JP2014007058A - Conductive particle and conductive material including the same - Google Patents

Conductive particle and conductive material including the same Download PDF

Info

Publication number
JP2014007058A
JP2014007058A JP2012141936A JP2012141936A JP2014007058A JP 2014007058 A JP2014007058 A JP 2014007058A JP 2012141936 A JP2012141936 A JP 2012141936A JP 2012141936 A JP2012141936 A JP 2012141936A JP 2014007058 A JP2014007058 A JP 2014007058A
Authority
JP
Japan
Prior art keywords
particles
conductive
core
polyorganosiloxane
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012141936A
Other languages
Japanese (ja)
Other versions
JP6089462B2 (en
Inventor
Masaaki Oyamada
雅明 小山田
Satoru Kurita
覚 栗田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemical Industrial Co Ltd
Original Assignee
Nippon Chemical Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemical Industrial Co Ltd filed Critical Nippon Chemical Industrial Co Ltd
Priority to JP2012141936A priority Critical patent/JP6089462B2/en
Publication of JP2014007058A publication Critical patent/JP2014007058A/en
Application granted granted Critical
Publication of JP6089462B2 publication Critical patent/JP6089462B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a conductive particle having further improved conductivity performance.SOLUTION: The conductive particle has a core particle 1 and a conductive layer formed of a metal film coating the core particle. The core particle is a particle formed by coating the particle surface of a core particle 2 comprising a polyorganosiloxane (a) with silica. It is preferable that the core particle has a ratio of the thickness of the silica-coated layer 3 to the diameter of the core particle comprising the polyorganosiloxane (a) of 0.07 to 1.5.

Description

本発明は、導電性粒子及びそれを含む導電性材料に関する。   The present invention relates to conductive particles and a conductive material including the same.

液晶ディスプレーパネルの電極を駆動用LSIチップの回路基板へ電気的に接続することに代表されるように、微小ピッチの電極端子間を電気的に接続することを目的として、金属或いは樹脂の粉体表面に金属の無電解めっきを施した導電性フィラーが用いられている。   Metal or resin powder for the purpose of electrical connection between electrode terminals of minute pitch, as represented by electrical connection of electrodes of a liquid crystal display panel to a circuit board of a driving LSI chip A conductive filler having a surface electrolessly plated with metal is used.

本出願人は先に、高い導電性を有する導電性フィラーとして、ポリマーを芯材粒子としてその粒子表面に、ニッケル又はニッケル合金の無電解めっき層を形成した導電性無電解めっき粉体を提案した(特許文献1〜3)。   The present applicant has previously proposed a conductive electroless plating powder in which an electroless plating layer of nickel or a nickel alloy is formed on the particle surface using a polymer as a core particle as a conductive filler having high conductivity. (Patent Documents 1 to 3).

通常用いられるポリマーの芯材粒子は、ポリエチレン、ポリプロピレン、ポリ塩化ビニル、ポリスチレン、ポリブテン、ポリアミド、ポリアクリル酸エステル、ポリアクリロニトリル、ポリアセタール、アイオノマー、ポリエステルなどの熱可塑性樹脂、アルキッド樹脂、フェノール樹脂、尿素樹脂、メラミン樹脂、ベンゾグアナミン樹脂、キシレン樹脂、シリコーン樹脂、エポキシ樹脂又はジアリルフタレート樹脂などである。   Commonly used polymer core particles are thermoplastic resins such as polyethylene, polypropylene, polyvinyl chloride, polystyrene, polybutene, polyamide, polyacrylate, polyacrylonitrile, polyacetal, ionomer, polyester, alkyd resin, phenol resin, urea Resins, melamine resins, benzoguanamine resins, xylene resins, silicone resins, epoxy resins or diallyl phthalate resins.

また、下記特許文献4には、母体粒子と、その粒子表面に形成された導電性被覆層とを有する導電性粒子であって、前記母体粒子の圧縮弾性率が、粒子中心から表面方向に向かって、段階的または連続的に変化するものを用いた導電性粒子が提案されている。   Patent Document 4 listed below is a conductive particle having a base particle and a conductive coating layer formed on the surface of the particle, and the compression elastic modulus of the base particle is directed from the center of the particle toward the surface. Thus, conductive particles using those that change stepwise or continuously have been proposed.

近年では電子部品の小型化によって電極のファインピッチ化や小面積化が図られている。これに起因して導電性フィラーを用いた電気的接続では、電極間に介在させる粒子の数が減少する傾向にあるので、電気抵抗値が上昇するといった問題が生じていた。従って、粒子1個当たりの導電性が一層高い導電性フィラーが必要となっている。   In recent years, finer pitches and smaller areas of electrodes have been achieved by downsizing electronic components. Due to this, in the electrical connection using the conductive filler, there is a tendency that the number of particles interposed between the electrodes tends to decrease, so that the electrical resistance value increases. Therefore, a conductive filler having higher conductivity per particle is required.

特開平08−311655号公報JP 08-31655 A 特開2000−243132号公報JP 2000-243132 A 特開2010−118334号公報JP 2010-118334 A 特開2004−47343号公報JP 2004-47343 A

したがって本発明の課題は、前述した従来技術の導電性粒子よりも導電性の性能が一層向上した導電性粒子を提供することにある。   Therefore, the subject of this invention is providing the electroconductive particle which the electroconductive performance improved further than the electroconductive particle of the prior art mentioned above.

前記の課題を解決すべく本発明者は鋭意検討した結果、芯材粒子と、この芯材粒子を覆う金属皮膜による導電層とを有する導電性粒子であって、該芯材粒子がポリオルガノシロキサン(a)からなるコア粒子の粒子表面をシリカで被覆した粒子を用いることで、前記の課題が解決されることを知見した。   As a result of intensive studies by the present inventor to solve the above-mentioned problems, the present inventor has conductive particles having core material particles and a conductive layer formed of a metal film covering the core material particles, wherein the core material particles are polyorganosiloxane. It has been found that the above problem can be solved by using particles in which the particle surfaces of the core particles made of (a) are coated with silica.

本発明は、前記の知見に基づきなされたものであり、本発明の導電性粒子は、芯材粒子と、この芯材粒子を覆う金属皮膜による導電層とを有する導電性粒子であって、該芯材粒子がポリオルガノシロキサン(a)からなるコア粒子の粒子表面をシリカで被覆した粒子であることを特徴とするものである。   The present invention has been made based on the above knowledge, and the conductive particles of the present invention are conductive particles having core material particles and a conductive layer made of a metal film covering the core material particles, The core particles are particles in which the surface of the core particles made of polyorganosiloxane (a) is coated with silica.

本発明の導電性粒子は、導電性が高いものである。したがって本発明の導電性粒子を例えば異方性導電フィルムや異方性導電ペーストの導電性材料として用いた場合、かかる導電性フィルムや導電性ペーストは、導電性が高いものが得られる。   The conductive particles of the present invention have high conductivity. Therefore, when the conductive particles of the present invention are used, for example, as a conductive material for an anisotropic conductive film or anisotropic conductive paste, such a conductive film or conductive paste can be obtained having high conductivity.

本発明で用いる芯材粒子の構造を示す断面図。Sectional drawing which shows the structure of the core material particle used by this invention.

以下、本発明をその好ましい実施形態に基づき説明する。本発明の導電性粒子は、上述したように、芯材粒子と、この芯材粒子を覆う金属皮膜による導電層とを有する導電性粒子であって、該芯材粒子がポリオルガノシロキサン(a)からなるコア粒子の粒子表面をシリカで被覆した粒子であることを特徴とするものである。   Hereinafter, the present invention will be described based on preferred embodiments thereof. As described above, the conductive particle of the present invention is a conductive particle having a core material particle and a conductive layer formed of a metal film covering the core material particle, and the core particle is a polyorganosiloxane (a). It is characterized by being particles in which the surface of the core particles made of is coated with silica.

本発明の導電性粒子は、芯材粒子としてポリオルガノシロキサン(a)からなる比較的に柔らかいコア粒子の表面を、それより硬いシリカで被覆したものを用いている。硬いシリカの被覆層は、熱圧着時に電極の間にある樹脂や、電極表面の酸化膜を効果的に排除し、電極の接続信頼性の向上に寄与する。一方、柔らかいポリオルガノシロキサン(a)からなるコア粒子は、熱圧着時に、適度につぶれるので、導電性粒子と電極との接触面積を十分に確保することができ、このため本発明の導電性粒子は良好な導通を確保することができる。
また、導電性粒子を含有する異方性導電性接着フィルムを用いた接続構造体では、多くの場合、異方導電性接着フィルムによる接続状態を確認するため、異方導電性接着フィルム中の導電性粒子による基板の端子に生じた圧痕を基板側から顕微鏡等を用いて観察することが行われているが、芯材粒子としてポリマー粒子を用いたものは、柔らかすぎるため、基板の端子に十分に食い込まず、端子に観察できる圧痕が生じにくいと言う問題がある。これに対して本発明の導電性粒子は、芯材粒子として、ポリオルガノシロキサン(a)からなるコア粒子の粒子表面を硬いシリカで被覆したものを用いているため圧痕特性の向上も期待できる。
The conductive particles of the present invention are obtained by coating the surface of relatively soft core particles made of polyorganosiloxane (a) with silica harder than the core particles. The hard silica coating layer effectively eliminates the resin between the electrodes at the time of thermocompression bonding and the oxide film on the electrode surface, thereby contributing to the improvement of the connection reliability of the electrodes. On the other hand, since the core particles made of the soft polyorganosiloxane (a) are appropriately crushed during thermocompression bonding, a sufficient contact area between the conductive particles and the electrode can be secured, and thus the conductive particles of the present invention. Can ensure good conduction.
Moreover, in the connection structure using the anisotropic conductive adhesive film containing conductive particles, in many cases, the conductive state in the anisotropic conductive adhesive film is checked in order to confirm the connection state by the anisotropic conductive adhesive film. The indentation generated on the terminal of the substrate due to the conductive particles is observed from the substrate side using a microscope or the like, but those using polymer particles as the core material particles are too soft and are sufficient for the terminal of the substrate There is a problem that an indentation that can be observed on the terminal is less likely to occur. On the other hand, the conductive particles of the present invention can be expected to improve indentation characteristics since the core particles made of polyorganosiloxane (a) are coated with hard silica particles as the core particles.

本発明において、ポリオルガノシロキサン(a)からなるコア粒子は、該ポリオルガノシロキサン(a)単独で形成された粒子の20℃における10%圧縮強度が、50kgf/mm以下、好ましくは1〜50kgf/mmであると熱圧着時にポリオルガノシロキサン(a)からなるコア粒子が適度につぶれて、電極との接触面積を十分確保することができる点で好ましい。 In the present invention, the core particles composed of the polyorganosiloxane (a) have a 10% compressive strength at 20 ° C. of particles formed of the polyorganosiloxane (a) alone of 50 kgf / mm 2 or less, preferably 1 to 50 kgf. / mm 2 is preferable in that the core particles composed of the polyorganosiloxane (a) are appropriately crushed during thermocompression bonding, and a sufficient contact area with the electrode can be secured.

本発明の導電性粒子において、ポリオルガノシロキサン(a)からなるコア粒子を被覆するシリカは、熱圧着時につぶれすぎると電極の間にある樹脂や、電極表面の酸化膜の排除が難しくなるので、コア粒子の10%圧縮強度より大きいことを条件として、シリカ単独で形成された粒子の20℃における10%圧縮強度が3kgf/mm以上、好ましくは3〜100kgf/mmのものを用いることが好ましい。 In the conductive particles of the present invention, the silica covering the core particles composed of the polyorganosiloxane (a) is difficult to eliminate the resin between the electrodes and the oxide film on the electrode surface if it is too crushed during thermocompression bonding. a condition that is greater than 10% compression strength of the core particles, 10% compression strength at 20 ° C. of silica alone formed particles is 3 kgf / mm 2 or more, preferably be those of 3~100kgf / mm 2 preferable.

本発明において、ポリオルガノシロキサン(a)からなるコア粒子は、アルコキシシランの加水分解縮合物であることが好ましく、ポリオルガノシロキサン(a)の種類を適宜変更することによりポリオルガノシロキサン(a)からなるコア粒子の柔らかさや化学的或いは物理的特性も容易に変えることができる。
前記アルコキシシランとしては、例えば、メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリイソプロポキシシラン、メチルトリス(メトキシエトキシ)シラン、エチルトリメトキシシラン、エチルトリエトキシシラン、プロピルトリエトキシシラン、ブチルトリメトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、γ‐グリシドキシプロピルトリメトキシシラン、γ‐アクリロキシプロピルトリメトキシシラン、γ‐メタクリロキシプロピルトリメトキシシラン等のオルガノトリアルコキシシラン;ジメチルジメトキシシラン、メチルフェニルジメトキシシラン、ジフェニルジメトキシシラン等のオルガノジアルコキシシラン;テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン、テトラブトキシシラン等のテトラアルコキシシラン;テトラメチルメトキシシラン、テトラエチルエトキシシラン等のテトラアルキルアルコキシシラン;テトラアセトキシシラン等のテトラアシルアルコキシシラン等を用いることができる。
In the present invention, the core particle made of polyorganosiloxane (a) is preferably an alkoxysilane hydrolyzed condensate, and the polyorganosiloxane (a) can be changed appropriately to change the type of polyorganosiloxane (a). The softness and chemical or physical properties of the resulting core particles can also be easily changed.
Examples of the alkoxysilane include methyltrimethoxysilane, methyltriethoxysilane, methyltriisopropoxysilane, methyltris (methoxyethoxy) silane, ethyltrimethoxysilane, ethyltriethoxysilane, propyltriethoxysilane, and butyltrimethoxysilane. , Vinyltrimethoxysilane, vinyltriethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ-acryloxypropyltrimethoxysilane, γ-methacryloxypropyltrimethoxysilane, etc. Organotrialkoxysilanes; Organodialkoxysilanes such as dimethyldimethoxysilane, methylphenyldimethoxysilane, diphenyldimethoxysilane; Tetramethoxy It can be used tetraacyl alkoxysilanes such as tetra-acetoxy silane; silane, tetraethoxysilane, tetrapropoxysilane, tetra-alkoxysilanes such as tetra butoxy silane; tetramethyl silane, tetraalkyl alkoxysilanes such as tetraethyl silane.

また、ポリオルガノシロキサン(a)からなるコア粒子上のシリカ被覆層は、ポリオルガノシロキサン(a)からなるコア粒子の直径(D)に対するシリカ被覆層の厚み(T)の比(T/D、図1参照)が0.07〜1.5、好ましくは0.08〜0.8であることが、熱圧着時に電極の間にある樹脂や、電極表面の酸化膜を排除する効果が高くなり、また、電極との接触面積を十分確保できる観点から好ましい。   Further, the silica coating layer on the core particles made of the polyorganosiloxane (a) has a ratio of the thickness (T) of the silica coating layer to the diameter (D) of the core particles made of the polyorganosiloxane (a) (T / D, 1) is 0.07 to 1.5, preferably 0.08 to 0.8, the effect of eliminating the resin between the electrodes and the oxide film on the electrode surface during thermocompression bonding is enhanced. Moreover, it is preferable from the viewpoint of ensuring a sufficient contact area with the electrode.

なお、本発明において、前記した芯材粒子のポリオルガノシロキサン(a)からなるコア粒子とシリカ単独で形成された粒子の10%圧縮強度の測定は、微小圧縮試験機MCTM−500 島津製作所製)を用いて行い、圧縮負荷速度は0.054gf/secとした。   In the present invention, the measurement of the 10% compressive strength of the core particles composed of the polyorganosiloxane (a) and the particles formed of silica alone is the micro compression tester MCTM-500 manufactured by Shimadzu Corporation) The compression load speed was 0.054 gf / sec.

本発明において、芯材粒子は、ポリオルガノシロキサン(a)からなるコア粒子の粒子表面に、該ポリオルガノシロキサン(a)とは有機成分の分解温度が異なり、ポリオルガノシロキサン(a)より有機成分の分解温度が低いポリオルガノシロキサン(b)からなるシェル層を有したコアシェル粒子を、前記ポリオルガノシロキサン(b)に含まれる有機成分の分解温度より高く、前記ポリオルガノシロキサン(a)に含まれる有機成分の分解温度より低い温度で加熱処理を行い得られるものであると、一層、導電性が高く、電極間の接続信頼性に優れた導電性粒子にすることができる観点から好ましい。   In the present invention, the core particles are formed on the surface of the core particles composed of the polyorganosiloxane (a), and the decomposition temperature of the organic component is different from that of the polyorganosiloxane (a). The core-shell particles having a shell layer composed of the polyorganosiloxane (b) having a low decomposition temperature are higher than the decomposition temperature of the organic component contained in the polyorganosiloxane (b) and are contained in the polyorganosiloxane (a). It is preferable that the heat treatment can be performed at a temperature lower than the decomposition temperature of the organic component from the viewpoint that the conductive particles have higher conductivity and excellent connection reliability between the electrodes.

即ち、本発明で使用する芯材粒子は、下記(A)〜(C)の各工程を順次行うことにより製造することができる。
(A)コア粒子製造工程。
(B)シェル層形成工程。
(C)加熱処理工程。
That is, the core material particles used in the present invention can be produced by sequentially performing the following steps (A) to (C).
(A) Core particle manufacturing process.
(B) Shell layer forming step.
(C) Heat treatment process.

以下、前記(A)〜(C)の各工程について説明する。
(A)工程;
前記、(A)工程のコア粒子製造工程は、ゾルゲル法を利用してアルコキシシランを加水分解、脱水縮合させることによりポリオルガノシロキサン(a)からなるコア粒子を得る工程である。
Hereinafter, the steps (A) to (C) will be described.
(A) Step;
The core particle production step of the step (A) is a step of obtaining core particles made of polyorganosiloxane (a) by hydrolyzing and dehydrating and condensing alkoxysilane using a sol-gel method.

(A)工程は、具体的には、水とアルコキシシラン(a1)を混合した溶液を攪拌し、該アルコキシシラン(a1)の加水分解を行なう。次いで、アンモニア水溶液を添加し、脱水縮合させることによりポリオルガノシロキサン(a)からなるコア粒子を生成させる。   In the step (A), specifically, a solution obtained by mixing water and alkoxysilane (a1) is stirred to hydrolyze the alkoxysilane (a1). Next, an aqueous ammonia solution is added and dehydrated to form core particles made of polyorganosiloxane (a).

加水分解および脱水縮合の反応温度および反応時間は、原料として用いるアルコキシシランの種類等に左右されるが、通常、−10℃以上60℃以下の範囲の温度で1時間以上24時間以下の範囲である。   The reaction temperature and reaction time for hydrolysis and dehydration condensation depend on the type of alkoxysilane used as a raw material, but are usually in the range of -10 ° C. to 60 ° C. for 1 hour to 24 hours. is there.

(A)工程に係る原料のアルコキシシラン(a1)は、例えば、メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリイソプロポキシシラン、メチルトリス(メトキシエトキシ)シラン、エチルトリメトキシシラン、エチルトリエトキシシラン、プロピルトリエトキシシラン、ブチルトリメトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、γ‐グリシドキシプロピルトリメトキシシラン、γ‐アクリロキシプロピルトリメトキシシラン、γ‐メタクリロキシプロピルトリメトキシシラン等のオルガノトリアルコキシシラン;ジメチルジメトキシシラン、メチルフェニルジメトキシシラン、ジフェニルジメトキシシラン等のオルガノジアルコキシシラン;テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン、テトラブトキシシラン等のテトラアルコキシシラン;テトラメチルメトキシシラン、テトラエチルエトキシシラン等のテトラアルキルアルコキシシラン;テトラアセトキシシラン等のテトラアシルアルコキシシラン等を用いることができ、このうち、オルガノトリアルコキシシランが好ましく、特にメチルトリメトキシシランが好ましい。  The raw material alkoxysilane (a1) in the step (A) is, for example, methyltrimethoxysilane, methyltriethoxysilane, methyltriisopropoxysilane, methyltris (methoxyethoxy) silane, ethyltrimethoxysilane, ethyltriethoxysilane, Propyltriethoxysilane, butyltrimethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ-acryloxypropyltrimethoxysilane, γ -Organotrialkoxysilanes such as methacryloxypropyltrimethoxysilane; Organodialkoxys such as dimethyldimethoxysilane, methylphenyldimethoxysilane, diphenyldimethoxysilane Run: Tetraalkoxysilane such as tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, tetrabutoxysilane; tetraalkylalkoxysilane such as tetramethylmethoxysilane, tetraethylethoxysilane; tetraacylalkoxysilane such as tetraacetoxysilane Of these, organotrialkoxysilane is preferable, and methyltrimethoxysilane is particularly preferable.

反応に用いる水は、不溶物やイオン、ケイ素等の不要な成分がないことが高純なものを得る観点から好ましい。したがって、精密濾過やイオン交換樹脂、紫外線、RO(逆浸透膜)等を利用して事前に不純物を除去したものを使用することが好ましい。   The water used in the reaction is preferably free from unnecessary components such as insoluble matter, ions, and silicon from the viewpoint of obtaining a pure product. Therefore, it is preferable to use a material from which impurities have been removed in advance using microfiltration, ion exchange resin, ultraviolet light, RO (reverse osmosis membrane) or the like.

反応に使用するアンモニア水溶液の濃度は、0.1M以上10M以下、好ましくは0.5M以上5M以下である。アンモニア水溶液の濃度が0.1Mよりも薄い場合は、アンモニア水溶液の添加量が増えて添加時間が長くなり、粒度分布が広くなる傾向があるので好ましくない。また、アンモニア水溶液の濃度が10Mよりも濃い場合には、アンモニア水溶液の添加量が少なくなり、添加する際の誤差が大きくなるので好ましくない。   The concentration of the aqueous ammonia solution used for the reaction is from 0.1M to 10M, preferably from 0.5M to 5M. When the concentration of the aqueous ammonia solution is less than 0.1M, the amount of the aqueous ammonia solution added is increased, the addition time becomes longer, and the particle size distribution tends to be widened, which is not preferable. In addition, when the concentration of the aqueous ammonia solution is higher than 10M, the amount of the aqueous ammonia solution added is reduced, and an error in addition is not preferable.

(B)工程;
(B)工程のシェル層形成工程は、前記(A)工程の反応溶液の上層に、前記(A)工程で使用したアルコキシシラン(a1)とは異なり、ポリオルガノシロキサン(a)より有機成分の分解温度が低いポリオルガノシロキサン(b)を得ることができるアルコキシシラン(b1)を添加し、次いで反応を完結させて(A)工程で得られたコア粒子の粒子表面にポリオルガノシロキサン(b)からなるシェル層を形成したコアシェル粒子を得る工程である。
(B) step;
Unlike the alkoxysilane (a1) used in the step (A), the shell layer forming step in the step (B) is more organic than the polyorganosiloxane (a) in the upper layer of the reaction solution in the step (A). An alkoxysilane (b1) capable of obtaining a polyorganosiloxane (b) having a low decomposition temperature is added, and then the reaction is completed, and the polyorganosiloxane (b) is formed on the surface of the core particles obtained in the step (A). This is a step of obtaining core-shell particles in which a shell layer made of is formed.

具体的には、まず、(A)工程で生成したポリオルガノシロキサン(a)からなるコア粒子が分散してなる反応溶液に水を添加して攪拌する。この溶液の上層に、前記(A)工程で使用したアルコキシシラン(a1)とは異なり、ポリオルガノシロキサン(a)より有機成分の分解温度が低いポリオルガノシロキサン(b)を得ることができるアルコキシシラン(b1)を2層の界面が維持できるようにゆっくりと添加する。添加終了後、該アルコキシシラン(b1)の加水分解、脱水縮合にともなって上層が消えて1層となるまでそのまま攪拌を続ける。   Specifically, first, water is added to the reaction solution in which the core particles composed of the polyorganosiloxane (a) produced in the step (A) are dispersed and stirred. In the upper layer of this solution, unlike the alkoxysilane (a1) used in the step (A), an alkoxysilane capable of obtaining a polyorganosiloxane (b) having a lower decomposition temperature of the organic component than the polyorganosiloxane (a). Slowly add (b1) so that the interface between the two layers can be maintained. After completion of the addition, stirring is continued as it is until the upper layer disappears and becomes one layer along with hydrolysis and dehydration condensation of the alkoxysilane (b1).

この後、原料が残存したまま次工程に進むと微小粒子が副生するため、さらにそのまま0.5〜2時間程度攪拌を続けて微小粒子が副生しないようにする。   After that, when the process proceeds to the next step with the raw material remaining, fine particles are by-produced. Therefore, stirring is continued for about 0.5 to 2 hours so that the fine particles are not by-produced.

上記シェル層の形成における反応温度は、原料として用いるアルコキシシラン(b1)の種類等に左右されるが、通常、−10℃以上60℃以下の範囲の温度である。   The reaction temperature in the formation of the shell layer depends on the type of alkoxysilane (b1) used as a raw material, but is usually in the range of −10 ° C. to 60 ° C.

添加する水は、(A)工程のものと同様に事前に不純物を除去したものを使用することが好ましい。   The water to be added is preferably water from which impurities have been removed in the same manner as in step (A).

添加する水の量は、(A)工程後の反応溶液に対して1重量部以上20重量部以下の間で選ばれる。好ましくは、5重量部以上12重量部以下である。添加する水の量が1重量部よりも少ない場合には、ゲル状の化合物が多く生成し、粒子表面へのシェル層の形成が困難となるので好ましくない。添加する水の量が20重量部よりも多い場合には、反応溶液が希薄となり、シェル層の形成の反応速度や収率が低下し、実用性に欠けるため好ましくない。   The amount of water to be added is selected between 1 part by weight and 20 parts by weight with respect to the reaction solution after step (A). Preferably, it is 5 to 12 parts by weight. When the amount of water to be added is less than 1 part by weight, a large amount of gel-like compound is generated, and it is difficult to form a shell layer on the particle surface, which is not preferable. When the amount of water to be added is more than 20 parts by weight, the reaction solution becomes dilute, the reaction rate and yield of the formation of the shell layer are reduced, and this is not preferable because of lack of practicality.

上記溶液の上層に添加するアルコキシシラン(b1)としては、上記(A)工程で例示したアルコキシシランの中から、(A)工程で用いた化合物とは異なり、また、ポリオルガノシロキサン(a)より有機成分の分解温度が低いポリオルガノシロキサン(b)を得ることができるものを選択する。そのなかでも、オルガノトリアルコキシシランが好ましく、特に(A)工程で、アルコキシシラン(a1)として、メチルトリメトキシシランを用いた場合には、アルコキシシラン(b1)として、ビニルトリメトキシシランが好ましい。   The alkoxysilane (b1) to be added to the upper layer of the solution is different from the compounds used in the step (A) among the alkoxysilanes exemplified in the step (A), and from the polyorganosiloxane (a). A substance capable of obtaining a polyorganosiloxane (b) having a low decomposition temperature of the organic component is selected. Among them, organotrialkoxysilane is preferable, and in the case where methyltrimethoxysilane is used as alkoxysilane (a1) in the step (A), vinyltrimethoxysilane is preferable as alkoxysilane (b1).

また、上記溶液の上層に添加するアルコキシシラン(b1)の添加量は、所望のシェル層の厚みにもよるが、通常、コアとなる粒子の生成に用いたアルコキシシラン(a1)に対して1重量部以上15重量部以下の範囲である。   Moreover, although the addition amount of the alkoxysilane (b1) added to the upper layer of the said solution is based also on the thickness of the desired shell layer, it is 1 normally with respect to the alkoxysilane (a1) used for the production | generation of the particle | grains used as a core. The range is from 15 parts by weight to 15 parts by weight.

次いで、28重量%のアンモニア水溶液を添加し熟成を行って反応を完結させる。添加するアンモニア水溶液の量は、反応が完結した溶液中のアンモニア濃度が0.05重量%以上0.5重量%以下になる範囲で選択される。この熟成温度は、通常、−10℃以上60℃以下の範囲の温度である。熟成の時間は、1時間以上24時間以下の範囲である。   Next, 28% by weight of an aqueous ammonia solution is added and ripened to complete the reaction. The amount of the aqueous ammonia solution to be added is selected in such a range that the ammonia concentration in the solution in which the reaction is completed is 0.05% by weight or more and 0.5% by weight or less. This aging temperature is usually in the range of −10 ° C. to 60 ° C. The aging time is in the range of 1 hour to 24 hours.

反応を完結させた後は、必要ならば分級処理を行い、生成した粒子を十分に洗浄した後、乾燥処理を行なう。分級処理方法としては、特に制限はないが、デカンテーションや水ひ分級等の湿式分級法が好ましい。   After completing the reaction, if necessary, classification treatment is performed, and the produced particles are sufficiently washed and then dried. Although there is no restriction | limiting in particular as a classification processing method, Wet classification methods, such as a decantation and a water husk classification, are preferable.

乾燥処理は、原料や溶媒の種類および処理量に左右されるが、通常、室温〜100℃の範囲の温度で1時間以上24時間以下の時間で行われる。   The drying treatment depends on the types of raw materials and solvents and the amount of treatment, but is usually performed at a temperature in the range of room temperature to 100 ° C. for 1 hour to 24 hours.

(C)工程;
(C)工程の加熱処理工程は、(B)工程で得られたコアシェル粒子を加熱処理することにより、ポリオルガノシロキサン(a)からなるコア粒子の粒子表面上にポリオルガノシロキサン(b)からなるシェル層を有するコアシェル粒子から、ポリオルガノシロキサン(a)からなるコア粒子の粒子表面をシリカで被覆した粒子を得る工程である。
(C) step;
In the heat treatment step (C), the core-shell particles obtained in the step (B) are heat-treated to form the polyorganosiloxane (b) on the surface of the core particles made of the polyorganosiloxane (a). This is a step of obtaining particles in which the surface of the core particles made of polyorganosiloxane (a) is coated with silica from the core-shell particles having a shell layer.

具体的には、(B)工程で得られた2種類のポリオルガノシロキサンからなる粒子を、ポリオルガノシロキサン(a)の有機成分の分解温度より低く、ポリオルガノシロキサン(b)の有機成分の分解温度よりも高い温度範囲で加熱処理する。これにより、コア粒子のポリオルガノシロキサン(a)はそのままで、シェル層のポリオルガノシロキサン(b)のみをシリカに転換した芯材粒子を得ることができる。   Specifically, the particles composed of the two types of polyorganosiloxane obtained in the step (B) are lower than the decomposition temperature of the organic component of the polyorganosiloxane (a) and the decomposition of the organic component of the polyorganosiloxane (b). Heat treatment is performed in a temperature range higher than the temperature. Thereby, core material particles obtained by converting only the polyorganosiloxane (b) of the shell layer into silica can be obtained without changing the polyorganosiloxane (a) of the core particles.

加熱処理の温度および時間は、ポリオルガノシロキサンの種類や粒子径、処理量等に左右されるが、通常200℃以上1000℃以下の範囲の温度において3時間以上24時間以下の範囲で選ばれる。この加熱処理は、1段工程としてもよいし、温度を順次上げる多段工程として行ってもよいが、急激な昇温による粒子の割れや欠け、クラックの発生等を防ぐためには多段工程とすることが望ましい。   The temperature and time for the heat treatment depend on the type of polyorganosiloxane, the particle diameter, the amount of treatment, etc., but are usually selected in the range of 200 ° C. to 1000 ° C. for 3 hours to 24 hours. This heat treatment may be a one-stage process or a multi-stage process in which the temperature is sequentially raised, but in order to prevent particle cracking or chipping due to rapid temperature rise, cracking, etc. Is desirable.

また、上記製造方法において界面活性剤を使用しないことが大きな特徴である。したがって、得られる粒子を溶液中で生成して濃縮したり、乾燥した後、不純物が存在しないので、濾過や遠心分離等で不純物を除去する必要がなく、高い生産効率を得ることができるという利点も有する。   In addition, a major feature is that no surfactant is used in the above production method. Therefore, there are no impurities after the resulting particles are produced and concentrated in solution or dried, so there is no need to remove impurities by filtration, centrifugation, etc., and it is possible to obtain high production efficiency Also have.

本発明に係る導電性粒子は、芯材粒子として、球状のものを用いることが導電性フィラーとして用いたときに、充填性に優れたものになる観点から好ましい。また、芯材粒子の平均粒子径は、コールターマルチサイザーIIIで求められる平均粒子径が1〜20μm、好ましくは1〜10μmであることが導電性粒子として狭ピッチ化に対応できる観点で特に好ましい。また、粒子径の偏差係数(CV値)が10%以下、好ましくは5%以下の粒度分布がシャープなものが、得られた導電性粒子を異方性導電膜中の導電性粒子として用いた場合に、接続に有効な寄与割合が高くなるという観点から好ましい。   The conductive particles according to the present invention are preferably used in the form of spherical particles as core material particles from the viewpoint of excellent filling properties when used as a conductive filler. The average particle diameter of the core particles is 1 to 20 μm, preferably 1 to 10 μm, particularly preferably from 1 to 10 μm, from the viewpoint of being able to cope with a narrow pitch as conductive particles. In addition, the particle size deviation coefficient (CV value) of 10% or less, preferably 5% or less, with a sharp particle size distribution was used as the conductive particles in the anisotropic conductive film. In this case, it is preferable from the viewpoint that the effective contribution ratio to the connection becomes high.

本発明に係る導電性粒子は、前記芯材粒子の粒子表面を金属皮膜による導電層を有するものである。   The electroconductive particle which concerns on this invention has the electroconductive layer by the metal film on the particle | grain surface of the said core material particle.

本発明の係る導電性粒子は、その表面が平滑であってもよい。あるいは導電性粒子は、その表面から突出する複数の突起を有していてもよい。   The conductive particles according to the present invention may have a smooth surface. Alternatively, the conductive particles may have a plurality of protrusions protruding from the surface.

なお、好ましい突起の物性は、突起の高さHが、平均して20nm以上、特に50nm以上であることが好ましい。突起の数は、導電性粒子の粒径にもよるが、1つの粒子当たり、1〜20000個、特に5〜5000個であることが、導電性粒子の導電性の一層の向上の点から好ましい。突起のアスペクト比は、好ましくは0.5以上、更に好ましくは1以上である。突起のアスペクト比が大きいと、酸化皮膜を容易に突き破ることができるので有利である。また、導電性粒子を用いて異方性導電フィルムを形成した場合には、突起のアスペクト比が大きいと、樹脂排除性が高くなるので、導電性が高くなると考えられる。アスペクト比とは、突起の高さHと突起の基部の長さDとの比、すなわちH/Dで定義される値である。
突起のアスペクト比は上述のとおりであるところ、導電性粒子の突起の基部の長さD自体は5〜500nm、特に10〜400nmであることが好ましく、突起の高さHについては5〜500nm、特に10〜400nmであることが好ましい。
The physical properties of the protrusions are preferably such that the height H of the protrusions is on average 20 nm or more, particularly 50 nm or more. Although the number of protrusions depends on the particle size of the conductive particles, it is preferably 1 to 20000, particularly 5 to 5000 per particle, from the viewpoint of further improving the conductivity of the conductive particles. . The aspect ratio of the protrusion is preferably 0.5 or more, more preferably 1 or more. A large aspect ratio of the protrusions is advantageous because it can easily break through the oxide film. In addition, when an anisotropic conductive film is formed using conductive particles, if the aspect ratio of the protrusion is large, the resin exclusion property is increased, so that the conductivity is considered to be increased. The aspect ratio is a ratio defined by the ratio of the height H of the protrusion and the length D of the base of the protrusion, that is, H / D.
The aspect ratio of the protrusion is as described above, and the length D of the base of the protrusion of the conductive particles is preferably 5 to 500 nm, particularly preferably 10 to 400 nm, and the height H of the protrusion is 5 to 500 nm. In particular, the thickness is preferably 10 to 400 nm.

前記金属皮膜は、銅、ニッケル、コバルト、パラジウム、金、白金、ロジウム、銀、亜鉛、鉄、鉛、錫、アルミニウム、インジウム、クロム、アンチモン、ビスマス、ゲルマニウム、カドミウム、モリブデン、タングステン等の1種又は2種以上のものが挙げられる。   The metal film is one of copper, nickel, cobalt, palladium, gold, platinum, rhodium, silver, zinc, iron, lead, tin, aluminum, indium, chromium, antimony, bismuth, germanium, cadmium, molybdenum, tungsten, etc. Or 2 or more types are mentioned.

導電層の膜厚は、通常0.001〜2μm程度であるが、好ましくは0.005〜1.0μmである。導電層の膜厚が0.001μm未満であると、所望の導電性が得られにくく、2μmを超えると、比重、価格の観点からその有用性は少ないばかりでなく、本発明の導電性粒子の柔軟性が有効に発現されにくくなり、さらにその工程において導電性粒子同士の凝集が起こり易くなる。   The film thickness of the conductive layer is usually about 0.001 to 2 μm, preferably 0.005 to 1.0 μm. When the film thickness of the conductive layer is less than 0.001 μm, it is difficult to obtain desired conductivity, and when it exceeds 2 μm, not only the usefulness is low from the viewpoint of specific gravity and price, but also the conductive particles of the present invention. Flexibility becomes difficult to be effectively expressed, and further, aggregation of conductive particles easily occurs in the process.

導電層の形成方法としては、例えば、無電解めっきによる方法、金属微粉単独で粒子をコーティングする方法、金属粉とバインダーとを混ぜ合わせて得られるペーストで粒子をコーティングする方法、真空蒸着、イオンプレーティング、イオンスパッタリング等の物理的蒸着方法などが挙げられる。これらの中でも、得られる粒子の分散性、導電層の膜厚の均一性等を考慮すると、無電解めっき処理方法が好ましい。
また、本発明で使用する芯材粒子は、めっき密着性にも優れたものであるので、この点からしても、本発明の導電性粒子において、導電層の形成方法として無電解めっき処理方法が最も好ましい方法である。
Examples of the method for forming the conductive layer include a method by electroless plating, a method in which particles are coated with metal fine powder alone, a method in which particles are coated with a paste obtained by mixing metal powder and a binder, vacuum deposition, ion plating. And physical vapor deposition methods such as coating and ion sputtering. Among these, the electroless plating method is preferable in consideration of the dispersibility of the obtained particles, the uniformity of the film thickness of the conductive layer, and the like.
In addition, since the core particles used in the present invention are excellent in plating adhesion, the electroless plating treatment method as a method for forming the conductive layer in the conductive particles of the present invention can be obtained from this point. Is the most preferred method.

無電解めっき処理方法としては、例えば、公知の手法および設備により水性スラリー状にした芯材粒子に、錯化剤を添加して十分に分散させ、次いで、金属無電解めっき液を構成する薬液を添加して金属被覆を形成する手法が挙げられる。   As an electroless plating treatment method, for example, a complexing agent is added and dispersed sufficiently in core particles made into an aqueous slurry by a known method and equipment, and then a chemical solution constituting a metal electroless plating solution is added. A method of adding and forming a metal coating is mentioned.

錯化剤としては、使用する金属イオンに対して錯化作用のある公知の種々の化合物から適宜選択して用いればよく、例えば、クエン酸、ヒドロキシ酢酸、酒石酸、リンゴ酸、乳酸、グルコン酸またはそのアルカリ金属塩もしくはアンモニウム塩等のカルボン酸(塩)、グリシンなどのアミノ酸、エチレンジアミン、アルキルアミンなどのアミン酸、その他のアンモニウム、EDTA、ピロリン酸(塩)などが挙げられる。   The complexing agent may be appropriately selected from known various compounds having a complexing action on the metal ion to be used. For example, citric acid, hydroxyacetic acid, tartaric acid, malic acid, lactic acid, gluconic acid or Examples thereof include carboxylic acids (salts) such as alkali metal salts or ammonium salts, amino acids such as glycine, amine acids such as ethylenediamine and alkylamine, other ammonium, EDTA, and pyrophosphate (salt).

また、無電解めっき液としては、銅、ニッケル、コバルト、パラジウム、金、白金、ロジウム、銀、モリブデン、タングステン等の金属を1種以上含むものが好適に用いられ、通常、これらの金属塩に次亜リン酸ナトリウム、ヒドラジン、水素化ホウ素ナトリウム、ギ酸等の還元剤および水酸化ナトリウム等のpH調整剤の各水溶液を添加した溶液が用いられる。なお、銅、ニッケル、銀、金、パラジウム等の金属を含む無電解めっき液は、市販されており、安価に入手することができる。   In addition, as the electroless plating solution, one containing one or more metals such as copper, nickel, cobalt, palladium, gold, platinum, rhodium, silver, molybdenum, and tungsten is preferably used. A solution to which each aqueous solution of a reducing agent such as sodium hypophosphite, hydrazine, sodium borohydride, formic acid and a pH adjusting agent such as sodium hydroxide is added is used. Electroless plating solutions containing metals such as copper, nickel, silver, gold, and palladium are commercially available and can be obtained at low cost.

芯材粒子を覆う無電解めっき層は、上記各金属を含む層であれば、特に限定はないが、ニッケルまたはニッケル合金のめっき皮膜が好ましく、これらの皮膜を少なくとも1層含む複層皮膜であってもよい。ニッケルまたはニッケル合金皮膜は、芯材粒子と強固に密着して耐剥離性の良好な無電解めっき層を形成することができる上に、その上面にその他の金属層を複層形成するような場合に上層の金属層との強固な結合性を確保し得る中間層として有効に機能するという利点がある。   The electroless plating layer covering the core material particles is not particularly limited as long as it is a layer containing each of the above metals, but a nickel or nickel alloy plating film is preferred, and a multilayer film containing at least one of these films. May be. Nickel or nickel alloy film can form an electroless plating layer with good peel resistance by tightly adhering to the core material particles, and also when other metal layers are formed in multiple layers on the upper surface In addition, there is an advantage that it effectively functions as an intermediate layer capable of ensuring strong bonding with the upper metal layer.

ニッケル合金としては、ニッケル−リン、ニッケル−ホウ素などが挙げられ、皮膜中のリン、ホウ素の含有率は特に制限されるものではないが、それぞれ1〜15質量%、0.5〜5質量%であることが好ましい。   Examples of the nickel alloy include nickel-phosphorus and nickel-boron. The contents of phosphorus and boron in the coating are not particularly limited, but are 1 to 15% by mass and 0.5 to 5% by mass, respectively. It is preferable that

複層皮膜の場合、ニッケル合金−金複層皮膜、ニッケル合金−パラジウム複層皮膜が好適である。この複層皮膜は、ニッケル又はニッケル合金単層皮膜に比べて導電性能に優れる。   In the case of a multilayer film, a nickel alloy-gold multilayer film and a nickel alloy-palladium multilayer film are suitable. This multi-layer coating is superior in conductive performance as compared to nickel or nickel alloy single-layer coating.

無電解めっき方法の一例として、無電解ニッケルめっき方法について説明する。
芯材粒子は、その表面が貴金属イオンの捕捉能を有するか、又は貴金属イオンの捕捉能を有するように必要により表面改質されることが好ましい。貴金属イオンは、パラジウムや銀のイオンであることが好ましい。貴金属イオンの捕捉能を有するとは、貴金属イオンをキレート又は塩として捕捉し得ることをいう。貴金属イオンの捕捉能を有するように表面改質する場合には、例えば特開昭61−64882号公報、特開2007−262495号公報記載の方法を用いることができる。
As an example of the electroless plating method, an electroless nickel plating method will be described.
The core particles are preferably surface-modified as necessary so that the surface thereof has a precious metal ion scavenging ability or a precious metal ion scavenging ability. The noble metal ions are preferably palladium or silver ions. Having a precious metal ion scavenging ability means that the precious metal ion can be captured as a chelate or salt. In the case of surface modification so as to have the ability to trap noble metal ions, for example, methods described in JP-A Nos. 61-64882 and 2007-262495 can be used.

このような芯材粒子を用い、その表面に貴金属を担持させる。具体的には、芯材粒子を塩化パラジウムや硝酸銀のような貴金属塩の希薄な酸性水溶液に分散させる。これによって貴金属イオンを粒子の表面に捕捉させる。貴金属塩の濃度は粒子の表面積1m2当り1×10-7〜1×10-2モルの範囲で充分である。貴金属イオンが捕捉された芯材粒子は系から分離され水洗される。引き続き、芯材粒子を水に懸濁させ、これに還元剤を加えて貴金属イオンの還元処理を行う。これによって芯材粒子の表面に貴金属を坦持させる。還元剤は、例えば次亜リン酸ナトリウム、水酸化ホウ素ナトリウム、水素化ホウ素カリウム、ジメチルアミンボラン、ヒドラジン、ホルマリン等が用いられ、これらのうちから、目的とするニッケル又はニッケル合金皮膜の構成材料に基づいて選択されることが好ましい。 Using such core material particles, a noble metal is supported on the surface. Specifically, the core material particles are dispersed in a dilute acidic aqueous solution of a noble metal salt such as palladium chloride or silver nitrate. This traps noble metal ions on the surface of the particles. The concentration of the noble metal salt is sufficiently in the range of 1 × 10 −7 to 1 × 10 −2 mol per 1 m 2 of the particle surface area. The core particles in which the noble metal ions are captured are separated from the system and washed with water. Subsequently, the core material particles are suspended in water, and a reducing agent is added to the suspension so that noble metal ions are reduced. As a result, the noble metal is supported on the surface of the core particles. As the reducing agent, for example, sodium hypophosphite, sodium borohydride, potassium borohydride, dimethylamine borane, hydrazine, formalin and the like are used, and among these, the constituent material of the target nickel or nickel alloy film is used. It is preferable to select based on.

貴金属イオンを芯材粒子の表面に捕捉させる前に、錫イオンを粒子の表面に吸着させる感受性化処理を施してもよい。錫イオンを粒子の表面に吸着させるには、例えば表面改質処理された芯材粒子を塩化第一錫の水溶液に投入し所定時間撹拌すればよい。   Before capturing the noble metal ions on the surface of the core material particles, a sensitization treatment for adsorbing the tin ions on the surface of the particles may be performed. In order to adsorb the tin ions on the surface of the particles, for example, the surface-treated core material particles may be put into an aqueous solution of stannous chloride and stirred for a predetermined time.

このようにして前処理が施された芯材粒子について、ニッケル又はニッケル合金皮膜形成処理を行う。以下では、ニッケル又はニッケル合金皮膜形成処理として、(a)突起部を有するニッケル又はニッケル合金皮膜を形成する処理(以下、a処理ともいう)、及び(b)表面が平滑なニッケル又はニッケル合金皮膜を形成する処理(以下、b処理ともいう)の2種類を説明する。   The core material particles that have been pretreated in this way are subjected to nickel or nickel alloy film forming treatment. In the following, as the nickel or nickel alloy film forming process, (a) a process for forming a nickel or nickel alloy film having a protrusion (hereinafter also referred to as a process), and (b) a nickel or nickel alloy film having a smooth surface Two types of processes (hereinafter also referred to as “b process”) for forming the film will be described.

a処理としては、以下のa1工程、及びa2工程を行う。
a1工程は、芯材粒子の水性スラリーと、分散剤、ニッケル塩、還元剤及び錯化剤などを含んだ無電解ニッケルめっき浴とを混合する無電解ニッケルめっき工程である。かかるa1工程では、芯材粒子上へのニッケル又はニッケル合金皮膜の形成と同時にめっき浴の自己分解が起こる。この自己分解は、芯材粒子の近傍で生じるため、ニッケル又はニッケル合金皮膜の形成時に自己分解物が芯材粒子表面上に捕捉されることによって、微小突起の核が生成し、それと同時に下地皮膜の形成がなされる。生成した微小突起の核を基点として、突起部が成長する。
As a process, the following a1 process and a2 process are performed.
Step a1 is an electroless nickel plating step in which an aqueous slurry of core material particles is mixed with an electroless nickel plating bath containing a dispersant, a nickel salt, a reducing agent, a complexing agent, and the like. In the a1 step, self-decomposition of the plating bath occurs simultaneously with the formation of the nickel or nickel alloy film on the core material particles. Since this self-decomposition occurs in the vicinity of the core particle, when the nickel or nickel alloy film is formed, the self-decomposed product is trapped on the surface of the core particle, thereby generating a nucleus of microprojections, and at the same time, the base film Is formed. A protrusion grows with the nucleus of the generated fine protrusion as a base point.

a1工程では、前述した芯材粒子を好ましくは1〜500g/L、更に好ましくは5〜300g/Lの範囲で水に十分に分散させ、水性スラリーを調製する。分散操作は、通常攪拌、高速攪拌又はコロイドミル若しくはホモジナイザーのような剪断分散装置を用いて行うことができる。また、分散操作に超音波を併用してもかまわない。必要に応じ、分散操作においては界面活性剤などの分散剤を添加する場合もある。次いで、ニッケル塩、還元剤、錯化剤及び各種添加剤などを含んだ無電解ニッケルめっき浴に、分散操作を行った芯材粒子の水性スラリーを添加し、無電解めっきa1工程を行う。   In the step a1, the above-described core material particles are preferably sufficiently dispersed in water in a range of preferably 1 to 500 g / L, more preferably 5 to 300 g / L to prepare an aqueous slurry. The dispersing operation can be usually performed using stirring, high-speed stirring, or a shearing dispersion device such as a colloid mill or a homogenizer. Further, ultrasonic waves may be used in combination with the dispersion operation. If necessary, a dispersing agent such as a surfactant may be added in the dispersing operation. Next, the aqueous slurry of the core material particles subjected to the dispersion operation is added to an electroless nickel plating bath containing a nickel salt, a reducing agent, a complexing agent, various additives, and the like, and the electroless plating a1 step is performed.

前述した分散剤としては、例えば非イオン界面活性剤、両性イオン界面活性剤及び/又は水溶性高分子が挙げられる。非イオン界面活性剤としては、ポリエチレングリコール、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテルなどのポリオキシアルキレンエーテル系の界面活性剤を用いることができる。両性イオン界面活性剤としては、アルキルジメチル酢酸ベタイン、アルキルジメチルカルボキシメチル酢酸ベタイン、アルキルジメチルアミノ酢酸ベタインなどのベタイン系の界面活性剤を用いることができる。水溶性高分子としては、ポリビニルアルコール、ポリビニルピロリジノン、ヒドロキシエチルセルロースなどを用いることができる。これらの分散剤は、1種又は2種以上を組み合わせて用いることができる。分散剤の使用量は、その種類にもよるが、一般に、液体(無電解ニッケルめっき浴)の体積に対して0.5〜30g/Lである。特に、分散剤の使用量が液体(無電解ニッケルめっき浴)の体積に対して1〜10g/Lの範囲であると、ニッケル又はニッケル合金皮膜の密着性が一層向上する観点から好ましい。   Examples of the dispersant described above include nonionic surfactants, zwitterionic surfactants, and / or water-soluble polymers. As the nonionic surfactant, polyoxyalkylene ether surfactants such as polyethylene glycol, polyoxyethylene alkyl ether, polyoxyethylene alkyl phenyl ether, and the like can be used. As the zwitterionic surfactant, a betaine surfactant such as alkyldimethylacetic acid betaine, alkyldimethylcarboxymethylacetic acid betaine, and alkyldimethylaminoacetic acid betaine can be used. As the water-soluble polymer, polyvinyl alcohol, polyvinyl pyrrolidinone, hydroxyethyl cellulose and the like can be used. These dispersants can be used alone or in combination of two or more. The amount of the dispersant used is generally 0.5 to 30 g / L with respect to the volume of the liquid (electroless nickel plating bath) although it depends on the type. In particular, the amount of the dispersant used is preferably in the range of 1 to 10 g / L with respect to the volume of the liquid (electroless nickel plating bath) from the viewpoint of further improving the adhesion of the nickel or nickel alloy film.

ニッケル塩としては、例えば塩化ニッケル、硫酸ニッケル又は酢酸ニッケルなどが用いられ、その濃度は0.1〜50g/Lの範囲とすることが好ましい。還元剤としては、例えば先に述べた貴金属イオンの還元に用いられているものと同様のものを用いることができ、目的とする下地皮膜の構成材料に基づいて選択される。還元剤としてリン化合物、例えば次亜リン酸ナトリウムを用いる場合、その濃度は、0.1〜50g/Lの範囲であることが好ましい。ホウ素化合物、例えば水素化ホウ素ナトリウム又は水素化ホウ素カリウムを用いる場合、その濃度は、0.01〜10g/Lの範囲であることが好ましい。ヒドラジン又はその誘導体を用いる場合、その濃度は0.01〜50g/Lの範囲であることが好ましい。   As the nickel salt, for example, nickel chloride, nickel sulfate, nickel acetate or the like is used, and the concentration is preferably in the range of 0.1 to 50 g / L. As the reducing agent, for example, the same ones used for the reduction of the noble metal ions described above can be used, and are selected based on the target constituent material of the base film. When a phosphorus compound such as sodium hypophosphite is used as the reducing agent, the concentration is preferably in the range of 0.1 to 50 g / L. When a boron compound such as sodium borohydride or potassium borohydride is used, the concentration is preferably in the range of 0.01 to 10 g / L. When hydrazine or a derivative thereof is used, the concentration is preferably in the range of 0.01 to 50 g / L.

錯化剤としては、例えばクエン酸、ヒドロキシ酢酸、酒石酸、リンゴ酸、乳酸、グルコン酸若しくはそのアルカリ金属塩やアンモニウム塩などのカルボン酸(塩)、グリシンなどのアミノ酸、エチレンジアミン、アルキルアミンなどのアミン酸、その他のアンモニウム、EDTA又はピロリン酸(塩)など、ニッケルイオンに対し錯化作用のある化合物が使用され、これらは1種又は2種以上であってもよい。その濃度は好ましくは1〜100g/L、更に好ましくは5〜50g/Lの範囲である。この段階での好ましい無電解ニッケルめっき浴のpHは、4〜14の範囲である。無電解ニッケルめっき反応は、芯材粒子の水性スラリーを添加すると速やかに始まり、水素ガスの発生を伴う。無電解めっきa1工程は、その水素ガスの発生が完全に認められなくなった時点をもって終了とする。   Examples of complexing agents include citric acid, hydroxyacetic acid, tartaric acid, malic acid, lactic acid, gluconic acid or carboxylic acids (salts) such as alkali metal salts and ammonium salts thereof, amino acids such as glycine, and amines such as ethylenediamine and alkylamine. A compound having a complexing action with respect to nickel ions, such as acid, other ammonium, EDTA, or pyrophosphoric acid (salt) is used, and these may be used alone or in combination of two or more. The concentration is preferably in the range of 1 to 100 g / L, more preferably 5 to 50 g / L. The pH of the preferred electroless nickel plating bath at this stage is in the range of 4-14. The electroless nickel plating reaction starts rapidly when an aqueous slurry of core particles is added, and is accompanied by the generation of hydrogen gas. The electroless plating a1 process ends when the generation of the hydrogen gas is not completely recognized.

次いでa2工程においては、前記のa1工程に続けて、(i)ニッケル塩、還元剤及びアルカリのうちの1種を含む第1の水溶液と、残りの2種を含む第2の水溶液を用いるか、又は(ii)ニッケル塩を含む第1の水溶液と、還元剤を含む第2の水溶液と、アルカリを含む第3の水溶液とを用い、これらの水溶液をそれぞれを同時にかつ経時的に、a1工程の液に添加して無電解ニッケルめっきを行う。これらの液を添加すると再びめっき反応が始まるが、その添加量を調整することによって、形成されるニッケル又はニッケル合金皮膜を所望の膜厚に制御することができる。無電解ニッケルめっき液の添加終了後、水素ガスの発生が完全に認められなくなってから暫く液温を保持しながら攪拌を継続して反応を完結させる。   Next, in step a2, whether (i) a first aqueous solution containing one of a nickel salt, a reducing agent and an alkali and a second aqueous solution containing the remaining two are used following the step a1. Or (ii) using a first aqueous solution containing a nickel salt, a second aqueous solution containing a reducing agent, and a third aqueous solution containing an alkali, and using these aqueous solutions simultaneously and over time, step a1 Electroless nickel plating is added to the above solution. When these solutions are added, the plating reaction starts again. By adjusting the addition amount, the formed nickel or nickel alloy film can be controlled to a desired film thickness. After completion of the addition of the electroless nickel plating solution, the reaction is completed by continuing stirring while maintaining the solution temperature for a while after generation of hydrogen gas is not completely observed.

前記の(i)の場合には、ニッケル塩を含む第1の水溶液と、還元剤及びアルカリを含む第2の水溶液とを用いることが好ましいが、この組み合わせに限られない。この場合には、第1の水溶液には還元剤及びアルカリは含まれず、第2の水溶液にはニッケル塩は含まれない。ニッケル塩及び還元剤としては、先に述べたものを用いることができる。アルカリとしては、例えば水酸化ナトリウムや水酸化カリウム等のアルカリ金属の水酸化物を用いることができる。前記の(ii)の場合についても同様である。   In the case of (i), it is preferable to use a first aqueous solution containing a nickel salt and a second aqueous solution containing a reducing agent and an alkali, but the present invention is not limited to this combination. In this case, the first aqueous solution contains no reducing agent and alkali, and the second aqueous solution contains no nickel salt. As the nickel salt and the reducing agent, those described above can be used. As the alkali, for example, an alkali metal hydroxide such as sodium hydroxide or potassium hydroxide can be used. The same applies to the case (ii).

前記の(ii)の場合には、第1〜第3の水溶液にニッケル塩、還元剤及びアルカリがそれぞれ含まれ、かつ各水溶液には当該成分以外の他の2成分は含まれない。   In the case of (ii) above, the first to third aqueous solutions each contain a nickel salt, a reducing agent, and an alkali, and each aqueous solution contains no other two components other than the components.

(i)及び(ii)の場合のいずれであっても、水溶液中のニッケル塩の濃度は10〜1000g/L、特に50〜500g/Lであることが好ましい。還元剤の濃度は、還元剤としてリン化合物を用いる場合、100〜1000g/L、特に100〜800g/Lであることが好ましい。還元剤としてホウ素化合物を用いる場合、5〜200g/L、特に10〜100g/Lであることが好ましい。還元剤としてヒドラジン又はその誘導体を用いる場合、5〜200g/L、特に10〜100g/Lであることが好ましい。アルカリの濃度は5〜500g/L、特に10〜200g/Lであることが好ましい。   In any case of (i) and (ii), the concentration of the nickel salt in the aqueous solution is preferably 10 to 1000 g / L, particularly 50 to 500 g / L. The concentration of the reducing agent is preferably 100 to 1000 g / L, particularly 100 to 800 g / L when a phosphorus compound is used as the reducing agent. When using a boron compound as a reducing agent, it is preferable that it is 5-200 g / L, especially 10-100 g / L. When hydrazine or a derivative thereof is used as the reducing agent, it is preferably 5 to 200 g / L, particularly 10 to 100 g / L. The alkali concentration is preferably 5 to 500 g / L, more preferably 10 to 200 g / L.

a2工程は、a1工程の終了後に連続して行うが、これに代えて、a1工程とa2工程とを断続して行ってもよい。この場合には、a1工程の終了後、濾過などの方法によって芯材粒子とめっき液とを分別し、新たに芯材粒子を水に分散させて水性スラリーを調製し、そこに錯化剤を好ましくは1〜100g/L、更に好ましくは5〜50g/Lの濃度範囲で溶解した水溶液を添加し、分散剤を好ましくは0.5〜30g/L、更に好ましくは1〜10g/Lの範囲で溶解し水性スラリーを調製して、該水性スラリーに前記の各水溶液を添加するa2工程を行う方法でもよい。このようにして目的とする突起を有するニッケル又はニッケル合金皮膜に被覆された粒子が得られる。   The step a2 is continuously performed after the end of the step a1, but instead of this, the step a1 and the step a2 may be intermittently performed. In this case, after completion of the step a1, the core material particles and the plating solution are separated by a method such as filtration, and the core material particles are newly dispersed in water to prepare an aqueous slurry, and the complexing agent is added thereto. Preferably, an aqueous solution dissolved in a concentration range of 1 to 100 g / L, more preferably 5 to 50 g / L is added, and the dispersant is preferably 0.5 to 30 g / L, more preferably 1 to 10 g / L. Alternatively, a method may be used in which an aqueous slurry is prepared by dissolution in step A2 and the aqueous solution is added to the aqueous slurry. In this way, particles coated with nickel or a nickel alloy film having the desired protrusions are obtained.

次に、a処理の代わりに、(b)表面平滑なニッケル又はニッケル合金皮膜を形成する処理(b処理)を行う場合について説明する。b処理は、以下のようにして行うことができる。まず、前処理が施された芯材粒子、分散剤、錯化剤を含む水性スラリーを調製する。そして、a2工程で説明した(i)の第1の水溶液及び第2の水溶液を用いるか、又は(ii)の第1ないし第3の水溶液を用い、これらの水溶液を水性スラリーにそれぞれを同時にかつ経時的に添加して無電解ニッケルめっきを行う。水性スラリーに各水溶液を添加してなるめっき液のpHは、例えば3〜11の範囲に調整することが好ましい。分散剤及び錯化剤の種類及びそれらの濃度については、a1工程の説明において挙げたものを、a1工程において説明した濃度で用いることができる。   Next, a case where (b) a process for forming a smooth nickel or nickel alloy film (b process) is performed instead of the a process will be described. The b process can be performed as follows. First, an aqueous slurry containing pretreated core material particles, a dispersant, and a complexing agent is prepared. Then, the first aqueous solution and the second aqueous solution (i) described in the step a2 are used, or the first to third aqueous solutions (ii) are used. Electroless nickel plating is performed by adding over time. The pH of the plating solution obtained by adding each aqueous solution to the aqueous slurry is preferably adjusted to a range of 3 to 11, for example. About the kind of dispersing agent and complexing agent, and those density | concentrations, what was mentioned in description of the a1 process can be used by the density | concentration demonstrated in the a1 process.

前記の(i)の第1及び第2の水溶液並びに(ii)の第1ないし第3の水溶液に含まれるニッケル塩、還元剤及びアルカリは、a2工程でこれらの水溶液に用いたものと同様のものを用いることができる。水溶液中のニッケル塩の濃度は10〜1000g/L、特に50〜500g/Lであることが好ましい。還元剤の濃度は、還元剤としてリン化合物を用いる場合、100〜1000g/L、特に100〜800g/Lであることが好ましい。還元剤としてホウ素化合物を用いる場合、5〜200g/L、特に10〜100g/Lであることが好ましい。還元剤としてヒドラジン又はその誘導体を用いる場合、5〜200g/L、特に10〜100g/Lであることが好ましい。アルカリの濃度は5〜500g/L、特に10〜200g/Lであることが好ましい。このようにして、目的とする表面平滑なニッケル又はニッケル合金皮膜に被覆された粒子が得られる。   The nickel salt, reducing agent and alkali contained in the first and second aqueous solutions of (i) and the first to third aqueous solutions of (ii) are the same as those used for these aqueous solutions in step a2. Things can be used. The concentration of the nickel salt in the aqueous solution is preferably 10 to 1000 g / L, particularly 50 to 500 g / L. The concentration of the reducing agent is preferably 100 to 1000 g / L, particularly 100 to 800 g / L when a phosphorus compound is used as the reducing agent. When using a boron compound as a reducing agent, it is preferable that it is 5-200 g / L, especially 10-100 g / L. When hydrazine or a derivative thereof is used as the reducing agent, it is preferably 5 to 200 g / L, particularly 10 to 100 g / L. The alkali concentration is preferably 5 to 500 g / L, more preferably 10 to 200 g / L. In this manner, particles coated with the target smooth surface nickel or nickel alloy film are obtained.

上記の方法により芯材粒子上にニッケル又はニッケル合金皮膜が形成された導電性粒子が得られるが、さらに、必要に応じ、更に後処理に付すことができる。後処理としては、無電解金めっき工程あるいは無電解パラジウムめっき工程が挙げられる。この工程に付すことによって、導電性粒子の表面に金めっき層あるいはパラジウムめっき層が形成される。金めっき層の形成は、従来公知の無電解めっき法に従い行うことができる。例えば、導電性粒子の水性懸濁液に、エチレンジアミン四酢酸四ナトリウム、クエン酸二ナトリウム及びシアン化金カリウムを含み、水酸化ナトリウムでpHが調整された無電解めっき液を添加することで、金めっき層を形成することができる。   Although conductive particles in which nickel or a nickel alloy film is formed on the core material particles are obtained by the above-described method, they can be further subjected to post-treatment as necessary. Examples of the post-treatment include an electroless gold plating step or an electroless palladium plating step. By applying this step, a gold plating layer or a palladium plating layer is formed on the surface of the conductive particles. The gold plating layer can be formed according to a conventionally known electroless plating method. For example, by adding an electroless plating solution containing tetrasodium ethylenediaminetetraacetate, disodium citrate and potassium gold cyanide and adjusted to pH with sodium hydroxide to an aqueous suspension of conductive particles, A plating layer can be formed.

また、パラジウムめっき層の形成は、従来公知の無電解めっき法に従い行うことができる。例えば、導電性粒子の水性懸濁液に、塩化パラジウム等の水溶性パラジウム化合物;次亜リン酸、亜リン酸、ギ酸、酢酸、ヒドラジン、水素化ホウ素、アミンボラン化合物、又はこれらの塩等の還元剤;及び錯化剤等を含有する常用の無電解パラジウムめっき液を加え、更に必要に応じて分散剤、安定剤、pH緩衝剤を加える。そして、塩酸や硫酸等の酸あるいは水酸化ナトリウム等の塩基でpHを調整しつつ、還元型無電解めっきを行い、パラジウムめっき層を形成することができる。別法として、導電性粒子の水性懸濁液に、テトラアンミンパラジウム塩等のパラジウムイオン源、錯化剤及び必要により分散剤を添加し、パラジウムイオンとニッケルイオンとの置換反応を利用して、置換型無電解めっきを行い、パラジウムめっき層を形成してもよい。   Moreover, formation of a palladium plating layer can be performed in accordance with a conventionally well-known electroless plating method. For example, reduction of water-soluble palladium compounds such as palladium chloride; hypophosphorous acid, phosphorous acid, formic acid, acetic acid, hydrazine, borohydride, amine borane compounds, or salts thereof into an aqueous suspension of conductive particles A conventional electroless palladium plating solution containing an agent; and a complexing agent, and a dispersant, a stabilizer, and a pH buffering agent are added as necessary. Then, while adjusting the pH with an acid such as hydrochloric acid or sulfuric acid or a base such as sodium hydroxide, reduction type electroless plating can be performed to form a palladium plating layer. Alternatively, a palladium ion source such as tetraamminepalladium salt, a complexing agent and, if necessary, a dispersing agent are added to an aqueous suspension of conductive particles, and substitution is performed using a substitution reaction between palladium ions and nickel ions. A palladium electroplating layer may be formed by performing mold electroless plating.

なお、前記のパラジウムめっき層は、リンを実質的に含有しないか、あるいは含有量が3重量%以下に低減したものであることが、導電性及び電気信頼性に優れる点で好ましい。このようなめっき層を形成するためには、例えば置換型無電解めっきを行うか、又は還元型無電解めっきを行う場合には、リン非含有の還元剤(例えばギ酸)を用いればよい。   In addition, it is preferable that the palladium plating layer does not substantially contain phosphorus or has a content reduced to 3% by weight or less from the viewpoint of excellent conductivity and electrical reliability. In order to form such a plating layer, for example, when substitutional electroless plating is performed or when reducing electroless plating is performed, a phosphorus-free reducing agent (for example, formic acid) may be used.

還元型無電解めっき又は置換型無電解めっきで用いる分散剤としては、前述のa1工程で例示した分散剤と同じものを用いることができる。また、常用の無電解パラジウムめっき液としては、例えば、小島化学薬品株式会社、日本カニゼン株式会社、中央化学産業株式会社等から入手可能な市販品を使用してもよい。   As the dispersant used in the reduction type electroless plating or the displacement type electroless plating, the same dispersants as exemplified in the above-described step a1 can be used. Moreover, as a common electroless palladium plating solution, you may use the commercial item available from Kojima Chemical Co., Ltd., Nippon Kanisen Co., Ltd., Chuo Chemical Industrial Co., Ltd., etc., for example.

別の後処理として、導電性粒子をボールミル等のメディアミルを用いた粉砕工程に付すこともできる。この粉砕工程に付すことによって、上述したニッケルイオンの還元条件と相まって、導電性粉体の重量に対する一次粒子が占める重量を、一層向上させることができる。   As another post-treatment, the conductive particles can be subjected to a pulverization step using a media mill such as a ball mill. By subjecting to this pulverization step, the weight occupied by the primary particles relative to the weight of the conductive powder can be further improved in combination with the above-described nickel ion reduction conditions.

本発明の導電性粒子は、後述するように導電性接着剤の導電性フィラーとして用いる場合に、導電性粒子間のショートの発生を防止するため導電性粒子の表面を、更に絶縁性樹脂で被覆することができる。この絶縁性樹脂での被覆は、圧力等を加えない状態では導電性粒子の表面が極力露出しないように絶縁被覆層が形成されているが、例えば、本発明の導電性粒子を含有する導電性接着剤を用いて2枚の基板を接着する際の加熱・加圧によって破壊され、少なくとも導電性粒子表面が露出するように形成される。この絶縁樹脂層の厚さは通常は0.1〜0.5μm程度である。なお、この絶縁樹脂層は前記絶縁被覆層を設ける効果が発揮される範囲であれば、必ずしも導電性粒子の表面を完全に被覆する必要はなく、この観点から、例えば絶縁樹脂粒子を導電性粒子の表面に付着させただけのものであってもよい。   When the conductive particles of the present invention are used as a conductive filler of a conductive adhesive as will be described later, the surface of the conductive particles is further coated with an insulating resin in order to prevent the occurrence of short circuit between the conductive particles. can do. In this coating with an insulating resin, an insulating coating layer is formed so that the surface of the conductive particles is not exposed as much as possible without applying pressure or the like. For example, the conductive coating containing the conductive particles of the present invention is used. It is destroyed by heating and pressurizing when two substrates are bonded using an adhesive, and at least the surface of the conductive particles is exposed. The thickness of this insulating resin layer is usually about 0.1 to 0.5 μm. The insulating resin layer does not necessarily need to completely cover the surface of the conductive particles as long as the effect of providing the insulating coating layer is exhibited. From this viewpoint, for example, the insulating resin particles are coated with the conductive particles. It may be just attached to the surface of the film.

前記絶縁性樹脂としては、当該分野で公知のものを広く用いることができる。その一例を示せば、フェノール樹脂、ユリア樹脂、メラミン樹脂、アリル樹脂、フラン樹脂、ポリエステル樹脂、エポキシ樹脂、シリコーン樹脂、ポリアミド-イミド樹脂、ポリイミド樹脂、ポリウレタン樹脂、フッ素樹脂、ポリオレフィン樹脂(例:ポリエチレン、ポリプロピレン、ポリブチレン)、ポリアルキル(メタ)アクリレート樹脂、ポリ(メタ)アクリル酸樹脂、ポリスチレン樹脂、アクリロニトリル-スチレン-ブタジエン樹脂、ビニル樹脂、ポリアミド樹脂、ポリカーボネート樹脂、ポリアセタール樹脂、アイオノマー樹脂、ポリエーテルスルホン樹脂、ポリフェニルオキシド樹脂、ポリスルホン樹脂、ポリフッ化ビニリデン樹脂、エチルセルロースおよび酢酸セルロースを挙げることができる。   As the insulating resin, those known in the art can be widely used. For example, phenol resin, urea resin, melamine resin, allyl resin, furan resin, polyester resin, epoxy resin, silicone resin, polyamide-imide resin, polyimide resin, polyurethane resin, fluorine resin, polyolefin resin (example: polyethylene) , Polypropylene, polybutylene), polyalkyl (meth) acrylate resin, poly (meth) acrylic acid resin, polystyrene resin, acrylonitrile-styrene-butadiene resin, vinyl resin, polyamide resin, polycarbonate resin, polyacetal resin, ionomer resin, polyethersulfone Mention may be made of resins, polyphenyl oxide resins, polysulfone resins, polyvinylidene fluoride resins, ethyl cellulose and cellulose acetate.

導電性粒子の表面に絶縁被覆層を形成する方法としては、コアセルベーション法、界面重合法、insitu重合法及び液中硬化被覆法等の化学的方法、スプレードライング法、気中懸濁被覆法、真空蒸着被覆法、ドライブレンド法、ハイブリダイゼーション法、静電的合体法、融解分散冷却法及び無機質カプセル化法等の物理機械的方法、界面沈澱法等の物理化学的方法が挙げられる。   As a method of forming an insulating coating layer on the surface of conductive particles, a chemical method such as a coacervation method, an interfacial polymerization method, an in situ polymerization method and a liquid curing coating method, a spray drying method, an air suspension coating method Physicochemical methods such as vacuum deposition coating method, dry blend method, hybridization method, electrostatic coalescence method, melt dispersion cooling method and inorganic encapsulation method, and interfacial precipitation method.

このようにして得られた本発明の導電性粒子は、例えば異方性導電フィルム(ACF)やヒートシールコネクタ(HSC)、液晶ディスプレーパネルの電極を駆動用LSIチップの回路基板へ接続するための導電材料などとして好適に使用される。特に、本発明の導電性粒子は、導電性接着剤の導電性フィラーとして好適に用いられる。   The conductive particles of the present invention thus obtained are used for connecting, for example, an anisotropic conductive film (ACF), a heat seal connector (HSC), and an electrode of a liquid crystal display panel to a circuit board of a driving LSI chip. It is suitably used as a conductive material. In particular, the conductive particles of the present invention are suitably used as a conductive filler of a conductive adhesive.

前記の導電性接着剤は、導電性基材が形成された2枚の基板間に配置され、加熱加圧によって前記導電性基材を接着して導通する異方導電性接着剤として好ましく用いられる。この異方導電性接着剤は、本発明の導電性粒子と接着剤樹脂とを含む。接着剤樹脂としては、絶縁性で、かつ接着剤樹脂として用いられているものであれば、特に制限なく使用できる。熱可塑性樹脂及び熱硬化性のいずれであってもよく、加熱によって接着性能が発現するものが好ましい。そのような接着剤樹脂には、例えば熱可塑性タイプ、熱硬化性タイプ、紫外線硬化タイプ等がある。また、熱可塑性タイプと熱硬化性タイプとの中間的な性質を示す、いわゆる半熱硬化性タイプ、熱硬化性タイプと紫外線硬化タイプとの複合タイプ等がある。これらの接着剤樹脂は被着対象である回路基板等の表面特性や使用形態に合わせて適宜選択できる。特に、熱硬化性樹脂を含んで構成される接着剤樹脂が、接着後の材料的強度に優れる点から好ましい。   The conductive adhesive is preferably used as an anisotropic conductive adhesive that is disposed between two substrates on which a conductive base material is formed, and adheres and conducts the conductive base material by heating and pressing. . This anisotropic conductive adhesive contains the conductive particles of the present invention and an adhesive resin. Any adhesive resin can be used without particular limitation as long as it is insulative and used as an adhesive resin. Either a thermoplastic resin or a thermosetting resin may be used, and those that exhibit adhesive performance by heating are preferred. Examples of such an adhesive resin include a thermoplastic type, a thermosetting type, and an ultraviolet curing type. In addition, there are so-called semi-thermosetting types that exhibit intermediate properties between thermoplastic types and thermosetting types, combined types of thermosetting types and ultraviolet curing types, and the like. These adhesive resins can be appropriately selected according to the surface characteristics and usage pattern of the circuit board or the like to be attached. In particular, an adhesive resin including a thermosetting resin is preferable from the viewpoint of excellent material strength after bonding.

接着剤樹脂としては、具体的には、エチレン−酢酸ビニル共重合体、カルボキシル変性エチレン−酢酸ビニル共重合体、エチレン−イソブチルアクリレート共重合体、ポリアミド、ポリイミド、ポリエステル、ポリビニルエーテル、ポリビニルブチラール、ポリウレタン、SBSブロック共重合体、カルボキシル変性SBS共重合体、SIS共重合体、SEBS共重合体、マレイン酸変性SEBS共重合体、ポリブタジエンゴム、クロロプレンゴム、カルボキシル変性クロロプレンゴム、スチレン−ブタジエンゴム、イソブチレン−イソプレン共重合体、アクリロニトリル−ブタジエンゴム(以下、NBRと表す。)、カルボキシル変性NBR、アミン変性NBR、エポキシ樹脂、エポキシエステル樹脂、アクリル樹脂、フェノール樹脂又はシリコーン樹脂などから選ばれる1種又は2種以上の組み合わせにより得られるものを主剤として調製されたものが挙げられる。これらのうち、熱可塑性樹脂としては、スチレン−ブタジエンゴムやSEBSなどがリワーク性に優れるので好ましい。熱硬化性樹脂としては、エポキシ樹脂が好ましい。これらのうち接着力が高く、耐熱性、電気絶縁性に優れ、しかも溶融粘度が低く、低圧力で接続が可能であるという利点から、エポキシ樹脂が最も好ましい。   Specific examples of the adhesive resin include ethylene-vinyl acetate copolymer, carboxyl-modified ethylene-vinyl acetate copolymer, ethylene-isobutyl acrylate copolymer, polyamide, polyimide, polyester, polyvinyl ether, polyvinyl butyral, and polyurethane. , SBS block copolymer, carboxyl-modified SBS copolymer, SIS copolymer, SEBS copolymer, maleic acid-modified SEBS copolymer, polybutadiene rubber, chloroprene rubber, carboxyl-modified chloroprene rubber, styrene-butadiene rubber, isobutylene- Isoprene copolymer, acrylonitrile-butadiene rubber (hereinafter referred to as NBR), carboxyl-modified NBR, amine-modified NBR, epoxy resin, epoxy ester resin, acrylic resin, phenol resin or Those obtained by one or more combinations selected from such recone resins those prepared as main agent. Of these, as the thermoplastic resin, styrene-butadiene rubber, SEBS, and the like are preferable because of their excellent reworkability. As the thermosetting resin, an epoxy resin is preferable. Of these, epoxy resins are most preferred because of their advantages of high adhesive strength, excellent heat resistance and electrical insulation, low melt viscosity, and connection at low pressure.

前記のエポキシ樹脂としては、1分子中に2個以上のエポキシ基を有する多価エポキシ樹脂であれば、一般に用いられているエポキシ樹脂が使用可能である。具体的なものとしては、フェノールノボラック、クレゾールノボラック等のノボラック樹脂、ビスフェノールA、ビスフェノールF、ビスフェノールAD、レゾルシン、ビスヒドロキシジフェニルエーテル等の多価フェノール類、エチレングリコール、ネオペンチルグリコール、グリセリン、トリメチロールプロパン、ポリプロピレングリコール等の多価アルコール類、エチレンジアミン、トリエチレンテトラミン、アニリン等のポリアミノ化合物、アジピン酸、フタル酸、イソフタル酸等の多価カルボキシ化合物等とエピクロルヒドリン又は2−メチルエピクロルヒドリンを反応させて得られるグリシジル型のエポキシ樹脂が例示される。また、ジシクロペンタジエンエポキサイド、ブタジエンダイマージエポキサイド等の脂肪族及び脂環族エポキシ樹脂等が挙げられる。これらは単独で又は2種以上混合して使用することができる。   As the epoxy resin, a generally used epoxy resin can be used as long as it is a polyvalent epoxy resin having two or more epoxy groups in one molecule. Specific examples include novolak resins such as phenol novolak and cresol novolak, polyhydric phenols such as bisphenol A, bisphenol F, bisphenol AD, resorcin, and bishydroxydiphenyl ether, ethylene glycol, neopentyl glycol, glycerin, and trimethylolpropane. Obtained by reacting polychlorohydric alcohols such as polypropylene glycol, polyamino compounds such as ethylenediamine, triethylenetetramine, and aniline, polycarboxyl compounds such as adipic acid, phthalic acid, and isophthalic acid with epichlorohydrin or 2-methylepichlorohydrin. A glycidyl type epoxy resin is exemplified. Moreover, aliphatic and alicyclic epoxy resins such as dicyclopentadiene epoxide and butadiene dimer epoxide are listed. These can be used alone or in admixture of two or more.

なお、上述した各種の接着樹脂は、不純物イオン(NaやCl等)や加水分解性塩素などが低減された高純度品を用いることが、イオンマイグレーションの防止の観点から好ましい。   In addition, it is preferable from the viewpoint of prevention of ion migration that the various adhesive resins described above use high-purity products in which impurity ions (such as Na and Cl) and hydrolyzable chlorine are reduced.

異方導電性接着剤における本発明の導電性粒子の使用量は、接着剤樹脂成分100重量部に対し通常0.1〜30重量部、好ましくは0.5〜25重量部、より好ましくは1〜20重量部である。導電性粒子の使用量がこの範囲内にあることにより、接続抵抗や溶融粘度が高くなることが抑制され、接続信頼性を向上させ、接続の異方性を十分に確保することができる。   The amount of the conductive particles of the present invention used in the anisotropic conductive adhesive is usually 0.1 to 30 parts by weight, preferably 0.5 to 25 parts by weight, more preferably 1 to 100 parts by weight of the adhesive resin component. ~ 20 parts by weight. When the amount of the conductive particles used is within this range, an increase in connection resistance and melt viscosity is suppressed, connection reliability is improved, and connection anisotropy can be sufficiently secured.

前記の異方導電性接着剤には、上述した導電性粒子及び接着剤樹脂の他に、当該技術分野において、公知の添加剤を配合することができ、その配合量も当該技術分野において公知の範囲内とすることができる。他の添加剤としては、例えば粘着付与剤、反応性助剤、エポキシ樹脂硬化剤、金属酸化物、光開始剤、増感剤、硬化剤、加硫剤、劣化防止剤、耐熱添加剤、熱伝導向上剤、軟化剤、着色剤、各種カップリング剤又は金属不活性剤などを例示することができる。   In addition to the above-described conductive particles and adhesive resin, the anisotropic conductive adhesive can be blended with known additives in the technical field, and the blending amount is also known in the technical field. Can be within range. Other additives include, for example, tackifiers, reactive auxiliaries, epoxy resin curing agents, metal oxides, photoinitiators, sensitizers, curing agents, vulcanizing agents, deterioration inhibitors, heat resistant additives, heat Examples thereof include a conductivity improver, a softener, a colorant, various coupling agents, or a metal deactivator.

粘着付与剤としては、例えばロジン、ロジン誘導体、テルペン樹脂、テルペンフェノール樹脂、石油樹脂、クマロン−インデン樹脂、スチレン系樹脂、イソプレン系樹脂、アルキルフェノール樹脂、キシレン樹脂などが挙げられる。反応性助剤すなわち架橋剤としては、例えばポリオール、イソシアネート類、メラミン樹脂、尿素樹脂、ウトロピン類、アミン類、酸無水物、過酸化物などが挙げられる。エポキシ樹脂硬化剤としては、1分子中に2個以上の活性水素を有するものであれば特に制限なく使用できる。具体的なものとしては、例えばジエチレントリアミン、トリエチレンテトラミン、メタフェニレンジアミン、ジシアンジアミド、ポリアミドアミン等のポリアミノ化合物;無水フタル酸、無水メチルナジック酸、ヘキサヒドロ無水フタル酸、無水ピロメリット酸等の有機酸無水物;フェノールノボラック、クレゾールノボラック等のノボラック樹脂等が挙げられる。これらは単独で又は2種以上混合して使用することができる。また、用途や必要に応じて潜在性硬化剤を用いてもよい。使用できる潜在性硬化剤としては、例えば、イミダゾール系、ヒドラジド系、三フッ化ホウ素−アミン錯体、スルホニウム塩、アミンイミド、ポリアミンの塩、ジシアンジアミド等及びこれらの変性物が挙げられる。これらは単独で又は2種以上の混合体として使用できる。   Examples of the tackifier include rosin, rosin derivatives, terpene resins, terpene phenol resins, petroleum resins, coumarone-indene resins, styrene resins, isoprene resins, alkylphenol resins, xylene resins and the like. Examples of the reactive assistant, that is, the crosslinking agent include polyols, isocyanates, melamine resins, urea resins, utropines, amines, acid anhydrides and peroxides. As an epoxy resin hardening | curing agent, if it has two or more active hydrogens in 1 molecule, it can be especially used without a restriction | limiting. Specific examples include polyamino compounds such as diethylenetriamine, triethylenetetramine, metaphenylenediamine, dicyandiamide, and polyamideamine; organic acid anhydrides such as phthalic anhydride, methyl nadic anhydride, hexahydrophthalic anhydride, and pyromellitic anhydride. Products: novolak resins such as phenol novolac and cresol novolak. These can be used alone or in admixture of two or more. Moreover, you may use a latent hardening | curing agent as needed and a use. Examples of latent curing agents that can be used include imidazole series, hydrazide series, boron trifluoride-amine complexes, sulfonium salts, amine imides, polyamine salts, dicyandiamide, and the like and modified products thereof. These can be used alone or as a mixture of two or more.

前記の異方導電性接着剤は、通常、当業者間において広く使用されている製造装置を用い、本発明の導電性粒子及び接着剤樹脂並びに必要に応じ硬化剤や各種添加剤を配合し、接着剤樹脂が熱硬化性樹脂の場合は有機溶媒中で混合することにより、熱可塑性樹脂の場合は接着剤樹脂の軟化点以上の温度で、具体的には好ましくは約50〜130℃程度、更に好ましくは約60〜110℃程度で溶融混練することにより製造される。このようにして得られた異方導電性接着剤は、塗布してもよいし、フィルム状にして適用してもよい。   The anisotropic conductive adhesive is usually prepared by using a manufacturing apparatus widely used among those skilled in the art, and blends the conductive particles and adhesive resin of the present invention and, if necessary, curing agents and various additives, In the case where the adhesive resin is a thermosetting resin, by mixing in an organic solvent, in the case of a thermoplastic resin, at a temperature equal to or higher than the softening point of the adhesive resin, specifically preferably about 50 to 130 ° C, More preferably, it is produced by melt-kneading at about 60 to 110 ° C. The anisotropic conductive adhesive thus obtained may be applied or applied in the form of a film.

以下、本発明を実施例を挙げて説明するが、本発明はこれらの実施例に限定されるわけではない。   EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated, this invention is not necessarily limited to these Examples.

<芯材粒子の調製>
(芯材粒子試料1の調製)
(A)工程;
RO水100gにメチルトリメトキシシラン10gを加えて3時間攪拌し、加水分解を行なった。この反応溶液中に1.0Mのアンモニア水溶液1mLを添加した後、1.5時間攪拌して脱水縮合させた。得られたポリオルガノシロキサン(a)からなる粒子の平均粒子径は1.52μm、偏差係数は4.0%であった。
(B)工程;
(A)工程の反応溶液にRO水900gを添加し、(A)工程で得られた粒子が均一に分散するように攪拌した。この反応溶液の上層に、ビニルトリメトキシシラン40gを、2層の界面が維持できるようにゆっくりと添加した。添加終了後も攪拌を継続し、ビニルトリメトキシシランの加水分解、脱水縮合にともなって上層が消えて1層となるまでには3時間を要した。さらに、そのまま1時間程度攪拌を続けた。
次いで、反応溶液中に、28重量%のアンモニア水溶液5mLを添加し、そのまま20時間攪拌を続け、2種類のポリオルガノシロキサンからなる粒子の脱水縮合反応を完結させた。
次いで、攪拌を停止して静置し、得られた粒子を沈殿させた後、アンモニアを含有する溶液を除去した。得られた粒子をろ過し、洗浄液として用いたメタノールが中性を示すまで十分に洗浄した後、80℃で3時間乾燥処理を行なった。
得られた2種類のポリオルガノシロキサンからなる粒子の平均粒子径は2.15μm、偏差係数は2.1%であった。また、シェルを構成することになる部分の厚みと、コアを構成することになる部分の直径との比はシェル/コア=0.21であった。
(C)工程;
(B)工程で得られた粒子を250℃で12時間焼成することにより、ポリオルガノシロキサン(a)からなるコア粒子の表面をシリカで被覆した球状の芯材粒子試料1を得た。
得られた芯材粒子試料1の平均粒子径は2.07μm、偏差係数(CV値)は2.1%であった。また、コアシリカ粒子の直径(D)に対するポリオルガノシロキサンの厚み(T)の比(T/D)は0.18であった。
<Preparation of core particle>
(Preparation of core particle sample 1)
(A) Step;
To 100 g of RO water, 10 g of methyltrimethoxysilane was added and stirred for 3 hours for hydrolysis. 1 mL of 1.0 M aqueous ammonia solution was added to the reaction solution, and the mixture was stirred for 1.5 hours for dehydration condensation. The particles made of polyorganosiloxane (a) thus obtained had an average particle size of 1.52 μm and a deviation coefficient of 4.0%.
(B) step;
To the reaction solution in step (A), 900 g of RO water was added and stirred so that the particles obtained in step (A) were uniformly dispersed. To the upper layer of the reaction solution, 40 g of vinyltrimethoxysilane was slowly added so that the interface between the two layers could be maintained. Stirring was continued after the addition was completed, and it took 3 hours for the upper layer to disappear and become one layer due to hydrolysis and dehydration condensation of vinyltrimethoxysilane. Further, the stirring was continued for about 1 hour.
Next, 5 mL of a 28 wt% aqueous ammonia solution was added to the reaction solution, and stirring was continued for 20 hours to complete the dehydration condensation reaction of particles composed of two types of polyorganosiloxane.
Next, stirring was stopped and the mixture was allowed to stand to precipitate the resulting particles, and then the ammonia-containing solution was removed. The obtained particles were filtered and thoroughly washed until the methanol used as the washing liquid became neutral, and then dried at 80 ° C. for 3 hours.
The average particle size of the resulting particles of the two types of polyorganosiloxane was 2.15 μm, and the deviation coefficient was 2.1%. Further, the ratio of the thickness of the part constituting the shell to the diameter of the part constituting the core was shell / core = 0.21.
(C) step;
The particles obtained in the step (B) were baked at 250 ° C. for 12 hours to obtain spherical core particle samples 1 in which the surface of the core particles made of polyorganosiloxane (a) was coated with silica.
The average particle diameter of the obtained core material particle sample 1 was 2.07 μm, and the deviation coefficient (CV value) was 2.1%. The ratio (T / D) of the thickness (T) of the polyorganosiloxane to the diameter (D) of the core silica particles was 0.18.

(芯材粒子試料2の調製)
(A)工程;
RO水100gにメチルトリメトキシシラン10gを加えて3時間攪拌し、加水分解を行なった。この反応溶液中に、1.0Mのアンモニア水溶液1mLを添加した後、1.5時間攪拌して脱水縮合させた。得られたポリオルガノシロキサン(a)からなる粒子の平均粒子径は1.70μm、偏差係数は3.4%であった。
(B)工程;
(A)工程の反応溶液にRO水900gを添加し、(A)工程で得られた粒子が溶液中に均一に分散するように攪拌した。この溶液の上層に、ビニルトリメトキシシラン80gを、2層の界面が維持できるようにゆっくりと添加した。添加終了後も攪拌を継続し、ビニルトリメトキシシランの加水分解、脱水縮合にともなって上層が消えて1層となるまでには5時間を要した。さらに、そのまま1時間程度攪拌を続けた。
次いで、反応溶液中に、28重量%のアンモニア水溶液5mLを添加し、そのまま20時間攪拌を続け、2種類のポリオルガノシロキサンからなる粒子の脱水縮合反応を完結させた。
次いで、攪拌を停止して静置し、得られた粒子を沈殿させた後、アンモニアを含有する溶液を除去した。得られた粒子をろ過し、洗浄液として用いたメタノールが中性を示すまで十分に洗浄した後、80℃で3時間乾燥処理を行なった。得られた2種類のポリオルガノシロキサンからなる粒子の平均粒子径は3.08μm、偏差係数は1.9%であった。また、シェルを構成することになる部分の厚みと、コアを構成することになる部分の直径との比はシェル/コア=0.41であった。
(C)工程;
(B)工程で得られた粒子を250℃で12時間焼成して球状の芯材粒子試料2を得た。
得られた芯材粒子試料2の平均粒子径は2.94μm、偏差係数(CV値)は2.3%であった。また、また、コアシリカ粒子の直径(D)に対するポリオルガノシロキサンの厚み(T)の比(T/D)は0.36であった。
(Preparation of core particle sample 2)
(A) Step;
To 100 g of RO water, 10 g of methyltrimethoxysilane was added and stirred for 3 hours for hydrolysis. After adding 1 mL of 1.0 M aqueous ammonia solution to this reaction solution, it was stirred for 1.5 hours for dehydration condensation. The average particle diameter of the particles made of the polyorganosiloxane (a) was 1.70 μm, and the deviation coefficient was 3.4%.
(B) step;
To the reaction solution of step (A), 900 g of RO water was added and stirred so that the particles obtained in step (A) were uniformly dispersed in the solution. To the upper layer of this solution, 80 g of vinyltrimethoxysilane was slowly added so that the interface between the two layers could be maintained. Stirring was continued even after the addition was completed, and it took 5 hours for the upper layer to disappear and become one layer due to hydrolysis and dehydration condensation of vinyltrimethoxysilane. Further, the stirring was continued for about 1 hour.
Next, 5 mL of a 28 wt% aqueous ammonia solution was added to the reaction solution, and stirring was continued for 20 hours to complete the dehydration condensation reaction of particles composed of two types of polyorganosiloxane.
Next, stirring was stopped and the mixture was allowed to stand to precipitate the resulting particles, and then the ammonia-containing solution was removed. The obtained particles were filtered and thoroughly washed until the methanol used as the washing liquid became neutral, and then dried at 80 ° C. for 3 hours. The average particle diameter of the resulting particles of the two types of polyorganosiloxane was 3.08 μm, and the deviation coefficient was 1.9%. Moreover, the ratio of the thickness of the part which comprises a shell, and the diameter of the part which comprises a core was shell / core = 0.41.
(C) step;
The particles obtained in the step (B) were fired at 250 ° C. for 12 hours to obtain a spherical core particle sample 2.
The obtained core material particle sample 2 had an average particle diameter of 2.94 μm and a deviation coefficient (CV value) of 2.3%. The ratio (T / D) of the thickness (T) of the polyorganosiloxane to the diameter (D) of the core silica particles was 0.36.

<比較用芯材粒子の用意>
(芯材粒子試料3の用意)
平均粒子径が3.0μmである市販の球状ベンゾグアナミン樹脂を芯材粒子試料3として用意した。
<Preparation of comparative core particles>
(Preparation of core particle sample 3)
A commercially available spherical benzoguanamine resin having an average particle size of 3.0 μm was prepared as the core material particle sample 3.

(芯材粒子試料4の用意)
平均粒子径が3.0μmである市販のシリカ粒子を芯材粒子試料4として用意した。
(Preparation of core particle sample 4)
Commercially available silica particles having an average particle diameter of 3.0 μm were prepared as the core material particle sample 4.

〔実施例1〕
(前処理)
前記で調製した芯材粒子試料1を用い、その6.2gを、400mLのコンディショナー水溶液(ローム・アンド・ハース電子材料製の「クリーナーコンディショナー231」)に攪拌しながら投入した。コンディショナー水溶液の濃度は40mL/Lであった。引き続き、液温60℃で超音波を与えながら30分間攪拌して芯材粒子の表面改質及び分散処理を行った。水溶液を濾過し、一回リパルプ水洗した芯材粒子を200mLのスラリーにした。このスラリーへ塩化第一錫水溶液200mLを投入した。この水溶液の濃度は5×10−3mol/Lであった。常温で5分攪拌し、錫イオンを芯材粒子の表面に吸着させる感受性化処理を行った。引き続き水溶液を濾過し、1回リパルプ水洗した。次いで芯材粒子を400mLのスラリーにし、60℃に維持した。超音波を併用してスラリーを攪拌しながら、0.11mol/Lの塩化パラジウム水溶液2mLを添加した。そのままの攪拌状態を5分間維持させ、芯材粒子の表面にパラジウムイオンを捕捉させる活性化処理を行った。
(無電解ニッケルめっき処理)
前処理が施された芯材粒子を、70℃に加温した20g/L酒石酸ナトリウム及び5g/Lのポリエチレングリコールの入った水溶液3Lに攪拌しながら投入し、充分に攪拌分散させて水性スラリーを調整した。次いで、224g/L硫酸ニッケル水溶液(第1の水溶液)と、210g/Lの次亜リン酸ナトリウム及び80g/Lの水酸化ナトリウムを含む混合水溶液(第2の水溶液)とをそれぞれ300mL添加した。添加速度はそれぞれ5mL/分とした。水性スラリーに各水溶液を全量添加した後、70℃の温度を保持しながら5分攪拌を継続した。次いで液を濾過し、濾過物を3回洗浄した後、110℃で真空乾燥処理を行い、表面に、ニッケル−リン合金を被覆した皮膜被覆粒子試料を得た。
[Example 1]
(Preprocessing)
Using the core particle sample 1 prepared above, 6.2 g thereof was added to 400 mL of an aqueous conditioner solution (“Cleaner Conditioner 231” manufactured by Rohm and Haas Electronic Materials) with stirring. The concentration of the aqueous conditioner solution was 40 mL / L. Subsequently, the core material particles were surface-modified and dispersed by stirring for 30 minutes while applying ultrasonic waves at a liquid temperature of 60 ° C. The aqueous solution was filtered and the core particles washed once with repulp water were made into 200 mL slurry. 200 mL of stannous chloride aqueous solution was thrown into this slurry. The concentration of this aqueous solution was 5 × 10 −3 mol / L. The mixture was stirred at room temperature for 5 minutes to carry out a sensitization treatment for adsorbing tin ions on the surface of the core material particles. Subsequently, the aqueous solution was filtered and washed once with repulp water. The core particles were then made into 400 mL slurry and maintained at 60 ° C. While stirring the slurry using ultrasonic waves, 2 mL of a 0.11 mol / L palladium chloride aqueous solution was added. The state of stirring as it was was maintained for 5 minutes, and an activation treatment for capturing palladium ions on the surface of the core particles was performed.
(Electroless nickel plating treatment)
The pretreated core material particles are added to 3 L of an aqueous solution containing 20 g / L sodium tartrate and 5 g / L polyethylene glycol heated to 70 ° C. with stirring, and the aqueous slurry is sufficiently dispersed by stirring. It was adjusted. Next, 300 mL of a 224 g / L nickel sulfate aqueous solution (first aqueous solution) and a mixed aqueous solution (second aqueous solution) containing 210 g / L sodium hypophosphite and 80 g / L sodium hydroxide were added. The addition rate was 5 mL / min. After all the aqueous solutions were added to the aqueous slurry, stirring was continued for 5 minutes while maintaining a temperature of 70 ° C. Next, the liquid was filtered, and the filtrate was washed three times, followed by vacuum drying at 110 ° C. to obtain a film-coated particle sample with a nickel-phosphorus alloy coated on the surface.

〔実施例2〕
芯材粒子試料2の8.8gを用いたこと以外は実施例1と同様にして、表面に、ニッケル−リン合金を被覆した皮膜被覆粒子試料を得た。
[Example 2]
A film-coated particle sample having a surface coated with a nickel-phosphorus alloy was obtained in the same manner as in Example 1 except that 8.8 g of the core particle sample 2 was used.

〔実施例3〕
10g/LのEDTA−4Na、10g/Lのクエン酸―2Na及び2.9g/Lのシアン化金カリウム(Auとして2.0g/L)からなる無電解金めっき液を調製した。この金めっき液2Lを79℃に加熱し、これを攪拌しながら、実施例1で得られたニッケル被覆粒子試料9gを添加した。これによって粒子の表面に無電解めっき処理を行った。処理時間は20分とした。処理の完了後、液をろ過し、ろ過物を3回リパルプした。次いで110℃の真空乾燥機で乾燥した。このようにして、ニッケル−リン合金皮膜上に金めっき被覆処理を施した。
Example 3
An electroless gold plating solution consisting of 10 g / L EDTA-4Na, 10 g / L citric acid-2Na and 2.9 g / L potassium gold cyanide (2.0 g / L as Au) was prepared. While heating 2 L of this gold plating solution to 79 ° C. and stirring it, 9 g of the nickel-coated particle sample obtained in Example 1 was added. Thus, electroless plating treatment was performed on the surface of the particles. The processing time was 20 minutes. After completion of the treatment, the liquid was filtered and the filtrate was repulped three times. Subsequently, it dried with the 110 degreeC vacuum dryer. In this way, a gold plating coating treatment was performed on the nickel-phosphorus alloy film.

〔実施例4〕
実施例2で得られたニッケル被覆粒子試料10.5gを用いたこと以外は実施例3と同様にして、ニッケル−リン合金皮膜上に金めっき被覆処理を施した。
Example 4
The nickel-phosphorus alloy film was subjected to gold plating coating treatment in the same manner as in Example 3 except that 10.5 g of the nickel-coated particle sample obtained in Example 2 was used.

〔実施例5〕
10g/LのEDTA−2Na、10g/Lのクエン酸―2Na及び20g/Lのテトラアンミンパラジウム塩酸塩(Pd(NHCl)溶液(パラジウムとして2g/L)、カルボキシメチルセルロース(分子量250000、エーテル化度0.9)100ppmからなる無電解パラジウムめっき液を調製した。このパラジウムめっき液1.2Lを70℃に加熱した。これを攪拌しながら、実施例1で得られたニッケル被覆粒子試料8.7gを添加した。これによって粒子の表面に無電解めっき処理を行った。処理時間は60分とした。処理の完了後、液を濾過し、濾過物を3回リパルプした。次いで110℃の真空乾燥機で乾燥した。このようにして、ニッケル−リン合金皮膜上にパラジウムめっき被覆処理を施した。
Example 5
10 g / L EDTA-2Na, 10 g / L citric acid-2Na and 20 g / L tetraamminepalladium hydrochloride (Pd (NH 3 ) 4 Cl 2 ) solution (2 g / L as palladium), carboxymethylcellulose (molecular weight 250,000, An electroless palladium plating solution consisting of 100 ppm of etherification degree 0.9) was prepared. 1.2 L of this palladium plating solution was heated to 70 ° C. While stirring this, 8.7 g of the nickel-coated particle sample obtained in Example 1 was added. Thus, electroless plating treatment was performed on the surface of the particles. The processing time was 60 minutes. After completion of the treatment, the liquid was filtered and the filtrate was repulped three times. Subsequently, it dried with the 110 degreeC vacuum dryer. In this way, the palladium plating coating treatment was performed on the nickel-phosphorus alloy film.

〔実施例6〕
実施例2で得られたニッケル被覆粒子試料10.2gを用いたこと以外は実施例5と同様にして、ニッケル−リン合金皮膜上にパラジウムめっき被覆処理を施した。
Example 6
A nickel-phosphorus alloy film was subjected to a palladium plating coating treatment in the same manner as in Example 5 except that 10.2 g of the nickel-coated particle sample obtained in Example 2 was used.

〔比較例1〕
芯材粒子試料3の9gを用いたことと、添加する第1の水溶液と第2の水溶液をそれぞれ240mLとしたこと以外は、実施例1と同様にして、ニッケル−リン合金を被覆した皮膜被覆粒子試料を得た。
[Comparative Example 1]
A coating with a nickel-phosphorus alloy coated in the same manner as in Example 1 except that 9 g of the core particle sample 3 was used and that the first aqueous solution and the second aqueous solution to be added were 240 mL each. A particle sample was obtained.

〔比較例2〕
比較例1で得られたニッケル被覆粒子試料8.7gを用いたことと、金めっき液を1.5Lとしたこと以外は、実施例3と同様にして、ニッケル−リン合金皮膜上に金めっき被覆処理を施した。
[Comparative Example 2]
Gold plating was applied onto the nickel-phosphorus alloy film in the same manner as in Example 3 except that 8.7 g of the nickel-coated particle sample obtained in Comparative Example 1 was used and that the gold plating solution was 1.5 L. A coating treatment was applied.

〔比較例3〕
比較例1で得られたニッケル被覆粒子試料8.4gを用いたことと、パラジウムめっき液を0.9Lとしたこと以外は、実施例5と同様にして、ニッケル−リン合金皮膜上にパラジウムめっき被覆処理を施した。
[Comparative Example 3]
Palladium plating on the nickel-phosphorus alloy film was performed in the same manner as in Example 5 except that 8.4 g of the nickel-coated particle sample obtained in Comparative Example 1 was used and that the palladium plating solution was 0.9 L. A coating treatment was applied.

〔比較例4〕
芯材粒子試料4の9gを用いたことと、添加する第1の水溶液と第2の水溶液をそれぞれ170mLとしたこと以外は、実施例1と同様にして、ニッケル−リン合金を被覆した皮膜被覆粒子試料を得た。
[Comparative Example 4]
Coating film coated with nickel-phosphorous alloy in the same manner as in Example 1 except that 9 g of the core particle sample 4 was used and that the first aqueous solution and the second aqueous solution to be added were each 170 mL. A particle sample was obtained.

〔比較例5〕
比較例4で得られたニッケル被覆粒子試料6.9gを用いたことと、金めっき液を1.0Lとしたこと以外は、実施例3と同様にして、ニッケル−リン合金皮膜上に金めっき被覆処理を施した。
[Comparative Example 5]
Gold plating on the nickel-phosphorus alloy film was carried out in the same manner as in Example 3 except that 6.9 g of the nickel-coated particle sample obtained in Comparative Example 4 was used and that the gold plating solution was 1.0 L. A coating treatment was applied.

〔比較例6〕
比較例4で得られたニッケル被覆粒子試料6.6gを用いたことと、パラジウムめっき液を0.6Lとしたこと以外は、実施例5と同様にして、ニッケル−リン合金皮膜上にパラジウムめっき被覆処理を施した。
[Comparative Example 6]
Palladium plating on the nickel-phosphorus alloy film was carried out in the same manner as in Example 5 except that 6.6 g of the nickel-coated particle sample obtained in Comparative Example 4 was used and that the palladium plating solution was 0.6 L. A coating treatment was applied.

<導電性粒子の物性評価>
(1)金属皮膜の厚み
実施例及び比較例で得られた導電性粒子について金属皮膜の厚みを下記方法により測定した。
〔ニッケル皮膜の厚み〕
導電性粒子を王水に浸漬してニッケル皮膜を溶解し、皮膜成分をICP又は化学分析し、以下の式(2)、(3)からニッケル皮膜の厚みを算出した。
A=[(r+t)−r]d/r (2)
A=W/(100−W) (3)
式中、rは芯材粒子の半径(μm)、tはニッケル皮膜の厚み、dはニッケル皮膜の
比重、dは芯材粒子の比重、Wはニッケル含有率(重量%)である。
<Evaluation of physical properties of conductive particles>
(1) Thickness of metal film About the electroconductive particle obtained by the Example and the comparative example, the thickness of the metal film was measured by the following method.
[Thickness of nickel coating]
The conductive particles were immersed in aqua regia to dissolve the nickel coating, the coating components were analyzed by ICP or chemical analysis, and the thickness of the nickel coating was calculated from the following formulas (2) and (3).
A = [(r + t) 3 −r 3 ] d 1 / r 3 d 2 (2)
A = W / (100-W) (3)
In the formula, r is the radius (μm) of the core particles, t is the thickness of the nickel coating, d 1 is the specific gravity of the nickel coating, d 2 is the specific gravity of the core particles, and W is the nickel content (% by weight).

〔金皮膜・パラジウム皮膜の厚み〕
導電性粒子を王水に浸漬して、金又はパラジウム皮膜とニッケル皮膜を溶解し、皮膜成分をICP又は化学分析し、以下の式(4)、(5)から金又はパラジウム皮膜の厚みを算出した。
B=[(r+t+u)]−(r+t)]d/(r+t) (4)
B=X/(100−X) (5)
式中、uは金又はパラジウム皮膜の厚み、dは金又はパラジウム皮膜の比重、dはニッケルめっき粒子の比重、Xは金又はパラジウムの含有率(重量%)である。なお、ニッケルめっき粒子の比重は以下の式(6)により算出した。
=100/[(W/d)+(100−W)/d] (6)
[Gold film / palladium film thickness]
Immerse the conductive particles in aqua regia, dissolve the gold or palladium film and nickel film, analyze the film components by ICP or chemical analysis, and calculate the thickness of the gold or palladium film from the following formulas (4) and (5). did.
B = [(r + t + u) 3 ] − (r + t) 3 ] d 3 / (r + t) 3 d 4 (4)
B = X / (100-X) (5)
In the formula, u is the thickness of the gold or palladium film, d 3 is the specific gravity of the gold or palladium film, d 4 is the specific gravity of the nickel-plated particles, and X is the content (% by weight) of gold or palladium. The specific gravity of the nickel plating particles was calculated by the following formula (6).
d 4 = 100 / [(W / d 1 ) + (100−W) / d 2 ] (6)

Figure 2014007058
Figure 2014007058

(2)めっき皮膜の密着性
実施例1、実施例2、比較例1及び比較例4の導電性粒子2.2g及び直径3mmのジルコニアビーズ90gを、100mLのマヨネーズビンに入れた。更にマヨネーズビンに、ホールピペットを用いてトルエン10mLを加えた。攪拌機( スリーワンモーター) を用いてマヨネーズビン内を10分間400rpmで攪拌した。終了後、めっき粉体とジルコニアビーズとを分別した。
走査型電子顕微鏡でめっき粉体を観察し、めっき皮膜のはがれ具合を以下の基準で評価した。
○ : めっき皮膜の剥がれが観察されなかった。
× : めっき皮膜の剥がれが観察された。
(2) Adhesiveness of plating film The conductive particles 2.2g of Example 1, Example 2, Comparative Example 1, and Comparative Example 4 and 90 g of zirconia beads having a diameter of 3 mm were placed in a 100 mL mayonnaise bottle. Furthermore, 10 mL of toluene was added to the mayonnaise bottle using a whole pipette. The inside of the mayonnaise bottle was stirred for 10 minutes at 400 rpm using a stirrer (three one motor). After completion, the plating powder and zirconia beads were separated.
The plating powder was observed with a scanning electron microscope, and the peeling degree of the plating film was evaluated according to the following criteria.
○: Peeling of the plating film was not observed.
X: Peeling of the plating film was observed.

(3)導電性の評価
実施例及び比較例で得られた導電性粒子の導電性を次の方法で評価した。その結果を表2に示す。
(3) Evaluation of conductivity The conductivity of the conductive particles obtained in Examples and Comparative Examples was evaluated by the following method. The results are shown in Table 2.

エポキシ樹脂100部、硬化剤150部、トルエン70部を混合し、絶縁性接着剤を調製した。これに導電性粒子15部を配合してペーストを得た。バーコーターを用い、このペーストをシリコーン処理ポリエステルフィルム上に塗布し乾燥させた。得られた塗工フィルムを用い、前面をアルミニウムで蒸着したガラスと50μmピッチに銅パターンを形成したポリイミドフィルム基板との間の接続を行った。そして電極間の導通抵抗を測定することで、導電性粒子の導電性を評価した。評価は抵抗値2Ω以下を○とし、2〜5Ωを△、5Ω以上を×とした。   100 parts of epoxy resin, 150 parts of curing agent, and 70 parts of toluene were mixed to prepare an insulating adhesive. This was mixed with 15 parts of conductive particles to obtain a paste. This paste was applied onto a silicone-treated polyester film and dried using a bar coater. The obtained coating film was used to connect between a glass whose front surface was vapor-deposited with aluminum and a polyimide film substrate having a copper pattern formed on a 50 μm pitch. And the electroconductivity of electroconductive particle was evaluated by measuring the conduction | electrical_connection resistance between electrodes. In the evaluation, a resistance value of 2Ω or less was evaluated as ◯, 2-5Ω was evaluated as Δ, and 5Ω or more was evaluated as ×.

Figure 2014007058
Figure 2014007058

表2の結果より、本発明の導電性粒子は、従来の導電性粒子に比べて導電性に優れていることが分かる。また、めっき密着性にも優れているので電極間の接続信頼性をより向上させることができる。   From the results in Table 2, it can be seen that the conductive particles of the present invention are superior in conductivity compared to conventional conductive particles. Moreover, since it is excellent also in plating adhesiveness, the connection reliability between electrodes can be improved more.

本発明の導電性粒子は、導電性が高いものである。したがって本発明の導電性粒子を例えば異方性導電フィルムや異方性導電ペーストの導電性材料として用いた場合、かかる導電性フィルムや導電性ペーストは、導電性が高いものが得られる。   The conductive particles of the present invention have high conductivity. Therefore, when the conductive particles of the present invention are used, for example, as a conductive material for an anisotropic conductive film or anisotropic conductive paste, such a conductive film or conductive paste can be obtained having high conductivity.

1;芯材粒子
2;ポリオルガノシロキサン(a)からなるコア粒子
3;シリカ被覆層
DESCRIPTION OF SYMBOLS 1; Core material particle 2; Core particle 3 which consists of polyorganosiloxane (a); Silica coating layer

Claims (7)

芯材粒子と、この芯材粒子を覆う金属皮膜による導電層とを有する導電性粒子であって、該芯材粒子がポリオルガノシロキサン(a)からなるコア粒子の粒子表面をシリカで被覆した粒子であることを特徴とする導電性粒子。   Conductive particles having core material particles and a conductive layer made of a metal film covering the core material particles, wherein the core particles are made of polyorganosiloxane (a) and the particle surfaces of the core particles are coated with silica. Conductive particles, characterized in that 前記芯材粒子は、ポリオルガノシロキサン(a)からなるコア粒子の直径に対するシリカ被覆層の厚みの比が0.07〜1.5であることを特徴とする請求項1記載の導電性粒子。   The conductive particles according to claim 1, wherein the core particles have a ratio of the thickness of the silica coating layer to the diameter of the core particles made of polyorganosiloxane (a) of 0.07 to 1.5. 前記芯材粒子が、ポリオルガノシロキサン(a)からなるコア粒子の粒子表面に、該ポリオルガノシロキサン(a)とは有機成分の分解温度が異なり、ポリオルガノシロキサン(a)より有機成分の分解温度が低いポリオルガノシロキサン(b)からなるシェル層を有したコアシェル粒子を、前記ポリオルガノシロキサン(b)に含まれる有機成分の分解温度より高く、前記ポリオルガノシロキサン(a)に含まれる有機成分の分解温度より低い温度で加熱処理を行い得られるものであることを特徴とする請求項1又は2記載の導電性粒子。   The core particles are formed on the surface of the core particles composed of the polyorganosiloxane (a), and the decomposition temperature of the organic component is different from that of the polyorganosiloxane (a). The core-shell particles having a shell layer made of a polyorganosiloxane (b) having a low content are higher than the decomposition temperature of the organic component contained in the polyorganosiloxane (b), and the organic component contained in the polyorganosiloxane (a) The conductive particles according to claim 1, wherein the conductive particles are obtained by performing a heat treatment at a temperature lower than the decomposition temperature. 前記ポリオルガノシロキサン(a)がメチルトリメトキシシランの加水分解縮合物であり、前記ポリオルガノシロキサン(b)がビニルトリメトキシシランの加水分解縮合物であることを特徴とする請求項3記載の導電性粒子。   The conductive material according to claim 3, wherein the polyorganosiloxane (a) is a hydrolysis condensate of methyltrimethoxysilane, and the polyorganosiloxane (b) is a hydrolysis condensate of vinyltrimethoxysilane. Sex particles. 前記金属皮膜がニッケル又はニッケル合金皮膜であることを特徴とする請求項1乃至4記載の導電性粒子。   The conductive particles according to claim 1, wherein the metal film is nickel or a nickel alloy film. 前記ニッケル又はニッケル合金皮膜上に、更に金又はパラジウム皮膜を有することを特徴とする請求項5記載の導電性粒子。   6. The conductive particle according to claim 5, further comprising a gold or palladium film on the nickel or nickel alloy film. 請求項1乃至6の何れか1項に記載の導電性粒子を含むことを特徴とする導電性材料。


A conductive material comprising the conductive particles according to claim 1.


JP2012141936A 2012-06-25 2012-06-25 Conductive particles, manufacturing method thereof, and conductive material including the same Active JP6089462B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012141936A JP6089462B2 (en) 2012-06-25 2012-06-25 Conductive particles, manufacturing method thereof, and conductive material including the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012141936A JP6089462B2 (en) 2012-06-25 2012-06-25 Conductive particles, manufacturing method thereof, and conductive material including the same

Publications (2)

Publication Number Publication Date
JP2014007058A true JP2014007058A (en) 2014-01-16
JP6089462B2 JP6089462B2 (en) 2017-03-08

Family

ID=50104599

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012141936A Active JP6089462B2 (en) 2012-06-25 2012-06-25 Conductive particles, manufacturing method thereof, and conductive material including the same

Country Status (1)

Country Link
JP (1) JP6089462B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9725561B2 (en) 2014-06-20 2017-08-08 3M Innovative Properties Company Curable polymers comprising silsesquioxane polymer core and silsesquioxane polymer outer layer and methods
US9957358B2 (en) 2014-09-22 2018-05-01 3M Innovative Properties Company Curable polymers comprising silsesquioxane polymer core silsesquioxane polymer outer layer, and reactive groups
US9957416B2 (en) 2014-09-22 2018-05-01 3M Innovative Properties Company Curable end-capped silsesquioxane polymer comprising reactive groups
US10066123B2 (en) 2013-12-09 2018-09-04 3M Innovative Properties Company Curable silsesquioxane polymers, compositions, articles, and methods
US10370564B2 (en) 2014-06-20 2019-08-06 3M Innovative Properties Company Adhesive compositions comprising a silsesquioxane polymer crosslinker, articles and methods
US10392538B2 (en) 2014-06-20 2019-08-27 3M Innovative Properties Company Adhesive compositions comprising a silsesquioxane polymer crosslinker, articles and methods
US11042107B2 (en) 2018-01-24 2021-06-22 Ricoh Company, Ltd. Intermediate transfer medium and image forming apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002080598A (en) * 2000-06-23 2002-03-19 Ube Nitto Kasei Co Ltd Method for producing polyorganosiloxane particle and method for producing silica particle
JP2004035293A (en) * 2002-07-01 2004-02-05 Ube Nitto Kasei Co Ltd Silica-based particle, its manufacturing method, and conductive silica-based particle
JP2004047343A (en) * 2002-07-15 2004-02-12 Ube Nitto Kasei Co Ltd Conductive particle and its manufacturing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002080598A (en) * 2000-06-23 2002-03-19 Ube Nitto Kasei Co Ltd Method for producing polyorganosiloxane particle and method for producing silica particle
JP2004035293A (en) * 2002-07-01 2004-02-05 Ube Nitto Kasei Co Ltd Silica-based particle, its manufacturing method, and conductive silica-based particle
JP2004047343A (en) * 2002-07-15 2004-02-12 Ube Nitto Kasei Co Ltd Conductive particle and its manufacturing method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10066123B2 (en) 2013-12-09 2018-09-04 3M Innovative Properties Company Curable silsesquioxane polymers, compositions, articles, and methods
US9725561B2 (en) 2014-06-20 2017-08-08 3M Innovative Properties Company Curable polymers comprising silsesquioxane polymer core and silsesquioxane polymer outer layer and methods
US10370564B2 (en) 2014-06-20 2019-08-06 3M Innovative Properties Company Adhesive compositions comprising a silsesquioxane polymer crosslinker, articles and methods
US10392538B2 (en) 2014-06-20 2019-08-27 3M Innovative Properties Company Adhesive compositions comprising a silsesquioxane polymer crosslinker, articles and methods
US9957358B2 (en) 2014-09-22 2018-05-01 3M Innovative Properties Company Curable polymers comprising silsesquioxane polymer core silsesquioxane polymer outer layer, and reactive groups
US9957416B2 (en) 2014-09-22 2018-05-01 3M Innovative Properties Company Curable end-capped silsesquioxane polymer comprising reactive groups
US11042107B2 (en) 2018-01-24 2021-06-22 Ricoh Company, Ltd. Intermediate transfer medium and image forming apparatus

Also Published As

Publication number Publication date
JP6089462B2 (en) 2017-03-08

Similar Documents

Publication Publication Date Title
JP6089462B2 (en) Conductive particles, manufacturing method thereof, and conductive material including the same
JP5184612B2 (en) Conductive powder, conductive material containing the same, and method for producing the same
JP4746116B2 (en) Conductive powder, conductive material containing the same, and method for producing conductive particles
KR101505227B1 (en) Coated conductive powder and conductive adhesive using the same
KR101937734B1 (en) Conductive particle, conductive material, and method for manufacturing the conductive particle
KR102001723B1 (en) Conductive powder and conductive material comprising thereof and method for preparing conductive particle
JP5844219B2 (en) Method for producing conductive particles
KR101294946B1 (en) Method for producing conductive particles, method for producing insulating coated conductive particles, and anisotropic conductive adhesive film
TWI570750B (en) Conductive particle and conductive material having the same
JP6512734B2 (en) Coated conductive powder, method of producing coated conductive powder, conductive adhesive containing coated conductive powder, and adhesive structure
WO2021095803A1 (en) Conductive particles, method for manufacturing same, and conductive material containing same
WO2021095804A1 (en) Electrically conductive particles, production method for same, and electrically conductive material including same
JP5695768B2 (en) Conductive powder and conductive material including the same
JP6469817B2 (en) Coated conductive powder, method for producing coated conductive powder, conductive adhesive containing coated conductive powder, and bonded structure
JP2007194210A (en) Conductive fine particle and anisotropic conductive material
JP6395196B2 (en) Coated conductive powder, method for producing coated conductive powder, conductive adhesive containing coated conductive powder, and bonded structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151020

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151021

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160405

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160527

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160927

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20161122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161128

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20161205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170111

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170123

R150 Certificate of patent or registration of utility model

Ref document number: 6089462

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250