JP2014009777A - Pressure compensation valve, hydraulic control valve integrated with pressure compensation valve, and construction machine with hydraulic control valve mounted therein - Google Patents

Pressure compensation valve, hydraulic control valve integrated with pressure compensation valve, and construction machine with hydraulic control valve mounted therein Download PDF

Info

Publication number
JP2014009777A
JP2014009777A JP2012148055A JP2012148055A JP2014009777A JP 2014009777 A JP2014009777 A JP 2014009777A JP 2012148055 A JP2012148055 A JP 2012148055A JP 2012148055 A JP2012148055 A JP 2012148055A JP 2014009777 A JP2014009777 A JP 2014009777A
Authority
JP
Japan
Prior art keywords
pressure
passage
valve
actuator
path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012148055A
Other languages
Japanese (ja)
Other versions
JP6038509B2 (en
Inventor
Masayuki Kobayashi
正幸 小林
Hiroki Kamata
宏樹 蒲田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shibaura Machine Co Ltd
Original Assignee
Toshiba Machine Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Machine Co Ltd filed Critical Toshiba Machine Co Ltd
Priority to JP2012148055A priority Critical patent/JP6038509B2/en
Publication of JP2014009777A publication Critical patent/JP2014009777A/en
Application granted granted Critical
Publication of JP6038509B2 publication Critical patent/JP6038509B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Operation Control Of Excavators (AREA)
  • Fluid-Pressure Circuits (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a hydraulic device which contributes to operability improvement of a construction machine such as a hydraulic shovel.SOLUTION: A pressure compensation valve comprises: an action chamber 61 in which peak load pressure of another actuator is introduced to one end of a valve element of the pressure compensation valve that freely slides; an action chamber 60 in which self-pressure is introduced to opposite one end; a notch 53 for controlling a flow rate outside of the valve element as a first passage D for a hydraulic solution; a valve element inside passage 56 connected through the notch to a supply passage to the actuator, as a second passage E for the hydraulic solution; and a throttle 52a in an inlet of the passage for the second hydraulic solution for causing the hydraulic solution to fall down with pressure. Through the throttle, the passage is branched into an action chamber introduction port for the self-pressure and the valve element inside passage, further, the valve element inside passage is branched into a maximum load pressure introduction port and the supply passage to the actuator, a maximum load pressure introduction passage is connected with a maximum load pressure passage via a check valve 64, and the supply passage to the actuator is confluent with the first passage.

Description

油圧作動の建設機械に使用される、多連型の油圧制御弁に関するもので、メータイン側の圧力補償弁を配置した、ロードセンシング方式と呼ばれる,流量制御方式の油圧制御装置に関するものである。   The present invention relates to a multiple-type hydraulic control valve used in a hydraulically operated construction machine, and relates to a flow control type hydraulic control device called a load sensing type in which a pressure compensation valve on the meter-in side is arranged.

ロードセンシング方式と呼ばれる、流量制御の多連弁は図4に示すように1つのポンプで複数のアクチェータを制御する油圧制御装置で複数のアクチュエータの最高負荷圧力を検出し、ポンプの吐出圧力が検出圧力より一定の高い圧力になるように制御する方式である。このポンプ圧力に対する負荷圧力の差をロードセンシング差圧と呼ばれる。複数のアクチェータを作動させた場合に,最高負荷圧力に応じて作動する、圧力補償弁と呼ばれる切換弁が各アクチュエータ毎に配置され、この切換弁は、低負荷側のアクチェータを最高負荷圧力にまで昇圧させる。   As shown in Fig. 4, the multi-valve for flow control called load sensing system is a hydraulic control device that controls multiple actuators with one pump and detects the maximum load pressure of multiple actuators, and detects the discharge pressure of the pump In this method, the pressure is controlled so as to be constant and higher than the pressure. The difference in load pressure with respect to the pump pressure is called load sensing differential pressure. When multiple actuators are operated, a switching valve called a pressure compensation valve that operates according to the maximum load pressure is arranged for each actuator. This switching valve allows the low load side actuator to reach the maximum load pressure. Increase the pressure.

特開2007−321908号公報JP 2007-321908 A

しかしながら、ロードセンシング方式では1ポンプで複数のアクチェータを制御しなければならない為、前記の圧力袖償弁の制御性が油圧ショベルの操作性に大きな影響を与える。極端に負荷が異なる場合や低流量の制御では負荷の低いほうに作動油は流れてしまうとの問題が有った。   However, in the load sensing method, since a plurality of actuators must be controlled with one pump, the controllability of the pressure sleeve compensation valve greatly affects the operability of the hydraulic excavator. When the load is extremely different or when the control is performed at a low flow rate, there is a problem that the hydraulic oil flows to the lower load.

本発明は,上記問題を解決させる為になされたもので、従来に比べ、部品点数を増やすことなく、負荷圧力に差がある場合、低流量の場合においても、確実に負荷の高いアクチュエータに供給する事が可能で有り、更に、流量調整も可能になり、油圧ショベルの操作性向上に寄与する油圧機器を提供することを目的とする。   The present invention has been made to solve the above-mentioned problems. Compared to the conventional art, the present invention reliably supplies actuators with high loads even when there is a difference in load pressure, even when the flow rate is low, without increasing the number of parts. An object of the present invention is to provide a hydraulic device that can improve the operability of a hydraulic excavator because the flow rate can be adjusted.

前記目的を達成するための第一の発明である建設機械の油圧制御装置は、圧油供給用ポンプを搭載し、前記ポンプからの圧油が供給される多連型の油圧制御弁を制御すると共にメータイン側に圧力補償弁を配置した建設機械の油圧制御装置であって、摺動自在な前記圧力補償弁の弁体の一端に他のアクチェータの最高負荷圧力が導入される作用室と、反対の一端に自己圧力が導入される作用室と、第1の作動油の経路としての弁体外側に流量を制御するための切り欠きと、前記切欠きを経由してアクチュエータへの供給通路に接続され、第2の作動油の経路としての弁体内部通路と、前記第2の作動油の経路の入り口には作動油を圧力降下させる為の絞りと、前記絞りを経由して、自己圧力の作用室導入口と弁体内部通路と分岐し、更に,前記弁体内部通路は、最大負荷圧力導入口とアクチュエータヘの供給通路に分岐し、前記最大負荷圧力導入通路はチェック弁を介して、最大負荷圧力通路と接続し、アクチュエータへの供給通路は第1の経路と合流することを特徴とする。   A hydraulic control device for a construction machine, which is a first invention for achieving the above object, is equipped with a pressure oil supply pump, and controls a multiple hydraulic control valve to which the pressure oil from the pump is supplied. And a hydraulic control device for a construction machine in which a pressure compensation valve is arranged on the meter-in side, opposite to a working chamber in which the highest load pressure of another actuator is introduced to one end of the slidable valve body of the pressure compensation valve A working chamber in which self-pressure is introduced at one end of the valve, a notch for controlling the flow rate outside the valve body as a path for the first hydraulic oil, and a supply passage to the actuator via the notch The valve body internal passage as the second hydraulic oil path, the throttle for reducing the pressure of the hydraulic oil at the entrance of the second hydraulic oil path, and the self-pressure via the throttle Branches between the working chamber inlet and the valve body internal passage. The valve body internal passage branches into a maximum load pressure introduction port and a supply passage to the actuator. The maximum load pressure introduction passage is connected to the maximum load pressure passage through a check valve, and the supply passage to the actuator is the first passage. It is characterized by merging with the route.

前記目的を達成するための第二の発明である建設機械の油圧制御装置に配置される圧力補償弁は、圧油供給用ポンプを搭載し、前記ポンプからの圧油が供給される多連型の油圧制御弁を制御する建設機械の油圧制御装置のメータイン側に配置される圧力補償弁であって、摺動自在な前記圧力補償弁の弁体の一端に他のアクチェータの最高負荷圧力が導入される作用室と、反対の一端に自己圧力が導入される作用室と、第1の作動油の経路としての弁体外側に流量を制御するためのノッチと呼ばれる切欠きと、切欠きを経由してアクチュエータへの供給通路に接続され、第2の作動油の経路としての弁体内部通路を有し、前記第2の作動油の経路の入り口には作動油を圧力降下させる為の絞りと、前記絞りを経由して、自己圧力の作用室導入口と弁体内部通路と分岐し、更に,弁体内部通路は、最大負荷圧力導入口とアクチュエータヘの供給通路に分岐し、前記最大負荷圧力導入通路はチェック弁を介して、最大負荷圧力通路と接続し、アクチュエータへの供給通路は第1の経路と合流することを特徴とする。   A pressure compensation valve arranged in a hydraulic control device for a construction machine, which is a second invention for achieving the above object, is equipped with a pump for supplying pressure oil, and is a multiple type in which the pressure oil from the pump is supplied The pressure compensation valve is arranged on the meter-in side of the hydraulic control device of the construction machine that controls the hydraulic control valve of the machine, and the maximum load pressure of the other actuator is introduced into one end of the slidable valve body of the pressure compensation valve A working chamber in which self-pressure is introduced at the opposite end, a notch called a notch for controlling the flow rate outside the valve body as a path for the first hydraulic oil, and via the notch And a valve body internal passage as a second hydraulic fluid path connected to the supply path to the actuator, and a throttle for reducing the pressure of the hydraulic oil at the entrance of the second hydraulic oil path; The self-pressure working chamber inlet through the throttle Branches with the valve body internal passage, and further, the valve body internal passage branches into a maximum load pressure introduction port and a supply passage to the actuator, and the maximum load pressure introduction passage is connected to the maximum load pressure passage through a check valve. The supply path to the actuator joins the first path.

前記目的を達成するための第三の発明である油圧制御装置を搭載する建設機械は、圧油供給用ポンプを搭載し、前記ポンプからの圧油が供給される多連型の油圧制御弁を制御すると共にメータイン側に圧力補償弁を配置した油圧制御装置を搭載する建設機械であって、摺動自在な前記圧力補償弁の弁体の一端に他のアクチェータの最高負荷圧力が導入される作用室と、反対の一端に自己圧力が導入される作用室と、第1の作動油の経路としての弁体外側に流量を制御するための切欠きと、前記切欠きを経由してアクチュエータへの供給通路に接続され、第2の作動油の経路としての弁体内部通路と、前記第2の作動油の経路の入り口には作動油を圧力降下させる為の絞りと、前記絞りを経由して、自己圧力の作用室導入口と弁体内部通路と分岐し、更に,前記弁体内部通路は、最大負荷圧力導入口とアクチュエータヘの供給通路に分岐し、前記最大負荷圧力導入通路はチェック弁を介して、最大負荷圧力通路と接続し、アクチュエータへの供給通路は第1の経路と合流することを特徴とする。   A construction machine equipped with a hydraulic control device according to a third aspect of the invention for achieving the above object is equipped with a pump for supplying pressure oil, and a multiple-type hydraulic control valve to which pressure oil from the pump is supplied. A construction machine that is equipped with a hydraulic control device that controls and has a pressure compensation valve arranged on the meter-in side, in which the highest load pressure of another actuator is introduced into one end of the slidable valve body of the pressure compensation valve A working chamber in which self-pressure is introduced at one end opposite to the chamber, a notch for controlling the flow rate outside the valve body as a path of the first hydraulic oil, and the actuator to the actuator via the notch A valve body internal passage as a second hydraulic oil path, connected to the supply path, a throttle for reducing the pressure of the hydraulic oil at the inlet of the second hydraulic oil path, and via the throttle , Self-pressure working chamber inlet and valve body internal passage Further, the valve body internal passage branches into a maximum load pressure introduction port and a supply passage to the actuator, and the maximum load pressure introduction passage is connected to the maximum load pressure passage via a check valve to connect to the actuator. The supply passage is characterized by merging with the first path.

本発明によれば、摺動自在な圧力補償弁の弁体の一端に他のアクチェータの最高負荷圧力が導入される作用室と、反対の一端に自己圧力が導入される作用室と第1の作動油の経路としての弁体外側に流量を制御するためのノッチと呼ばれる切欠きと、切欠きを経由してアクチュエータへの供給通路に接続され、第2の経路としての弁体内部通路を有し、第2の経路の入り口には作動油を圧力降下させる為の絞り設け、弁体内部通路を経由してアクチュエータヘの供給通路に接続される。従って,作動油は第1の経路と第2の経路と分岐して流れアクチュエータに供給され,第1の経路と第2の経路の分流比は開度によって決定される。第1の経路は圧力補償弁の移動によって閉じられ,自己圧力を昇圧させ,圧力補償弁は最大負荷圧力と自己圧力の差、すなわち、スプリング力になる位置で釣り合い、スプリング力は圧力と比較すると小さいことを考慮すると、最大負荷圧力すなわち、自己圧力の位置になる。第2の経路には絞りが設けられており、流量の通過によって圧力が降下する。降下した圧力は自己圧力作用室に導入され作用する。従って,圧力補償弁はより第1の経路を閉じる位置にて釣り合い,見かけ上,負荷圧力の低いアクチュエータと判断し圧力降下分高くなるように昇圧する。従って,絞り開度を任意に調整することにより,複合操作時のアクチュエータの速度を調整することが可能になる。   According to the present invention, the working chamber in which the highest load pressure of the other actuator is introduced into one end of the valve body of the slidable pressure compensating valve, the working chamber in which self-pressure is introduced into the opposite end, and the first There is a notch called a notch for controlling the flow rate outside the valve body as a hydraulic oil path, and a supply path to the actuator via the notch. A throttle for reducing the pressure of hydraulic oil is provided at the entrance of the second path, and connected to the supply path to the actuator via the valve body internal path. Accordingly, the hydraulic oil branches from the first path and the second path and is supplied to the flow actuator, and the diversion ratio between the first path and the second path is determined by the opening degree. The first path is closed by the movement of the pressure compensation valve, boosting the self-pressure, and the pressure compensation valve is balanced at the difference between the maximum load pressure and the self-pressure, that is, the position where the spring force is obtained. Considering the small size, the position becomes the maximum load pressure, that is, the self-pressure. A throttle is provided in the second path, and the pressure drops as the flow rate passes. The lowered pressure is introduced into the self-pressure chamber and acts. Therefore, the pressure compensation valve is balanced at a position where the first path is closed, and apparently, the pressure compensation valve is determined to be an actuator having a low load pressure, and the pressure is increased so that the pressure drop is increased. Therefore, it is possible to adjust the speed of the actuator during combined operation by arbitrarily adjusting the throttle opening.

本発明が適用される建設機械として代表的な油圧ショベルの概略構成を示す。1 shows a schematic configuration of a typical hydraulic excavator as a construction machine to which the present invention is applied. 本発明に係る圧力補償弁とこの圧力補償弁と一体した油圧制御弁の横断面図である。It is a cross-sectional view of a pressure compensation valve according to the present invention and a hydraulic control valve integrated with the pressure compensation valve. 本発明に係る圧力補償弁の横断面図である。It is a cross-sectional view of the pressure compensation valve according to the present invention. 従来の圧力補償弁の横断面図である。It is a cross-sectional view of a conventional pressure compensation valve. 本発明に係る圧力補償弁とこの圧力補償弁と一体化した油圧制御弁と従来の油圧制御弁とを比較したBM負荷圧力対流量のグラフである。5 is a graph of BM load pressure versus flow rate comparing a pressure compensation valve according to the present invention, a hydraulic control valve integrated with the pressure compensation valve, and a conventional hydraulic control valve.

図1は、本発明が適用される建設機械として代表的な油圧ショベルの概略構成を示す。同図1において、油圧ショベル10は、油圧モータにより駆動される下部走行体30の上に旋回機構28を介して上部旋回体12が旋回自在に載置されている。上部旋回体12には、その前方一側部にキャブ14が設けられ、且つ、前方中央部にブーム16が俯仰可能に取り付けられている。又、ブーム16の先端にアーム20が上下回動自在に取り付けられ、更にアーム20の先端にバケット24が取り付けられている。参照符号26はブーム用の油圧シリンダ、18はアーム用の油圧シリンダ、22はバケット用の油圧シリンダである。なお、図示してないが、上部旋回体12内には原動機と、同原動機により駆動される可変容量型ポンプが搭載され、その斜板の転動角をロードセンシング信号により制御する流量調整機構を備えている。また、油圧アクチュエータである、前記の下部走行体30および上部旋回体12用の油圧モータ、ブーム用の油圧シリンダ26、アーム用の油圧シリンダ18、バケット用の油圧シリンダ22にそれぞれ対応した油圧制御弁が多連弁として積層されて配置されている。   FIG. 1 shows a schematic configuration of a typical hydraulic excavator as a construction machine to which the present invention is applied. In FIG. 1, an excavator 10 has an upper swing body 12 mounted on a lower traveling body 30 driven by a hydraulic motor via a swing mechanism 28 so as to be rotatable. The upper swing body 12 is provided with a cab 14 at one front side portion thereof, and a boom 16 is attached to the front center portion so as to be able to be raised and lowered. An arm 20 is attached to the tip of the boom 16 so as to be rotatable up and down, and a bucket 24 is attached to the tip of the arm 20. Reference numeral 26 is a boom hydraulic cylinder, 18 is an arm hydraulic cylinder, and 22 is a bucket hydraulic cylinder. Although not shown in the drawing, a motor and a variable displacement pump driven by the motor are mounted in the upper swing body 12, and a flow rate adjusting mechanism for controlling the rolling angle of the swash plate by a load sensing signal is provided. I have. Further, hydraulic control valves corresponding to the hydraulic motors for the lower traveling body 30 and the upper swing body 12, the hydraulic cylinder 26 for the boom, the hydraulic cylinder 18 for the arm, and the hydraulic cylinder 22 for the bucket, which are hydraulic actuators, respectively. Are stacked and arranged as a multiple valve.

図2は、油圧制御装置の多連弁に使用される本発明の油圧制御弁CVの詳細断面を示す。図2において、油圧制御弁CVのシリンダポートPA、PBには油圧ショベル10の中の1つの油圧アクチュエータ32がライン32a、32bを介して接続されている。油圧制御弁CVのメータイン側に配置される圧力補償弁34の中央部分には、両端部に圧油信号入力ポートa、bを有し左右方向に摺動可能な主スプール36が設けられている。参照符号40はロードチェック部であって、圧力補償弁34に固定したキャップ40aの内側に形成された下方開口部にはバネ41が設けられ、端部に弁体シート部を有する逆止弁66を下方に付勢するよう配置されている。   FIG. 2 shows a detailed cross section of the hydraulic control valve CV of the present invention used in the multiple valve of the hydraulic control device. In FIG. 2, one hydraulic actuator 32 in the excavator 10 is connected to cylinder ports PA and PB of the hydraulic control valve CV via lines 32a and 32b. A main spool 36 having pressure oil signal input ports a and b at both ends and slidable in the left-right direction is provided at the center of the pressure compensation valve 34 disposed on the meter-in side of the hydraulic control valve CV. . Reference numeral 40 is a load check portion, and a spring 41 is provided in a lower opening portion formed inside a cap 40a fixed to the pressure compensation valve 34, and a check valve 66 having a valve body seat portion at an end portion. Is arranged to urge downward.

参照符号42、44は圧油供給路58からの圧油により逆止弁66が上昇したとき圧油供給路58の圧油を、矢視A、Bで示すように、通路62aへ、または62bへ導く圧油供給路である。参照符号46はポンプ45から高圧圧油を供給するポンプ高圧供給通路であって、その左方には所定間隔を隔てて隣接する供給通路48が形成され、主スプール36が左方へストローク移動したとき、矢視Cで示すように、ポンプ高圧供給通路46から圧油が供給される。   Reference numerals 42 and 44 indicate the pressure oil in the pressure oil supply path 58 to the passage 62a or 62b as indicated by arrows A and B when the check valve 66 is raised by the pressure oil from the pressure oil supply path 58. Pressure oil supply path leading to Reference numeral 46 is a pump high-pressure supply passage for supplying high-pressure oil from the pump 45, and an adjacent supply passage 48 is formed on the left side at a predetermined interval, so that the main spool 36 moves to the left. At this time, as indicated by an arrow C, pressure oil is supplied from the pump high-pressure supply passage 46.

前記供給通路48は圧力補償弁54のスプール54aの右方部分が交差するよう配置されている。圧力補償弁54のスプール54aの左端部にはバネ54dが配置されスプール54aを常時右方へ付勢している。第2絞り52bと連通している弁体内部通路56上の最高負荷圧はスプール54aの左側側面に設けられる最高圧力通路68に与えられている。この圧力が前記バネ54dの弾発力より小さいときスプール54aは図示のように左端側に位置する。なお、参照符号54bは弁本体に固定されたキャップである。   The supply passage 48 is arranged so that the right part of the spool 54a of the pressure compensation valve 54 intersects. A spring 54d is disposed at the left end of the spool 54a of the pressure compensation valve 54, and always urges the spool 54a to the right. The maximum load pressure on the valve body internal passage 56 communicating with the second throttle 52b is applied to the maximum pressure passage 68 provided on the left side surface of the spool 54a. When this pressure is smaller than the spring force of the spring 54d, the spool 54a is positioned on the left end side as shown. Reference numeral 54b is a cap fixed to the valve body.

供給通路48と圧油供給路58とは、第1の経路D及び第2の経路Eにより連結される。   The supply passage 48 and the pressure oil supply passage 58 are connected by the first route D and the second route E.

第1の経路Dは、圧力補償弁54のスプール54aの側面に設けられる切欠きであるノッチ53を経由して連結される。   The first path D is connected via a notch 53 that is a notch provided on the side surface of the spool 54 a of the pressure compensation valve 54.

スプール54aの紙面左側一端には、最高負荷圧力が導入される作用室61が設けられ、スプール54aの紙面右側他端には、自己圧力が作用する作用室60が設けられる。   A working chamber 61 into which the maximum load pressure is introduced is provided at one end on the left side of the paper surface of the spool 54a, and a working chamber 60 on which self pressure acts is provided at the other right side of the paper surface of the spool 54a.

第2の経路Eは、ノッチ53からスプール54aの内部に中心軸に沿って設けられる弁体内部通路56と連通する第1絞り52aと、この第1絞り52a連通する弁体内部通路56と、この弁体内部通路56と圧油供給路58とを連通する第2絞り52bと、圧油供給路58とからなり、圧油供給路58において第1の経路Dと合流する。   The second path E includes a first throttle 52a communicating with the valve body internal passage 56 provided along the central axis from the notch 53 to the inside of the spool 54a, and a valve body internal passage 56 communicating with the first throttle 52a. The valve body internal passage 56 and the pressure oil supply path 58 are connected to each other, and the second throttle 52b and the pressure oil supply path 58 are joined. The pressure oil supply path 58 merges with the first path D.

第1絞り52aの下流側の圧力は、自己圧力が作用する作用室60に導入される。弁体内部通路56の圧力は、弁体内部通路56に連結されるチェック弁64を開き、最高圧力通路68に接続通路70を介して接続されている。   The pressure on the downstream side of the first throttle 52a is introduced into the working chamber 60 where the self pressure acts. The pressure in the valve body internal passage 56 opens the check valve 64 connected to the valve body internal passage 56 and is connected to the maximum pressure passage 68 via the connection passage 70.

次に、図3で作用を説明する。図3は他のアクチュエータにより、最高負荷圧力により紙面右側に移動した図である。第1の経路Dの作動油は圧力補償弁34の移動によりノッチ53と圧油供給路58における開度が小さくなっている。この為、第1の経路Dの作動油は絞られ昇圧している。又、第1の経路Dが絞られることに応じて、第2の経路Eの作動油量は反対に増加している。第2の経路Eの作動油量は、第1絞り52aを通過することによって,圧力降下の影響を受け、自己圧力は圧力降下の分だけ低くなる。又,第1の経路Dの作動油は弁体内部通路56を通り,アクチュエータへの圧油供給路58に排出されて,第1の経路Dと合流する。従来の圧力補償弁では,スプリング力が非常に小さいものとして考えると、   Next, the operation will be described with reference to FIG. FIG. 3 is a diagram in which the actuator is moved to the right side by the maximum load pressure by another actuator. The hydraulic oil in the first path D has a small opening in the notch 53 and the pressure oil supply path 58 due to the movement of the pressure compensation valve 34. For this reason, the hydraulic fluid in the first path D is throttled and boosted. Further, as the first path D is throttled, the amount of hydraulic oil in the second path E increases on the contrary. The amount of hydraulic oil in the second path E is affected by the pressure drop by passing through the first throttle 52a, and the self-pressure is lowered by the amount of the pressure drop. Further, the hydraulic oil in the first path D passes through the valve body internal path 56, is discharged to the pressure oil supply path 58 to the actuator, and merges with the first path D. In the conventional pressure compensation valve, if the spring force is considered to be very small,

Figure 2014009777
Figure 2014009777

(k:定数、PLS:最高負荷圧力,Q:通過流量)で表すことができる。本発明では,全体の通過流量Qとし,第1の経路の通過流量q、第2の経路の通過流量q、絞り開度をAとすると、 (K: constant, PLS: maximum load pressure, Q: passing flow rate). In the present invention, if the overall flow rate is Q, the first flow rate is q 1 , the second flow rate is q 2 , and the throttle opening is A 0 ,

Figure 2014009777
Figure 2014009777

(k:定数、PLS:最高負荷圧力)となり、従って、この式から常に(従来の開度)>(本発明の開度)となり,第1の経路Dの開度をより小さくし、高く昇圧していることが分かる。よって,負荷の低いアクチュエータをより昇圧し作動油を流れにくくすることが可能であるとともに,第1絞り52aの開度を調整することによって,任意に流量を調整することができる。又,第2の経路Eからの作動油の排出は接続通路70を介して行うが,一般的にこのキリ穴形状での排出は流体力の影響を受けにくいことが知られており、より流体制御性の良い圧力補償弁となる。 (K: constant, PLS: maximum load pressure) Therefore, from this equation, (conventional opening degree)> (opening degree of the present invention) is always established, and the opening degree of the first path D is made smaller and the pressure is increased higher. You can see that Therefore, it is possible to increase the pressure of the low-load actuator to make it difficult for the hydraulic oil to flow, and it is possible to arbitrarily adjust the flow rate by adjusting the opening of the first throttle 52a. In addition, the hydraulic oil is discharged from the second path E through the connection passage 70, but it is generally known that the discharge in the shape of the hole is less affected by the fluid force, It becomes a pressure compensation valve with good controllability.

図5によれば、本発明に係る圧力補償弁とこの圧力補償弁と一体した油圧制御弁と従来の油圧制御弁とを比較したBM負荷圧力対流量のグラフで比較すると、従来の油圧制御弁では、22MPaより高い圧力では必要な流量を確保することができないのに対して、本発明に係る油圧制御弁では、図5のBで示すように、30MPaまで流量が確保できることが示されている。従来例では、図5のAで示すようにBM負荷圧力が大きくなるにつれて、流量が無くなることが分かる。   According to FIG. 5, when comparing the pressure compensation valve according to the present invention, a hydraulic control valve integrated with the pressure compensation valve, and a conventional hydraulic control valve in a graph of BM load pressure versus flow rate, the conventional hydraulic control valve is compared. However, it is shown that the required flow rate cannot be secured at a pressure higher than 22 MPa, whereas the hydraulic control valve according to the present invention can secure a flow rate up to 30 MPa, as shown by B in FIG. . In the conventional example, as shown by A in FIG. 5, it can be seen that the flow rate disappears as the BM load pressure increases.

以上本発明の好適な実施例について図面により説明したが、当業者であれば、上記の図面および説明に基づいて種々の変形をすることが可能であることはもちろんである。   Although the preferred embodiments of the present invention have been described with reference to the drawings, those skilled in the art can naturally make various modifications based on the above drawings and descriptions.

10 油圧ショベル
12 上部旋回体
14 キャブ
16 ブーム
18 アーム用の油圧シリンダ
20 アーム
22 バケット用の油圧シリンダ
24 バケット
26 ブーム用の油圧シリンダ
28 旋回機構
30 下部走行体
32 油圧アクチュエータ
32a、32b ライン
34 圧力補償弁
36 主スプール
40 参照符号
40a キャップ
41 バネ
42、44 圧油供給路
45 ポンプ
46 ポンプ高圧供給通路
48 供給通路
52a 第1絞り
52b 第2絞り
53 ノッチ
54 圧力補償弁
54a スプール
54b キャップ
54d バネ
56 弁体内部通路
58 圧油供給路
60 作用室
61 作用室
62a、62b 通路
64 チェック弁
66 逆止弁
68 最高圧力通路
70 接続通路
A、B 矢視
C 矢視
CV 油圧制御弁
D 第1の経路
E 第2の経路
PA、PB シリンダポート
a、b 圧油信号入力ポート
DESCRIPTION OF SYMBOLS 10 Hydraulic excavator 12 Upper turning body 14 Cab 16 Boom 18 Arm hydraulic cylinder 20 Arm 22 Bucket hydraulic cylinder 24 Bucket 26 Boom hydraulic cylinder 28 Turning mechanism 30 Lower traveling body 32 Hydraulic actuators 32a and 32b Line 34 Pressure compensation Valve 36 Main spool 40 Reference numeral 40a Cap 41 Spring 42, 44 Pressure oil supply path 45 Pump 46 Pump high pressure supply path 48 Supply path 52a First throttle 52b Second throttle 53 Notch 54 Pressure compensation valve 54a Spool 54b Cap 54d Spring 56 Valve Body internal passage 58 Pressure oil supply passage 60 Working chamber 61 Working chamber 62a, 62b Passage 64 Check valve 66 Check valve 68 Maximum pressure passage 70 Connection passage A, B View C View CV Hydraulic control valve D First route E Second path PA, PB Cylinder port a b pressure oil signal input port

Claims (4)

圧油供給用ポンプを搭載し、前記ポンプからの圧油が供給される多連型の油圧制御弁を制御すると共にメータイン側に圧力補償弁を配置した建設機械の油圧制御装置であって、
摺動自在な前記圧力補償弁の弁体の一端に他のアクチェータの最高負荷圧力が導入される作用室と、
反対の一端に自己圧力が導入される作用室と、
第1の作動油の経路としての弁体外側に流量を制御するための切り欠きと、
前記切欠きを経由してアクチュエータへの供給通路に接続され、
第2の作動油の経路としての弁体内部通路と、
前記第2の作動油の経路の入り口には作動油を圧力降下させる為の絞りと、
前記絞りを経由して、自己圧力の作用室導入口と弁体内部通路と分岐し、
更に,前記弁体内部通路は、最大負荷圧力導入口とアクチュエータヘの供給通路に分岐し、前記最大負荷圧力導入通路はチェック弁を介して、最大負荷圧力通路と接続し、アクチュエータへの供給通路は第1の経路と合流することを特徴とする建設機械の油圧制御装置。
A hydraulic control device for a construction machine equipped with a pressure oil supply pump, which controls a multiple-type hydraulic control valve to which pressure oil is supplied from the pump, and has a pressure compensation valve arranged on the meter-in side,
A working chamber in which the highest load pressure of the other actuator is introduced into one end of the slidable pressure compensating valve body;
A working chamber in which self-pressure is introduced at the opposite end;
A notch for controlling the flow rate on the outside of the valve body as a path of the first hydraulic oil;
Connected to the supply path to the actuator via the notch,
A valve body internal passage as a second hydraulic oil path;
A throttle for reducing the pressure of hydraulic oil at the entrance of the second hydraulic oil path;
The self-pressure working chamber inlet and the valve body internal passage branch through the throttle,
Furthermore, the valve body internal passage branches into a maximum load pressure introduction port and a supply passage to the actuator, and the maximum load pressure introduction passage is connected to the maximum load pressure passage through a check valve to supply the actuator to the actuator. Is a hydraulic control device for a construction machine, wherein the hydraulic control device merges with the first path.
前記圧力補償弁は、チェック弁をさらに備えることを特徴とする請求項1記載の建設機械の油圧制御装置。   The hydraulic control device for a construction machine according to claim 1, wherein the pressure compensation valve further includes a check valve. 圧油供給用ポンプを搭載し、前記ポンプからの圧油が供給される多連型の油圧制御弁を制御する建設機械の油圧制御装置のメータイン側に配置される圧力補償弁であって、
摺動自在な前記圧力補償弁の弁体の一端に他のアクチェータの最高負荷圧力が導入される作用室と、
反対の一端に自己圧力が導入される作用室と、
第1の作動油の経路としての弁体外側に流量を制御するためのノッチと呼ばれる切欠きと、
切欠きを経由してアクチュエータへの供給通路に接続され、
第2の作動油の経路としての弁体内部通路を有し、前記第2の作動油の経路の入り口には作動油を圧力降下させる為の絞りと、
前記絞りを経由して、自己圧力の作用室導入口と弁体内部通路と分岐し、
更に,弁体内部通路は、最大負荷圧力導入口とアクチュエータヘの供給通路に分岐し、前記最大負荷圧力導入通路はチェック弁を介して、最大負荷圧力通路と接続し、アクチュエータへの供給通路は第1の経路と合流することを特徴とする建設機械の油圧制御装置に配置される圧力補償弁。
A pressure compensation valve disposed on the meter-in side of a hydraulic control device of a construction machine that is equipped with a pressure oil supply pump and controls a multiple-type hydraulic control valve to which pressure oil from the pump is supplied,
A working chamber in which the highest load pressure of the other actuator is introduced into one end of the slidable pressure compensating valve body;
A working chamber in which self-pressure is introduced at the opposite end;
A notch called a notch for controlling the flow rate outside the valve body as a path of the first hydraulic oil;
Connected to the supply path to the actuator via the notch,
A valve body internal passage as a second hydraulic oil path, a throttle for reducing the pressure of the hydraulic oil at the entrance of the second hydraulic oil path;
The self-pressure working chamber inlet and the valve body internal passage branch through the throttle,
Further, the valve body internal passage branches into a maximum load pressure introduction port and a supply passage to the actuator, the maximum load pressure introduction passage is connected to the maximum load pressure passage through a check valve, and the supply passage to the actuator is A pressure compensation valve arranged in a hydraulic control device for a construction machine, wherein the pressure compensation valve merges with a first path.
圧油供給用ポンプを搭載し、前記ポンプからの圧油が供給される多連型の油圧制御弁を制御すると共にメータイン側に圧力補償弁を配置した油圧制御装置を搭載する建設機械であって、
摺動自在な前記圧力補償弁の弁体の一端に他のアクチェータの最高負荷圧力が導入される作用室と、
反対の一端に自己圧力が導入される作用室と、
第1の作動油の経路としての弁体外側に流量を制御するための切欠きと、
前記切欠きを経由してアクチュエータへの供給通路に接続され、
第2の作動油の経路としての弁体内部通路と、
前記第2の作動油の経路の入り口には作動油を圧力降下させる為の絞りと、
前記絞りを経由して、自己圧力の作用室導入口と弁体内部通路と分岐し、
更に,前記弁体内部通路は、最大負荷圧力導入口とアクチュエータヘの供給通路に分岐し、前記最大負荷圧力導入通路はチェック弁を介して、最大負荷圧力通路と接続し、アクチュエータへの供給通路は第1の経路と合流することを特徴とする油圧制御装置を搭載する建設機械。
A construction machine equipped with a hydraulic control device equipped with a pressure oil supply pump, which controls a multiple-type hydraulic control valve to which pressure oil from the pump is supplied and which has a pressure compensation valve arranged on the meter-in side. ,
A working chamber in which the highest load pressure of the other actuator is introduced into one end of the slidable pressure compensating valve body;
A working chamber in which self-pressure is introduced at the opposite end;
A notch for controlling the flow rate on the outside of the valve body as a path of the first hydraulic oil;
Connected to the supply path to the actuator via the notch,
A valve body internal passage as a second hydraulic oil path;
A throttle for reducing the pressure of hydraulic oil at the entrance of the second hydraulic oil path;
The self-pressure working chamber inlet and the valve body internal passage branch through the throttle,
Furthermore, the valve body internal passage branches into a maximum load pressure introduction port and a supply passage to the actuator, and the maximum load pressure introduction passage is connected to the maximum load pressure passage through a check valve to supply the actuator to the actuator. Is a construction machine equipped with a hydraulic control device characterized by merging with the first path.
JP2012148055A 2012-06-29 2012-06-29 Pressure compensation valve, hydraulic control valve integrated with the pressure compensation valve, and construction machine equipped with the hydraulic control valve Active JP6038509B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012148055A JP6038509B2 (en) 2012-06-29 2012-06-29 Pressure compensation valve, hydraulic control valve integrated with the pressure compensation valve, and construction machine equipped with the hydraulic control valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012148055A JP6038509B2 (en) 2012-06-29 2012-06-29 Pressure compensation valve, hydraulic control valve integrated with the pressure compensation valve, and construction machine equipped with the hydraulic control valve

Publications (2)

Publication Number Publication Date
JP2014009777A true JP2014009777A (en) 2014-01-20
JP6038509B2 JP6038509B2 (en) 2016-12-07

Family

ID=50106655

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012148055A Active JP6038509B2 (en) 2012-06-29 2012-06-29 Pressure compensation valve, hydraulic control valve integrated with the pressure compensation valve, and construction machine equipped with the hydraulic control valve

Country Status (1)

Country Link
JP (1) JP6038509B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105370655A (en) * 2015-12-16 2016-03-02 日照海卓液压有限公司 Multi-mode double-oil-way electric-hydraulic proportional overflow speed regulating valve
WO2016072322A1 (en) * 2014-11-07 2016-05-12 Kyb株式会社 Load-sensing valve device
CN112797044A (en) * 2020-12-31 2021-05-14 徐工集团工程机械股份有限公司 Plate type multi-way valve and engineering machinery

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02248701A (en) * 1989-03-22 1990-10-04 Komatsu Ltd Hydraulic pressure valve with pressure compensation
JPH06117406A (en) * 1992-10-05 1994-04-26 Kayaba Ind Co Ltd Drive circuit for fluid pressure actuator
JPH1162901A (en) * 1997-08-26 1999-03-05 Kayaba Ind Co Ltd Hydraulic control device
JP2007321908A (en) * 2006-06-01 2007-12-13 Toshiba Mach Co Ltd Hydraulic control valve

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02248701A (en) * 1989-03-22 1990-10-04 Komatsu Ltd Hydraulic pressure valve with pressure compensation
JPH06117406A (en) * 1992-10-05 1994-04-26 Kayaba Ind Co Ltd Drive circuit for fluid pressure actuator
JPH1162901A (en) * 1997-08-26 1999-03-05 Kayaba Ind Co Ltd Hydraulic control device
JP2007321908A (en) * 2006-06-01 2007-12-13 Toshiba Mach Co Ltd Hydraulic control valve

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016072322A1 (en) * 2014-11-07 2016-05-12 Kyb株式会社 Load-sensing valve device
JP2016089995A (en) * 2014-11-07 2016-05-23 Kyb株式会社 Load sensing valve device
CN105370655A (en) * 2015-12-16 2016-03-02 日照海卓液压有限公司 Multi-mode double-oil-way electric-hydraulic proportional overflow speed regulating valve
CN112797044A (en) * 2020-12-31 2021-05-14 徐工集团工程机械股份有限公司 Plate type multi-way valve and engineering machinery

Also Published As

Publication number Publication date
JP6038509B2 (en) 2016-12-07

Similar Documents

Publication Publication Date Title
CN107044144B (en) Hydraulic drive device for construction machine
JP6730798B2 (en) Hydraulic drive
CN103807231B (en) Hydraulic drive apparatus for work machine
JP6797015B2 (en) Hydraulic excavator drive system
JP6001846B2 (en) Hydraulic control device and construction machine including the same
JPWO2014192458A1 (en) Hydraulic drive unit for construction machinery
US20150082782A1 (en) Independent flow rate controlling hydraulic system for pressure control of excavator and independent hydraulic pressure controlling method using the same
US11078646B2 (en) Shovel and control valve for shovel
JP2013079552A (en) Work vehicle
JP6717541B2 (en) Valve device and fluid pressure system including the same
JP2014031827A (en) Hydraulic circuit system for construction machine
US20220170241A1 (en) Flow Control Valve
JP6038509B2 (en) Pressure compensation valve, hydraulic control valve integrated with the pressure compensation valve, and construction machine equipped with the hydraulic control valve
JP6196567B2 (en) Hydraulic drive system for construction machinery
JP2019056464A5 (en)
JP6082690B2 (en) Hydraulic drive unit for construction machinery
JP2010047984A (en) Hydraulic circuit of hydraulic excavator
JP2019056464A (en) Flow control valve
JP7240161B2 (en) hydraulic drive system
RU2527811C2 (en) Valve unit
JP4969541B2 (en) Hydraulic control device for work machine
JP2015110981A5 (en)
CN108884843B (en) Excavator and control valve for excavator
JP4933299B2 (en) Hydraulic control equipment for construction machinery
JP6247123B2 (en) Hydraulic circuit for construction machinery

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20150415

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150604

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20150715

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160323

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160519

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161019

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161102

R150 Certificate of patent or registration of utility model

Ref document number: 6038509

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250