JP2014015563A - Method for manufacturing unidirectional prepreg - Google Patents

Method for manufacturing unidirectional prepreg Download PDF

Info

Publication number
JP2014015563A
JP2014015563A JP2012154936A JP2012154936A JP2014015563A JP 2014015563 A JP2014015563 A JP 2014015563A JP 2012154936 A JP2012154936 A JP 2012154936A JP 2012154936 A JP2012154936 A JP 2012154936A JP 2014015563 A JP2014015563 A JP 2014015563A
Authority
JP
Japan
Prior art keywords
reinforcing fiber
sealing material
matrix resin
fiber sheet
unidirectional prepreg
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012154936A
Other languages
Japanese (ja)
Other versions
JP5920625B2 (en
Inventor
Akira Miyauchi
亮 宮内
Sadao Samejima
禎雄 鮫島
Masahiro Ichino
正洋 市野
Masao Tomioka
正雄 冨岡
Hisaya Ushiyama
久也 牛山
Takuya Teranishi
拓也 寺西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP2012154936A priority Critical patent/JP5920625B2/en
Publication of JP2014015563A publication Critical patent/JP2014015563A/en
Application granted granted Critical
Publication of JP5920625B2 publication Critical patent/JP5920625B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Reinforced Plastic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve the problems with: deterioration in basis weights in both side end parts of a reinforced fiber sheet, occurring when a unidirectional prepreg is manufactured by a hot melt method; deterioration in handleability of the unidirectional prepreg resulting from excessive adhesion of an overflowed matrix resin to both side end parts of the unidirectional prepreg when a resin is impregnated; and reduction in strength of the unidirectional prepreg when used as a fiber reinforced composite material.SOLUTION: The method for manufacturing a unidirectional prepreg comprises a matrix resin adhesion process, a sealant arrangement process, a matrix resin impregnation process and a sealant removal process.

Description

本発明は、繊維強化複合材料の製造に用いる一方向プリプレグの製造方法に関する。   The present invention relates to a method for producing a unidirectional prepreg used for producing a fiber-reinforced composite material.

繊維強化複合材料は、軽量で優れた機械特性を有する。そのため航空機、車両、船舶、建造物などの構造材料、ゴルフシャフト、釣竿、テニスラケットなどのスポーツ用具に広く用いられている。   Fiber reinforced composite materials are lightweight and have excellent mechanical properties. For this reason, it is widely used for structural materials such as aircraft, vehicles, ships and buildings, and sports equipment such as golf shafts, fishing rods and tennis rackets.

繊維強化複合材料の製造には、複数の強化繊維束を一方向に引き揃えて強化繊維シートとし、これにマトリックス樹脂を含浸させて一方向プリプレグとし、この一方向プリプレグを用いて繊維強化複合材料を製造する方法が広く用いられている。一方向プリプレグに用いられるマトリックス樹脂は、熱硬化性樹脂、熱可塑性樹脂が用いられるが、熱硬化性樹脂が用いられる場合が多い。   In the production of a fiber reinforced composite material, a plurality of reinforcing fiber bundles are aligned in one direction to form a reinforced fiber sheet, which is impregnated with a matrix resin to form a unidirectional prepreg. The method of manufacturing is widely used. As the matrix resin used for the unidirectional prepreg, a thermosetting resin or a thermoplastic resin is used, but a thermosetting resin is often used.

一方向プリプレグの製造には、いわゆるホットメルト法が一般的に用いられる。これは、マトリックス樹脂を塗布した離型シートを強化繊維シートと重ね、これらを加圧ロールで挟んで加圧、加熱する方法である。   A so-called hot melt method is generally used for the production of the unidirectional prepreg. This is a method in which a release sheet coated with a matrix resin is overlapped with a reinforcing fiber sheet, and these are sandwiched between pressure rolls and pressurized and heated.

ホットメルト法により一方向プリプレグを製造する際に発生する第一の問題は以下の通りである。即ち、加圧ロールの前方にマトリックス樹脂溜りが発生し、その結果、強化繊維シートの幅よりも広くマトリックス樹脂がはみ出す。はみ出したマトリックス樹脂は一方向プリプレグの両側端部に過剰に付着するため、一方向プリプレグの取扱性の悪化、及び繊維強化複合材料の強度低下を招く。   The first problem that occurs when producing a unidirectional prepreg by the hot melt method is as follows. That is, a matrix resin pool is generated in front of the pressure roll, and as a result, the matrix resin protrudes wider than the width of the reinforcing fiber sheet. Since the protruding matrix resin adheres excessively to both end portions of the unidirectional prepreg, the handling property of the unidirectional prepreg is deteriorated and the strength of the fiber-reinforced composite material is reduced.

ホットメルト法により一方向プリプレグを製造する際に発生する第二の問題は以下の通りである。即ち、加圧ロールで加圧する際に、強化繊維シートの両側端部において、強化繊維束が外側に向かって移動するため、両端部は、中央部が外側に向かって膨れた形状となりやすく、一方向プリプレグの両側端部の強化繊維又はマトリックス樹脂の目付が低くなるため、出荷前に両端部を除去する等の対策が必要であった。   The second problem that occurs when producing a unidirectional prepreg by the hot melt method is as follows. That is, when pressing with a pressure roll, the reinforcing fiber bundle moves toward the outside at both ends of the reinforcing fiber sheet, so that both ends tend to have a shape in which the central portion swells outward. Since the basis weight of the reinforcing fibers or the matrix resin at both ends of the directional prepreg is lowered, it is necessary to take measures such as removing both ends before shipment.

上記第一の問題に対し、特許文献1は、マトリックス樹脂と親和性のテープ材を、強化繊維シートの両側端部に接触配置させる製造方法を提案する。かかる製造方法によれば、はみ出したマトリックス樹脂は、これと親和性のテープ材に伴われて除去されるため、一方向プリプレグ自身からは除去される。   For the first problem, Patent Document 1 proposes a manufacturing method in which a tape material having an affinity for a matrix resin is disposed in contact with both end portions of a reinforcing fiber sheet. According to this manufacturing method, the protruding matrix resin is removed along with the tape material having an affinity with the matrix resin, and thus is removed from the unidirectional prepreg itself.

しかしながら特許文献1記載の製造方法は、マトリックス樹脂のはみ出し自体を防止するものではない。従ってこれらが依然として工程の安定性に影響を与える懸念が残存する。   However, the production method described in Patent Document 1 does not prevent the matrix resin from protruding itself. Therefore, there still remains a concern that these will affect the stability of the process.

加えて、特許文献1記載の製造方法では、該テープ材が一方向プリプレグの厚み以下であれば、一方向プリプレグが加圧ロールと該テープ材との間から流れて第二の問題を生じる。また、該テープ材が一方向プリプレグよりも厚ければ一方向プリプレグを十分加圧できず、含浸をさせることができない。また、特許文献1記載のマトリックス樹脂に親和性なテープを用いる場合、マトリックス樹脂を余分に含浸させる必要がある上、一度含浸させた該シートは再度使用することができないため、製造コストが上昇してしまう問題があった。   In addition, in the manufacturing method described in Patent Document 1, if the tape material is equal to or less than the thickness of the unidirectional prepreg, the unidirectional prepreg flows from between the pressure roll and the tape material to cause a second problem. Further, if the tape material is thicker than the unidirectional prepreg, the unidirectional prepreg cannot be sufficiently pressurized and cannot be impregnated. In addition, when using a tape that is compatible with the matrix resin described in Patent Document 1, it is necessary to impregnate the matrix resin excessively, and since the sheet once impregnated cannot be used again, the manufacturing cost increases. There was a problem.

上記第二の問題に対し、特許文献2は、強化繊維シートの両側端部における強化繊維束の引き揃えピッチを、他の部分よりも小さくする製造方法を提案する。かかる製造方法によれば、両側端部における強化繊維束の移動をある程度規制して一方向プリプレグの両側端部分における強化繊維の目付けが低くすることを防止し、幅方向における強化繊維の目付けの均一性を高くすることができる。   With respect to the second problem, Patent Document 2 proposes a manufacturing method in which the alignment pitch of the reinforcing fiber bundles at both end portions of the reinforcing fiber sheet is made smaller than that of the other parts. According to such a manufacturing method, the movement of the reinforcing fiber bundles at both side end portions is regulated to some extent to prevent the weight of the reinforcing fibers at both side end portions of the unidirectional prepreg from being lowered, and the basis weight of the reinforcing fibers in the width direction is uniform. Sexuality can be increased.

しかしながら特許文献2記載の製造方法では第一の問題を解決できない上、特許文献1と同様に工程の安定性に懸念があった。   However, the manufacturing method described in Patent Document 2 cannot solve the first problem, and similarly to Patent Document 1, there is a concern about the stability of the process.

特開平6−170847号公報JP-A-6-170847 特開2004−250570号公報JP 2004-250570 A

本発明は上記事情を鑑みてなされたものである。即ち本発明は、前記第一の問題及び前記第二の問題をいずれも解決でき、しかも強化繊維シート全体にマトリックス樹脂を均一に含浸させることが可能な一方向プリプレグの製造方法を提供することを、その目的とする。   The present invention has been made in view of the above circumstances. That is, the present invention provides a method for producing a unidirectional prepreg capable of solving both the first problem and the second problem, and capable of uniformly impregnating a matrix resin throughout the reinforcing fiber sheet. And its purpose.

即ち本発明の要旨は、以下のプロセスを有する一方向プリプレグの製造方法である。
マトリックス樹脂付着プロセス;強化繊維シートの少なくとも一方の面に、マトリックス樹脂を付着させるプロセスであって、前記強化繊維シートは複数の強化繊維束を一方向に引き揃えたシートである。
封止材配置プロセス;前記強化繊維シートの両側端部近傍に封止材を配置するプロセスであって、前記封止材は前記強化繊維シートと間隔を有して配置される。
マトリックス樹脂含浸プロセス;前記強化繊維シートを加圧して前記マトリックス樹脂を含浸させるプロセスであって、前記加圧は、前記強化繊維シートの両面を離型シートで挟んだ状態で行い、かつ前記強化繊維シートを押し広げ、前記強化繊維シートと前記封止材との間隔が無くなる圧力で行う。
封止材除去プロセス;前記強化繊維シートの両側端部から前記封止材を除去し、前記強化繊維シートに前記マトリックス樹脂が含浸された一方向プリプレグを得ることで課題を解決できる。
That is, the gist of the present invention is a method for producing a unidirectional prepreg having the following processes.
Matrix resin attachment process: a process of attaching a matrix resin to at least one surface of a reinforcing fiber sheet, wherein the reinforcing fiber sheet is a sheet in which a plurality of reinforcing fiber bundles are aligned in one direction.
Sealing material arrangement process: a process of arranging a sealing material in the vicinity of both end portions of the reinforcing fiber sheet, and the sealing material is arranged with an interval from the reinforcing fiber sheet.
Matrix resin impregnation process; a process of pressurizing the reinforcing fiber sheet to impregnate the matrix resin, wherein the pressurizing is performed with both sides of the reinforcing fiber sheet sandwiched between release sheets, and the reinforcing fiber The sheet is spread and pressure is applied so that there is no gap between the reinforcing fiber sheet and the sealing material.
Sealing material removal process: The problem can be solved by removing the sealing material from both ends of the reinforcing fiber sheet to obtain a unidirectional prepreg in which the reinforcing fiber sheet is impregnated with the matrix resin.

本発明の一方向プリプレグの製造方法によれば、強化繊維シートの中央部に比べて、両側端部の目付が大きく低下することがない一方向プリプレグを得ることができる。また係る製造方法で得られた一方向プリプレグは、取扱性がよい。   According to the method for producing a unidirectional prepreg of the present invention, it is possible to obtain a unidirectional prepreg in which the basis weight of both side end portions is not significantly reduced as compared with the central portion of the reinforcing fiber sheet. Moreover, the unidirectional prepreg obtained by the manufacturing method has good handleability.

本発明を用いたプリプレグの製造方法の概略図である。It is the schematic of the manufacturing method of the prepreg using this invention.

以下、本発明を図1に示した本発明の実施形態の一例を用いて詳細に説明する。
<マトリックス樹脂付着プロセス>
このプロセスは、強化繊維シート3の少なくとも一方の面に、マトリックス樹脂を付着させるプロセスであって、前記強化繊維シート3は複数の強化繊維束2を一方向に引き揃えたシートである。複数の強化繊維束2を一方向に引き揃えて強化繊維シートとする方法は、一方向プリプレグの製造に通常使用される方法を用いることができる。例えば、図1ではボビン1に巻き取られた強化繊維束2を必要な数量準備し、それぞれの強化繊維束を引き出して平行に引き揃え、シート状となす方法を用いている。
Hereinafter, the present invention will be described in detail using an example of the embodiment of the present invention shown in FIG.
<Matrix resin adhesion process>
This process is a process of attaching a matrix resin to at least one surface of the reinforcing fiber sheet 3, and the reinforcing fiber sheet 3 is a sheet in which a plurality of reinforcing fiber bundles 2 are aligned in one direction. As a method of aligning a plurality of reinforcing fiber bundles 2 in one direction to obtain a reinforcing fiber sheet, a method usually used for manufacturing a one-way prepreg can be used. For example, in FIG. 1, a method is used in which a necessary quantity of reinforcing fiber bundles 2 wound around a bobbin 1 are prepared, and each reinforcing fiber bundle is pulled out and aligned in parallel to form a sheet.

強化繊維は各種の無機繊維または有機繊維を用いることができる。例えば、炭素繊維、黒鉛繊維、アラミド繊維、ナイロン繊維、高強度ポリエステル繊維、ガラス繊維、ボロン繊維、アルミナ繊維、窒化珪素繊維などがある。これらの中でも、炭素繊維や黒鉛繊維が好適である。これは難燃性、比強度、比弾性率が良好であるためである。炭素繊維や黒鉛繊維は、用途に応じて様々な炭素繊維や黒鉛繊維を用いることが可能である。好ましくは引張伸度1.5%以上の高強度炭素繊維である。引張強度4.4GPa以上、引張伸度1.7%以上の高強度高伸度炭素繊維がさらに好ましく、引張伸度1.9%以上の高強度高伸度炭素繊維が最も適している。   As the reinforcing fiber, various inorganic fibers or organic fibers can be used. For example, there are carbon fiber, graphite fiber, aramid fiber, nylon fiber, high-strength polyester fiber, glass fiber, boron fiber, alumina fiber, silicon nitride fiber and the like. Among these, carbon fiber and graphite fiber are preferable. This is because the flame retardancy, specific strength, and specific elastic modulus are good. Various carbon fibers and graphite fibers can be used as the carbon fibers and graphite fibers depending on the application. High strength carbon fibers having a tensile elongation of 1.5% or more are preferred. High strength and high elongation carbon fibers having a tensile strength of 4.4 GPa or more and a tensile elongation of 1.7% or more are more preferable, and high strength and high elongation carbon fibers having a tensile elongation of 1.9% or more are most suitable.

強化繊維シートの少なくとも一方の面に、マトリックス樹脂を付着させる。マトリックス樹脂は特に限定はされず、プリプレグに通常使用される公知のマトリックス樹脂を使用することができる。マトリックス樹脂の種類は、繊維強化複合材料に要求される性能に応じて選択すればいい。   A matrix resin is adhered to at least one surface of the reinforcing fiber sheet. The matrix resin is not particularly limited, and a known matrix resin usually used for prepreg can be used. The type of the matrix resin may be selected according to the performance required for the fiber reinforced composite material.

マトリックス樹脂は、強化繊維シートに含浸させる必要があるため、本プロセスにおいては液体状である。このようなマトリックス樹脂は、例えばエポキシ樹脂であることが好ましい。エポキシ樹脂は、グリシジルエーテル型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、グリシジルエステル型エポキシ樹脂、脂環式エポキシ樹脂等がある。これらは必要に応じて、硬化剤、硬化助剤、その他添加剤等を混合させて樹脂組成物となし、マトリックス樹脂とする。   Since the matrix resin needs to be impregnated into the reinforcing fiber sheet, it is liquid in the present process. Such a matrix resin is preferably an epoxy resin, for example. Examples of the epoxy resin include a glycidyl ether type epoxy resin, a glycidyl amine type epoxy resin, a glycidyl ester type epoxy resin, and an alicyclic epoxy resin. If necessary, these are mixed with a curing agent, a curing aid, other additives, etc. to form a resin composition, which is a matrix resin.

マトリックス樹脂の粘度は、後述するマトリックス樹脂を付着させるプロセス、マトリックス樹脂を含浸させるプロセスを適切に行えれば特に限定はされない。   The viscosity of the matrix resin is not particularly limited as long as the process of adhering the matrix resin described later and the process of impregnating the matrix resin can be performed appropriately.

マトリックス樹脂を付着させる方法は公知の方法を用いることができる。図1では、ダイ4により強化繊維シート3に塗工しているが、その他の例えばタッチロール方式、ディップ方式、ディスペンサー方式、などを用いることができる。また、後述する離型シート10に予め付着させておいて、その離型シートを強化繊維シートに重ねて樹脂を強化繊維シートに付着させても良い。マトリックス樹脂の付着量は、繊維強化複合材料の要求に応じて調節される。例えばプリプレグの質量に対し25〜50質量%であることが好ましい。   A known method can be used as a method for attaching the matrix resin. In FIG. 1, the reinforcing fiber sheet 3 is applied by the die 4, but other methods such as a touch roll method, a dip method, a dispenser method, and the like can be used. Moreover, it is made to adhere to the release sheet 10 mentioned later previously, The release sheet may be piled up on a reinforced fiber sheet, and resin may be made to adhere to a reinforced fiber sheet. The adhesion amount of the matrix resin is adjusted according to the requirements of the fiber reinforced composite material. For example, it is preferable that it is 25-50 mass% with respect to the mass of a prepreg.

<封止材配置プロセス>
このプロセスは、前記強化繊維シート3の両側端部近傍に封止材7を配置するプロセスであって、封止材7は前記強化繊維シート3と間隔を有して配置される。即ち加圧手段が形成する加圧空間、例えば一対の加圧ロール11の間の空間において、強化繊維束の長手方向と直行する方向の加圧空間を遮断する位置に、封止材7が配置される。
<Encapsulant placement process>
This process is a process of disposing the sealing material 7 in the vicinity of both end portions of the reinforcing fiber sheet 3, and the sealing material 7 is disposed with a space from the reinforcing fiber sheet 3. That is, the sealing material 7 is disposed at a position where the pressure space in the direction perpendicular to the longitudinal direction of the reinforcing fiber bundle is blocked in the pressure space formed by the pressure means, for example, the space between the pair of pressure rolls 11. Is done.

このとき、封止材7の配置位置は、得たい一方向プリプレグシートの幅により決定される。即ち(得られる一方向プリプレグのシート幅)=(封止材により遮断される加圧空間の幅)−(封止材の変形により狭められる幅)+(強化繊維シートが封止材を押し広げる幅)となる。従って封止材7と強化繊維シート3との間隔は、強化繊維シート3の幅及び目付、マトリックス樹脂の目付、加圧空間の厚み、加圧圧力、によって変化する。従ってこれらに基づく算術計算及び若干の試行錯誤を通し、封止材7と強化繊維シート3との間隔を決定することができる。   At this time, the arrangement position of the sealing material 7 is determined by the width of the unidirectional prepreg sheet to be obtained. That is, (sheet width of the obtained unidirectional prepreg) = (width of the pressure space blocked by the sealing material) − (width narrowed by deformation of the sealing material) + (the reinforcing fiber sheet pushes the sealing material) Width). Accordingly, the distance between the sealing material 7 and the reinforcing fiber sheet 3 varies depending on the width and basis weight of the reinforcing fiber sheet 3, the basis weight of the matrix resin, the thickness of the pressurizing space, and the pressurizing pressure. Therefore, the interval between the sealing material 7 and the reinforcing fiber sheet 3 can be determined through arithmetic calculation based on these and some trial and error.

加圧空間において、封止材7は、後述する離型シート10の間に挟まれて、強化繊維シート3及びマトリックス樹脂と共に加圧される。配置される封止材7の供給方法は特に限定されない。例えば、図1のように強化繊維シート3を連続して供給し、2枚の離型シート10を強化繊維シート3のそれぞれの面に、連続して供給して重ね合わせることもできる。この時、重ね合わせるに先立ち、離型シートの一方又は両方の面であって、強化繊維シート3と重ね合わせる面上に、封止材7を封止材クリール6より封止材位置調整装置8を通して連続して供給する。   In the pressurizing space, the sealing material 7 is sandwiched between release sheets 10 to be described later and pressed together with the reinforcing fiber sheet 3 and the matrix resin. The supply method of the sealing material 7 to be arranged is not particularly limited. For example, as shown in FIG. 1, the reinforcing fiber sheet 3 can be continuously supplied, and the two release sheets 10 can be continuously supplied to and superposed on the respective surfaces of the reinforcing fiber sheet 3. At this time, prior to superimposing, the sealing material position adjusting device 8 is placed on the sealing material 7 from the sealing material creel 6 on one or both surfaces of the release sheet, which is superposed on the reinforcing fiber sheet 3. Feed continuously through.

<マトリックス樹脂含浸プロセス>
このプロセスは、前記強化繊維シート3を加圧して前記マトリックス樹脂を含浸させるプロセスであって、前記加圧は、前記強化繊維シート3の両面を離型シート10で挟んだ状態で行い、かつ前記強化繊維シート3を押し広げ、前記強化繊維シート3と前記封止材7との間隔が無くなる圧力で行う。
<Matrix resin impregnation process>
This process is a process of pressurizing the reinforcing fiber sheet 3 and impregnating the matrix resin, wherein the pressurizing is performed in a state where both sides of the reinforcing fiber sheet 3 are sandwiched between release sheets 10, and The reinforcing fiber sheet 3 is spread out, and the pressure is such that there is no gap between the reinforcing fiber sheet 3 and the sealing material 7.

離型シート10は、プリプレグ製造に通常使用される離型シートを使用することができる。このような離型シートは、例えばクラフト紙、グラシン紙等に、シリコーン樹脂等をコーティングした離型紙がある。   As the release sheet 10, a release sheet usually used for prepreg production can be used. Examples of such a release sheet include release paper obtained by coating kraft paper, glassine paper, etc. with a silicone resin or the like.

加圧は、加圧ロールに代表される公知の手段で行うことができる。このとき、温度調節が可能な構造を有する装置を用いて加圧を行うと、マトリックス樹脂の含浸条件をより精密に制御可能となる。このような構造は公知な構造を使用することができる。例えばその内部に温水等の熱媒体を導入可能な構造、表面にヒーターを配した構造、等がある。   The pressurization can be performed by a known means typified by a pressure roll. At this time, if pressurization is performed using an apparatus having a structure capable of adjusting the temperature, the impregnation condition of the matrix resin can be controlled more precisely. A known structure can be used as such a structure. For example, there are a structure in which a heat medium such as warm water can be introduced, a structure in which a heater is arranged on the surface, and the like.

加圧に必要な圧力は、前述したとおり、得たい一方向プリプレグシートの幅、封止材と強化繊維シートとの間隔、強化繊維シートの幅及び目付、マトリックス樹脂の目付、マトリックス樹脂の粘度、封止材の硬度、加圧空間の厚みによって変化する。従ってこれらに基づく算術計算及び若干の試行錯誤を通して決定する。   As described above, the pressure required for pressurization is the width of the unidirectional prepreg sheet to be obtained, the distance between the sealing material and the reinforcing fiber sheet, the width and basis weight of the reinforcing fiber sheet, the basis weight of the matrix resin, the viscosity of the matrix resin, It varies depending on the hardness of the sealing material and the thickness of the pressure space. Therefore, it is determined through arithmetic calculations based on these and some trial and error.

加圧によって強化繊維シート3は押し広げられる。従ってマトリックス樹脂の含浸をより均一とすることができる。この際、強化繊維シート3と封止材7との間隔が無くなる状態とすることがより好ましい。このため、封止材7は加圧空間において、強化繊維シート3の幅方向に強化繊維シート3に押される。このとき封止材7の位置がずれると、得られる一方向プリプレグシートの幅や、端部の強化繊維及び/又はマトリックス樹脂の目付が変動してしまう。従って、離型シート10との間で加圧された状態で、強化繊維シート3に押された際に移動しないようにする必要がある。加えて、加圧した際にできる樹脂溜まりのマトリックス樹脂が漏れ出すことを防止するために、加圧する前は一方向プリプレグの1〜10倍の厚みを持ち、加圧された際に加圧空間よりも小さくなることがない程度の厚みを持つ程度の反発力を有する必要がある。   The reinforcing fiber sheet 3 is pushed and expanded by the pressurization. Therefore, the impregnation of the matrix resin can be made more uniform. At this time, it is more preferable that the space between the reinforcing fiber sheet 3 and the sealing material 7 is eliminated. For this reason, the sealing material 7 is pressed by the reinforcing fiber sheet 3 in the width direction of the reinforcing fiber sheet 3 in the pressurizing space. If the position of the sealing material 7 shifts at this time, the width of the unidirectional prepreg sheet to be obtained and the basis weight of the reinforcing fiber and / or matrix resin at the end will vary. Therefore, it is necessary not to move when pressed by the reinforcing fiber sheet 3 while being pressed with the release sheet 10. In addition, in order to prevent the matrix resin in the resin pool formed when pressurized, it has a thickness of 1 to 10 times that of the unidirectional prepreg before being pressurized, and the pressurized space when pressurized It is necessary to have a repulsive force that has a thickness that does not become smaller than that.

従って封止材3は、弾力性を有する材質が好ましく、中でも弾性樹脂が好ましい。このような材質には例えば、天然ゴム、合成ゴム、ウレタン系樹脂、オレフィン系樹脂、シリコーン系樹脂等がある。これらの材質は、加圧に必要な圧力と材質の弾性率を考慮してその種類を決定することができる。また、これらを発泡体とすると、許容される圧縮率を大きくすることが可能となるため好ましい。さらに、その発泡体が独立気泡型発泡体であると、発泡体中のそれぞれの気泡が連通していないので、発泡体全体でマトリックス樹脂を吸収することが無く、マトリックス樹脂により発泡体が汚染されることが少なくなるので好ましい。さらに、シリコーン系樹脂を用いた発泡材であると、耐熱性に優れ、高温における圧縮永久歪が小さく、再利用性の優れており好ましい。あるいは、封止材がマトリックス樹脂に対する離型性を有すると、マトリックス樹脂による汚染を少なくし、洗浄性も良好になり、再利用性に優れて好ましい。   Therefore, the sealing material 3 is preferably a material having elasticity, and among them, an elastic resin is preferable. Examples of such materials include natural rubber, synthetic rubber, urethane resin, olefin resin, and silicone resin. The type of these materials can be determined in consideration of the pressure required for pressurization and the elastic modulus of the material. Further, it is preferable to use these as foams because an allowable compression ratio can be increased. Furthermore, if the foam is a closed-cell foam, the bubbles in the foam do not communicate with each other, so the entire foam does not absorb the matrix resin, and the foam is contaminated by the matrix resin. This is preferable. Furthermore, a foamed material using a silicone resin is preferable because it is excellent in heat resistance, has a small compression set at high temperatures, and is excellent in reusability. Alternatively, it is preferable that the encapsulant has a releasability with respect to the matrix resin because contamination by the matrix resin is reduced, cleaning properties are improved, and reusability is excellent.

なお、強化繊維シート3に押された際の幅方向への移動ずれについては、加圧した際の封止材7の変形率が大きいほど、ずれも小さくなる傾向にある。また、封止材の接地面積によっても変化する。即ち封止材7の材質のみならず、封止材7の形状によっても、ずれを小さくすることができる。   In addition, about the shift | offset | difference to the width direction at the time of being pressed by the reinforcing fiber sheet 3, it exists in the tendency for a shift | offset | difference to become small, so that the deformation rate of the sealing material 7 at the time of pressurization is large. In addition, it varies depending on the contact area of the sealing material. That is, the shift can be reduced not only by the material of the sealing material 7 but also by the shape of the sealing material 7.

即ち封止材の材質及び形状は、空孔率、硬度、加圧空間の厚みに対する封止材の厚み、及び封止材の幅(接地面積)等を考慮し、これらに基づく算術計算及び若干の試行錯誤を通して決定すればよい。   In other words, the material and shape of the sealing material is calculated based on the arithmetic calculation based on the porosity, hardness, thickness of the sealing material with respect to the thickness of the pressurized space, and the width (ground contact area) of the sealing material. This can be determined through trial and error.

<封止材除去プロセス>
このプロセスは、前記強化繊維シート3の両側端部から前記封止材7を除去し、前記強化繊維シート3に前記マトリックス樹脂が含浸された一方向プリプレグを得る。なお、離型シート10は除去しても、除去しなくてもどちらでもよい。封止材7を除去する方法は特に制限はない。離型シート10を除去しない場合、封止材7は、例えば離型シート10に挟まれた一方向プリプレグの両側端部側から外に向かって、封止材を引き出すことによって除去することができる。離型シート10を除去する場合、図1に示す通り、例えば、離型シート10を離型シート巻取機13で巻き取りながら一方向プリプレグから除去し、更に封止材7を封止材巻取機14で巻き取りながら除去することができる。また、離型シート10と封止材を同時に一つの巻取機で巻き取りながら除去することもできる。除去した離型シート10及び/又は封止材7は、再利用することが好ましい。
<Sealing material removal process>
In this process, the sealing material 7 is removed from both side ends of the reinforcing fiber sheet 3 to obtain a unidirectional prepreg in which the reinforcing fiber sheet 3 is impregnated with the matrix resin. Note that the release sheet 10 may or may not be removed. The method for removing the sealing material 7 is not particularly limited. When the release sheet 10 is not removed, the sealing material 7 can be removed by, for example, pulling out the sealing material from both side end portions of the unidirectional prepreg sandwiched between the release sheets 10. . When removing the release sheet 10, as shown in FIG. 1, for example, the release sheet 10 is removed from the unidirectional prepreg while being wound by the release sheet winder 13, and the sealing material 7 is further wound with the sealing material 7. It can be removed while winding with the take-up machine 14. Moreover, it is also possible to remove the release sheet 10 and the sealing material while winding them simultaneously with one winder. The removed release sheet 10 and / or the sealing material 7 is preferably reused.

以上のプロセスを経て得られた一方向プリプレグはその中央部に比べて、両側端部の目付が大きく低下しておらず、両端部での樹脂付着もないため取扱性がよい。   The unidirectional prepreg obtained through the above process has good handleability because the basis weight of both side end portions is not significantly reduced and the resin does not adhere to both end portions as compared with the central portion.

以下実施例を紹介する。
(原料)
強化繊維束として、三菱レイヨン株式会社製のフィラメント数:60000本、引張強度:4.9GPa、引張伸度:2.0%、引張弾性率250GPa、目付け:3.2g/mの炭素繊維を用い、マトリックス樹脂として以下の材料を用いた。
・エポキシ樹脂A:ビスフェノールA型エポキシ樹脂(三菱化学株式会社製、製品名:「jER828」)
・エポキシ樹脂B:オキサゾリドン環含有エポキシ樹脂(旭化成イーマテリアルズ株式会社製、製品名:「アラルダイトAER4152」)
・硬化剤:ジシアンジアミド(三菱化学株式会社製、製品名:「DICY15」)
・硬化助剤:3−(3,4−ジクロロフェニル)−1,1−ジメチル尿素(保土谷化学工業株式会社製、製品名:「DCMU99」)として、エポキシ樹脂Aを8.3質量部、硬化剤を1.0質量部、硬化助剤を4.1質量部採取し攪拌・混合して得られた混合物を三本ロールミルにてさらに細かく混合し、硬化剤マスターバッチとして調整しておく。また、ガラスフラスコにエポキシ樹脂Aを75.7質量部とエポキシ樹脂Bを16.0質量部採取し、オイルバスを用いて130℃に加熱し混合した。その後60℃程度まで冷却した。これに、硬化剤マスターバッチを13.4質量部添加し、攪拌・混合して樹脂組成物3を得た。得られた樹脂組成物の30℃における粘度を、以下の測定条件により測定したところ、50Pa・secであった。
Examples are introduced below.
(material)
As the reinforcing fiber bundle, carbon fiber having a number of filaments manufactured by Mitsubishi Rayon Co., Ltd .: 60000, tensile strength: 4.9 GPa, tensile elongation: 2.0%, tensile elastic modulus 250 GPa, basis weight: 3.2 g / m is used. The following materials were used as the matrix resin.
Epoxy resin A: bisphenol A type epoxy resin (Mitsubishi Chemical Corporation, product name: “jER828”)
Epoxy resin B: Epoxy resin containing an oxazolidone ring (manufactured by Asahi Kasei E-Materials Co., Ltd., product name: “Araldite AER4152”)
Curing agent: Dicyandiamide (Mitsubishi Chemical Corporation, product name: “DICY15”)
Curing aid: 8.3 parts by mass of epoxy resin A as 3- (3,4-dichlorophenyl) -1,1-dimethylurea (Hodogaya Chemical Co., Ltd., product name: “DCMU99”), curing 1.0 parts by mass of the agent and 4.1 parts by mass of the curing aid are collected, and the mixture obtained by stirring and mixing is further finely mixed in a three-roll mill to prepare a curing agent master batch. Moreover, 75.7 mass parts of epoxy resins A and 16.0 mass parts of epoxy resin B were extract | collected to the glass flask, and it heated and mixed to 130 degreeC using the oil bath. Thereafter, it was cooled to about 60 ° C. To this, 13.4 parts by mass of a curing agent master batch was added, and stirred and mixed to obtain a resin composition 3. It was 50 Pa.sec when the viscosity at 30 degrees C of the obtained resin composition was measured on the following measurement conditions.

(測定条件)
・装置:粘弾性測定装置(Reologica Instruments A.B.社製、製品名:「VAR−100」)
・使用プレート:直径40mmのパラレルプレート
・プレートギャップ:0.5mm
・測定周波数:1.59Hz
・昇温速度:2℃/min
・応力:300Pa
(Measurement condition)
-Device: Viscoelasticity measuring device (Reologica Instruments AB, product name: "VAR-100")
-Plate used: Parallel plate with a diameter of 40 mm
・ Plate gap: 0.5mm
・ Measurement frequency: 1.59Hz
・ Raising rate: 2 ° C / min
・ Stress: 300Pa

(製造方法)
図1記載の製造装置を用いて、クリール1より強化繊維束2を引き出し、幅300mm、繊維目付け630g/mの均一な強化繊維シート3にして、調整したマトリックス樹脂を塗工した。そののち、離型シート10に挟み、同時に封止材7を強化繊維シートの両側端より10mmずつ離れた位置に連続して供給した。これを加圧ロール11を用いて加圧してプリプレグをプリプレグ巻取機15に巻き取ってプリプレグを得た。このとき、離型シート10、並びに封止材7はそれぞれ離型シート巻取機13、封止材巻取機14にて巻き取った。なお、封止材としてシリコーンスポンジゴム(独立気泡型発泡体、空孔率:50%、アスカーC硬度:35度)を用い、封止材の厚みを2mm、幅を20mmとしたものを使用した。
(Production method)
Using the manufacturing apparatus shown in FIG. 1, the reinforcing fiber bundle 2 was drawn from the creel 1 to obtain a uniform reinforcing fiber sheet 3 having a width of 300 mm and a fiber basis weight of 630 g / m 2 , and the adjusted matrix resin was applied. After that, it was sandwiched between the release sheets 10 and simultaneously the sealing material 7 was continuously supplied to a position 10 mm apart from both side ends of the reinforcing fiber sheet. This was pressurized using a pressure roll 11 and the prepreg was wound around a prepreg winder 15 to obtain a prepreg. At this time, the release sheet 10 and the sealing material 7 were wound up by the release sheet winder 13 and the sealing material winder 14, respectively. In addition, silicone sponge rubber (closed cell foam, porosity: 50%, Asker C hardness: 35 degrees) was used as the sealing material, and the sealing material having a thickness of 2 mm and a width of 20 mm was used. .

このようにして求めたプリプレグの幅は314mmで炭素繊維目付けは602g/m、樹脂含有量は32.6質量%であった。この一方向プリプレグの両側端には余分な樹脂の付着は見られず、取り扱い性は良好であった。また、20mmごと(端部は各27mm)に分割して繊維含有量と樹脂含有量の変動係数を測定したところ(以下、短冊繊維含有変動係数、短冊樹脂含有変動係数)、4.0%、3.9%であった。
プリプレグを幅方向に20mmごとの短冊状に切断をおこない、各短冊状のプリプレグの質量を測定した。ひきつづき、各短冊の樹脂をアセトンで溶出させてから、乾燥し、各短冊中の繊維の質量を測定した。この測定値の差分を樹脂量とした。各短冊の測定結果より、繊維含有量の変動係数と樹脂含有量の変動係数をそれぞれ求めた。
The width of the prepreg thus determined was 314 mm, the carbon fiber basis weight was 602 g / m 2 , and the resin content was 32.6% by mass. Adhesion of excess resin was not observed on both side ends of this unidirectional prepreg, and the handleability was good. Further, when the coefficient of variation of the fiber content and the resin content was measured every 20 mm (each end was 27 mm) (hereinafter referred to as a strip fiber content variation coefficient, a strip resin content variation coefficient), 4.0%, It was 3.9%.
The prepreg was cut into strips every 20 mm in the width direction, and the mass of each strip-shaped prepreg was measured. Subsequently, the resin of each strip was eluted with acetone and then dried, and the mass of the fiber in each strip was measured. The difference between the measured values was taken as the resin amount. From the measurement results of each strip, the variation coefficient of the fiber content and the variation coefficient of the resin content were obtained.

(比較例1)
封止材を用いず、その他の条件は実施例と同じ条件にしてプリプレグを製造したところ、幅320mm、炭素繊維目付けは589g/m、樹脂含有量は32.9質量%の一方向プリプレグを得た。この一方向プリプレグは側端部に樹脂の付着が見られ、巻き取った離型シートに付着し、離型シートの再利用性に劣っていた。また、同様にして短冊繊維含有変動係数は8.4%、短冊樹脂変動係数は3.1%であった。
(Comparative Example 1)
When a prepreg was manufactured under the same conditions as in the examples without using a sealing material, the width was 320 mm, the carbon fiber basis weight was 589 g / m 2 , and the resin content was 32.9 mass% unidirectional prepreg. Obtained. This unidirectional prepreg was found to have resin attached to the side end, attached to the release sheet wound up, and inferior in reusability of the release sheet. Similarly, the variation coefficient of the strip fiber content was 8.4%, and the variation coefficient of the strip resin was 3.1%.

(比較例2)
封止材の変わりに強化繊維束と同じ繊維束を幅11mm、厚み0.55mmにして強化繊維束の両端に隙間無く流した他は実施例1と同じ条件にしてプリプレグを製造したところ、幅320mm、炭素繊維目付け591g/m、樹脂含有量33.7質量%の一方向プリプレグを得た。このとき、両端に配置した炭素繊維には樹脂が付着して、この一方向プリプレグは側端部の樹脂が比較例1よりも改善したものの、一部に樹脂の付着が見られた。また、同様にして短冊繊維含有変動係数は9.1%、短冊樹脂変動係数は5.9%であった。
(Comparative Example 2)
A prepreg was produced under the same conditions as in Example 1 except that the same fiber bundle as the reinforcing fiber bundle was made to have a width of 11 mm and a thickness of 0.55 mm instead of the sealing material, and was allowed to flow through both ends of the reinforcing fiber bundle without any gap. A unidirectional prepreg of 320 mm, a carbon fiber basis weight of 591 g / m 2 , and a resin content of 33.7% by mass was obtained. At this time, resin adhered to the carbon fibers disposed at both ends, and the resin at the side end portion of the unidirectional prepreg was improved as compared with Comparative Example 1, but resin adhesion was partially observed. Similarly, the variation coefficient of the strip fiber content was 9.1%, and the variation coefficient of the strip resin was 5.9%.

以上の実施例を表1にまとめた。ここで、変動係数は±2%以内(表示値で4%)におさまるものを○とした。また、両側端部における樹脂の付着が見られないものを○、継続的に樹脂が付着しているものを×、間欠的に樹脂が付着するものを△とした。   The above examples are summarized in Table 1. Here, a coefficient of variation that falls within ± 2% (displayed value: 4%) is marked as ◯. In addition, the case where no resin adhesion was observed at both end portions was indicated by ◯, the case where resin was continuously adhered was indicated by ×, and the case where resin was intermittently adhered was indicated by Δ.

Figure 2014015563
Figure 2014015563

以上の結果より、実施例1では、端部に樹脂付着の無い繊維含有量、樹脂含有量ともに均一な一方向プリプレグを製造できることがわかる。   From the above results, it can be seen that in Example 1, a unidirectional prepreg having a uniform fiber content without resin adhesion at the end and a resin content can be produced.

1・・・ボビン
2・・・強化繊維束
3・・・強化繊維シート
4・・・ダイ
5・・・樹脂組成物供給装置
6・・・封止材クリール
7・・・封止材
8・・・封止材位置調整装置
9・・・離型シートクリール
10・・・離型シート
11・・・加圧ロール
12・・・ヒートプレート
13・・・離型シート巻取機
14・・・封止材巻取機
15・・・プリプレグ巻取機
DESCRIPTION OF SYMBOLS 1 ... Bobbin 2 ... Reinforcement fiber bundle 3 ... Reinforcement fiber sheet 4 ... Die 5 ... Resin composition supply apparatus 6 ... Sealing material creel 7 ... Sealing material 8 ..Sealant position adjusting device 9 ... release sheet creel 10 ... release sheet 11 ... pressure roll 12 ... heat plate 13 ... release sheet winder 14 ... Sealing material winder 15 ... prepreg winder

Claims (1)

以下のプロセスを有する一方向プリプレグの製造方法。
マトリックス樹脂付着プロセス;強化繊維シートの少なくとも一方の面に、マトリックス樹脂を付着させるプロセスであって、前記強化繊維シートは複数の強化繊維束を一方向に引き揃えたシートである。
封止材配置プロセス;前記強化繊維シートの両側端部近傍に封止材を配置するプロセスであって、前記封止材は前記強化繊維シートと間隔を有して配置される。
マトリックス樹脂含浸プロセス;前記強化繊維シートを加圧して前記マトリックス樹脂を含浸させるプロセスであって、前記加圧は、前記強化繊維シートの両面を離型シートで挟んだ状態で行い、かつ前記強化繊維シートを押し広げ、前記強化繊維シートと前記封止材との間隔が無くなる圧力で行う。
封止材除去プロセス;前記強化繊維シートの両側端部から前記封止材を除去し、前記強化繊維シートに前記マトリックス樹脂が含浸された一方向プリプレグを得る。
A method for producing a unidirectional prepreg having the following process.
Matrix resin attachment process: a process of attaching a matrix resin to at least one surface of a reinforcing fiber sheet, wherein the reinforcing fiber sheet is a sheet in which a plurality of reinforcing fiber bundles are aligned in one direction.
Sealing material arrangement process: a process of arranging a sealing material in the vicinity of both end portions of the reinforcing fiber sheet, and the sealing material is arranged with an interval from the reinforcing fiber sheet.
Matrix resin impregnation process; a process of pressurizing the reinforcing fiber sheet to impregnate the matrix resin, wherein the pressurizing is performed with both sides of the reinforcing fiber sheet sandwiched between release sheets, and the reinforcing fiber The sheet is spread and pressure is applied so that there is no gap between the reinforcing fiber sheet and the sealing material.
Sealing material removal process: The sealing material is removed from both end portions of the reinforcing fiber sheet to obtain a unidirectional prepreg in which the reinforcing fiber sheet is impregnated with the matrix resin.
JP2012154936A 2012-07-10 2012-07-10 Manufacturing method of unidirectional prepreg Active JP5920625B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012154936A JP5920625B2 (en) 2012-07-10 2012-07-10 Manufacturing method of unidirectional prepreg

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012154936A JP5920625B2 (en) 2012-07-10 2012-07-10 Manufacturing method of unidirectional prepreg

Publications (2)

Publication Number Publication Date
JP2014015563A true JP2014015563A (en) 2014-01-30
JP5920625B2 JP5920625B2 (en) 2016-05-18

Family

ID=50110551

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012154936A Active JP5920625B2 (en) 2012-07-10 2012-07-10 Manufacturing method of unidirectional prepreg

Country Status (1)

Country Link
JP (1) JP5920625B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015060299A1 (en) * 2013-10-22 2015-04-30 三菱レイヨン株式会社 Prepreg production method
WO2017104823A1 (en) * 2015-12-16 2017-06-22 三菱ケミカル株式会社 Prepreg tape and use thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03243309A (en) * 1990-02-21 1991-10-30 Toray Ind Inc Manufacture of prepreg
JPH04189110A (en) * 1990-11-22 1992-07-07 Takeda Chem Ind Ltd Sheetlike molding material and both ends treatment device of sheetlike molding material
JPH06170847A (en) * 1992-12-10 1994-06-21 Sumitomo Chem Co Ltd Production of prepreg
US5633042A (en) * 1996-05-28 1997-05-27 Matsushita Electric Works, Ltd. Process for manufacturing prepregs for use as electric insulating material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03243309A (en) * 1990-02-21 1991-10-30 Toray Ind Inc Manufacture of prepreg
JPH04189110A (en) * 1990-11-22 1992-07-07 Takeda Chem Ind Ltd Sheetlike molding material and both ends treatment device of sheetlike molding material
JPH06170847A (en) * 1992-12-10 1994-06-21 Sumitomo Chem Co Ltd Production of prepreg
US5633042A (en) * 1996-05-28 1997-05-27 Matsushita Electric Works, Ltd. Process for manufacturing prepregs for use as electric insulating material

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015060299A1 (en) * 2013-10-22 2015-04-30 三菱レイヨン株式会社 Prepreg production method
JP5822033B2 (en) * 2013-10-22 2015-11-24 三菱レイヨン株式会社 Manufacturing method of prepreg
WO2017104823A1 (en) * 2015-12-16 2017-06-22 三菱ケミカル株式会社 Prepreg tape and use thereof
JPWO2017104823A1 (en) * 2015-12-16 2017-12-28 三菱ケミカル株式会社 Prepreg tape and its use
CN108368282A (en) * 2015-12-16 2018-08-03 三菱化学株式会社 Prepreg tape and its utilization
US20180291165A1 (en) * 2015-12-16 2018-10-11 Mitsubishi Chemical Corporation Prepreg tape and use thereof
US10934406B2 (en) 2015-12-16 2021-03-02 Mitsubishi Chemical Corporation Prepreg tape and use thereof
CN108368282B (en) * 2015-12-16 2021-11-30 三菱化学株式会社 Prepreg tape and use thereof

Also Published As

Publication number Publication date
JP5920625B2 (en) 2016-05-18

Similar Documents

Publication Publication Date Title
JP5822033B2 (en) Manufacturing method of prepreg
KR102127106B1 (en) Prepreg tape and its use
EP3603917B1 (en) Production method and coating device for coating-liquid-impregnated sheet-like reinforcing-fiber bundle and sheet-like integrated object
WO1997031052A1 (en) Epoxy resin composition for fiber-reinforced composite material, yarn prepreg, and process and apparatus for preparing the same
US10577470B2 (en) Prepreg, fiber-reinforced composite material, and resin composition containing particles
CN112189031A (en) Tow impregnation material, method for producing same, and method for producing pressure vessel
JP2010229211A (en) Prepreg for fiber reinforced composite material and molded product thereof
JP5920625B2 (en) Manufacturing method of unidirectional prepreg
JP6094792B2 (en) Manufacturing method of prepreg
JP2005320641A (en) Sizing agent, carbon fiber and carbon fiber-reinforced composite material
JP2004162055A (en) Method for producing prepreg and apparatus for the same
JP2004043653A (en) Slit tape prepreg and its molded product
EP2980136B1 (en) Prepreg, fiber-reinforced composite material, and resin composition containing particles
JP2013060515A (en) Manufacturing method of prepreg
JP2005264146A (en) Resin film for preparing reinforcing fiber prepreg, reinforcing fiber prepreg, and preparation process for resin film for preparing reinforcing fiber prepreg
JP5800178B2 (en) Manufacturing method of prepreg
EP2980134B1 (en) Prepreg, fiber-reinforced composite material, and resin composition containing particles
JP2006264137A (en) Method for producing prepreg
KR20120078465A (en) Method for manufacturing uni-directional prepreg having uniform fiber content and apparatus thereof
KR20230140801A (en) Towpreg and manufacturing method thereof
JPH03149230A (en) Production of prepreg
JP2016113470A (en) Matrix material
EP3921363A1 (en) Resin composition for carbon fiber composite material, towpreg
JP2023147223A (en) Prepreg with release sheet, and fiber-reinforced composite material
JP2007002217A (en) Reinforced fiber prepreg material and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150622

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160309

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160317

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160330

R151 Written notification of patent or utility model registration

Ref document number: 5920625

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250