキシャル基板Eを作製できる。エピタキシャル基板Eにおいて、n側光ガイド層の厚さTNはp側光ガイド層の厚さTPより大きい。
このエピタキシャル基板にフォトリソグラフィ、ドライエッチング及び真空蒸着を適用して、幅2μmの半導体リッジ及び長さ600μmの光共振器のリッジ型窒化ガリウム系半導体レーザを作製する。
この作製において、図4の(b)部に示されるように、エピタキシャル基板E上に、金属層の積層を形成する。積層の形成では、エピタキシャル基板E上にAl膜を蒸着し、このAl膜上にTi膜を蒸着する。Al膜の膜厚は例えば100nmであり、Ti膜の膜厚は例えば10nmである。次いで、図4の(c)部に示されるように、金属層の積層を形成した後に、エピタキシャル基板E上に、CVD法で絶縁膜OX(例えば厚さ200nmのシリコン酸化膜)を成長する。図4の(d)部に示されるように、例えば無機絶縁膜上に、リッジ形状を規定するパターンを有するマスクM1を形成する。本実施例では、マスクM1はレジストからなる。このレジストのマスクM1を用いて、図4の(e)部に示されるように、絶縁膜OX及び金属積層MTLをエッチングして、リッジパターンを有する積層体を形成する。エッチングとしてはICPドライエッチングを行うことができ、シリコン酸化物にはCHFガスのエッチャトを用い、金属積層にはClガスのエッチャトを用いる。エッチングによる作製された積層体は、リッジパターンを有する絶縁層OX及び金属積層MTLを含む。図4の(f)部に示されるように、レジストのマスクを除去して絶縁層を露出させて、複合マスクを完成する。複合マスクは、リッジパターンを有する絶縁層OX及び金属積層MTLを含む。複合マスクの最上層は絶縁層OXからなる。
図5の(a)部に示されるように、複合マスクを用いてエピタキシャル基板Eのエッチングを行う。エッチングとしてはICPドライエッチングを行うことができ、窒化物にはCl2ガスのエッチャトを用いる。リッジ構造の底は、p側の光ガイド層内に到達する。窒化物のエッチングの後に、図5の(b)部に示されるように、金属積層MTL内のAl層にサイドエッチングを施す。このエッチングとしてはICPドライエッチングを行うことができ、アルミニウムにはCl2ガスのエッチャトを用いる。図5の(c)部に示されるように、サイドエッチングの後に、リフトオフに先立って、保護膜のためのシリコン系無機絶縁膜SIO(例えば、厚さ300nmのシリコン酸化膜)を堆積する。図5の(d)部に示されるように、シリコン系無機絶縁膜SIOの作製の後に、リフトオフを行って、リッジ構造の上面を露出させる。リフトオフマスクを除去した後に、図5の(e)部に示されるように、リッジ構造の上面に合わせた開口を有する電極リフトオフのためのマスクM2を形成する。このリフトオフマスクM2は例えばレジストからなる。図5の(f)部に示されるように、電極リフトオフマスクM2を形成した後に、オーミック電極のための金属膜OHを堆積する。金属膜OHは、例えばPd、又はNi/Auからなることができる。
図6の(a)部に示されるように、リフトオフマスクを除去して、リッジ構造の上面を覆う金属ストライプを形成する。図6の(b)部に示されるように、基板生産物に含まれるエピタキシャル基板Eの裏面を研磨して、所望の厚さの基板生産物を作製する。研磨の後に、図6の(c)部に示されるように、研磨された裏面にエッチングを施して、研磨ダメージ層を除去する。このエッチングとしてはICPドライエッチングを行うことができ、研磨ダメージにはCl2ガスのエッチャトを用いる。図6の(d)部に示されるように、エッチング処理された基板裏面にn側電極CT(例えばTi/Al/Au)を形成する。必要な場合には、図6の(e)部に示されるように、電極のアニールのために、基板生産物の熱処理を行う。図6の(f)部に示されるように、金属ストライプに接触を成すパッド電極AN(例えばTi/Au)を形成する。
第2III族窒化物半導体領域をエッチングして半導体リッジを形成する。半導体リッジの加工は、ドライエッチングにより行われる。ドライエッチングによるエッチング量を変化させて、異なる半導体リッジの高さを有する複数の半導体レーザを作製する。半導体リッジの加工において、活性層と光ガイド層との界面から半導体リッジの底までの距離を値「D」として参照する。
電極を形成した後に、基板生産物の割断を行って光共振器のための端面(へき開面と異なる端面)を形成する。これらの端面上に誘電体多層膜を成膜する。誘電体多層膜はSiO/TiOからなる。これらの工程により、m軸方向に75度の角度で傾斜させた半極性GaN基板{20−21}面上に半導体レーザが作製される。この半導体レーザは520nm波長帯で発光できる。
この実施例と同一又は類似の作製条件を用いて、図7の(a)部、(b)部及び(c)部に示されるレーザ構造を検討する。エピタキシャル基板の構造としては以下のものがある。
n型クラッド層:n型InAlGaN、In組成0.02〜0.04、Al組成0.09〜0.21、膜厚1000〜1500nm。
n型光ガイド層:n型GaN、膜厚150〜350nm。
n側光ガイド層:n型/アンドープInGaN、膜厚を変化。
p側光ガイド層:アンドープInGaN、In組成0.015〜0.035、膜厚0〜100nm。
p型光ガイド層:p型InGaN、In組成0.015〜0.035、膜厚0〜100nm。
p型光ガイド層:p型GaN、膜厚150〜350nm。
p型クラッド層:p型AlGaN、Al組成0.03〜0.06、膜厚200〜600nm。
p型コンタクト層:p+型GaN、膜厚10〜100nm。
リッジ構造の幅(TOP): 1.0μm〜2.5μm。
絶縁膜(保護膜)の材料:SiO、膜厚150〜500nm。
n側InGaN光ガイド層にn型ドーパントが添加される場合には、n型ドーパント(例えばSi)の濃度は3×1017〜3×1018cm−3の範囲にあることができる。p型InGaN光ガイド層のp型ドーパント(例えばMg)の濃度は1×1018〜1×1019cm−3の範囲にあることができる。
n型InGaN光ガイド層が用いられるとき、そのIn組成は0.02〜0.06の範囲にあることが好ましい。n側半導体領域にアンドープInGaN光ガイド層が設けられるとき、そのIn組成は0.015〜0.035の範囲にあることが好ましい。p型InGaN光ガイド層が用いられるとき、そのIn組成は0.015〜0.035の範囲にあることは好ましい。
本件の実験では、リッジ構造の幅は2μmであり、リッジ構造の掘り量Dは例えば100nmである。図8は、上記構造のうちの一構造(図7の(a)部)におけるFFP広がり角、しきい値電流密度を示す図面である。図8の(a)部を参照すると、InGaN光ガイド層におけるIn組成とFFP広がり角との関係を示す。このグラフにおいて、「FFP_H」は水平方向における広がり角を示し、「FFP_V」は垂直方向における広がり角を示す。図8の(b)部を参照すると、InGaN光ガイド層における厚さとFFP広がり角との関係を示す。このグラフにおいて、「FFP_H」は水平方向における広がり角を示し、「FFP_V」は垂直方向における広がり角を示す。n側のInGaN層に関しては、FFP広がり角は、In組成よりは膜厚に大きく依存する。
図8の(a)部のリスト。
In組成、FFP_H(度)、FFP_V(度)。
2.5、 13.66、 23.8。
4.5、 13.52、 24.9。
5.5、 13.44、 25.6。
6.5、 13.36、 26.2。
図8の(b)部のリスト。
層厚、 FFP_H(度)、FFP_V(度)。
144、 13.66、 23.8。
201、 13.29、 23.7。
259、 12.88、 23.5。
288、 12.66、 23.4。
360、 12.12、 23.0。
450、 11.39、 22.4。
600、 10.12、 21.4。
図8の(c)部を参照すると、InGaN光ガイド層における厚さとしきい値電流密度との関係を示す。InGaN膜厚が大きくなるにつれて、まず、しきい値電流が低下していく。n側のInGaN光ガイド層の厚みを増加させることによって、p側光ガイド層に対するn側光ガイド層の厚みが相対的に厚くなるとき、レーザ導波路を伝搬する光がp側光ガイド層やp型クラッド層のp型ドーパントにより吸収される比率を下げることができる。これは、結果的にしきい値電流を低下させることに役立つ。一方、n型ドーパントはレーザ導波路を伝搬する光をほとんど吸収しない。これ故に、この範囲におけるしきい値電流の低減は、半導体レーザの特性において好適なものである。
図8の(c)部のリスト。
層厚、 しきい値電流密度(A/cm)。
144、 5.00。
201、 4.66。
259、 4.47。
288、 4.40。
360、 4.33。
450、 4.36。
600、 4.61。
n側半導体領域におけるn型InGaN層のn型ドーパント濃度がp側半導体領域におけるp型InGaN層のp型ドーパント濃度より低い。これ故に、n型InGaN層に起因する光吸収量は低い。n側InGaN光ガイド層の膜厚を増加させていくと、小さい光吸収を示すn側InGaNガイド層内に存在する光の割合が多くなるので、導波路全体の光吸収が低下し、しきい値電流が低下する。しかし、n側InGaN光ガイド層の膜厚をさらに増加させると、しきい値電流が増加する。
図9は、予備的な実験として行ったシミュレーション結果を示す。図9の(a)部、(b)部及び(c)部は、それぞれ、厚さ144nm、216nm及び288nmのn側InGaN層(In組成0.045)における伝搬光の広がりを示す。InGaN層が厚くなるにつれて、リッジ構造内への光の広がりが小さくなっている。これは、p型半導体領域によって吸収される光量の低減に可能にする。また、井戸層中の光振幅も変化されている。
一方、図8の(c)部のグラフにおいてしきい値電流が最小値をとった後には、InGaN膜厚が大きくなるにつれて、しきい値電流は増加する。レーザ導波路における伝搬光の大部分が活性層から外れて導波する状態では、井戸層内に存在する光の割合が低下して光増幅が起こりにくくなり、しきい値電流は増加すると考えられる。
水平方向のFFP広がり角が例えば12度以下であるという基準に基づくとき、発明者のいくつかの実験から、n側InGaN層の厚さは370nm以上であることが好ましい。厚いInGaN層は格子緩和を生じることがある。これを避けるために、n側InGaN層の厚さは550nm以下であることが好ましい。
また、FFP広がり角とは別にしきい値電流密度が好適な厚さの範囲として、このInGaN層は100nm以上であり、800nm以下であることが好ましい。
図10は、本実施の形態に係る窒化物半導体発光素子を作製する方法における主要な工程フロー100を示す図面である。工程フロー100は、エピタキシャル基板の作製工程200と電極及びリッジ構造の作製工程300とを含む。以下の説明では、理解を容易にするために、図1に示された半導体レーザに付された参照符号を用いる。また、結晶成長には、例えば有機金属気相成長法を用いることができる。エピタキシャル基板の作製工程200は、以下の工程を含む。工程S100では、半極性主面を有するIII族窒化物半導体ウエハを準備する。工程S101では、第1III族窒化物半導体領域13をこのウエハの主面上に成長する。例えば、工程S102では、第1クラッド層23を成長する。第1クラッド層23は、六方晶系のIII族窒化物半導体からなり半極性面13aを有する。工程S103では、第1クラッド層23の半極性面23a上に光ガイド層21を成長する。工程S104では、第1クラッド層23の半極性面23a上に光ガイド層21bを成長する。工程S105では、光ガイド層21bの半極性面上に光ガイド層21aを成長する。光ガイド層21aは、III族構成元素としてインジウムを含む窒化ガリウム半導体を備える。第1光ガイド層21aの厚さは370nm以上である。光ガイド層21aの材料は光ガイド層21bの材料と異なる。
次いで、工程S106では、第1光ガイド層21aの成長の後に、窒化ガリウム系半導体の活性層15を形成する。活性層15の発振波長は、400nm以上550nm以下である。
次いで、工程S107では、活性層15の成長の後に、第2III族窒化物半導体領域17を形成する。第2III族窒化物半導体領域17は、光ガイド層25a、第2導電型のIII族窒化物半導体からなる第2クラッド層27、及びp型コンタクト層29を含む。工程S108では、活性層15の半極性面上に光ガイド層25(例えば光ガイド層25a)を成長する。光ガイド層25aの厚さは光ガイド層21aの厚さより薄い。光ガイド層25は、光ガイド層25a及び光ガイド層25bを含む。工程S109では、光ガイド層25a上に光ガイド層25bを成長する。工程S110では、光ガイド層25上に第2クラッド層27を成長する。工程S111では、第2クラッド層27の半極性面上にコンタクト層29を成長する。これらの工程により、エピタキシャル基板が作製される。
電極及びリッジ構造の作製工程300において、第2III族窒化物半導体領域17がリッジ構造を有すると共にリッジ構造上電極を有するように、基板線産物が作製される。
この作製方法によれば、所望の電流閉じ込め性及び所望の光閉じ込め性に半導体レーザ素子の特性を近づけることを可能にする構造を有するIII族窒化物半導体レーザ素子を作製できる。これらの工程は、例えば図4〜図6に示された工程に従って行われることができる。
図11は、本実施の形態に係る窒化物半導体発光素子を作製する方法における主要な工程フロー400を示す図面である。
まず、工程S201では、六方晶系のIII族窒化物からなる主面を有する複数の基板を準備する。これらの基板は、例えば既に説明したGaNウエハであることができ、その主面は例えば{20−21}面を有することができる。工程S202では、準備した基板の主面の各々から複数の試行用エピタキシャル基板を作製する。この作製では、基板の主面上に、第1クラッド層及び第1光ガイド層を有する第1III族窒化物半導体領域を成長し、次いで、窒化ガリウム系半導体からなる活性層を成長し、これらの後に、第2クラッド層及び第2光ガイド層を有する第2III族窒化物半導体領域を成長する。これらの成長により、個々の基板の主面上に半導体積層が形成される。これらの半導体積層では第1光ガイド層の厚さ及び/又はIn組成が互いに異なる。工程S203では、試行用エピタキシャル基板にリッジ構造及び電極を形成して、複数の試行用基板生産物を作製する。リッジ構造及び電極の形成には、限定されるものではないが、例えば上記の実施例において説明された工程が適用されることができる。工程S204では、複数の試行用基板生産物の遠視野像の評価を行って、遠視野像と第1光ガイド層の厚さ(及び/又はIn組成)との関係を得る。これに加えて、或いはこれと独立して、試行用基板生産物のレーザ発振のためのしきい値電流の評価を行って、しきい値電流と第1光ガイド層の厚さ(及び/又はIn組成)との関係を得ることができる。工程S205では、評価の結果を用いて、当該窒化ガリウム系半導体レーザ素子のための第1光ガイド層の厚さを決定する。この工程では、遠視野像の評価結果及びしきい値電流の評価結果を利用して、第1光ガイド層の厚さが決定されることができる。工程S206では、第1光ガイド層が決定された厚さを有するように、当該窒化ガリウム系半導体レーザ素子のためのエピタキシャル基板及び基板生産物を作製する。エピタキシャル基板及び基板生産物の作製には、限定されるものではないが、例えば上記の実施例において説明された工程が適用されることができる。
この窒化ガリウム系半導体レーザ素子を製造する方法によれば、所望の光閉じ込め性に半導体レーザ素子の特性を近づけることを可能にする構造を有するIII族窒化物半導体レーザ素子を提供できる。また、この窒化ガリウム系半導体レーザ素子を製造する方法によれば、所望の電流閉じ込め性及び所望の光閉じ込め性に半導体レーザ素子の特性を近づけることを可能にする構造を有するIII族窒化物半導体レーザ素子を提供できる。
基板の準備においては、基板の主面の法線が基板のIII族窒化物のc軸に対して傾斜を成し、この傾斜の傾斜角は10度以上80度以下の範囲にあることができる。
また、リッジ構造の形成においては、リッジ構造の底が第2III族窒化物半導体領域内の第2光ガイド層に位置する程度に深いリッジ構造を採用してもよい。さらに、リッジ構造の底と活性層との間隔は150nm以下であることが好ましい。この作製方法によれば、リッジ構造の底と活性層との間隔は150nm以下であるとき、リッジ構造の幅が電流閉じ込めだけでなく、光閉じ込めにも比較的大きく寄与する。
本発明は、本実施の形態に開示された特定の構成に限定されるものではない。
以上説明したように、本実施の形態によれば、所望の電流閉じ込め性及び所望の光閉じ込め性に半導体レーザ素子の特性を近づけることを可能にする構造を有するIII族窒化物半導体レーザ素子が提供される。また、本実施の形態によれば、このIII族窒化物半導体レーザ素子を作製する方法が提供される。
11…窒化物半導体発光素子、13…第1のIII族窒化物半導体領域、15…活性層、17…第2III族窒化物半導体領域、19…電極、21…光ガイド層、23…n型クラッド層、25…光ガイド層、27…p型クラッド層、29…p型コンタクト層、Ax…積層軸、31…コア領域、HJ1、HJ2、HJ3…ヘテロ接合、33a…井戸層、33b…障壁層、35…半導体リッジ、BOTTOM…半導体リッジの底、37a、37b…端面、39…基板、39a…半極性主面、Angle…傾斜角、Sc…基準面。

Claims (30)

  1. III族窒化物半導体レーザ素子であって、
    六方晶系のIII族窒化物半導体からなり半極性面を有する第1III族窒化物半導体領域と、
    前記第1III族窒化物半導体領域の前記半極性面上に設けられた活性層と、
    前記第1III族窒化物半導体領域の前記半極性面上に設けられた第2III族窒化物半導体領域と、
    を備え、
    前記活性層は前記第1III族窒化物半導体領域と前記第2III族窒化物半導体領域との間に設けられ、
    前記活性層の発振波長は400nm以上550nm以下の範囲にあり、
    前記第1III族窒化物半導体領域は、第1導電型のIII族窒化物半導体からなる第1クラッド層と第1光ガイド層とを含み、
    前記第1光ガイド層は、III族構成元素としてインジウムを含む窒化ガリウム半導体を備え、
    前記第2III族窒化物半導体領域は、第2導電型のIII族窒化物半導体からなる第2クラッド層と第2光ガイド層とを含み、
    前記第2光ガイド層の厚さは、前記第1光ガイド層の厚さより薄く、
    前記第1光ガイド層の厚さは370nm以上であり、
    前記第2III族窒化物半導体領域はリッジ構造を有する、III族窒化物半導体レーザ素子。
  2. 前記第1光ガイド層の膜厚は550nm以下である、請求項1に記載されたIII族窒化物半導体レーザ素子。
  3. 前記第1III族窒化物半導体領域の前記半極性面の法線は、前記第1III族窒化物半導体領域の前記III族窒化物半導体のc軸に対して傾斜を成し、
    前記傾斜の傾斜角は10度以上80度以下の範囲にある、請求項1又は請求項2に記載されたIII族窒化物半導体レーザ素子。
  4. 前記リッジ構造の底は、前記第2III族窒化物半導体領域内の前記第2光ガイド層に位置する、請求項1〜請求項3のいずれか一項に記載されたIII族窒化物半導体レーザ素子。
  5. 前記リッジ構造の底と前記活性層との間隔は150nm以下である、請求項1〜請求項4のいずれか一項に記載されたIII族窒化物半導体レーザ素子。
  6. 前記活性層の発振波長は480nm以上550nm以下の範囲にある、請求項1〜請求項5のいずれか一項に記載されたIII族窒化物半導体レーザ素子。
  7. 前記活性層の発振波長は510nm以上540nm以下の範囲にある、請求項1〜請求項6のいずれか一項に記載されたIII族窒化物半導体レーザ素子。
  8. 前記リッジ構造は、前記第1III族窒化物半導体領域の前記半極性面の法線と、前記第1III族窒化物半導体領域の前記III族窒化物半導体のm軸とにより規定されるm−n面に沿って延在する、請求項1〜請求項7のいずれか一項に記載されたIII族窒化物半導体レーザ素子。
  9. 前記第1光ガイド層は三元InGaNからなり、
    前記活性層は、三元InGaN層を含む、請求項1〜請求項8のいずれか一項に記載されたIII族窒化物半導体レーザ素子。
  10. 前記活性層はInGaN井戸層を含み、
    前記第1光ガイド層のインジウム組成は、前記InGaN井戸層のインジウム組成より小さく、
    前記第1光ガイド層のインジウム組成は2%以上である、請求項1〜請求項9のいずれか一項に記載されたIII族窒化物半導体レーザ素子。
  11. 前記活性層は、InGaN井戸層を含み、
    前記第1光ガイド層のインジウムの組成は6%以下であり、前記InGaN井戸層のインジウム組成より小さい、請求項1〜請求項10のいずれか一項に記載されたIII族窒化物半導体レーザ素子。
  12. 前記第1III族窒化物半導体領域は、第3光ガイド層を更に含み、
    前記第3光ガイド層はInGaNと異なる材料を備え、
    前記第3光ガイド層は前記第1光ガイド層と前記第1クラッド層との間に設けられ、
    前記第1光ガイド層の厚さは前記第3光ガイド層の厚さより大きい、請求項1〜請求項11のいずれか一項に記載されたIII族窒化物半導体レーザ素子。
  13. 前記リッジ構造の上面に設けられたオーミック電極を更に備え、
    前記第2III族窒化物半導体領域は、第2導電型のIII族窒化物半導体からなるコンタクト層を更に含み、
    前記第2クラッド層は、前記コンタクト層と前記第2光ガイド層との間に設けられ、
    前記オーミック電極は前記コンタクト層に接触を成す、請求項1〜請求項12のいずれか一項に記載されたIII族窒化物半導体レーザ素子。
  14. 前記オーミック電極はパラジウムを備える、請求項13に記載されたIII族窒化物半導体レーザ素子。
  15. 前記リッジ構造の上面に合わせた開口を有すると共に前記第1III族窒化物半導体領域の表面を覆う保護膜と、
    前記オーミック電極の上面を覆うと共に前記保護膜上に設けられたパッド電極と、
    を更に備え、
    前記保護膜は前記リッジ構造の側面を覆っており、
    前記保護膜の屈折率は前記第2III族窒化物半導体領域の屈折率より小さく、
    前記オーミック電極は、前記保護膜の前記開口を介して前記第2III族窒化物半導体領域に接触を成す、請求項14に記載されたIII族窒化物半導体レーザ素子。
  16. 六方晶系のIII族窒化物からなる半極性主面を有する基板を更に備え、
    前記第1III族窒化物半導体領域、前記活性層及び前記第2III族窒化物半導体領域は、前記基板の前記半極性主面の法線方向に配置される、請求項1〜請求項15のいずれか一項に記載されたIII族窒化物半導体レーザ素子。
  17. 前記基板の前記半極性主面の法線は、前記基板の前記III族窒化物のc軸に対して傾斜を成し、
    前記傾斜の傾斜角は63度以上80度以下の範囲にある、請求項16に記載されたIII族窒化物半導体レーザ素子。
  18. 前記基板は、GaN、InGaN、AlGaN、及びInAlGaNのいずれかである六方晶系の導電性III族窒化物を備える、請求項17に記載されたIII族窒化物半導体レーザ素子。
  19. 前記第1クラッド層は、n導電性のInX1AlY1Ga1−X1−Y1N(0<X1<0.05、0<Y1<0.20)である、請求項1〜請求項18のいずれか一項に記載されたIII族窒化物半導体レーザ素子。
  20. 前記第2クラッド層は、p導電性のInX2AlY2Ga1−X2−Y2N(0<X2<0.05、0<Y2<0.20)である、請求項1〜請求項19のいずれか一項に記載されたIII族窒化物半導体レーザ素子。
  21. III族窒化物半導体レーザ素子を作製する方法であって、
    六方晶系のIII族窒化物半導体からなり半極性面を有する第1クラッド層を成長する工程と、
    前記第1クラッド層の前記半極性面上に第1光ガイド層を成長する工程と、
    前記第1光ガイド層の成長の後に、窒化ガリウム系半導体の活性層を形成する工程と、
    前記活性層の成長の後に、リッジ構造を有するIII族窒化物半導体領域を形成する工程と、
    を備え、
    前記活性層の発振波長は、400nm以上550nm以下であり、
    前記第1光ガイド層は、III族構成元素としてインジウムを含む窒化ガリウム半導体を備え、
    前記第1光ガイド層の厚さは370nm以上である、III族窒化物半導体レーザ素子を作製する方法。
  22. 前記第1光ガイド層の膜厚は550nm以下である、請求項21に記載されたIII族窒化物半導体レーザ素子を作製する方法。
  23. 前記第1クラッド層の前記半極性面の法線は、前記第1クラッド層の前記III族窒化物半導体のc軸に対して傾斜を成し、
    前記傾斜の傾斜角は10度以上80度以下の範囲にある、請求項21又は請求項22に記載されたIII族窒化物半導体レーザ素子を作製する方法。
  24. 前記III族窒化物半導体領域は第2クラッド層及び第2光ガイド層を含み、
    前記リッジ構造の底は、前記III族窒化物半導体領域内の前記第2光ガイド層に位置する、請求項21〜請求項23のいずれか一項に記載されたIII族窒化物半導体レーザ素子を作製する方法。
  25. 前記リッジ構造の底と前記活性層との間隔は150nm以下である、請求項21〜請求項24のいずれか一項に記載されたIII族窒化物半導体レーザ素子を作製する方法。
  26. 窒化ガリウム系半導体レーザ素子を製造する方法であって、
    六方晶系のIII族窒化物からなる主面を有する複数の基板を準備する工程と、
    第1クラッド層及び第1光ガイド層を有する第1III族窒化物半導体領域、窒化ガリウム系半導体からなる活性層、並びに、第2クラッド層及び第2光ガイド層を有する第2III族窒化物半導体領域を含む半導体積層を前記基板の前記主面上に成長して、前記第1光ガイド層の厚さが互いに異なる複数の試行用エピタキシャル基板を作製する工程と、
    前記複数の試行用エピタキシャル基板にリッジ構造及び電極を形成して、複数の試行用基板生産物を作製する工程と、
    前記複数の試行用基板生産物の遠視野像の評価を行って、前記遠視野像と前記第1光ガイド層の前記厚さとの関係を得る工程と、
    前記評価の結果を用いて、当該窒化ガリウム系半導体レーザ素子のための第1光ガイド層の厚さを決定する工程と、
    前記第1光ガイド層が前記決定された厚さを有するように、当該窒化ガリウム系半導体レーザ素子のためのエピタキシャル基板を作製する工程と、
    を備えるIII族窒化物半導体レーザ素子を作製する方法。
  27. 前記基板の主面の法線は、前記基板の前記III族窒化物のc軸に対して傾斜を成し、
    前記傾斜の傾斜角は10度以上80度以下の範囲にある、請求項26に記載されたIII族窒化物半導体レーザ素子を作製する方法。
  28. 前記リッジ構造の底は、前記第2III族窒化物半導体領域内の前記第2光ガイド層に位置する、請求項26又は請求項27に記載されたIII族窒化物半導体レーザ素子を作製する方法。
  29. 前記リッジ構造の底と前記活性層との間隔は150nm以下である、請求項26〜請求項28のいずれか一項に記載されたIII族窒化物半導体レーザ素子を作製する方法。
  30. 前記複数の試行用基板生産物のレーザ発振のためのしきい値電流の評価を行って、前記しきい値電流と前記第1光ガイド層の前記厚さとの関係を得る工程を更に備え、
    前記第1光ガイド層の厚さを決定する前記工程では、前記遠視野像の評価結果及び前記しきい値電流の評価結果を利用して、前記第1光ガイド層の前記厚さが決定される、請求項26〜請求項29のいずれか一項に記載されたIII族窒化物半導体レーザ素子を作製する方法。
JP2012158683A 2012-07-17 2012-07-17 Iii族窒化物半導体レーザ素子、iii族窒化物半導体レーザ素子を作製する方法 Expired - Fee Related JP5626279B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012158683A JP5626279B2 (ja) 2012-07-17 2012-07-17 Iii族窒化物半導体レーザ素子、iii族窒化物半導体レーザ素子を作製する方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012158683A JP5626279B2 (ja) 2012-07-17 2012-07-17 Iii族窒化物半導体レーザ素子、iii族窒化物半導体レーザ素子を作製する方法

Publications (2)

Publication Number Publication Date
JP2014022506A true JP2014022506A (ja) 2014-02-03
JP5626279B2 JP5626279B2 (ja) 2014-11-19

Family

ID=50197075

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012158683A Expired - Fee Related JP5626279B2 (ja) 2012-07-17 2012-07-17 Iii族窒化物半導体レーザ素子、iii族窒化物半導体レーザ素子を作製する方法

Country Status (1)

Country Link
JP (1) JP5626279B2 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2017017928A1 (ja) * 2015-07-30 2018-05-17 パナソニック株式会社 窒化物半導体レーザ素子
WO2019130655A1 (ja) * 2017-12-26 2019-07-04 パナソニック株式会社 窒化物半導体レーザ素子
WO2022172797A1 (ja) * 2021-02-12 2022-08-18 ヌヴォトンテクノロジージャパン株式会社 窒化物系半導体発光素子
JP7323786B2 (ja) 2019-01-17 2023-08-09 日亜化学工業株式会社 半導体レーザ素子

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070002914A1 (en) * 2005-06-27 2007-01-04 Samsung Electronics Co., Ltd. Semiconductor laser diode having an asymmetric optical waveguide layer
JP2010114418A (ja) * 2008-10-07 2010-05-20 Sumitomo Electric Ind Ltd 窒化ガリウム系半導体発光素子、窒化ガリウム系半導体発光素子を作製する方法、窒化ガリウム系発光ダイオード、エピタキシャルウエハ、及び窒化ガリウム系発光ダイオードを作製する方法
WO2011023625A1 (de) * 2009-08-28 2011-03-03 Osram Opto Semiconductors Gmbh Kantenemittierender halbleiterlaser

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070002914A1 (en) * 2005-06-27 2007-01-04 Samsung Electronics Co., Ltd. Semiconductor laser diode having an asymmetric optical waveguide layer
JP2010114418A (ja) * 2008-10-07 2010-05-20 Sumitomo Electric Ind Ltd 窒化ガリウム系半導体発光素子、窒化ガリウム系半導体発光素子を作製する方法、窒化ガリウム系発光ダイオード、エピタキシャルウエハ、及び窒化ガリウム系発光ダイオードを作製する方法
WO2011023625A1 (de) * 2009-08-28 2011-03-03 Osram Opto Semiconductors Gmbh Kantenemittierender halbleiterlaser

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2017017928A1 (ja) * 2015-07-30 2018-05-17 パナソニック株式会社 窒化物半導体レーザ素子
WO2019130655A1 (ja) * 2017-12-26 2019-07-04 パナソニック株式会社 窒化物半導体レーザ素子
JPWO2019130655A1 (ja) * 2017-12-26 2020-12-10 パナソニック株式会社 窒化物半導体レーザ素子
JP7323786B2 (ja) 2019-01-17 2023-08-09 日亜化学工業株式会社 半導体レーザ素子
WO2022172797A1 (ja) * 2021-02-12 2022-08-18 ヌヴォトンテクノロジージャパン株式会社 窒化物系半導体発光素子

Also Published As

Publication number Publication date
JP5626279B2 (ja) 2014-11-19

Similar Documents

Publication Publication Date Title
US7408199B2 (en) Nitride semiconductor laser device and nitride semiconductor device
JP4720834B2 (ja) Iii族窒化物半導体レーザ
US8731016B2 (en) Nitride semiconductor light emitting device
JP5139555B2 (ja) 窒化物半導体レーザ、及びエピタキシャル基板
JP2006128661A (ja) 窒化物系半導体レーザ
JP5626279B2 (ja) Iii族窒化物半導体レーザ素子、iii族窒化物半導体レーザ素子を作製する方法
JP2006165407A (ja) 窒化物半導体レーザ素子
JP3604278B2 (ja) 窒化物半導体レーザー素子
JP2014090090A (ja) Iii族窒化物半導体レーザ素子、iii族窒化物半導体レーザ素子を作製する方法
JP5624166B2 (ja) 窒化物半導体ウェハ
US8923354B2 (en) Nitride semiconductor laser, epitaxial substrate
JP2003060319A (ja) 窒化物系半導体レーザ素子
JP2009218623A (ja) Iii族窒化物半導体レーザ及びiii族窒化物半導体レーザを作製する方法
JP2008187034A (ja) Iii−v族窒化物半導体レーザ素子
JP2009105466A (ja) 窒化物半導体ウェハ及び窒化物半導体素子の製造方法
JP3334624B2 (ja) 窒化物半導体レーザ素子
JP7363917B2 (ja) 半導体レーザ素子および半導体レーザ素子の製造方法
JP5733295B2 (ja) 窒化物半導体発光素子、窒化物半導体発光素子を作製する方法
JP4973261B2 (ja) 窒化物半導体素子およびその製造方法
JP2014086507A (ja) 窒化物半導体レーザ、窒化物半導体レーザを作製する方法
JP3889772B2 (ja) 窒化物系半導体発光素子
JP4024259B2 (ja) 窒化物系半導体発光素子
JP4812649B2 (ja) 窒化物系半導体発光素子及びその製造方法
JP2003101155A (ja) 窒化物半導体レーザ素子
JP2011054786A (ja) 半導体レーザ

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140121

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140317

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140902

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140915

R150 Certificate of patent or registration of utility model

Ref document number: 5626279

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees