JP2014017982A - 充放電電力配分方法、及び電池コントローラ - Google Patents

充放電電力配分方法、及び電池コントローラ Download PDF

Info

Publication number
JP2014017982A
JP2014017982A JP2012154101A JP2012154101A JP2014017982A JP 2014017982 A JP2014017982 A JP 2014017982A JP 2012154101 A JP2012154101 A JP 2012154101A JP 2012154101 A JP2012154101 A JP 2012154101A JP 2014017982 A JP2014017982 A JP 2014017982A
Authority
JP
Japan
Prior art keywords
secondary battery
power distribution
battery
charge
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012154101A
Other languages
English (en)
Inventor
Masahiro Tohara
正博 戸原
Makoto Ide
誠 井出
Asami Mizutani
麻美 水谷
Tamotsu Endo
保 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2012154101A priority Critical patent/JP2014017982A/ja
Publication of JP2014017982A publication Critical patent/JP2014017982A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

【課題】劣化特性についてのSOC依存性が異なる異種二次電池を組み合わせたハイブリッド電池において、各二次電池が本来持つ性能を制約することなく、各二次電池の寿命を延命化する。
【解決手段】劣化速度が低SOC領域よりも高SOC領域で速い二次電池2Aと劣化速度が高SOC領域よりも低SOC領域で速い二次電池2Bとを並列接続したハイブリッド電池において、放電時、二次電池2Aが所定の高SOC超である場合には、それ以外の放電時の電力配分比よりも、二次電池2Aへの放電電力配分比を高くし、充電時、二次電池2Bが所定の低SOC未満である第2の場合には、それ以外の充電時の電力配分比よりも記二次電池2Bへの充電電力配分比を高くする。
【選択図】図2

Description

本発明の実施形態は、劣化速度が低SOC領域よりも高SOC領域で速い二次電池と劣化速度が高SOC領域よりも低SOC領域で速い二次電池とを並列接続したハイブリッド電池の充放電電力配分方法、及びハイブリッド電池に対する電池コントローラに関する。
二次電池の応用範囲は多岐にわたっている。例えば、ハイブリット車(HEV)、電気自動車(EV)、あるいはプラグインハイブリット車(PHEV)等の車両用電源用途、太陽光や風力等の自然エネルギーを利用した発電あるいは負荷の変動抑制用途、変電所の平準化用途、電力需要の変動抑制、ピークシフト用途等を挙げることができる。
二次電池は、必要な電圧値や電流値を得るために複数の電池セルが直並列に接続されて使用されることが多い。近年では、特性の異なる異種の二次電池を組み合わせてなる所謂ハイブリッド電池についての検討と実証が進められている。単一種類の均一な特性の電池のみを組み合わせるのではなく、特性の異なる異種の二次電池を組み合わせて、それぞれの特性を生かした使い方をすることによって、電池システム全体としての性能を高める、或いは寿命を延ばすことを目指すものである。
例えば、異なる特性の電池を組合せたハイブリッド電池に関しては、特許文献1に示されているように、鉛電池とキャパシタとを電池セルのレベルでハードウェア的に並列接続したものが提示されている。
このようなハイブリッド電池において提案されている寿命延命化策は、例えば、密閉型ニッケル水素電池とキャパシタとのハイブリッド電池においては、急激な充放電指令電流値の変化に対して内部抵抗の違いによってキャパシタ側が多く負担するように電流を配分することにより、NiMH側の寿命を延命するものである。
その他、寿命延命化策としては、二次電池全般まで拡げると、特許文献2に示されているように、二次電池セルの容量劣化を抑制するために、劣化した二次電池に優先的に冷却風を配分することも提案されている。更には、特許文献3に示されているように、組電池の電力分配方法として、直列または直並列に接続した組電池に回生充電が行われる際、バイパス回路で充電量を制御することで特定電池の劣化を防止する方策が提案されている。
特開2011−95023号公報 特開2010−193588号公報 特開平09−182307号公報
しかしながら、現状ハイブリッド電池において提案されている寿命延命化策は、単純に充放電回数に由来するサイクル劣化に対応したものであり、劣化特性にSOC依存性がある場合のカレンダ劣化の解決策を与えるものではない。例えば、鉛電池やリチウムイオン電池のハイブリッド電池においては、鉛電池やリチウムイオン電池の劣化特性に大きく影響を与えるのはSOCであるが、このSOCの影響は配慮されてはいない。
また、単一電池を利用した変動抑制用途では、目標SOCを定め、SOCが極力その目標値に近づくように充放電に制約をかけるSOC制御も提案されている。これは本来の二次電池の充放電性能に制約をかけ、容量などの性能をフルに活かせないことになり、ハイブリッド電池として目指すべき個々特性に対応した寿命延命化方策とはいえない。
本発明の実施形態は、上記の課題を解消するために提案されたものであり、劣化特性についてのSOC依存性が異なる複数種類の二次電池を組み合わせたハイブリッド電池において、各二次電池が本来持つ性能を制約することなく、各二次電池の寿命を延命化する充放電電力配分方法及び電池コントローラを提供することを目的としている。
上記目的を達成するために、実施形態の充電電力配分方法は、劣化速度が低SOC領域よりも高SOC領域で速い二次電池Aと劣化速度が高SOC領域よりも低SOC領域で速い二次電池Bとを並列接続したハイブリッド電池の充放電電力配分方法であって、放電時、前記二次電池Aが所定の高SOC超である第1の場合には、それ以外の放電時の電力配分比よりも、前記二次電池Aへの放電電力配分比を高くし、充電時、前記二次電池Bが所定の低SOC未満である第2の場合には、それ以外の充電時の電力配分比よりも、前記二次電池Bへの充電電力配分比を高くすること、を特徴とする。
また、上記目的を達成するために、実施形態の電池コントローラは、劣化速度が低SOC領域よりも高SOC領域で速い二次電池Aと劣化速度が高SOC領域よりも低SOC領域で速い二次電池Bとが並列接続されてなるハイブリッド電池に対する電池コントローラであって、
前記ハイブリッド電池に対する充電又は放電の指令値を受け取る入力部と、前記指令値に対応する充電電力又は放電電力を前記二次電池A及び前記二次電池Bに配分する配分量算出部と、を備え、前記配分量算出部は、放電時、前記二次電池Aが所定の高SOC超である第1の場合には、それ以外の放電時の電力配分比よりも、前記二次電池Aへの放電電力配分比を高くし、充電時、前記二次電池Bが所定の低SOC未満である第2の場合には、それ以外の充電時の電力配分比よりも、前記二次電池Bへの充電電力配分比を高くすること、を特徴とする。
第1の実施形態に係る電池システムの構成を示すブロック図である。 充放電電力配分のアルゴリズムを示す模式図である。 電池コントローラと電池別制御部の詳細構成を示すブロック図である。 電圧とSOCの関係を示すグラフである。 二次電池の種類毎に劣化速度が急増する閾値が記憶されている状態を示す模式図である。 二次電池の定格容量が記憶されている状態を示す模式図である。 第1の実施形態に係り、配分比補正係数r及びrの具体値が分類されて記憶されている状態を示す模式図である。 充放電電力配分方法を示すフローチャートである。 第1の実施形態に係り、ハイブリッド電池を構成する二次電池が同一種類である場合の充放電電力配分を示す模式図である。 第1の実施形態に係り、一方の二次電池が高出力特性を有し、他方の二次電池が相対的に低出力特性である場合の充放電電力配分を示す模式図である。 第1の実施形態に係り、2種の二次電池の両SOCが劣化急進領域にない状態での放電電力配分を示す模式図である。 第1の実施形態に係り、劣化速度が高SOC領域よりも低SOC領域で速い二次電池のSOCが劣化急進領域にある状態で充電電力配分を示す模式図である。 第1の実施形態に係り、2種の二次電池の両SOCが劣化急進領域にない状態での充電電力配分を示す模式図である。 第1の実施形態に係り、劣化速度が高SOC領域よりも低SOC領域で速い二次電池のSOCが劣化急進領域にある状態で其の電池が満充電となっている状態での充電電力配分を示す模式図である。 第1の実施形態に係り、劣化速度が低SOC領域よりも高SOC領域で速い二次電池のSOCが劣化急進領域にある状態で放電電力配分を示す模式図である。 第2の実施形態に係る電池システムの構成を示すブロック図である。 第3の実施形態に係り、配分比補正係数r及びrの具体値が分類されて記憶されている状態を示す模式図である。 第4の実施形態に係り、2種の二次電池の放電電力配分を示す模式図である。 第4の実施形態に係り、優先放電される二次電池が空の場合の放電電力配分を示す模式図である。 第4の実施形態に係り、2種の二次電池の充電電力配分を示す模式図である。 第4の実施形態に係り、優先充電される二次電池が満充電の場合の放電電力配分を示す模式図である。
以下、本実施形態に係る電力システムが備える電池コントローラの充放電電力配分方法に係る実施の形態について、図面を参照して具体的に説明する。
(第1の実施形態)
(全体構成)
図1は、本実施形態に係る電池システム1の構成を示すブロック図である。図1に示すように、電池システム1は、上位システムであるEMS(Energy Management System)より充放電指令を受けて、電池の充放電を行うシステムである。この電池システム1には、複数の二次電池2A、2B・・・が直流バス9に並列に接続されて設置される。
直流バス9は、その他、発電機、負荷、電力系統等に接続されており、二次電池2A、2B・・・に対して充放電が可能となっている。発電機としては、太陽光発電機、風力発電機、燃料電池、負荷としては、電気自動車やハイブリッド車両の電源、家庭用電源、その他の各種が挙げられる。また、負荷の一例としては系統電力網が含まれる。
二次電池2A、2B・・・は、それぞれが単一の蓄電池セル21、22又は直列接続された複数の蓄電池セル21、22群である。尚、本実施形態では、説明の都合上、電池システム1が二次電池2A、2Bを有するものとする。
この二次電池2A、2Bは、電池の種類が異なり、ハイブリッド電池を構成している。例えば、二次電池2Aはリチウムイオン電池であり、二次電池2Bは鉛電池である。そのため、二次電池2A、2Bとでは、電池の特性が異なり、特に劣化に対するSOC依存性が異なる。リチウムイオン電池である二次電池2Aは、一般に、高入出力、高容量単価であり、特に劣化速度が高SOC側で速い。一方、鉛電池である二次電池2Bは、一般に、リチウムイオン電池に比べて入出力能力は低いが、低容量単価であり、劣化速度は低SOC側で速い。SOCは、State Of Chargeの略であり、定格充電容量に対する残容量の割合である。
この二次電池2A、2Bに対して充放電を制御する電池システム1は、電池コントローラ3と、電池別制御部4A、4Bと、各種のセンサを備えている。各種センサは、電池システム1では、各電池セルに並列接続された電圧測定部5、二次電池2A、2Bの各一端に接続された電流測定部6、二次電池2A、2Bのそれぞれ近傍に設置された温度測定部7である。
電池コントローラ3は、プロセッサ、メモリ、及び通信インターフェースを含み構成され、電池コントローラ3と、制御信号や電池情報信号を送受信するための信号線8で電池別制御部4A、4B及び各種センサと接続されている。信号線8は、例えばSMBus通信方式が利用され、2つの通信ラインであるデータラインとクロックラインを有し、データ信号等を送受信する。
この電池コントローラ3は、EMSからの充放電指令を受信して、二次電池2A、2Bの充放電制御を統括する。すなわち、電池コントローラ3は、充放電指令が示す充放電力量の二次電池2A、2Bへの配分を決定し、その配分量を電池別制御部4A、4Bに指示する。充放電電力配分の決定に際しては、二次電池2A、2Bの電池特性、特に劣化のSOC依存特性、及び各種センサが示す状況を加味する。
電池別制御部4A、4Bは、充放電のスイッチング及び二次電池2A、2Bに対して入出力する充放電量の制御を行う。電池別制御部4Aは、二次電池2Aの充放電を制御し、電池別制御部4Bは、二次電池2Bの充放電を制御する。
この電池別制御部4A、4Bは、充電回路、放電回路、充電回路と放電回路を切り換えるスイッチングトランジスタ等からなるスイッチ、及び当該スイッチを切り換えるコントローラを備えたPCS(Power Conditioning System)であり、電池コントローラ3の決定した電力配分に従って実際に二次電池2A、2Bへの充放電を制御する。
電流測定部6は、例えば二次電池2A、2Bのそれぞれと直列な抵抗素子を有し、抵抗素子の両端に誘導される電圧を検出して、二次電池2A、2Bに流れる充放電電流を測定する。温度測定部7は、サーミスタ、PTC等であり、二次電池2A、2Bの表面に接触し、あるいは熱伝導材を介して接触し、あるいは二次電池2A、2Bの表面に接触して電池に熱結合されることで、二次電池2A、2Bの温度を測定する。
(電力配分アルゴリズム)
このような電池システム1における電池コントローラの、二次電池2A、2Bの電池特性、特に劣化のSOC依存特性、及び各種センサが示す状況を加味した、充放電電力配分のアルゴリズムについて、以下説明する。
まず、このアルゴリズムは、SOCに依存する電池のカレンダ劣化を抑制するものであり、その方針は、図2に示すように、高SOC側で劣化速度の大きい二次電池2Aは、出来るだけ低SOC側の滞在時間を長くし、低SOC側で劣化速度の大きい二次電池2Bは、出来るだけ高SOC側の滞在時間を長くすることにある。また、電池の温度上昇を極力抑えるべく、発生熱量が電流の二乗に比例することを考慮して、一方の電池への電力配分の偏重を避け、二次電池2Aと2Bとの充放電電力配分は相応に分担させる。
そこで、電力コントローラ3は、以下の3形態に配分パターンを分け、状況に応じて何れかの配分パターンを選択する。
(1)基本形態
基本的には、EMSから指示された充放電電力を、二次電池2Aと二次電池2Bの充放電余裕容量比と一致させて配分する。例えば、二次電池2Aの残容量がX(Ah)で、二次電池2Bの残容量が2Xであれば、二次電池2Aと2Bの放電量比が1:2となるように、電力システム1全体の放電電力を配分する。また、例えば、二次電池2Aの充電余裕容量がY(Ah)で、二次電池2Bの充電余裕容量が2Yであれば、二次電池2Aと2Bの充電量比が1:2となるように、電力システム1全体の充電電力を配分する。
(2)二次電池2AのSOCがSOCa超の場合
SOCaは、二次電池2Aの劣化速度がその値を超えると急増するようなSOCの閾値である。この場合、充電時においては、上記基本形態よりも二次電池2Aへの放電電力配分を高める。例えば、二次電池2AがEMSから指示された充電電力のほとんど全てを分担する。
(3)二次電池2BのSOCがSOCb未満の場合
SOCbは、二次電池2Bの劣化速度がその値を下回ると急増するようなSOCの閾値である。この場合、充電時においては、上記基本形態よりも二次電池2Bへの充電電力配分を高める。例えば、二次電池2BがEMSから指示された充電電力のほとんど全てを分担する。
このような方針における基本形態は、以下の考え方により具現化される。まず、二次電池2Aと2Bとが同一種類で同一定格容量を有する場合には、上記方針に基づき、以下の基本計算式(1)及び計算式(2)を立てることができる。
Figure 2014017982
Figure 2014017982
P(Tn):時刻TnでのEMSからの充電又は放電の合計電力指令値(kW)
Pa(Tn):時刻Tnにおける二次電池2Aへの配分値(kW)
Pb(Tn):時刻Tnにおける二次電池2Bへの配分値(kW)
Carem:時刻Tnでの二次電池2Aの充電余裕容量又は放電余裕容量(Ah)であり、充電指令時には充電余裕容量、放電指令時には放電余裕容量。
Cbrem:時刻Tnでの二次電池2Bの充電余裕容量又は放電余裕容量(Ah)であり、充電指令時には充電余裕容量、放電指令時には放電余裕容量。
この計算式(1)及び(2)によれば、二次電池2Aと二次電池2Bの双方のSOCが片方に偏ることなく、ほぼ同時に使い切ることが期待できる。
ここで、二次電池2Aがリチウムイオン電池であり、高出力特性、高容量単価であり、二次電池2Bが鉛電池であり、相対的に低出力、低容量単価であることを考慮すると、二次電池2Bは安価に大容量が確保できるため、一般に二次電池2Aの定格容量は二次電池2Bの定格容量より小さいこと(例えば1/10程度)であることが想定される。
この場合、計算式(1)及び(2)を基本形態として、二次電池2Aの負担量Pa(Tn)が二次電池2Bの負担量Pb(Tn)より格段に小さくならず、換言すると、二次電池2Aの出力レートを二次電池2Bに比べて極端に低くならないよいように、二次電池2Aの特徴である高出力特性を生かした修正が望ましい。
そこで、以下の計算式(3)及び(4)のように、補正係数kを導入して計算式(1)及び(2)を補正することが望ましい。この計算式(3)及び(4)に倣うことで、二次電池2Aと二次電池2Bの発生熱量を同等にすべきという要件にも適う。
Figure 2014017982
Figure 2014017982
すなわち、充放電余裕量Caremに対して補正係数kを掛ける。補正係数kは、例えば数倍程度であり、双方の出力特性の比に相当することが望ましい。出力特性とは、瞬時にどれだけ大電流を流せるかを示し、出力密度で表すこともできる。出力密度は、重量当たり又は体積当たりの出力である。
更に、SOC領域に応じた劣化速度の差に対応して計算式(3)及び(4)を修正すると、最終的な計算式は以下の計算式(5)乃至(10)となる。計算式(5)乃至(10)によると、劣化が速いSOC領域の早期脱出による劣化抑制効果が期待できる。
Figure 2014017982
係数rは、二次電池2Aの残容量が高SOC領域にあるときの放電時の配分比補正係数であり、例えば、閾値SOCa=70%とすると、SOCが70%以上である場合には放電時の配分比補正係数rを20とする。
Figure 2014017982
係数rは、二次電池2Aの残容量が低SOC領域にあるときの充電時の配分比補正係数であり、例えば、SOCb=80%とすると、SOCが80%以下である場合には充電時の配分比補正係数rを100とする。
Figure 2014017982
上記計算式(5)及び(6)においては、係数r=1、上記計算式(7)及び(8)においては、係数r=1、上記計算式(9)及び(10)においては、係数r=1且つ係数r=1と言い換えることもできる。
(詳細構成)
このような電力配分アルゴリズムを実現する電池コントローラ3の構成を更に詳細に説明する。図3は、電池コントローラ3と電池別制御部4A、4Bの詳細構成を示すブロック図である。つまり、EMSから出力された充放電指令に対する電力配分の決定方法と其の決定された電力配分に基づく充放電の具体例を示している。
図3に示すように、電池コントローラ3は、指令値受信部31、SOC算出部32、配分方法判断部33、電池情報記憶部34、充放電余裕量算出部35、配分量算出部36、及び係数記憶部37を備えている。
指令値受信部31は、LANケーブル等の通信線が接続された通信インターフェースを含み構成され、EMSから指令を受信する。EMSからの指令には、充電又は放電を示す充放電種別情報、及び充電又は放電の合計電力指令値P(Tn)が含まれている。
SOC算出部32は、プロセッサを含み構成され、電力配分方法を決定するための要素である二次電池2A、2BのSOCを算出する。EMSからの指令が放電であるときは、劣化速度が低SOCよりも高SOCで高い二次電池2AのSOCを計算する。EMSからの指令が充電であるときは、劣化速度が高SOCよりも低SOCで高い二次電池2BのSOCを計算する。
SOCの計算方法は、特に限定されるものではないが、例えば、SOC算出部32は、電圧測定部5が測定した二次電池2A又は2Bの電圧値からSOCを計算する。電池記憶部34は、フラッシュメモリやHDD等の不揮発性メモリを含み構成されているが、この電池記憶部34には、図4に模式的に示すような、電圧とSOCとの関係を示す電圧−SOC関係データを電池の種類毎に予め記憶している。SOC算出部32は、電圧測定部5から入力された電圧値に対応づけられているSOCを電池記憶部34から検索することにより、SOCを計算する。
配分方法判断部33は、プロセッサを含み構成され、指令が放電且つ二次電池2AがSOCa超であるか、指令が充電且つ二次電池2BがSOCb未満であるか、あるいは其れ以外であるかを判定する。
具体的には、指令に含まれる充放電種別情報の内容に応じて二次電池2A又は2Bのうちの一方を判定対象とし、また当該内容に応じて閾値SOCa又はSOCbの何れかを選択し、判定対象と選択値とを比較する。電池情報記憶部34には、図5に示すように、閾値SOCa及びSOCbが記憶されている。
充放電余裕量算出部35は、プロセッサを含み構成され、二次電池2Aと二次電池2Bの充放電余裕量CaremとCbremを算出する。EMSからの指令が放電であれば、充放電余裕量CaremとCbremは残容量であり、放電であれば、充放電余裕量CaremとCbremは受入可能容量である。
充放電余裕量の算出方法は、特に限定されるものではないが、例えば、充放電余裕量算出部35は、指令が放電であれば、定格容量のSOCで示される割合を計算する。また、充放電余裕量算出部35は、指令が充電であれば、定格容量の(100−SOC)%で示される割合を計算する。電池情報記憶部34には、図6に示すように、予め、二次電池2Aと2Bの定格容量が記憶されている。
配分量算出部36は、プロセッサを含み構成され、電力配分アルゴリズムに従って、二次電池2Aと二次電池2Bに配分する充放電量を算出する。具体的には、配分比補正係数r及びrの具体値を配分方法判断部33の判定結果に応じて選択し、上記計算式(5)乃至(10)を纏めた以下の計算式(11)及び(12)を計算する。
Figure 2014017982
配分比補正係数r及びrの具体値、及び補正係数kの具体値は、フラッシュメモリやHDD等の不揮発性メモリを含み構成される係数記憶部37に予め記憶されている。図7に示すように、配分比補正係数r及びrの具体値は、充放電種別情報及び配分方法判断部33の判定結果のパターンに応じて分類されて記憶されている。
配分量算出部36は、二次電池2Aの種類に応じて定数である補正係数kを係数記憶部37から読み出し、EMSからの充放電種別情報及び配分方法判断部33が示した判定結果に対応づけられている配分比補正係数r及びrを係数記憶部37から読み出し、充放電余裕量算出部35が算出した充放電余裕量CaremとCbremを読み出し、指令値受信部31が受信した合計電力指令値P(Tn)を読み出し、上記計算式(11)及び(12)を計算する。
配分量算出部36の計算結果である配分量Pa(Tn)は、二次電池2Aを制御する電池別制御部4Aに信号線8を介して出力され、配分量Pb(Tn)は、二次電池2Bを制御する電池別制御部4Bに信号線8を介して出力される。
尚、電池別制御部4Aと4Bは、充放電量算出部42と指令値比較部41とスイッチ43とを備え、受信した配分量Pa(Tn)とPb(Tn)を満たすように二次電池2Aと2Bの充放電を制御する。充放電算出部42は、プロセッサを含み構成され、二次電池2Aと2Bの充放電量を算出する。充放電量の算出方法は、特に限定されるものではないが、例えば、電流測定部6の測定値と経過時間とを乗算する。指令値比較部41は、比較回路を含み構成され、充放電算出部42が算出した充放電量と配分量Pa(Tn)やPb(Tn)を比較する。そして、比較の結果に応じてスイッチ43を開閉する。
(動作)
この電池コントローラ3の電力配分動作の一例をフローチャートに示す。図8は、充放電電力配分方法を示すフローチャートである。
まず、電池コントローラ3は、配分比補正係数をr=1及びr=1に予め初期化しておく(ステップS01)。この状態で、EMSから充放電指令を受信すると(ステップS02)、充放電指令に含まれる充放電種別情報が充電指令であるか(ステップS03)、放電指令であるか(ステップS04)を判断する。
充電指令の場合(ステップS03,Yes)、二次電池2BのSOCが閾値SOCb未満であるか判断する(ステップS05)。二次電池2BのSOC<SOCbである場合(ステップS04,Yes)、二次電池2Bに対する配分比補正係数をr=100に変更する(ステップS05)。
電池コントローラ3は、配分比補正係数r=100に変更した後、又は二次電池2BのSOC≧SOCbである場合(ステップS04,No)、充放電余裕量をCarem=Aha×(1−SOC_A)、及びCbrem=Ahb×(1−SOC_B)とする(ステップS07)。ここで、Ahaは、二次電池2Aの定格容量、Ahbは、二次電池2Bの定格容量であり、SOC_Aは、二次電池2AのSOCで表される割合を比に換算した小数(70%であれば0.7)、SOC_Bは、二次電池2BのSOCで表される割合を比に換算した小数である。
一方、充放電種別情報が充電指令ではなく(ステップS03,No)、放電指令の場合(ステップS04,Yes)、二次電池2AのSOCが閾値SOCa超であるか判断する(ステップS08)。二次電池2AのSOC>SOCaである場合(ステップS08,Yes)、二次電池2Aに対する配分比補正係数をr=20に変更する(ステップS09)。
電池コントローラ3は、配分比補正係数r=20に変更した後、又は二次電池2AのSOC≦SOCaである場合(ステップS08,No)、充放電余裕量をCarem=Aha×SOC_A、及びCbrem=Ahb×SOC_Bとする(ステップS10)。
全ての係数値が設定されると、電池コントローラ3は、上記計算式(11)及び(12)を計算することで、二次電池2Aと二次電池2Bに対する電力配分を決定する(ステップS11)。
(作用)
このような電池コントローラ3によると、二次電池2Aと二次電池2Bが同一種類である場合の充放電電力配分を次のようになる。図9は、二次電池2Aと二次電池2Bが同一種類である場合の充放電電力配分を示す模式図である。
二次電池2Aと二次電池2Bが同一種類である場合には、配分比補正係数r=1及びr=1であり、補正係数k=1となる。そのため、図9に示すように、二次電池2Aと二次電池2Bとは、充放電余裕容量と同比で充放電電力が配分されることになり、同一割合で充放電される。
次に、図10に、二次電池2Aが高出力特性を有し、二次電池2Bが相対的に低出力特性である場合の充放電電力配分を示す。この場合、配分比補正係数はr=1及びr=1であるが、補正係数は例えばk=10となる。
そうすると、図10に示すように、二次電池2Aには、充放電余裕容量の比よりも高い配分で充放電がなされることにより、二次電池2Aが優先的に使用されることとなる。
更に、図11乃至15に、二次電池2Aと2Bとは種類が異なり、二次電池2Aの劣化速度が低SOCよりも高SOCで高く、二次電池2Bの劣化速度が高SOCよりも低SOCで高い場合の充放電電力配分を示す。この場合、補正係数は例えばk=10、配分比補正係数は、例えば、放電時にr=20及びr=1、充電時にr=1及びr=100となる。
図11の(a)に示すように、二次電池2Aと二次電池2BのSOCとが双方とも劣化急進領域にない状態でEMSから放電指令があった場合には、配分比補正係数r=1及びr=1とし、放電余裕容量と同比で放電電力が配分することにより、図11の(b)のように、二次電池2Aと二次電池2Bの残容量は同一割合で減少する。
図12の(b)に示すように、劣化速度が高SOCよりも低SOCで高い二次電池2BのSOCが劣化急進領域にある状態でEMSから充電指令があった場合には、配分比補正係数r=1及びr=100とすることで、二次電池2Bに対し、充電余裕容量の比よりも高く充電電力を配分することで、図12の(c)に示すように、早期に二次電池2BのSOCが劣化急進領域から離脱する。
図13の(c)に示すように、二次電池2Aと二次電池2BのSOCとが双方とも劣化急進領域にない状態でEMSから充電指令があった場合には、配分比補正係数r=1及びr=1とし、充電余裕容量と同比で充電電力が配分することにより、図13の(d)のように、二次電池2Aと二次電池2Bの受入可能容量は同一割合で減少する。
図14の(d)に示すように、二次電池2BのSOCが劣化急進領域にある状態でEMSから充電指令があった場合には、配分比補正係数r=1及びr=100とし、二次電池2Bに対して充電余裕容量の比よりも高く充電電力を配分するが、図14の(e)のように、途中で二次電池Bが満充電となった場合には、図14の(f)に示すように、その二次電池へ配分するはずだった残りの充電電力を他方の二次電池Aに振り分けられる。
そして、図15の(f)に示すように、劣化速度が低SOCよりも高SOCで高い二次電池2AのSOCが劣化急進領域にある状態でEMSから放電指令があった場合には、配分比補正係数r=20及びr=1とすることで、二次電池2Aに対し、放電余裕容量の比よりも高く放電電力を配分することで、図15の(g)に示すように、早期に二次電池2AのSOCが劣化急進領域から離脱する。
(効果)
以上のように、本実施形態では、劣化速度が低SOC領域よりも高SOC領域で速い二次電池2Aと劣化速度が高SOC領域よりも低SOC領域で低い二次電池2Bとを並列接続した場合、放電時において、二次電池2Aが所定の高SOC超である場合には、それ以外の放電時の電力配分比よりも、二次電池2Aへの放電電力配分比を高くし、充電時において、二次電池2Bが所定の低SOC未満である場合には、それ以外の充電時の電力配分比よりも、二次電池2Bへの充電電力配分比を高くするようにした。これにより、劣化についてのSOC依存特性が異なる種類の二次電池2Aと2Bとを組み合わせたハイブリッド電池であっても、二次電池2Aと2Bの充放電性能に制約をかけることなく、各二次電池2Aと2Bの寿命延命を図ることができる。
それ以外の充放電時での電力配分比は、二次電池2Aと二次電池2Bの充放電余裕容量の比と一致させることが望ましい。これにより、原則的には二次電池2Aと二次電池2Bの双方の充放電余裕容量が片方に偏ることなく、ほぼ同時に使い切ることが期待できる。
また、それ以外の充放電時での電力配分比は、二次電池2Aと二次電池2Bとの出力特性の比で補正することが望ましい。これにより、二次電池2Aと二次電池2Bの発生熱量を同等にし、ジュール熱による損失を抑制することができる。
(第2の実施形態)
第1の実施形態では、2種類の二次電池2Aと2Bとを組にしたハイブリッド電池を例に説明したが、これに限らず、3種類以上の二次電池を組にしたハイブリッド電池に対しても第1の実施形態の同様の充放電電力配分方法を適用することができる。
例えば、図16に示すように、3種の二次電池2Aと2Bと2Cとを組にしたバイブリッド電池に対しては、二次電池2C用の電池別制御部4Cを備えるようにし、電池コントローラ3が以下の計算式(13)乃至(15)を計算することで、第1の実施形態と同じ方針を具現化できる。
Figure 2014017982
Pc(Tn):時刻Tnにおける二次電池2Cへの配分値(kW)
Ccrem:時刻Tnでの二次電池2Cの充電余裕容量又は放電余裕容量(Ah)
:二次電池2Cに対する配分比補正係数
(第3の実施形態)
第3の実施形態においては、第1の実施形態と比べて二次電池2Aと2Bの温度条件も加味して充放電電力配分を決定している。すなわち、電池の温度が所定以上となると劣化進行が顕著になる場合に、劣化急進領域から速やかに離脱させるべく、配分比補正係数r又はrを1超の数値とする。
具体的には、図17に示すように、係数記憶部37には、配分比補正係数r及びrの具体値が、充放電種別情報及び配分方法判断部33の判定結果のパターンに加えて、電池温度に応じて分類されて記憶されている。配分量算出部36は、温度測定部7から温度測定値を信号線8を介して取得し、その温度測定値が、劣化進行が顕著なるZ℃以上であると、その温度条件に対応づけられた配分比補正係数r及びrの具体値を読み出し、充放電電力配分を決定する。
このように、劣化進行が顕著になる所定の高温領域であって、二次電池2AのSOCが劣化急進領域にある場合には、二次電池2Aの放電電力配分比を高め、劣化進行が顕著になる所定の高温領域であって、二次電池2BのSOCが劣化急進領域にある場合には、二次電池2Bの充電電力配分比を高めるようにした。これにより、異なる種類の二次電池2Aと2Bの寿命延命を図るとともに、二次電池2Aと2Bの充放電性能の制約を更に緩和することができる。
(第4の実施形態)
第4の実施形態に係る充放電電力配分方法のように、二次電池2Aと2Bとには、充放電方向によって完全に片側を優先するように、配分比補正係数r及びrを設定するようにしてもよい。図18乃至21は、第4の実施形態に係る二次電池2Aと2Bへの充放電電力配分方法を示した模式図である。
図18に示すように、放電時には、EMSから指示された放電量の全てを二次電池2Aから放電させるようにしてもよい。図19に示すように、二次電池2Aが空になったときにのみ、指示された放電量の残り分を二次電池2Bから放電させるようにしてもよい。
また、図20に示すように、充電時には、EMSから指示された充電量の全てを二次電池2Bに充電するようにしてもよい。図21に示すように、二次電池2Bが満充電になったときにのみ、指示された充電量の残り分を二次電池2Aに充電するようにしてもよい。
(その他の実施の形態)
本明細書においては、本発明に係る複数の実施形態を説明したが、これらの実施形態は例として提示したものであって、発明の範囲を限定することを意図していない。具体的には、各種の過酷な充電条件の設定方法の全て又はいずれかを組み合わせたもの等も包含される。以上のような実施形態は、その他の様々な形態で実施されることが可能であり、発明の範囲を逸脱しない範囲で、種々の省略や置き換え、変更を行うことができる。これらの実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。
1 電池システム
2A 二次電池
2B 二次電池
2C 二次電池
21 蓄電池セル
22 蓄電池セル
3 電池コントローラ
31 指令値受信部
32 SOC算出部
33 配分方法判断部
34 電池情報記憶部
35 充放電余裕量算出部
36 配分量算出部
37 係数記憶部
4A 電池別制御部
4B 電池別制御部
4C 電池別制御部
41 指令値比較部
42 充放電量算出部
43 スイッチ
5 電圧測定部
6 電流測定部
7 温度測定部
8 信号線
9 直流バス

Claims (10)

  1. 劣化速度が低SOC領域よりも高SOC領域で速い二次電池Aと劣化速度が高SOC領域よりも低SOC領域で速い二次電池Bとを並列接続したハイブリッド電池の充放電電力配分方法であって、
    放電時、前記二次電池Aが所定の高SOC超である第1の場合には、それ以外の放電時の電力配分比よりも、前記二次電池Aへの放電電力配分比を高くし、
    充電時、前記二次電池Bが所定の低SOC未満である第2の場合には、それ以外の充電時の電力配分比よりも、前記二次電池Bへの充電電力配分比を高くすること、
    を特徴とする充放電電力配分方法。
  2. 前記それ以外の充放電時での電力配分比を、前記二次電池Aと前記二次電池Bの充放電余裕容量の比と一致させること、
    を特徴とする請求項1記載の充放電電力配分方法。
  3. 前記それ以外の充放電時での電力配分比を、前記二次電池Aと前記二次電池Bとの出力特性の比で補正すること、
    を特徴とする請求項1又は2記載の充放電電力配分方法。
  4. 劣化進行が顕著になる所定の高温領域、且つ前記第1の場合に、前記二次電池Aの放電電力配分比を高め、
    劣化進行が顕著になる所定の高温領域、且つ前記第2の場合に、前記二次電池Bの充電電力配分比を高めること、
    を特徴とする請求項1乃至3の何れかに記載の充放電電力配分方法。
  5. 前記ハイブリッド電池は、劣化速度が速くなるSOC領域が異なる3種類以上の二次電池を並列接続してなること、
    を特徴とする請求項1乃至4の何れかに記載の充放電電力配分方法。
  6. 劣化速度が低SOC領域よりも高SOC領域で速い二次電池Aと劣化速度が高SOC領域よりも低SOC領域で速い二次電池Bとが並列接続されてなるハイブリッド電池に対する電池コントローラであって、
    前記ハイブリッド電池に対する充電又は放電の指令値を受け取る入力部と、
    前記指令値に対応する充電電力又は放電電力を前記二次電池A及び前記二次電池Bに配分する配分量算出部と、
    を備え、
    前記配分量算出部は、
    放電時、前記二次電池Aが所定の高SOC超である第1の場合には、それ以外の放電時の電力配分比よりも、前記二次電池Aへの放電電力配分比を高くし、
    充電時、前記二次電池Bが所定の低SOC未満である第2の場合には、それ以外の充電時の電力配分比よりも、前記二次電池Bへの充電電力配分比を高くすること、
    を特徴とする電池コントローラ。
  7. 前記配分量算出部は、
    前記それ以外の充放電時での電力配分比を、前記二次電池Aと前記二次電池Bの充放電余裕容量の比に基づきと一致させること、
    を特徴とする請求項6記載の電池コントローラ。
  8. 前記配分量算出部は、
    前記それ以外の充放電時での電力配分比を、前記二次電池Aと前記二次電池Bとの出力特性の比で補正すること、
    を特徴とする請求項6又は7記載の電池コントローラ。
  9. 劣化進行が顕著になる所定の高温領域、且つ前記第1の場合に、前記二次電池Aの放電電力配分比を高め、
    劣化進行が顕著になる所定の高温領域、且つ前記第2の場合に、前記二次電池Bの充電電力配分比を高めること、
    を特徴とする請求項6乃至8の何れかに記載の電池コントローラ。
  10. 劣化速度が速くなるSOC領域が異なる3種類以上の二次電池の充放電電力配分を制御すること、
    を特徴とする請求項6乃至9の何れかに記載の電池コントローラ。
JP2012154101A 2012-07-09 2012-07-09 充放電電力配分方法、及び電池コントローラ Pending JP2014017982A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012154101A JP2014017982A (ja) 2012-07-09 2012-07-09 充放電電力配分方法、及び電池コントローラ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012154101A JP2014017982A (ja) 2012-07-09 2012-07-09 充放電電力配分方法、及び電池コントローラ

Publications (1)

Publication Number Publication Date
JP2014017982A true JP2014017982A (ja) 2014-01-30

Family

ID=50112183

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012154101A Pending JP2014017982A (ja) 2012-07-09 2012-07-09 充放電電力配分方法、及び電池コントローラ

Country Status (1)

Country Link
JP (1) JP2014017982A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130113437A1 (en) * 2011-11-07 2013-05-09 Sony Corporation Control apparatus, control method and control system
JP2014171335A (ja) * 2013-03-04 2014-09-18 Toshiba Corp 複数電池を有する二次電池システム及び充放電電力等の配分方法
WO2019186659A1 (ja) * 2018-03-26 2019-10-03 株式会社東芝 蓄電制御装置、蓄電システム及び制御方法
WO2023018133A1 (ko) * 2021-08-09 2023-02-16 주식회사 엘지에너지솔루션 전력 분배 방법 및 이를 이용하는 에너지 저장 시스템

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130113437A1 (en) * 2011-11-07 2013-05-09 Sony Corporation Control apparatus, control method and control system
US9929570B2 (en) * 2011-11-07 2018-03-27 Sony Corporation Control apparatus to control discharge from battery units
JP2014171335A (ja) * 2013-03-04 2014-09-18 Toshiba Corp 複数電池を有する二次電池システム及び充放電電力等の配分方法
US9825474B2 (en) 2013-03-04 2017-11-21 Kabushiki Kaisha Toshiba Secondary battery system with plural batteries and method of distributing charge/discharge power
WO2019186659A1 (ja) * 2018-03-26 2019-10-03 株式会社東芝 蓄電制御装置、蓄電システム及び制御方法
JPWO2019186659A1 (ja) * 2018-03-26 2021-01-14 株式会社東芝 蓄電制御装置、蓄電システム及び制御方法
WO2023018133A1 (ko) * 2021-08-09 2023-02-16 주식회사 엘지에너지솔루션 전력 분배 방법 및 이를 이용하는 에너지 저장 시스템

Similar Documents

Publication Publication Date Title
CN107078520B (zh) 用于管理电池的运行范围的方法
US10048322B2 (en) Method of measuring battery pack current and correcting offsets of a current sensor
US8963501B2 (en) Voltage equalization device, method, program, and power storage system
JP5082011B2 (ja) 電池電源装置、及び電池電源システム
US20140021925A1 (en) Battery power supply apparatus and battery power supply system
JP6174963B2 (ja) 電池制御システム
WO2012169062A1 (ja) 電池制御装置、電池システム
JP6495257B2 (ja) 電気化学電池の温度を調整するシステム及び方法
JP2009081981A (ja) 充電状態最適化装置及びこれを具えた組電池システム
KR101555660B1 (ko) 이차전지의 충전량 유지 장치 및 방법
WO2012147121A1 (ja) 電池パック
JP2010273519A (ja) 充放電制御方法
WO2020014474A1 (en) Integration of second-use li-ion batteries in power generation
CN115800417B (zh) 电池控制方法、储能***、装置、计算机设备和存储介质
JP2014017982A (ja) 充放電電力配分方法、及び電池コントローラ
JP5861063B2 (ja) 蓄電装置及び電力供給システム
JP7276893B2 (ja) 電源システム、及び管理装置
TW201926840A (zh) 儲能系統及其充放電方法
CN117220384B (zh) 一种电池并联运行的电流分配方法和电池并联***
JP2016167928A (ja) 充放電システム
CN104808151B (zh) 蓄电装置的残存容量推定装置
CN114295988A (zh) 一种电池包故障检测电路及电池包故障检测方法
CN105406015B (zh) 一种串联成组型动力电池组
CN104426177B (zh) 一种均衡控制电路
CN104426179B (zh) 一种箱级电池管理***