JP2014007143A - 光源を駆動するための回路および方法 - Google Patents

光源を駆動するための回路および方法 Download PDF

Info

Publication number
JP2014007143A
JP2014007143A JP2013076627A JP2013076627A JP2014007143A JP 2014007143 A JP2014007143 A JP 2014007143A JP 2013076627 A JP2013076627 A JP 2013076627A JP 2013076627 A JP2013076627 A JP 2013076627A JP 2014007143 A JP2014007143 A JP 2014007143A
Authority
JP
Japan
Prior art keywords
state
current
signal
voltage
switch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013076627A
Other languages
English (en)
Inventor
Rin Yun-Rin
ユン−リン・リン
Tuan Kuo Chin
チン−チュアン・クオ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
O2Micro Inc
Original Assignee
O2Micro Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US13/530,935 external-priority patent/US20120262079A1/en
Application filed by O2Micro Inc filed Critical O2Micro Inc
Publication of JP2014007143A publication Critical patent/JP2014007143A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits
    • H05B45/3725Switched mode power supply [SMPS]
    • H05B45/385Switched mode power supply [SMPS] using flyback topology
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits
    • H05B45/3725Switched mode power supply [SMPS]
    • H05B45/375Switched mode power supply [SMPS] using buck topology
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/30Semiconductor lamps, e.g. solid state lamps [SSL] light emitting diodes [LED] or organic LED [OLED]

Landscapes

  • Circuit Arrangement For Electric Light Sources In General (AREA)
  • Led Devices (AREA)
  • Dc-Dc Converters (AREA)

Abstract

【課題】フィルタ、変圧器、およびコントローラを含む光源に電力を供給するための回路を提供すること。
【解決手段】フィルタは、入力電圧を受信し、入力電圧をフィルタリングして、安定化電圧を提供する。変圧器は、安定化電圧を出力電圧に変換して、光源に電力を供給する。コントローラは、駆動信号を生成して、スイッチを第1状態と第2状態との間で交互に操作する。コントローラは、第1状態と第2状態との持続時間を制御することによって回路の力率を修正して、入力電流が、第2状態の間にあらかじめ定められたレベルに減少して、第1状態の間にあらかじめ定められたレベルから入力電圧に比例する最大レベルに増加するようにする。コントローラは、第1状態における時間と第2状態における時間との比率を制御して、光源を通って流れる出力電流を目標レベルに調整する。
【選択図】図2

Description

本出願は、2010年3月4日に中国国家知識産権局に出願された中国特許出願第201010119888.2号「Circuits and Methods for Driving Light Sources」の優先権を主張する、2010年4月16日に出願された米国同時係属出願の米国特許出願第12/761,681号「Circuits and Methods for Driving Light Sources」の一部係属出願である、2012年2月10日に出願された米国同時係属出願の米国特許出願第13/371,351号「Circuits and Methods for Driving Light Sources」の一部継続出願である。第13/371,351号の出願も、2011年12月29日に中国国家知識産権局に出願された中国特許出願第201110453588,2号「Circuit, Method and Controller for Driving LED Light Source」の優先権を主張する。
図1は、光源、たとえば発光ダイオード(LED)ストリング108を駆動するための従来の回路100のブロック図を示している。回路100は、入力電圧VINを提供する電源102によって電力を供給される。回路100は、コントローラ104の制御下にあるLEDストリング108に安定化電圧VOUTを提供するための降圧コンバータを含む。降圧コンバータは、ダイオード114、インダクタ112、キャパシタ116、およびスイッチ106を含む。レジスタ110はスイッチ106と直列に連結されている。スイッチ106がオンになると、レジスタ110はインダクタ112およびLEDストリング108に連結され、インダクタ112を通って流れる電流を示すフィードバック信号を提供できるようになる。スイッチ106がオフになると、レジスタ110はインダクタ112およびLEDストリング108から切断されるので、レジスタ110を通って流れる電流がなくなる。
スイッチ106はコントローラ104によって制御される。スイッチ106がオンになると、電流は、LEDストリング108、インダクタ112、スイッチ106、およびレジスタ110を通って接地に流れる。電流は、インダクタ112のインダクタンスによって増大する。電流が、あらかじめ定められた電流の最大レベルに到達すると、コントローラ104はスイッチ106をオフにする。スイッチ106がオフになると、電流はLEDストリング108、インダクタ112、およびダイオード114を流れる。コントローラ104は一定時間の後で再びスイッチ106をオンにすることができる。したがって、コントローラ104は、あらかじめ定められた電流の最大レベルに基づいて降圧コンバータを制御する。しかし、インダクタ112およびLEDストリング108を通って流れる電流の平均レベルは、インダクタ112のインダクタンス、入力電圧VIN、およびLEDストリング108を通した電圧VOUTによって異なる場合がある。したがって、インダクタ112を通って流れる電流の平均レベル(LEDストリング108を通って流れる電流の平均)を正確に制御できない場合がある。
一実施形態では、光源に電力を供給するための回路は、フィルタ、変圧器、およびコントローラを含む。フィルタは、入力電圧を受信し、入力電圧をフィルタリングして、安定化電圧を提供する。変圧器は、安定化電圧を出力電圧に変換して、光源に電力を供給する。コントローラは、駆動信号を生成して、スイッチを第1状態と第2状態との間で交互に操作する。コントローラは、第1状態および第2状態の継続時間を制御することによって回路の力率を修正して、入力電流が、第2状態の間にあらかじめ定められたレベルに減少して、第1状態の間にあらかじめ定められたレベルから入力電圧に比例する最大レベルに増加するようにする。コントローラは、第1状態における時間と第2状態における時間との比率を制御して、光源を通って流れる出力電流を目標レベルに調整する。
特許請求の範囲に記載された対象の実施形態の特徴および利点は、以下の詳細な説明が進むにつれて、および図面を参照することによって明らかになるだろう。図面において、同様の符号は同様の部分を示している。
光源を駆動するための従来の回路のブロック図である。 本発明による実施形態における、駆動回路のブロック図である。 本発明による実施形態における、駆動回路の概略図の例を示す図である。 本発明による実施形態における、図3のコントローラの例を示す図である。 本発明による実施形態における、図4のコントローラに関連付けられる信号の信号波形を示す図である。 本発明による実施形態における、図3のコントローラの他の例を示す図である。 本発明による実施形態における、図6のコントローラに関連付けられる信号の信号波形を示す図である。 本発明による実施形態における、駆動回路の概略図の他の例を示す図である。 本発明による実施形態における、駆動回路の他のブロック図である。 本発明による実施形態における、図9Aの駆動回路によって生成または受信された信号の波形の例を示す図である。 本発明による実施形態における、駆動回路の概略図の例を示す図である。 本発明による実施形態における、図9Aのコントローラの例を示す図である。 本発明による実施形態における、駆動回路によって生成または受信された信号の波形を示す図である。 本発明による実施形態における、負荷を駆動するための回路によって実行される動作の流れ図である。 本発明による実施形態における、駆動回路の他のブロック図である。 本発明による実施形態における、駆動回路によって生成または受信された信号の他の波形を示す図である。 本発明による実施形態における、駆動回路の例示的概略図である。 本発明による実施形態における、コントローラの例を示す図である。 本発明による実施形態における、光源を駆動するための回路によって実行される動作の例の流れ図である。
次に、本発明の実施形態を詳細に参照する。本発明をこれらの実施形態とともに説明するが、これらの実施形態は、本発明をこれらの実施形態に限定することを意図するものではないことが理解されよう。反対に、本発明は、代替実施形態、修正形態、および同等物を含むことが意図され、それらは添付の特許請求の範囲によって定義される本発明の趣旨および範囲内に含まれうる。
さらに、以下の本発明の詳細な説明では、本発明の完全な理解を提供するために多数の特定の詳細が説明される。しかし、本発明はこれらの特定の詳細なしに実施されうることが当業者には認識されよう。他の例では、本発明の態様を不必要に曖昧にしないために、良く知られている方法、手順、コンポーネント、および回路は詳細に説明しない。
本発明による実施形態は、様々なタイプの負荷、たとえば光源に電力を供給するために使用されうる電力変換装置を制御するための回路および方法を提供する。一実施形態では、回路は、エネルギー格納要素、たとえばインダクタを通って流れる電流を監視するために動作可能な電流センサを含むことができ、インダクタに連結されたスイッチを制御して、光源の平均電流を目標電流に制御できるようにするために動作可能なコントローラを含む。電流センサは、スイッチがオンの場合もスイッチがオフの場合も、インダクタを通る電流を監視できる。
図2は、本発明による実施形態における、駆動回路200のブロック図を示している。駆動回路200は、電源202から入力電圧を受信して、整流された電圧を電力変換装置206に提供する整流器204を含む。電力変換装置206は、整流された電圧を受信すると、負荷208に出力電力を提供する。電力変換装置206は、降圧コンバータでもよく、昇圧コンバータでもよい。一実施形態では、電力変換装置206は、エネルギー格納要素214、およびエネルギー格納要素214の電気状態を検知するための電流センサ218を含む。電流センサ218は、エネルギー格納要素214を通って流れる瞬間電流を示す第1信号ISENを、コントローラ210に提供する。駆動回路200は、エネルギー格納要素214を通って流れる平均電流を示す第2信号IAVGを、第1信号ISENに基づいて生成するために動作可能なフィルタ212をさらに含むことができる。一実施形態では、コントローラ210は第1信号ISENおよび第2信号IAVGを受信して、エネルギー格納要素214を通って流れる平均電流を目標電流レベルに制御する。
図3は、本発明による実施形態における、駆動回路300の概略図の例を示している。図2と同じラベル付けをされた要素は、同様の機能を有している。図3の例では、駆動回路300は、整流器204、電力変換装置206、フィルタ212、およびコントローラ210を含む。一例として、整流器204はダイオードD1〜D4を含むブリッジ整流器である。整流器204は電源202から電圧を整流する。電力変換装置206は、整流器204から整流された電圧を受信して、負荷、たとえばLEDストリング208に電力を供給するために出力電力を提供する。
図3の例では、電力変換装置206は、キャパシタ308、スイッチ316、ダイオード314、電流センサ218(たとえば、レジスタ)、連結されたインダクタ302および304、ならびにキャパシタ324を含む降圧コンバータである。ダイオード314は、スイッチ316と駆動回路300の接地との間に連結されている。キャパシタ324はLEDストリング208と並列に連結されている。一実施形態では、インダクタ302および304は電気的かつ磁気的に相互に連結されている。より具体的には、インダクタ302およびインダクタ304は共通ノード333と電気的に連結されている。図3の例では、共通ノード333はレジスタ218とインダクタ302との間にある。しかし、本発明はそれに限定されず、共通ノード333はスイッチ316とレジスタ218との間に配置することもできる。共通ノード333はコントローラ210の基準接地を提供する。一実施形態では、コントローラ210の基準接地は、駆動回路300の接地とは異なる。スイッチ316をオンおよびオフに切り替えることによって、インダクタ302を通って流れる電流を調節でき、それによってLEDストリング208に提供する電力を調節できる。インダクタ304は、たとえば、インダクタ302を通って流れる電流があらかじめ定められた電流レベルに減少するかどうか、インダクタ302の電気状態を検知する。
レジスタ218の一方の端はスイッチ316とダイオード314のカソードとの間のノードに連結されており、他方の端はインダクタ302に連結されている。レジスタ218は、スイッチ316がオンの場合もスイッチ316がオフの場合も、インダクタ302を通って流れる瞬間電流を示す第1信号ISENを提供する。言い換えれば、レジスタ218は、スイッチ316がオンかオフかに関わらず、インダクタ302を通って流れる瞬間電流を検知できる。レジスタ218に連結されたフィルタ212は、インダクタ302を通って流れる平均電流を示す第2信号IAVGを生成する。一実施形態では、フィルタ212はレジスタ320およびキャパシタ322を含む。
コントローラ210は、第1信号ISENおよび第2信号IAVGを受信して、スイッチ316をオンおよびオフに切り替えることによってインダクタ302を通って流れる平均電流を目標電流レベルに制御する。キャパシタ324は、LEDストリング208を通って流れるリップル電流を吸収するので、LEDストリング208を通って流れる電流が平滑化され、インダクタ302を通って流れる平均電流と実質的に等しくなる。このようにして、LEDストリング208を通って流れる電流は、目標電流レベルと実質的に等しいレベルを有する。本明細書で使用されるように、「目標電流レベルと実質的に等しい」は、LEDストリング208を通って流れる電流が目標電流レベルとわずかに異なる場合があるが、回路コンポーネントの非理想的要因によって生じたリップル電流を無視でき、インダクタ304からコントローラ210に転送された電力を無視できるような範囲内であることを意味する。
図3の例では、コントローラ210は端子ZCD、GND、DRV、VDD、CS、COMP、およびFBを有する。端子ZCDは、インダクタ302の電気状態、たとえば、インダクタ302を通って流れる電流があらかじめ定められた電流レベル、たとえばゼロに減少するかどうかを示す検出信号AUXを受信するために、インダクタ304に連結されている。信号AUXは、LEDストリング208がオープン回路状態かどうかも示すことができる。端子DRVは、スイッチ316に連結されており、スイッチ316をオンおよびオフに切り替えるために、駆動信号、たとえばパルス幅変調信号PWM1を生成する。端子VDDは、インダクタ304から電力を受信するためにインダクタ304に連結されている。端子CSは、レジスタ218に連結されており、インダクタ302を通って流れる瞬間電流を示す第1信号ISENを受信するために動作可能である。端子COMPは、キャパシタ318を通ってコントローラ210の基準接地に連結されている。端子FBは、フィルタ212を通ってレジスタ218に連結されており、インダクタ302を通って流れる平均電流を示す第2信号IAVGを受信するために動作可能である。図3の例では、端子GND、すなわちコントローラ210の基準接地は、レジスタ218と、インダクタ302およびインダクタ304との間の共通ノード333に連結されている。
スイッチ316は、Nチャネル金属酸化膜半導体電界効果トランジスタ(NMOSFET)でよい。スイッチ316の伝導状態は、スイッチ316のゲート電圧と端子GNDの電圧(共通ノード333の電圧)との間の差に基づいて決定される。したがって、スイッチ316は、端子DRVからのパルス幅変調信号PWM1に応じて電源をオンおよびオフに切り替えられる。スイッチ316がオンになると、コントローラ210の基準接地は駆動回路300の接地よりも高くなり、本発明を比較的高い電圧を有する電源にとって適したものにする。
動作中、スイッチ316がオンになると、電流はスイッチ316、レジスタ218、インダクタ302、LEDストリング208を通って駆動回路300の接地へ流れる。スイッチ316がオフになると、電流はレジスタ218、インダクタ302、LEDストリング208、およびダイオード314を流れ続ける。インダクタ302に磁気的に連結されているインダクタ304は、インダクタ302の電気状態、たとえば、インダクタ302を通って流れる電流があらかじめ定められた電流レベルに減少するかどうかを検出する。したがって、一実施形態では、コントローラ210は、信号AUX、信号ISEN、および信号IAVGを介して、インダクタ302を通って流れる電流を監視して、パルス幅変調信号PWM1によってスイッチ316を制御して、インダクタ302を通って流れる平均電流を目標電流レベルに制御できるようにする。このようにして、キャパシタ324によってフィルタリングされる、LEDストリング208を通って流れる電流も、目標電流レベルと実質的に等しくなることができる。
一実施形態では、コントローラ210は、信号AUXに基づいて、LEDストリング208がオープン回路状態かどうかを決定する。LEDストリング208がオープンの場合、キャパシタ324をまたぐ電圧が増加する。スイッチ316がオフの場合、インダクタ302をまたぐ電圧が増加し、それに応じて信号AUXの電圧が増加する。その結果、端子ZCDを介してコントローラ210に流れる電流が増加する。したがって、コントローラ210は信号AUXを監視して、スイッチ316がオフになるとコントローラ210に流れる電流が電流しきい値を超えて増加する場合、コントローラ210はLEDストリング208がオープン回路状態であると決定する。
コントローラ210は、端子VDDの電圧に基づいて、LEDストリング208が短絡状態かどうかも決定できる。LEDストリング208が短絡状態の場合、スイッチ316がオフになると、インダクタ302の両端が駆動回路300の接地に連結されるため、インダクタ302をまたぐ電圧が減少する。それに応じて、インダクタ304をまたぐ電圧および端子VDDの電圧が減少する。スイッチ316がオフになると端子VDDの電圧が電圧しきい値を下回るほど減少する場合、コントローラ210はLEDストリング208が短絡状態であると決定する。
図4は、本発明による実施形態における、図3のコントローラ210の例を示している。図5は、本発明による実施形態における、図4のコントローラ210に関連付けられる信号の信号波形を示している。図4を、図3および図5と組み合わせて説明する。
図4の例では、コントローラ210は、誤差増幅器402、比較器404、およびパルス幅変調信号生成器408を含む。誤差増幅器402は、参照信号SETと信号IAVGとの間の差に基づいて誤差信号VEAを生成する。参照信号SETは目標電流レベルを示すことができる。信号IAVGは、端子FBで受信されて、インダクタ302を通って流れる平均電流を示すことができる。誤差信号VEAは、インダクタ302を通って流れる平均電流を目標電流レベルに調整するために使用されうる。比較器404は誤差増幅器402に連結されており、誤差信号VEAと信号ISENとを比較する。信号ISENは端子CSで受信されて、インダクタ302を通って流れる瞬間電流を示す。信号AUXは端子ZCDで受信されて、インダクタ302を通って流れる電流が、あらかじめ定められた電流レベル、たとえばゼロに減少するかどうかを示す。パルス幅変調信号生成器408は比較器404および端子ZCDに連結されており、比較器404および信号AUXの出力に基づいてパルス幅変調信号PWM1を生成できる。パルス幅変調信号PWM1は、端子DRVを介してスイッチ316に適用されて、スイッチ316の伝導状態を制御する。
動作中、パルス幅変調信号生成器408は、第1レベル(たとえば、ロジック1)を有するパルス幅変調信号PWM1を生成して、スイッチ316をオンにすることができる。スイッチ316がオンになると、電流は、スイッチ316、レジスタ218、インダクタ302、LEDストリング208を通って、駆動回路300の接地に流れる。インダクタ302を通って流れる電流が増加するので、信号ISENの電圧が増加する。一実施形態では、スイッチ316がオンになると、信号AUXは負電圧レベルを有する。コントローラ210で、比較器404が誤差信号VEAと信号ISENとを比較する。一実施形態では、信号ISENの電圧が誤差信号VEAの電圧を超えて増加する場合は、比較器404の出力はロジック0になり、そうではない場合は、比較器404の出力はロジック1になる。言い換えれば、比較器404の出力は一連のパルスを含む。パルス幅変調信号生成器408は、比較器404の出力の立下りエッジに応じて、第2レベル(たとえばロジック0)を有するパルス幅変調信号PWM1を生成して、スイッチ316をオフにする。スイッチ316がオフになると、信号AUXの電圧は正電圧レベルに変化する。スイッチ316がオフになると、電流はレジスタ218、インダクタ302、LEDストリング208、およびダイオード314を通って流れる。インダクタ302を通って流れる電流が減少するので、信号ISENの電圧が減少する。インダクタ302を通って流れる電流があらかじめ定められた電流レベル(たとえば、ゼロ)に減少すると、信号AUXの電圧に立下りエッジが発生する。信号AUXの立下りエッジを受信すると、パルス幅変調信号生成器408は、第1レベル(たとえば、ロジック1)を有するパルス幅変調信号PWM1を生成して、スイッチ316の電源をオンにする。
一実施形態では、パルス幅変調信号PWM1のデューティサイクルは誤差信号VEAによって決定される。信号IAVGの電圧が信号SETの電圧よりも低い場合、誤差増幅器402が誤差信号VEAの電圧を増加して、パルス幅変調信号PWM1のデューティサイクルを増加できるようにする。したがって、インダクタ302を通って流れる平均電流は、信号IAVGの電圧が信号SETの電圧に到達するまで増加する。信号IAVGの電圧が信号SETの電圧よりも高い場合、誤差増幅器402が誤差信号VEAの電圧を減少させて、パルス幅変調信号PWM1のデューティサイクルを減少できるようにする。したがって、インダクタ302を通って流れる平均電流は、信号IAVGの電圧が信号SETの電圧に落ちるまで減少する。このようにして、インダクタ302を通って流れる平均電流は目標電流レベルと実質的に等しくなるように維持されうる。
図6は、本発明による実施形態における、図3のコントローラ210の他の例を示している。図7は、本発明による実施形態における、図6のコントローラ210に関連付けられる信号の波形を示している。図6を、図3および図7と組み合わせて説明する。
図6の例では、コントローラ210は、誤差増幅器602、比較器604、鋸歯状信号生成器606、リセット信号生成器608、およびパルス幅変調信号生成器610を含む。誤差増幅器602は、参照信号SETおよび信号IAVGに基づいて誤差信号VEAを生成する。参照信号SETは目標電流レベルを示す。信号IAVGは端子FBで受信されて、インダクタ302を通って流れる平均電流を示す。誤差信号VEAは、インダクタ302を通って流れる平均電流を目標電流レベルに調整するために使用される。鋸歯状信号生成器606は、鋸歯状信号SAWを生成する。比較器604は誤差増幅器602および鋸歯状信号生成器606に連結されており、誤差信号VEAと鋸歯状信号SAWとを比較する。リセット信号生成器608は、鋸歯状信号生成器606およびパルス幅変調信号生成器610に適用されるリセット信号RESETを生成する。スイッチ316は、リセット信号RESETに応じてオンになることができる。パルス幅変調信号生成器610は比較器604およびリセット信号生成器608に連結されており、比較器604およびリセット信号RESETの出力に基づいてパルス幅変調(PWM)信号PWM1を生成する。パルス幅変調信号PWM1は、端子DRVを介してスイッチ316に適用されて、スイッチ316の伝導状態を制御する。
一実施形態では、リセット信号RESETは一定周波数を有するパルス信号である。他の実施形態では、リセット信号RESETは、スイッチ316がオフになっている時間Toffが一定になるように構成されたパルス信号である。たとえば、図5では、パルス幅変調信号PWM1がロジック0である時間は一定であることができる。
動作中、パルス幅変調信号生成器610は、リセット信号RESETのパルスに応じて、第1レベル(たとえば、ロジック1)を有するパルス幅変調信号PWM1を生成して、スイッチ316の電源をオンにする。スイッチ316がオンになると、電流は、スイッチ316、レジスタ218、インダクタ302、LEDストリング208を通って、駆動回路300の接地に流れる。鋸歯状信号生成器606によって生成された鋸歯状信号SAWは、リセット信号RESETのパルスに応じて初期レベルINIから増加し始める。鋸歯状信号SAWの電圧が誤差信号VEAの電圧まで増加すると、パルス幅変調信号生成器610は、第2レベル(ロジック0)を有するパルス幅変調信号PWM1を生成して、スイッチ316をオフにする。鋸歯状信号SAWは、リセット信号RESETの次のパルスが鋸歯状信号生成器606によって受信されるまで、初期レベルINIにリセットされる。鋸歯状信号SAWは、次のパルスに応じて再び初期レベルINIから増加し始める。
一実施形態では、パルス幅変調信号PWM1のデューティサイクルは誤差信号VEAによって決定される。信号IAVGの電圧が信号SETの電圧よりも低い場合、誤差増幅器602は誤差信号VEAの電圧を増加して、パルス幅変調信号PWM1のデューティサイクルを増加できるようにする。したがって、インダクタ302を通って流れる平均電流は、信号IAVGの電圧が信号SETの電圧に到達するまで増加する。信号IAVGの電圧が信号SETの電圧よりも高い場合、誤差増幅器602が誤差信号VEAの電圧を減少させて、パルス幅変調信号PWM1のデューティサイクルを減少できるようにする。したがって、インダクタ302を通って流れる平均電流は、信号IAVGの電圧が信号SETの電圧に落ちるまで減少する。このようにして、インダクタ302を通って流れる平均電流は目標電流レベルと実質的に等しくなるように維持されうる。
図8は、本発明による実施形態における、駆動回路800の概略図の他の例を示している。図2および図3と同じラベル付けをされた要素は、同様の機能を有している。
コントローラ210の端子VDDは、整流器204から整流された電圧を受信するために、スイッチ804を通じて整流器204に連結されている。ツェナーダイオード802は、スイッチ804とコントローラ210の基準接地との間に連結されており、端子VDDの電圧を実質的に一定のレベルに維持する。図8の例では、コントローラ210の端子ZCDは、インダクタ302の電気状態、たとえば、インダクタ302を流れる電流があらかじめ定められた電流レベル、たとえばゼロに減少するかどうかを示す信号AUXを受信するために、インダクタ302に電気的に連結されている。ノード333はコントローラ210の基準接地を提供できる。
したがって、本発明による実施形態は、様々なタイプの負荷に電力を供給するために使用されうる電力変換装置を制御するための回路および方法を提供する。一実施形態では、電力変換装置は、発光ダイオード(LED)ストリングなどの負荷に電力を供給するために実質的に一定の電流を提供する。他の実施形態では、電力変換装置は、電池を充電するために実質的に一定の電流を提供する。有利なことに、図1における従来の駆動回路と比較すると、負荷または電池への平均電流をより正確に制御できる。さらに、本発明による回路は、比較的高い電圧を有する電源にとって適切な場合がある。
図9Aは、本発明による実施形態における、駆動回路900の他のブロック図を示している。図2および図3と同じラベル付けをされた要素は、同様の機能を有している。図9Aの例では、駆動回路900は、電源202に連結された電流フィルタ920、整流器204、電力変換装置906、負荷208、鋸歯状信号生成器902、およびコントローラ910を含む。電源202は、たとえば正弦波形を有する交流入力電圧VACと、交流入力電流IACとを生成する。交流入力電流IACは、電流フィルタ920に流れ、電流IAC'は電流フィルタ920から整流器204に流れる。整流器204は、電流フィルタ920を介して交流入力電圧VACを受信して、整流された交流電圧VINおよび整流された交流電流IINを、整流器204と電力変換装置906との間に連結された電力線912で提供する。電力変換装置906は、電圧VINを出力電圧VOUTに変換して、負荷208に電力を供給する。電力変換装置906に連結されたコントローラ910は、電力変換装置906を制御して、負荷208を通る電流IOUTを調整して、駆動回路900の力率を修正する。
コントローラ910は駆動信号962を生成する。一実施形態では、電力変換装置906は、駆動信号962によって制御されるスイッチ316を含む。このようにして、負荷208を通って流れる電流IOUTが駆動信号962によって調整される。一実施形態では、電力変換装置906は、負荷208を通る電流IOUTを示す検知信号IAVGをさらに生成する。
一実施形態では、コントローラ910に連結された鋸歯状信号生成器902は、駆動信号962によって鋸歯状信号960を生成する。たとえば、駆動信号962はパルス幅変調(PWM)信号でよい。一実施形態では、駆動信号962がロジックハイ(logic high)の場合に鋸歯状信号960が増加し、駆動信号962がロジックロー(logic low)の場合に鋸歯状信号960があらかじめ定められた電圧レベル、たとえばゼロボルトに落ちる。
有利なことに、コントローラ910は、鋸歯状信号960および検知信号IAVGを含む信号に基づいて駆動信号962を生成する。駆動信号962はスイッチ316を制御して、負荷208を通る電流IOUTを目標レベルに維持するので、電流制御の精度が向上する。さらに、駆動信号962は、スイッチ316を制御して、電力IINの平均電流IIN_AVGが入力電圧VINに実質的に同調するよう調整して、駆動回路900の力率を修正する。駆動回路900の動作を、図9Bでさらに説明する。
図9Bは、本発明による実施形態における、図9Aの駆動回路900に関連付けられる信号の波形の例を示している。図9Bを、図9Aと組み合わせて説明する。図9Bは交流入力電圧VAC、整流された交流電圧VIN、整流された交流電圧IIN、電流IAC'、および交流入力電流IACを示している。
これに限定されないが、例示のために、交流入力電圧VACは正弦波形を有する。整流器204は交流入力電圧VACを整流する。図9Bの例では、整流された交流電圧VINは整流された正弦波形を有し、交流入力電圧VACの正の波はそのままで、交流入力電圧VACの負の波が対応する正の波に変換される。
一実施形態では、コントローラ910によって生成された駆動信号962が電流IINを制御する。一実施形態では、電流IINは、あらかじめ定められたレベル、たとえばゼロアンペアから増加する。電流IINが整流された交流入力電圧VINに比例するレベルに到達した後、電流IINはあらかじめ定められたレベルに落ちる。したがって、図9Bに示されるように、電流IINの平均電流IIN_AVGの波形は整流された交流電圧VINの波形に実質的に同調する。
整流器204から電力変換装置906に流れる電流IINは、整流器204へと流れる電流IAC'を整流した電流である。図9Bに示されるように、交流入力電圧VACが正の場合、電流IAC'は電流IINの正の波と類似する正の波を有し、交流入力電圧VACが負の場合、電流IINの負の波に対応する負の波を有する。
一実施形態では、電源202と整流器204との間の電流フィルタ920を使用することによって、交流入力電流IACは、電流IAC'の平均電流と等しくなるか、それに比例する。したがって、図9Bに示されるように、交流入力電流IACの波形が交流入力電圧VACの波形に実質的に同調する。交流入力電圧VACおよび交流入力電流IACが同調していることが理想的である。しかし、実際の適用では、電流フィルタ920および電力変換装置906におけるキャパシタのために、わずかな位相差がある場合がある。さらに、交流入力電流IACの波形の形状は交流入力電圧VACの波形の形状に類似している。したがって、駆動回路900の力率が訂正され、駆動回路900の電力品質が向上する。
図10は、本発明による実施形態における、駆動回路1000の概略図の例を示している。図2、図3、および図9Aと同じラベル付けをされた要素は、同様の機能を有している。図10を、図4、図5、および図9Aと組み合わせて説明する。
図10の例では、駆動回路1000は、電源202に連結された電流フィルタ920、整流器204、電力変換装置906、負荷208、鋸歯状信号生成器902、およびコントローラ910を含む。一実施形態では、負荷208はLEDストリングなどのLED光源を含む。本発明はそれに限定されず、負荷208は他のタイプの光源、または電池パックなどの他のタイプの負荷を含むことができる。電流フィルタ920は、これに限定ないが、1組のインダクタと1組のキャパシタとを含むインダクタ-キャパシタ(L-C)フィルタでよい。一実施形態では、コントローラ910は、ZCD端子、GND端子、DRV端子、VDD端子、FB端子、COMP端子、およびCS端子などの複数の端子を含む。
一実施形態では、電力変換装置906は、電力線912に連結された入力キャパシタ1008を含む。入力キャパシタ1008は、整流された交流電圧VINのリップルを減少させて、整流された交流電圧VINの波形を平滑化する。一実施形態では、キャパシタ1008は比較的小さい、たとえば0.5μFを下回るキャパシタンスを有するので、整流された交流電圧VINのあらゆる歪みを削除または減少するために役立つ。さらに、一実施形態では、キャパシタ1008を通って流れる電流はキャパシタンスが比較的小さいので、無視されてよい。したがって、スイッチ316を通って流れる電流IINは、スイッチ316がオンの場合は整流器204からの電流とほぼ等しい。
電力変換装置906は、図3の電力変換装置206と同様に動作する。一実施形態では、エネルギー格納要素214は、磁気的かつ電気的に相互に連結しているインダクタ302および304を含む。インダクタ302は、スイッチ316およびLED光源208と連結している。したがって、電流I214はスイッチ316の伝導状態に従って、インダクタ302を通って流れる。より具体的には、一実施形態では、コントローラ910は、DRV端子を通じて駆動信号962、たとえばPWM信号を生成して、スイッチ316をオン状態またはオフ状態に切り替える。スイッチ316がオンになると、電流I214は電力線912からスイッチ316およびインダクタ302を通って流れる。電流I214はスイッチ316がオン状態の間に増加して、式(1)によって与えられうる:
△I214=(VIN-VOUT)*TON/L302 (1)
上式で、TONはスイッチ316がオンになる時間を表し、△I214は電流I214の変化を表し、L302はインダクタ302のインダクタンスを表す。一実施形態では、コントローラ910は、駆動信号962を制御してTONの時間を一定に維持する。したがって、時間TONの間の電流I214の変更△I214は、VOUTが実質的に一定である場合は入力電圧VINに比例する。一実施形態では、電流I214があらかじめ定められたレベル、たとえばゼロアンペアに減少すると、スイッチ316はオンになる。したがって、電流I214の最大レベルは、入力電圧VINに比例する。
スイッチ316がオフになると、電流I214は、接地からダイオード314およびインダクタ302を通ってLED光源208に流れる。したがって、電流I214は式(2)に従って減少する:
△I214=(-VOUT)*TOFF/L_302 (2)
したがって、一実施形態では、スイッチ316がオン状態の間、電流IINは実質的に電流I214と等しく、スイッチ316がオフ状態の間、ゼロアンペアと等しい。
インダクタ304は、インダクタ302の電気状態、たとえばインダクタ302通って流れる電流があらかじめ定められたレベル(たとえば、ゼロアンペア)に減少するかどうかを検知する。図5に関連して説明したように、一実施形態では、検出信号AUXは、スイッチ316がオンになると負レベルを有し、スイッチ316がオフになると正レベルを有する。インダクタ302を通る電流I214があらかじめ定められたレベルに減少すると、信号AUXの電圧に立下りエッジが発生する。インダクタ304に連結されたコントローラ910のZCD端子は、検出信号AUXを受信するために使用される。
一実施形態では、電力変換装置906は出力フィルタ1024を含む。出力フィルタ1024は、比較的大きい、たとえば、400μFを上回るキャパシタンスを有するキャパシタでよい。このようにして、LED光源208を通る電流IOUTは、電流I214の平均レベルを示す。
電流センサ218は、インダクタ302を通って流れる電流を示す電流検知信号ISENを生成する。一実施形態では、信号フィルタ212は、レジスタ320とキャパシタ322とを含むレジスタ-キャパシタ(RC)フィルタである。信号フィルタ212は、電流検知信号ISENのリップルを除去して、電流信号ISENの平均検知信号IAVGを生成する。したがって、図10の例では、平均検知信号IAVGは、LED光源208通って流れる電流IOUTを示している。一実施形態では、コントローラ910の端子FBは検知信号IAVGを受信する。
DRV端子およびCS端子に連結された鋸歯状信号生成器902は、DRV端子上の駆動信号962によって、CS端子で鋸歯状信号960を生成するように動作可能である。一例として、鋸歯状信号生成器902は、端子DRVと端子CSとの間に並列に連結されたレジスタ1016およびダイオード1018を含み、端子CSと接地との間に並列に連結されたレジスタ1012およびキャパシタ1014をさらに含む。動作中、鋸歯状信号960は駆動信号962に従って変化する。より具体的には、一実施形態では、駆動信号962はPWM信号である。駆動信号962がロジックハイの場合、電流l1はDRV端子からレジスタ1016を通ってキャパシタ1014に流れる。したがって、キャパシタ1014が充電されて、鋸歯状信号960の電圧V960が増加する。駆動信号962がロジックローの場合、電流l2はキャパシタ1014からダイオード1018を通ってDRV端子に流れる。したがって、キャパシタ1014が放電されて、電圧V960がゼロボルトに減少する。鋸歯状信号生成器902は他のコンポーネントを含むことができ、図10に示された例に限定されない。
一実施形態では、コントローラ910は集積回路(IC)チップに統合される。レジスタ1016および1012、ダイオード1018、ならびにキャパシタ1014は、ICチップの周辺コンポーネントである。あるいは、鋸歯状信号生成器902およびコントローラ910の両方が単一のICチップに統合される。この状態では端子CSを除去できるので、駆動回路1000のサイズおよびコストをさらに削減できる。電力変換装置906は他の構成を有することができ、図10の例に限定されない。
図11は、本発明による実施形態における、図9Aのコントローラ910の例を示している。図4および図9Aと同じラベル付けをされた要素は、同様の機能を有している。図11を、図4、図5、図9A、および図10と組み合わせて説明する。
一実施形態では、コントローラ910は、CS端子が電流検知信号ISENではなく鋸歯状信号960を受信することを除いて、図4のコントローラ210と同様の構成を有する。コントローラ910は、鋸歯状信号960、検知信号IAVG、および検出信号AUXを含む信号に従って駆動信号962を生成する。コントローラ910は、誤差増幅器402、比較器404、およびパルス幅変調(PWM)信号生成器408を含む。誤差増幅器402は、検知信号IAVGと目標電流レベルを示す参照信号SETとの間の差を増幅して、誤差信号VEAを生成する。比較器404は、鋸歯状信号960と誤差信号VEAとを比較して、比較信号Sを生成する。PWM信号生成器408は、比較信号Sおよび検出信号AUXに従って駆動信号962を生成する。
一実施形態では、駆動信号962は、検出信号AUXが、インダクタ302を通る電流I214があらかじめ定められたレベル、たとえばゼロアンペアに落ちることを示す場合、第1レベル、たとえばロジックハイを有して、スイッチ316をオンにする。駆動信号962は、鋸歯状信号960が誤差信号VEAに到達する場合、第2レベル、たとえばロジックローを有して、スイッチ316をオフにする。有利なことに、CS端子が、検知信号ISENではなく鋸歯状信号960を受信するので、インダクタ302を通る電流I214の最大レベルは誤差信号VEAによって限定されない。したがって、インダクタ302を通る電流I214は、式(1)に示されるように、入力電圧VINによって異なる。たとえば、電流I214の最大レベルは、誤差信号VEAではなく入力電圧VINに比例するように調整される。
コントローラ910は、駆動信号962を制御して、電流IOUTを参照信号SETによって表される目標電流レベルに維持する。たとえば、電流IOUTが、たとえば入力電圧VINの変化のために目標レベルより大きい場合、誤差増幅器402が誤差信号VEAを減少させて、スイッチ316がオン状態の時間TONを短くする。したがって、電流I214の平均レベルが減少して、電流IOUTが減少する。同様に、電流IOUTが目標レベルより小さい場合、コントローラ910は時間TONを長くして、電流IOUTを増加させる。
図12は、本発明による実施形態における、駆動回路、たとえば駆動回路900または1000によって生成または受信された信号の波形を示している。図12を、図4、図9A、図9B、および図10に関連して説明する。図12は、整流された交流電圧VIN、整流された交流電流IIN、電流IINの平均電流IIN_AVG、LED光源208を通って流れる電流IOUT、インダクタ302を通って流れる電流I214を示す検知信号ISEN、誤差信号VEA、鋸歯状信号960、および駆動信号962を示している。
図12の例に示されるように、入力電圧VINは整流された正弦波形である。時間t1で、駆動信号962がロジックハイに変化する。したがって、スイッチ316がオンになり、インダクタ302を通る電流I214を示す検知信号ISENが増加する。一方、鋸歯状信号960は、駆動信号962に従って増加する。
時間t2で、鋸歯状信号960が誤差信号VEAに到達する。したがって、コントローラ910は駆動信号962をロジックローに調整する。鋸歯状信号960はゼロボルトに落ちる。駆動信号962はスイッチ316をオフにし、それによって検知信号ISENを減少させる。言い換えれば、鋸歯状信号960および誤差信号VEAは、駆動信号962がロジックハイである場合に時間TONを決定して、スイッチ316をオンにする。
時間t3で、電流I214があらかじめ定められた電流レベル、たとえばゼロアンペアに減少する。したがって、コントローラ910は駆動信号962をロジックハイに調整して、スイッチ316をオンにする。
一実施形態では、LED光源208を通って流れる電流IOUTは、入力電圧VINの循環周期にわたって電流I214の平均レベルと等しいか、それに比例している。図11に関連して説明したように、電流IOUTは参照信号SETによって表される目標電流レベルに調整される。さらに、図12に示されるように、t1とt4との間の電流I214を示す検知信号ISENはt5とt6との間の波形と同じ波形を有する。したがって、t1とt4との間の電流I214の平均レベルは、t5とt6との間の電流I214の平均レベルと等しい。したがって、電流IOUTは目標レベルで維持される。一実施形態では、鋸歯状信号960および誤差信号VEAによって時間TONが決定される。一実施形態では、鋸歯状信号960がゼロボルトから誤差信号VEAに上昇するための時間が駆動信号962のそれぞれの循環において同じなので、時間TONは一定である。式(1)に基づいて、時間TONの間の電流I214の変更△I214は入力電圧VINに比例する。したがって、図12に示されるように、検知信号ISENの最大レベルは入力電圧VINに比例する。
一実施形態では、電流IINは、スイッチ316がオンになると電流I214の波形に類似した波形を有し、スイッチ316がオフになると実質的にゼロアンペアに等しくなる。平均電流IIN_AVGは、時間t1とt6との間の入力電圧VINに実質的に同調する。図9Bに関連して説明するように、交流入力電流IACは交流入力電圧VACに実質的に同調し、駆動回路900の力率を修正して電力品質を向上する。
図13は、本発明による実施形態における、負荷を駆動するための回路、たとえばLED光源208を駆動するための回路900または1000によって実行される動作の流れ図1300を示している。図13を、図9A〜図12と組み合わせて説明する。図13には特定のステップが開示されているが、このようなステップは例である。すなわち、本発明は他の様々なステップ、または図13に列挙したステップの変形形態の実行によく適している。
ブロック1302で、入力電圧、たとえば整流された交流電圧VIN、および入力電流、たとえば整流された交流電流IINが受信される。ブロック1304で、入力電圧が出力電圧に変換されて、LED光源などの負荷に電力を供給する。ブロック1306で、エネルギー格納要素、たとえばエネルギー格納要素214を通って流れる電流が、駆動信号、たとえば駆動信号962に従って制御されて、前記LED光源を通る電流を調整できるようになる。
ブロック1308で、前記LED光源を通る電流を示す第1検知信号、たとえばIAVGが受信される。一実施形態では、第1検知信号は、エネルギー格納要素を通る電流を示す第2検知信号をフィルタリングすることによって生成される。ブロック1310で、駆動信号に基づいて鋸歯状信号が生成される。
ブロック1312で、鋸歯状信号および第1検知信号を含む信号に基づいて駆動信号が制御され、LED光源を通る電流を目標レベルに調整して、入力電流の平均電流が入力電圧に実質的に同調するように制御することによって駆動回路の力率を修正する。一実施形態では、第1検知信号と、LED光源を通る電流の目標レベルを示す参照信号との間の差を示す誤差信号が生成される。鋸歯状信号が誤差信号と比較される。エネルギー格納要素の電気状態を示す検出信号が受信される。駆動信号は、検出信号がエネルギー格納要素を通る電流があらかじめ定められたレベルに減少することを示す場合に第1状態に切り替えられて、鋸歯状信号と誤差信号との比較の結果に従って第2状態に切り替えられる。エネルギー格納要素を通る電流は、駆動信号が第1状態の場合に増加して、駆動信号が第2状態の場合に減少する。一実施形態では、LED光源を通る電流が目標レベルに維持される場合、鋸歯状信号があらかじめ定められたレベルから誤差信号に増加する時間は一定である。
図14Aは、本発明による実施形態における、駆動回路1400の他のブロック図を示している。図2、図3、および図9Aと同じラベル付けをされた要素は、同様の機能を有している。図14Bは、本発明による実施形態における、駆動回路1400によって生成または受信された信号の波形を示している。図14Aおよび図14Bを、図9Aおよび図9Bと組み合わせて説明する。
図14Aの例では、駆動回路1400は、電源202に連結された電流フィルタ920、整流器204、電力変換装置1406、光源1408、およびコントローラ1410を含む。電源202は、たとえば正弦波形を有する交流入力電圧VAC、および交流入力電流IACを生成する。交流入力電流IACは電流フィルタ920に流れ、電流IAC'は電流フィルタ920から整流器204に流れる。整流器204は、電流フィルタ920を介して交流入力電圧VACを受信して、整流器204と電力変換装置1406との間に連結された電力線912で整流された交流電圧VINおよび整流された交流電流IINを提供する。
一実施形態では、電力変換装置1406は、電圧フィルタ1420、変圧器1422、およびスイッチ1424を含む。電圧フィルタ1420は電圧VINを受信して、電圧VINをフィルタリングして安定化電圧VREGを生成する。たとえば、電圧VINの比較的高い周波数のハーモニクス成分は排除または削除される。したがって、図14Bに示されるように、安定化電圧VREGの波形は、電圧VINの波形よりも安定している。変圧器1422は、安定化電圧VREGを出力電圧VOUTに変換して、光源1408に電力を供給する。したがって、出力電圧VOUTの波形は、たとえば正弦波形などの入力電圧VIN、の形態によって影響されない。したがって、入力電圧VINの形態によって生じた光源1408を通過する電流IOUTのリップルが減少または除去され、さらに光源1408によって放出される光のライン周波数干渉(line frequency interferences)を減少させる。
コントローラ1410は、駆動信号1462を生成して、第1状態または第2状態でスイッチ1424を動作し、フィルタ1420に流れる入力電流IINをさらに制御して、光源1408を通って流れる出力電流IOUTを制御する。一実施形態では、変圧器1422は、出力電流IOUTを示す検知信号1464を提供する。検知信号1464に基づいて、コントローラ1410は、スイッチ1424の時間TONと時間TOFFとの比率を制御して、電流IOUTを目標レベルに調整する。
一実施形態では、入力電流IINは、スイッチ1424が第1状態で動作中に増加して、スイッチ1424が第2状態で動作中に減少する。コントローラ1410は、第2状態で動作中に、第2状態の継続時間を制御して、入力電流IINがあらかじめ定められたレベル、たとえばグランドに減少するようにする。コントローラ1410は、第1状態の時間をさらに制御して、入力電流IINが前記あらかじめ定められたレベルから入力電圧VINに比例するレベルに増加するようにする。したがって、電流IINの平均電流IIN_AVGは入力電圧VINに実質的に同調している。図9Bに関する説明と同様、電流IACは入力電圧VACに実質的に同調している。交流入力電圧VACと交流入力電流IACとが同調していることが理想的である。しかし、実際の適用では、電流フィルタ920および電力変換装置1406におけるキャパシタのために、わずかな位相差がある場合がある。さらに、交流入力電流IACの波形の形状は交流入力電圧VACの波形の形状に類似している。したがって、回路1400の力率が訂正される。
有利なことに、単一のスイッチ1424を第1状態と第2状態との間で切り替えることによって、回路1400の力率が訂正されて、出力電流IOUTが目標レベルに調整される。したがって、回路1400の電力品質および電流制御の精度の両方が向上する。制御に使用されるのは単一のスイッチ1424だけなので、回路1400のサイズおよびコストを削減できる。
図15は、本発明による実施形態における、駆動回路1500の例示的概略図を示している。図2、図3、図9A、および図14Aと同じラベル付けをされた要素は、同様の機能を有している。図15を、図14Aおよび図14Bと組み合わせて説明する。一実施形態では、コントローラ1410は、VINピン、COMPピン、GNDピン、DRVピン、CSピン、VDDピン、ZCDピン、およびFBピンなどの複数のピンを含む。
一実施形態では、電圧フィルタ1420は、インダクタ1512、ダイオードD15およびD16、ならびにキャパシタC15を含む。変圧器1422は、1次巻線1504、2次巻線1506、補助巻線1508、およびコア1502を含むフライバックコンバータでよい。スイッチ1424はダイオードD16および1次巻線1504に連結されており、第1状態、たとえばオン状態、および第2状態、たとえばオフ状態で動作して、インダクタ1512を通って流れる電流IINを制御して、LED光源1408を通って流れる電流IOUTを制御する。
一実施形態では、コントローラ1410は、駆動信号1462、たとえばパルス幅変調信号を生成して、スイッチ1424を制御する。より具体的には、一実施形態では、たとえばオン時間TONの間などの駆動信号1462が電気的に高レベルな場合、スイッチ1424がオンになり、ダイオードD15が逆方向バイアスになって、ダイオードD16が順方向バイアスになる。変圧器1422は安定化電圧VREGによって電力を供給される。電流IPRIは1次巻線1504、スイッチ1424、および接地を通って流れる。電流IPRIは増加して、エネルギーをコア1502に格納する。さらに、電流IINはインダクタ1512、ダイオードD16、およびスイッチ1424を通って流れ、増加してインダクタ1512を充電し、式(3)として与えられうる:
△IIN=VIN*TCH/L1512 (3)
上式で、TCHは、スイッチ1424がオン状態の間にインダクタ1512が充電される充電時間を表し、△IINは電流IINの変化を表し、L1512はインダクタ1512のインダクタンスを表す。一実施形態では、スイッチ1424がオンの場合、時間TCHは時間TONと等しい。
たとえばオフ時間TOFFの間などの駆動信号1462が電気的に低レベルな場合、スイッチ1424がオフになり、ダイオードD15が順方向バイアスになって、ダイオードD16が逆方向バイアスになる。変圧器1422はLED光源208に電力を供給するために放電される。したがって、2次巻線1506を通って流れる電流ISEが減少する。さらに、電流IINはインダクタ1512、ダイオードD15、およびキャパシタC15を通って流れて、式(4)に従って減少してインダクタ1512を放電する:
△IIN=(VIN-VREG)*TDISCH/L1512 (4)
上式で、TDISCHは、スイッチ1424がオフ状態の間にインダクタ1512が放電される時間を表す。インダクタ1512の放電は電流IINがゼロアンペアに減少すると終了するので、時間TDISCHはオフ状態の時間TOFFとは異なる場合がある。
一実施形態では、インダクタ1512およびキャパシタC15がインダクタ-キャパシタ(LC)フィルタを構成する。LCフィルタが、電圧VINの高周波数ハーモニクス成分をフィルタリングして除去する。このようにして、電圧VINの形態によって生じた安定化電圧VREGの波形のリップルが減少する。変圧器1422は、安定化電圧VREGを出力電圧VOUTに変換し、これも電圧VINとは無関係である。
一実施形態では、補助巻線1508はZCDピンを介してコントローラ1410に連結されている。補助巻線1508は、電流ISEがあらかじめ定められたレベル、たとえばゼロアンペアに落ちるかどうかを示す電流検出信号1466を提供する。コントローラ1410のFBピンは、LED光源208を通って流れる電流IOUTを示す検知信号1464を受信する。一実施形態では、コントローラ1410は、電流検出信号1466および検知信号1464を含む信号に基づいて駆動信号1462のデューティサイクルを制御して、電流IOUTを目標電流レベルに調整する。コントローラ1410の動作は、図16に関連してさらに説明する。
一実施形態では、コントローラ1410は、駆動信号1462の時間TONおよびTOFFをさらに制御して、回路1500の力率を修正する。より具体的には、一実施形態では、コントローラ1410はオフ状態の時間TOFFを時間しきい値TTHよりも長く設定する。式(4)を書き直すすることによって、インダクタ1512の放電時間は以下のように与えられうる:
TDISCH=△IIN * L1512/ (VIN -VREG) (5)
図14Bに示されるように、駆動信号1462の異なる循環周期において、△IINは異なる場合がある。一実施形態では、時間しきい値TTHは、インダクタ1512の最大放電時間TDISCH_MAXと等しい、またはそれよりも長い量に設定されうる。したがって、スイッチ1424のオフ状態の時間は、電流IINをゼロアンペアに減少させるのに十分になる。さらに、コントローラ1410は時間TONを同じ値に維持する。したがって、式(3)によって、電流IINはあらかじめ定められたレベルから入力電圧VINに比例する最大レベルに増加する。したがって、図14Aおよび図14Bに関連して説明したように、回路1500の力率が訂正されて、回路1500の電力品質が向上する。
図16は、本発明による実施形態における、図14Aのコントローラ1410の例を示している。図4および図9Aと同じラベル付けをされた要素は、同様の機能を有している。図16を、図4、図5、図10、および図11と組み合わせて説明する。
一実施形態では、コントローラ1410は、コントローラ1410が、鋸歯状信号1660を生成する鋸歯状信号生成器1602をさらに含むことを除いて、図11のコントローラ910と同様の構成を有する。一実施形態では、鋸歯状信号生成器1602は、図10に示される鋸歯状信号生成器902と同様に動作する。鋸歯状信号1660は、駆動信号1462がスイッチ1424をオンにすると増加して、駆動信号1462がスイッチ1424をオフにするとゼロアンペアに落ちる。
コントローラ1410は、鋸歯状信号1660、検知信号1464、および検出信号1466を含む信号に従って駆動信号1462を生成する。コントローラ1410は、誤差増幅器402、比較器404、およびパルス幅変調(PWM)信号生成器408をさらに含む。誤差増幅器402は、検知信号1464と目標電流レベルを示す参照信号SETとの間の差を増幅して、誤差信号VEAを生成する。比較器404は、鋸歯状信号1660と誤差信号VEAとを比較して、比較信号Sを生成する。PWM信号生成器408は、比較信号Sおよび検出信号AUXに従って駆動信号1462を生成する。TONは、鋸歯状信号1660が、あらかじめ定められたレベルから誤差信号VEAに増加するためにかかる時間の量に対応する。
一実施形態では、駆動信号1462は、2次巻線1506を通る電流Iseがあらかじめ定められたレベル、たとえばゼロアンペアに落ちることを検出信号1466が示す場合に、スイッチ1424をオンにするために電気的に高レベルを有することができる。駆動信号1462は、鋸歯状信号1460が誤差信号VEAに到達する場合にスイッチ1424をオフにするために電気的に低レベルも有することができる。
コントローラ1410は、駆動信号1462を制御して、電流IOUTを参照信号SETによって表される目標電流レベルに維持する。たとえば、電流IOUTが、たとえば望まないノイズのために目標レベルより大きい場合、誤差増幅器402が誤差信号VEAを減少させて、スイッチ316がオン状態の時間TONを短くする。したがって、駆動信号1462のデューティサイクルが減少して、電流IOUTが減少する。同様に、電流IOUTが目標レベルより小さい場合、コントローラ1410は駆動信号1462のデューティサイクルを増加させて、電流IOUTを増加させる。一実施形態では、電流IOUTが目標レベルに維持される場合、時間TONは一定値に維持される。
図17は、本発明による実施形態における、光源1408を駆動するための回路によって実行される動作の例の流れ図1700を示している。図17を、図14A〜図16と組み合わせて説明する。図17には特定のステップが開示されているが、このようなステップは例である。すなわち、本発明は他の様々なステップ、または図17に列挙したステップの形態の実行によく適している。
ブロック1702で、入力電流、たとえば入力電流IIN、および入力電圧、たとえば入力電圧VINが受信される。ブロック1704で、入力電圧がフィルタリングされて、安定化電圧、たとえば安定化電圧VREGを提供する。ブロック1706で、安定化電圧が出力電圧、たとえば出力電圧VOUTに変換されて、LED光源に電力を供給する。ブロック1708で、駆動信号、たとえば駆動信号1462が生成されて、スイッチ、たとえばスイッチ1424を第1状態と第2状態との間で交互に操作する。入力電流は、第1状態の間に増加して、第2状態の間に減少する。
ブロック1710で、第1状態における動作の継続時間および第2状態における動作の継続時間が制御されて、入力電流が、第2状態で動作中にあらかじめ定められたレベル、たとえばゼロアンペアに減少して、第1状態で動作中にあらかじめ定められたレベルから入力電圧に比例する最大レベルに増加するようにする。
ブロック1712で、時間比率、すなわち第1状態における時間の量と、第2状態における時間の量との比率が制御されて、LED光源を通って流れる出力電流を目標レベルに調整する。
本発明による実施形態は、負荷、たとえばLED光源を駆動するための駆動回路を提供する。駆動回路は、フィルタ、変圧器、およびコントローラを含む。フィルタは、入力電圧を受信し、入力電圧をフィルタリングして、安定化電圧を提供する。変圧器は、安定化電圧を出力電圧に変換して、LED光源に電力を供給する。コントローラは、駆動信号を生成して、スイッチを第1状態と第2状態との間で交互に操作する。コントローラは、第1状態における動作の継続時間および第2状態における動作の継続時間を制御して、入力電流が、第2状態で動作中にあらかじめ定められたレベルに減少して、第1状態で動作中にあらかじめ定められたレベルから入力電圧に比例する最大レベルに増加するようにする。コントローラは、時間比率(第1状態の時間対第2状態の時間)をさらに制御して、LED光源を通って流れる出力電流を目標レベルに調整する。有利なことに、入力電圧の形態によって生じたLED光源を通って流れる出力電流のリップルが減少または除去され、さらに光源によって放出される光のライン周波数干渉を減少させる。さらに、駆動回路の力率が訂正されて駆動回路の電力品質が向上し、駆動回路の電力制御の精度も向上する。
上述の説明および図面は本発明の実施形態を表しているが、添付の特許請求の範囲において定義される本発明の原理の趣旨および範囲から逸脱することなしに、様々な追加、修正、および置換が行われてよいことが理解されよう。本発明の原理を逸脱することなしに、具体的な環境や動作要件に特に適応される形状、構造、構成、割合、材料、要素、およびコンポーネントの多くの修正とともに本発明を使用でき、あるいは本発明の実施において使用できることを、当業者であれば理解できるであろう。したがって、ここに開示されている実施形態は、あらゆる点において例示的なものであって、限定的なものと見なされるべきではなく、本発明の範囲は、添付の請求の範囲およびそれらの法的同等物によって示されるものであり、上述の説明に限定されるものではない。
100 従来の回路
102 電源
104 コントローラ
106 スイッチ
108 LEDストリング
110 レジスタ
112 インダクタ
114 ダイオード
116 キャパシタ
200 駆動回路
202 電源
204 整流器
206 電力変換装置
208 負荷、LED光源、LEDストリング
210 コントローラ
212 フィルタ
214 エネルギー格納要素
218 レジスタ、電流センサ
300 駆動回路
302 インダクタ
304 インダクタ
308 キャパシタ
314 ダイオード
316 スイッチ
320 レジスタ
322 キャパシタ
324 キャパシタ
333 共通ノード
402 誤差増幅器
404 比較器
408 パルス幅変調信号生成器
602 誤差増幅器
604 比較器
606 鋸歯状信号生成器
608 リセット信号生成器
610 パルス幅変調信号生成器
800 駆動回路
802 ツェナーダイオード
804 スイッチ
900 駆動回路
902 鋸歯状信号生成器
906 電力変換装置
910 コントローラ
912 電力線
920 電流フィルタ
960 鋸歯状信号
962 駆動信号
1000 駆動回路
1008 入力キャパシタ
1016 レジスタ
1012 レジスタ
1014 キャパシタ
1018 ダイオード
1024 出力フィルタ
1300 流れ図
1400 駆動回路
1406 電力変換装置
1408 光源
1410 コントローラ
1420 電圧フィルタ、電圧レギュレータ
1422 変圧器
1424 スイッチ
1462 駆動信号
1464 検知信号
1466 電流検出信号
1500 駆動回路
1502 コア
1504 1次巻線
1506 2次巻線
1508 補助巻線
1512 インダクタ
1602 鋸歯状信号生成器
1660 鋸歯状信号
1700 流れ図

Claims (20)

  1. 発光ダイオード(LED)光源に電力を供給するための回路であって、
    入力電圧を受信し、前記入力電圧をフィルタリングして、安定化電圧を提供するフィルタと、
    前記フィルタに連結され、前記安定化電圧を出力電圧に変換して、前記LED光源に電力を供給する変圧器と、
    前記フィルタおよび前記変圧器にさらに連結されるスイッチに連結され、駆動信号を生成して、前記スイッチを第1状態と第2状態との間で交互に操作するコントローラであって、前記フィルタを流れる入力電流が、前記第1状態の間に増加して、前記第2状態の間に減少する、コントローラとを備え、
    前記コントローラが、前記第1状態における動作の継続時間および前記第2状態における動作の継続時間を制御して、前記入力電流が、前記第2状態で動作中にあらかじめ定められたレベルに減少して、前記第1状態で動作中に前記あらかじめ定められたレベルから、前記入力電圧に比例する最大レベルへ増加するようにし、
    前記コントローラが、前記第1状態における時間と前記第2状態における時間との比率を制御して、前記LED光源を通って流れる出力電流を目標レベルに調整する、回路。
  2. 前記フィルタが、
    第1ダイオードを通じて前記スイッチに連結され、第2ダイオードを通じてキャパシタに連結されたインダクタを備え、
    前記入力電流が、前記第1状態で動作中に、前記インダクタ、前記第1ダイオード、および前記スイッチを通って流れ、前記第2状態で動作中に、前記インダクタ、前記第2ダイオード、および前記キャパシタを通って流れる、請求項1に記載の回路。
  3. 前記インダクタおよび前記キャパシタが、前記安定化電圧を生成するために前記入力電圧の複数のハーモニクス成分をフィルタリングして除去するインダクタ-キャパシタ(LC)フィルタを構成する、請求項2に記載の回路。
  4. 前記変圧器が、
    前記安定化電圧を受信する1次巻線と、
    前記出力電圧を前記LED光源に提供する2次巻線とを備え、
    前記1次巻線および前記スイッチを通って流れる電流が前記第1状態で動作中に増加して、前記2次巻線を通って流れる電流が前記第2状態で動作中に減少する、請求項1に記載の回路。
  5. 前記第1状態における動作の前記継続時間は、前記入力電流が、前記あらかじめ定められたレベルから、前記入力電圧に比例する前記レベルへ上昇するのに十分な時間である、請求項1に記載の回路。
  6. 前記第2状態における動作の前記継続時間は、前記入力電流が、前記あらかじめ定められたレベルに減少するのに十分な時間である、請求項1に記載の回路。
  7. 前記コントローラが、
    前記駆動信号に従って鋸歯状信号を生成する生成器と、
    前記LED光源を通る前記出力電流を示す検知信号に基づいて、および前記出力電流の前記目標レベルを示す参照信号に基づいて誤差信号を生成する誤差増幅器と、
    前記誤差増幅器に連結されており、前記鋸歯状信号と前記誤差信号とを比較して、前記駆動信号を制御する比較器とを備える、請求項1に記載の回路。
  8. 前記スイッチの前記第1状態の間に鋸歯状信号が増加し、前記鋸歯状信号が前記誤差信号に到達すると、前記スイッチが前記第2状態に切り替えられる、請求項7に記載の回路。
  9. 前記LED光源を通る前記電流が前記目標レベルに維持される場合、前記鋸歯状信号があらかじめ定められたレベルから前記誤差信号に増加する期間が一定である、請求項8に記載の回路。
  10. 交流入力電流(AC)および交流入力電圧を受信して、前記入力電流を提供する整流器をさらに備え、
    前記コントローラが力率を修正して、前記交流入力電流が前記交流入力電圧に実質的に同調するようにする、請求項1に記載の回路。
  11. 発光ダイオード(LED)光源に電力を供給するための電力変換装置であって、
    パルス信号に従って第1状態および第2状態で動作するスイッチと、
    インダクタおよびキャパシタを備え、入力電圧をフィルタリングして安定化電圧を提供する、前記スイッチに連結されたフィルタであって、前記第1状態の間に、入力電流が前記インダクタおよび前記スイッチを通って流れ、前記入力電流があらかじめ定められたレベルから、前記入力電圧に比例する最大レベルへ増加し、前記第2状態の間に、前記入力電流が前記インダクタおよび前記キャパシタを通って流れ、前記入力電流が前記あらかじめ定められたレベルに減少する、フィルタと、
    前記スイッチに連結された1次巻線を有し、2次巻線を有し、前記安定化電圧を出力電圧に変換して前記LED光源に電力を供給する変圧器であって、前記第1状態の間に、前記変圧器が前記安定化電圧によって電力を供給されて、前記1次巻線および前記スイッチを通って流れる電流が増加し、前記第2状態の間に、前記LED光源に電力を提供するために前記変圧器が放電され、前記2次巻線を通って流れる電流が減少する、変圧器とを備え、
    前記パルス信号のデューティサイクルが調整されて、前記LED光源を通って流れる出力電流を目標レベルに調整する、電力変換装置。
  12. 前記変圧器が、
    前記2次巻線を通る前記電流があらかじめ定められたレベルに減少するかどうかを示す電流検出信号を生成する補助巻線をさらに備え、
    前記スイッチが、前記電流検出信号に応答して前記第2状態から前記第1状態に切り替えられる、請求項11に記載の電力変換装置。
  13. 前記第2状態の継続時間が、前記入力電流が前記あらかじめ定められたレベルに減少する時間よりも長い、請求項11に記載の電力変換装置。
  14. 前記第1状態の継続時間が一定値に維持される、請求項11に記載の電力変換装置。
  15. 発光ダイオード(LED)光源に電力を供給するための方法であって
    入力電圧および入力電流を受信するステップと、
    前記入力電圧をフィルタリングして、安定化電圧を提供するステップと、
    前記安定化電圧を出力電圧に変換して、前記LED光源に電力を供給するステップと、
    駆動信号を生成して、スイッチを第1状態と第2状態との間で交互に操作するステップであって、前記入力電流が、前記第1状態の間に増加して、前記第2状態の間に減少する、ステップと、
    前記第1状態における動作の継続時間と、前記第2状態における動作の継続時間とを制御して、前記入力電流が、前記第2状態で動作中にあらかじめ定められたレベルに減少して、前記第1状態で動作中に前記あらかじめ定められたレベルから、前記入力電圧に比例する最大レベルへ増加するようにするステップと、
    前記第1状態における時間と前記第2状態における時間との比率を制御して、前記LED光源を通って流れる出力電流を目標レベルに調整するステップとを備える方法。
  16. 変圧器の1次巻線によって前記安定化電圧を受信するステップと、
    前記変圧器の2次巻線によって前記出力電圧を前記LED光源に提供するステップと、
    前記第1状態で動作中に、前記1次巻線および前記スイッチを通って流れる電流を増加させるステップと、
    前記第2状態で動作中に、前記2次巻線を通って流れる電流を減少させるステップとをさらに備える、請求項15に記載の方法。
  17. 前記第1状態における動作の前記継続時間は、前記入力電流が前記あらかじめ定められたレベルから、前記入力電圧に比例する前記レベルへ上昇するのに十分な時間である、請求項15に記載の方法。
  18. 前記第2状態における動作の前記継続時間は、前記入力電流が前記あらかじめ定められたレベルに減少するのに十分な時間である、請求項15に記載の方法。
  19. 前記駆動信号に従って鋸歯状信号を生成するステップと、
    前記LED光源を通る前記出力電流を示す検知信号に基づいて、および前記出力電流の前記目標レベルを示す参照信号に基づいて誤差信号を生成するステップと、
    前記鋸歯状信号と前記誤差信号とを比較して、前記駆動信号を制御するステップと、
    前記鋸歯状信号が前記誤差信号に到達することに応答して、前記スイッチを前記第1状態から前記第2状態に切り替えるステップとをさらに備える、請求項15に記載の方法。
  20. 前記LED光源を通る前記電流が前記目標レベルに維持される場合、前記駆動信号に従って生成された鋸歯状信号があらかじめ定められたレベルから前記誤差信号まで増加する期間が一定である、請求項19に記載の方法。
JP2013076627A 2012-06-22 2013-04-02 光源を駆動するための回路および方法 Pending JP2014007143A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US13/530,935 2012-06-22
US13/530,935 US20120262079A1 (en) 2010-03-04 2012-06-22 Circuits and methods for driving light sources

Publications (1)

Publication Number Publication Date
JP2014007143A true JP2014007143A (ja) 2014-01-16

Family

ID=48445191

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013076627A Pending JP2014007143A (ja) 2012-06-22 2013-04-02 光源を駆動するための回路および方法

Country Status (4)

Country Link
JP (1) JP2014007143A (ja)
CN (1) CN103517506B (ja)
GB (1) GB2503316B (ja)
TW (1) TWI505746B (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015207414A (ja) * 2014-04-18 2015-11-19 三菱電機株式会社 点灯装置および照明器具
KR101923158B1 (ko) * 2017-12-29 2019-02-27 주식회사 디에스이 벽 스위치를 이용한 엘이디 조명의 다단계 디밍장치
JP2019212359A (ja) * 2018-05-31 2019-12-12 パナソニックIpマネジメント株式会社 点灯装置及び照明器具

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2544820B (en) * 2015-11-30 2021-03-03 Tridonic Gmbh & Co Kg A low voltage power supply using an earth connection on a terminal block
CN105430795A (zh) * 2015-12-11 2016-03-23 成都翰道科技有限公司 基于复合式双階滤波电路的智能led灯的节能控制***
CN107301835B (zh) * 2016-04-13 2019-09-17 群创光电股份有限公司 发光二极管显示器

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1147686B1 (en) * 1999-07-07 2004-01-07 Koninklijke Philips Electronics N.V. Flyback converter as led driver
US6784622B2 (en) * 2001-12-05 2004-08-31 Lutron Electronics Company, Inc. Single switch electronic dimming ballast
JP3553042B2 (ja) * 2001-12-03 2004-08-11 サンケン電気株式会社 スイッチング電源装置及びその駆動方法
US7911463B2 (en) * 2005-08-31 2011-03-22 O2Micro International Limited Power supply topologies for inverter operations and power factor correction operations
US8692481B2 (en) * 2008-12-10 2014-04-08 Linear Technology Corporation Dimmer-controlled LEDs using flyback converter with high power factor
CN102014540B (zh) * 2010-03-04 2011-12-28 凹凸电子(武汉)有限公司 驱动电路及控制光源的电力的控制器
US8304999B2 (en) * 2009-06-08 2012-11-06 Sunpaltech Co., Ltd. LED controlling driver and controlling method thereof
WO2010148329A1 (en) * 2009-06-19 2010-12-23 Robertson Transformer Co. Multimodal led power supply with wide compliance voltage and safety controlled output
CN102118906A (zh) * 2010-01-04 2011-07-06 叶明宝 Led路灯直流供电模式
CN101801129A (zh) * 2010-01-28 2010-08-11 海洋王照明科技股份有限公司 一种led小功率驱动电路及led灯具
US8233292B2 (en) * 2010-02-25 2012-07-31 O2Micro, Inc. Controllers, systems and methods for controlling power of light sources
TW201201621A (en) * 2010-06-23 2012-01-01 Solytech Entpr Coropration Power supply device of LED lamp
US8283877B2 (en) * 2011-06-07 2012-10-09 Switch Bulb Company, Inc. Thermal protection circuit for an LED bulb
CN102332814B (zh) * 2011-09-14 2013-12-18 矽力杰半导体技术(杭州)有限公司 一种降低emi的功率因数校正控制电路
CN102438377A (zh) * 2011-12-20 2012-05-02 成都成电硅海科技股份有限公司 高功率因素led恒流驱动电路

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015207414A (ja) * 2014-04-18 2015-11-19 三菱電機株式会社 点灯装置および照明器具
KR101923158B1 (ko) * 2017-12-29 2019-02-27 주식회사 디에스이 벽 스위치를 이용한 엘이디 조명의 다단계 디밍장치
JP2019212359A (ja) * 2018-05-31 2019-12-12 パナソニックIpマネジメント株式会社 点灯装置及び照明器具
JP7016018B2 (ja) 2018-05-31 2022-02-04 パナソニックIpマネジメント株式会社 点灯装置及び照明器具

Also Published As

Publication number Publication date
CN103517506A (zh) 2014-01-15
TWI505746B (zh) 2015-10-21
GB201306005D0 (en) 2013-05-15
GB2503316A (en) 2013-12-25
CN103517506B (zh) 2016-05-04
GB2503316B (en) 2015-10-14
TW201401922A (zh) 2014-01-01

Similar Documents

Publication Publication Date Title
US8698419B2 (en) Circuits and methods for driving light sources
US8339063B2 (en) Circuits and methods for driving light sources
US20120268023A1 (en) Circuits and methods for driving light sources
US20120262079A1 (en) Circuits and methods for driving light sources
US8143800B2 (en) Circuits and methods for driving a load with power factor correction function
US9343976B2 (en) Power supply apparatus with discharge circuit
TWI556679B (zh) 光源驅動電路及其電力轉換器控制器
TWI519200B (zh) 光源驅動電路、驅動方法及其控制器
US20200169160A1 (en) Power supply control device and llc resonant converter
US9775202B2 (en) Lighting apparatus and luminaire that adjust switching frequency based on output voltage
JP2014007143A (ja) 光源を駆動するための回路および方法
US10505452B2 (en) Frequency control circuit, control method and switching converter
CN109247047B (zh) 一种BiFRED转换器和驱动输出负载的方法
US20100289474A1 (en) Controllers for controlling power converters
JP2017070192A (ja) スイッチング電源装置及びled点灯回路
JP6381963B2 (ja) スイッチング電源回路
TW201517694A (zh) 用以驅動發光二極體的無閃頻電能轉換器和無閃頻電能轉換器
US9748849B2 (en) Power supply
TWI487263B (zh) 降壓式交直流轉換器
JP6810150B2 (ja) スイッチング電源装置および半導体装置
JP7126625B2 (ja) 負荷を駆動するための変換器、ledドライバ及びled照明装置
JP2018137129A (ja) Led点灯装置及びled照明装置
JP2013051860A (ja) 電源回路