JP2014005361A - Polyphenylene sulfide resin/polyamide 46 resin composite material - Google Patents

Polyphenylene sulfide resin/polyamide 46 resin composite material Download PDF

Info

Publication number
JP2014005361A
JP2014005361A JP2012141754A JP2012141754A JP2014005361A JP 2014005361 A JP2014005361 A JP 2014005361A JP 2012141754 A JP2012141754 A JP 2012141754A JP 2012141754 A JP2012141754 A JP 2012141754A JP 2014005361 A JP2014005361 A JP 2014005361A
Authority
JP
Japan
Prior art keywords
resin
pps resin
pps
fine powder
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012141754A
Other languages
Japanese (ja)
Other versions
JP5916532B2 (en
Inventor
Makoto Arafuka
眞 荒深
Hiroshi Wakasaya
洋 若狭谷
Ryoichi Furuta
亮一 古田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Chemical Co Ltd
Original Assignee
Aisin Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Chemical Co Ltd filed Critical Aisin Chemical Co Ltd
Priority to JP2012141754A priority Critical patent/JP5916532B2/en
Publication of JP2014005361A publication Critical patent/JP2014005361A/en
Application granted granted Critical
Publication of JP5916532B2 publication Critical patent/JP5916532B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Processes Of Treating Macromolecular Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a polyphenylene sulfide (PPS) resin/polyamide (PA) 46 resin composite material which is used alone or as base resin for other resins, enables injection molding into a thin-walled product, is used for automotive parts, home appliance components and home appliances, requiring heat resistance, chemical resistance, ductility and toughness at the same level as these of PPS resin and is used as base resin for adding reinforcement and a new function by using a reinforcement material, an additive and the like.SOLUTION: The PPS resin/PA 46 resin composite material is a polymer alloy of PPS resin and PA 46 resin, is obtained by mixing and kneading 1-9 pts.wt. of a fine powder A having a median diameter of 100 nm or less with the PPS resin, has a sea island structure, is prevented from deteriorating tensile strength as compared with PPS resin by coexisting the fine powder A in a concentrated manner in the PPS resin side formed as a sea region to improve flowability and tensile elongation rate and consequently has excellent flowability and tensile elongation rate.

Description

本発明は、単独使用または他の樹脂のベース樹脂としても使用され、薄肉製品でポリフェニレンサルファイド樹脂(以下、単に『PPS樹脂』という)と同等以上の耐熱性、耐薬品性、延性、靭性が必要な自動車部品、家電部品及び製品、同じくPPS樹脂部品として、強化材、添加剤等で補強や新たな機能を付与するためのベース樹脂として使用されるPPS樹脂とポリアミド46樹脂(以下、単に『PA46樹脂』という)との複合材料であるPPS樹脂/PA46樹脂複合材料に関するものである。   The present invention can be used alone or as a base resin for other resins and needs to have heat resistance, chemical resistance, ductility and toughness equivalent to or better than polyphenylene sulfide resin (hereinafter simply referred to as “PPS resin”) for thin-walled products. PPS resin and polyamide 46 resin (hereinafter simply referred to as “PA46”) used as a base resin for reinforcing or adding new functions with reinforcing materials, additives, etc. PPS resin / PA46 resin composite material which is a composite material.

この種の複合材料の技術として特許文献1に記載の技術がある。特許文献1は、少なくとも2成分の樹脂からなり、かつ、PPS樹脂を1種以上含むPPS樹脂組成物であり、該PPS樹脂組成物が構造周期0.01〜1μmの両相連続構造または粒子間距離0.01〜1μmの分散構造を有し、優れた機械特性、低バリ性を有する成形材料を開示している。   There exists a technique of patent document 1 as a technique of this kind of composite material. Patent Document 1 is a PPS resin composition comprising at least two component resins and containing one or more PPS resins, and the PPS resin composition has a biphasic continuous structure or interparticle structure with a structural period of 0.01 to 1 μm. Disclosed is a molding material having a dispersed structure with a distance of 0.01 to 1 μm and having excellent mechanical properties and low burr.

また、特許文献2には、スチレン系単量体及び/またはアクリル系単量体を用いて合成された少なくとも1種以上の熱可塑性樹脂、ポリアミド系樹脂、単体での熱伝導率が1.5W/m・K以上でかつ電気絶縁性を示す高熱伝導性無機化合物からなり、熱可塑性樹脂/ポリアミド系樹脂の体積比が15/85〜75/25の割合であり、高熱伝導性無機化合物/{熱可塑性樹脂+ポリアミド系樹脂}の体積比が10/90〜75/25であり、高熱伝導性無機化合物が熱可塑性樹脂の相中に存在している比率が熱可塑性樹脂の体積分率×0.4以下であり、更に、少なくともポリアミド系樹脂が連続相構造を形成しており、汎用樹脂の機械的特性及び成形加工性等の諸特性を実用上保持し、熱伝導性に優れた無機物含有熱可塑性樹脂組成物を開示している。   Patent Document 2 discloses that at least one thermoplastic resin synthesized from a styrene monomer and / or an acrylic monomer, a polyamide resin, and a single substance have a thermal conductivity of 1.5 W. / M · K or higher and a high thermal conductivity inorganic compound exhibiting electrical insulation, and the volume ratio of thermoplastic resin / polyamide resin is 15/85 to 75/25, and the high thermal conductivity inorganic compound / { The volume ratio of thermoplastic resin + polyamide resin} is 10/90 to 75/25, and the ratio of the high thermal conductivity inorganic compound in the phase of the thermoplastic resin is the volume fraction of the thermoplastic resin × 0. .4 or less, and at least the polyamide-based resin forms a continuous phase structure, and practically retains various properties such as mechanical properties and molding processability of general-purpose resins, and contains an inorganic substance excellent in thermal conductivity Thermoplastic resin composition Shows.

そして、特許文献3には、ポリアミド樹脂とポリフェニレンエーテルの樹脂混合物に、熱伝導性充填材粒子が分散されたもので、良好な成形性とともに耐水性に優れ、しかも、高熱伝導性を有する熱伝導性樹脂組成物を開示している。   In Patent Document 3, heat conductive filler particles are dispersed in a resin mixture of a polyamide resin and a polyphenylene ether, which has excellent moldability and water resistance, and also has high heat conductivity. A functional resin composition is disclosed.

更に、特許文献4には、ポリフェニレンスルフィド樹脂100重量部に対し、BET比表面積が140m2/g以上のアルミナ粒子0.01〜10重量部を配合してなり、成形時の流動性を損なうことなく機械的強度、結晶化特性が著しく改良されたポリフェニレンスルフィド樹脂組成物を開示している。 Further, in Patent Document 4, 0.01 to 10 parts by weight of alumina particles having a BET specific surface area of 140 m 2 / g or more are blended with 100 parts by weight of the polyphenylene sulfide resin, thereby impairing fluidity during molding. And a polyphenylene sulfide resin composition with significantly improved mechanical strength and crystallization characteristics.

特開2003−113307JP 2003-113307 A 特開2007−327010JP2007-327010A 特開平9−59511JP-A-9-59511 特開平10−25416JP 10-25416 A

このように、特許文献1は、PPS樹脂の靭性を改良する技術に関するものであり、従来から他の熱可塑性樹脂を配合する方法が検討されてきたが、単純に配合するのみでは、PPS樹脂との相性が悪く、十分な効果が得られていなかった。ここではアロイにおいて優れた規則性を有する組織とすることで、優れた靭性を確保する技術として、特に、溶融混練により相溶化させた樹脂を、吐出後氷水中などで急冷し、スピノーダル分解による構造生成物を構造周期0.01〜1μmに固定化することで両相連続構造に構造制御して、優れた靭性を確保する方法が記載されている。ここで、PPS樹脂とのポリマーアロイさせる樹脂は、スピノーダル分解可能な樹脂が好ましい。比較例では、PPS樹脂とPA46樹脂を7/3で混合させた例が記載されている。
しかし、この特許文献1の技術では、実用状態の射出成形においては、急冷効果が損なわれ、靭性が確保できない可能性が想定される。また、本技術では、構造周期0.01〜1μmに固定化することで両相連続構造に構造制御するものであるから、射出成形をすると、製品の厚さによって、この構造を採ることは困難となるので、ある程度の大きさになっても引張伸び率を維持できるようにする必要があった。
As described above, Patent Document 1 relates to a technique for improving the toughness of a PPS resin. Conventionally, methods for blending other thermoplastic resins have been studied. The compatibility was poor, and sufficient effects were not obtained. Here, as a technology to ensure excellent toughness by forming a structure having excellent regularity in the alloy, in particular, a resin compatibilized by melt kneading is rapidly cooled in ice water after discharge, and a structure by spinodal decomposition A method is described in which the product is fixed to a structural period of 0.01 to 1 μm to control the structure to a biphasic continuous structure to ensure excellent toughness. Here, the resin alloyed with the PPS resin is preferably a resin capable of spinodal decomposition. In the comparative example, an example in which PPS resin and PA46 resin are mixed at 7/3 is described.
However, in the technique of Patent Document 1, it is assumed that in the injection molding in a practical state, the rapid cooling effect is impaired and the toughness cannot be ensured. In addition, in this technology, since the structure is controlled to a two-phase continuous structure by fixing the structure period to 0.01 to 1 μm, it is difficult to adopt this structure depending on the thickness of the product when injection molding is performed. Therefore, it has been necessary to maintain the tensile elongation even when the size becomes a certain size.

また、特許文献2では、スチレン系樹脂とポリアミド系樹脂、熱伝導フィラーでポリアミド系樹脂を海構造とし、その中に熱伝導フィラーが集中的に存在する形態であるが、スチレン系(アクリル)樹脂が入っており、PPS樹脂に比較して耐熱性を高くすることができなかった。
そして、特許文献3では、ポリフェニレンエーテル(PPE)とポリアミド66(PA66;66ナイロン)と海島構造で海部をPA66としている。PA66中に熱伝導フィラーであるアルミナ粒子が多く存在している。この特許文献3の実施物では流動性は良くならなかった。
In Patent Document 2, a styrene resin, a polyamide resin, and a heat conductive filler are used to form a sea structure of the polyamide resin, and the heat conductive filler is concentrated in the styrene resin (acrylic resin). The heat resistance could not be increased as compared with the PPS resin.
And in patent document 3, the sea part is made into PA66 by polyphenylene ether (PPE), polyamide 66 (PA66; 66 nylon), and a sea island structure. A lot of alumina particles, which are heat conductive fillers, are present in PA66. In the embodiment of Patent Document 3, the fluidity was not improved.

更に、特許文献4では、PPS樹脂の流動性を損なうことなく、機械的強度、結晶化特性を向上させ、PPS樹脂にBET比表面積が140m2/g以上のアルミナ粒子をPPS樹脂100重量部に対して1重量部をヘンシェルミキサーでドライブレンドした後、2軸押出機で溶融混練後ペレタイズして得られたペレットを、射出成形したサンプルでPPS樹脂と比較すると流動性が低下することもなく、引張、曲げ、衝撃強度の機械的特性が向上し、また、降温結晶化温度も高くなり結晶化特性が向上し、著しく特性が改良され、特に、アルミナはγ-アルミナで5〜10nmのものが特に効果が大きい。アルミナはアロイ材としてではなく、PPS樹脂に対して使用している。殊に、PPS樹脂にアルミナ微粉を入れると物性が向上すると記載されているが、アロイ材を入れると物性が一義的に向上するものではなく、アロイ材の効果は相性の問題である。 Further, in Patent Document 4, mechanical strength and crystallization characteristics are improved without impairing the fluidity of the PPS resin, and alumina particles having a BET specific surface area of 140 m 2 / g or more are added to 100 parts by weight of the PPS resin. On the other hand, pellets obtained by dry blending 1 part by weight with a Henschel mixer, melt-kneading with a twin-screw extruder and pelletizing are not reduced in fluidity when compared with PPS resin in an injection molded sample, The mechanical properties of tensile, bending, and impact strength are improved, the temperature of crystallization is lowered, the crystallization properties are improved, and the properties are remarkably improved. In particular, alumina is γ-alumina having 5 to 10 nm. Especially effective. Alumina is not used as an alloy material but for PPS resin. In particular, it is described that the physical properties are improved when alumina fine powder is added to the PPS resin, but the physical properties are not uniquely improved when the alloy material is added, and the effect of the alloy material is a problem of compatibility.

このように、射出成型で薄肉製品として成形可能なPPS樹脂と同等以上の耐熱性、延性、靭性、耐薬品性が確保されるためには、ベース樹脂にそのベース樹脂と物性の似たものを添加すると、相溶性が増すと云われていた。そこで発明者らは、実験を繰り返し、PPS樹脂をベース樹脂とし、他の材料を混ぜ合わせ、流動性の向上及び引張伸び率の向上を図るため、混ぜ合わせる材料としてPPS樹脂より流動性の良いPA46樹脂を前提に進めてきた。しかし、実験結果は、ただ単に混ぜ合わせても引張伸び率が向上せず、そればかりか反対に低下したのが現状である。   In this way, in order to ensure heat resistance, ductility, toughness, and chemical resistance equal to or better than PPS resin that can be molded as a thin product by injection molding, the base resin should have similar properties to the base resin. The addition was said to increase compatibility. Accordingly, the inventors have repeated experiments, and in order to improve the fluidity and the tensile elongation rate by using PPS resin as the base resin and mixing other materials, the PA46 has better fluidity than PPS resin as the mixing material. We have been proceeding on the premise of resin. However, the experimental result is that the tensile elongation does not improve even if it is simply mixed, but it is decreased on the contrary.

そこで、本発明は、単独使用または他の樹脂のベース樹脂としても使用され、薄肉製品が射出成型でき、PPS樹脂並みの耐熱性、耐薬品性、延性、靭性が必要な自動車部品、家電部品及び製品として、また、強化材、添加剤等で補強や新たな機能を付与するためのベース樹脂としても使用できるPPS樹脂/PA46樹脂複合材料及びその製造方法の提供を課題とするものである。   Accordingly, the present invention can be used alone or as a base resin for other resins, and can be used for injection molding of thin-walled products, and it requires automobile parts, home appliance parts and PPS resin that require heat resistance, chemical resistance, ductility, and toughness. It is an object of the present invention to provide a PPS resin / PA46 resin composite material that can be used as a product and as a base resin for reinforcing or adding new functions with reinforcing materials, additives, and the like, and a method for producing the same.

請求項1に係る発明のPPS樹脂/PA46樹脂複合材料は、PPS樹脂(ポリフェニレンサルファイド樹脂)とPA46樹脂(ポリアミド46樹脂)を溶融混練して作製した海島構造を有するポリマーアロイであって、前記PPS樹脂が海島構造の海部となり、前記海部の前記PPS樹脂側に中位径100nm未満の微粉体が配されているものである。   The PPS resin / PA46 resin composite material of the invention according to claim 1 is a polymer alloy having a sea-island structure prepared by melt-kneading a PPS resin (polyphenylene sulfide resin) and a PA46 resin (polyamide 46 resin). The resin becomes a sea part having a sea-island structure, and fine powder having a median diameter of less than 100 nm is arranged on the PPS resin side of the sea part.

ここで本発明の説明において、JIS Z 8901「試験用粉体及び試験用粒子」の本文及び解説の用語の定義によれば、「中位径」とは、粉体の粒径分布において、ある粒子径より大きい個数(または質量)が、全粉体のそれの50%を占めるときの粒子径(直径)、即ち、オーバサイズ50%の粒径であり、通常、メディアン径または50%粒子径といいD50と表わされる。定義的には、平均粒子径と中位径で粒子群のサイズを表現されるが、ここでは、商品説明の表示、レーザ回折・散乱法によって測定した値である。そして、この「レーザ回折・散乱法によって測定した中位径」とは、レーザ回折式粒度分布測定装置を用いてレーザ回折・散乱法によって得られた粒度分布において積算重量部が50%となる粒子径(D50)をいう。なお、上記数値は、厳格なものでなく概ねの値であり、当然、測定等による誤差を含む概略値であり、数割の誤差を否定するものではない。この意味で、平均粒子径と中位径は殆ど同じである。 Here, in the description of the present invention, according to the definition of the terminology in the text and the explanation of JIS Z 8901 “Test Powder and Test Particles”, “median diameter” is the particle size distribution of the powder. The particle diameter (diameter) when the number (or mass) larger than the particle diameter occupies 50% of that of the whole powder, that is, the particle diameter of 50% oversize, usually the median diameter or 50% particle diameter It is expressed as D50. By definition, the size of the particle group is expressed by the average particle diameter and the median diameter, but here, it is a value measured by the display of the product description and the laser diffraction / scattering method. The “median diameter measured by the laser diffraction / scattering method” is a particle whose cumulative weight part is 50% in the particle size distribution obtained by the laser diffraction / scattering method using a laser diffraction particle size distribution measuring apparatus. This refers to the diameter (D 50 ). Note that the above numerical values are not strict, but are approximate values, and are naturally approximate values including errors due to measurement and the like, and do not deny errors of several percent. In this sense, the average particle diameter and the median diameter are almost the same.

請求項2に係る発明のPPS樹脂/PA46樹脂複合材料の微粉体は、前記PPS樹脂100に対して1重量部乃至9重量部配されているものである。   The fine powder of the PPS resin / PA46 resin composite material of the invention according to claim 2 is disposed in an amount of 1 to 9 parts by weight with respect to the PPS resin 100.

請求項3に係る発明のPPS樹脂/PA46樹脂複合材料の前記微粉体は、中位径30〜50nmの範囲内のアルミナとしたものである。
ここで、中位径30〜50nmの範囲内の微粉体をアルミナとしたものでは、特に、アロイ化が安定して行われる。
The fine powder of the PPS resin / PA46 resin composite material of the invention according to claim 3 is an alumina having a median diameter of 30 to 50 nm.
Here, when the fine powder having a median diameter in the range of 30 to 50 nm is made of alumina, alloying is particularly stably performed.

請求項4に係る発明のPPS樹脂/PA46樹脂複合材料の製造方法は、PPS樹脂中に、中位径100nm未満の微粉体を配合量で前記PPS樹脂100重量部に対して1重量部乃至9重量部配合して、溶融押出により微粉体添加PPS樹脂のペレットを作製し、次いで、前記微粉体添加PPS樹脂ペレットとPA46樹脂を溶融押出して複合化するものである。   In the method for producing a PPS resin / PA46 resin composite material according to the fourth aspect of the present invention, a fine powder having a median diameter of less than 100 nm is blended in the PPS resin in an amount of 1 to 9 parts by weight with respect to 100 parts by weight of the PPS resin. The fine powder-added PPS resin pellets are prepared by melting and extruding, and then the fine powder-added PPS resin pellets and the PA46 resin are melt-extruded to form a composite.

請求項5に係る発明のPPS樹脂/PA46樹脂複合材料の製造方法の前記微粉体は、中位径30〜50nmの範囲内のアルミナとしたものである。
ここで、中位径30〜50nmの範囲内の微粉体をアルミナとしたものでは、特に、アロイ化が安定して行われる。
The fine powder of the method for producing a PPS resin / PA46 resin composite material of the invention according to claim 5 is alumina having a median diameter of 30 to 50 nm.
Here, when the fine powder having a median diameter in the range of 30 to 50 nm is made of alumina, alloying is particularly stably performed.

請求項1のPPS樹脂/PA46樹脂複合材料は、PPS樹脂(ポリフェニレンサルファイド樹脂)とPA46樹脂樹脂(ポリアミド46樹脂)を溶融混練して作製した海島構造を有するポリマーアロイであって、前記PPS樹脂が海島構造の海部となり、前記海部の前記PPS樹脂側に中位径100nm未満の微粉体が配されているものである。
PPS樹脂とPA46樹脂のポリマーアロイのPPS樹脂側に100nm未満の微粉末を集中的に配すると、流動性と引張伸び率が良好なPPS樹脂/PA46樹脂複合材料となる。このPPS樹脂/PA46樹脂複合材料は、薄肉製品の射出成型ができ、耐熱性、耐薬品性、延性、靭性が必要な部品、例えば、自動車部品、家電部品に使用できる。また、強化材、添加剤等での補強や新たな機能を付与するためのベース樹脂としても使用ができる。
The PPS resin / PA46 resin composite material according to claim 1 is a polymer alloy having a sea-island structure prepared by melt-kneading PPS resin (polyphenylene sulfide resin) and PA46 resin resin (polyamide 46 resin), wherein the PPS resin is It becomes a sea part of a sea-island structure, and fine powder having a median diameter of less than 100 nm is arranged on the PPS resin side of the sea part.
When fine powders of less than 100 nm are concentrated on the PPS resin side of the polymer alloy of PPS resin and PA46 resin, a PPS resin / PA46 resin composite material having good fluidity and tensile elongation is obtained. This PPS resin / PA46 resin composite material can be used for injection molding of thin-walled products, and can be used for parts that require heat resistance, chemical resistance, ductility, and toughness, such as automobile parts and household appliance parts. Further, it can be used as a base resin for reinforcing with a reinforcing material, an additive or the like or for providing a new function.

請求項2のPPS樹脂/PA46樹脂複合材料の微粉体は、前記PPS樹脂100に対して1重量部乃至9重量部配されているものである。
100nm未満の微粉体の配合量を前記PPS樹脂100に対して1重量乃至9重量部の範囲内とすることで、PA46樹脂とアロイ化したときPPS樹脂単体のときに比べて引張強度の低下を招くことなく流動性が向上したPPS樹脂/PA46樹脂複合材料が得られる。
The fine powder of the PPS resin / PA46 resin composite material according to claim 2 is disposed in an amount of 1 to 9 parts by weight with respect to the PPS resin 100.
By making the blending amount of the fine powder less than 100 nm within the range of 1 to 9 parts by weight with respect to the PPS resin 100, when alloyed with the PA46 resin, the tensile strength is reduced as compared with the case of the single PPS resin. A PPS resin / PA46 resin composite material with improved fluidity without incurring is obtained.

請求項3のPPS樹脂/PA46樹脂複合材料の前記微粉体は、中位径30〜50nmの範囲内のアルミナとしたものであるから、より安定した複合化が可能となる。   Since the fine powder of the PPS resin / PA46 resin composite material according to claim 3 is alumina having a median diameter of 30 to 50 nm, more stable composite is possible.

請求項4のPPS樹脂/PA46樹脂複合材料の製造方法は、PPS樹脂中に、中位径100nm未満の微粉体を配合量で前記PPS樹脂100重量部に対して1重量部乃至9重量部配合して溶融押出により微粉体添加PPS樹脂のペレットを作製し、次いで、前記微粉体添加PPS樹脂ペレットとPA46樹脂を溶融押出して複合化するものである。この様な製造方法によってPPS樹脂単体のときに比べて引張強度の低下を招くことなく流動性が向上したPPS樹脂/PA46樹脂複合材料を作製出来る。   5. The method for producing a PPS resin / PA46 resin composite material according to claim 4, wherein a fine powder having a median diameter of less than 100 nm is blended in the PPS resin in an amount of 1 to 9 parts by weight with respect to 100 parts by weight of the PPS resin. Then, a fine powder-added PPS resin pellet is prepared by melt extrusion, and then the fine powder-added PPS resin pellet and PA46 resin are melt-extruded to form a composite. By such a production method, a PPS resin / PA46 resin composite material having improved fluidity can be produced without causing a decrease in tensile strength as compared with the case of a single PPS resin.

請求項5のPPS樹脂/PA46樹脂複合材料の製造方法の前記微粉体は、中位径30〜50nmの範囲内のアルミナとしたものであるから、より安定した複合化が可能となる。   Since the fine powder of the method for producing a PPS resin / PA46 resin composite material according to claim 5 is alumina having a median diameter of 30 to 50 nm, more stable composite is possible.

図1は本発明の実施の形態のPPS樹脂/PA46樹脂複合材料の製造方法1を示す流れ図である。FIG. 1 is a flowchart showing a manufacturing method 1 of a PPS resin / PA46 resin composite material according to an embodiment of the present invention. 図2は本発明の実施の形態のPPS樹脂/PA46樹脂複合材料の製造方法2を示す流れ図である。FIG. 2 is a flowchart showing a manufacturing method 2 of the PPS resin / PA46 resin composite material according to the embodiment of the present invention. 図3は本発明の実施の形態のPPS樹脂/PA46樹脂複合材料の製造方法3を示す流れ図である。FIG. 3 is a flowchart showing a manufacturing method 3 of the PPS resin / PA46 resin composite material according to the embodiment of the present invention. 図4は本発明の実施の形態のPPS樹脂/PA46樹脂複合材料のスパイラルフローの比較図である。FIG. 4 is a comparison diagram of the spiral flow of the PPS resin / PA46 resin composite material according to the embodiment of the present invention. 図5は本発明の実施の形態のPPS樹脂/PA46樹脂複合材料の引張強度の比較図である。FIG. 5 is a comparison diagram of the tensile strength of the PPS resin / PA46 resin composite material according to the embodiment of the present invention. 図6は本発明の実施の形態のPPS樹脂/PA46樹脂複合材料の引張伸び率の比較図である。FIG. 6 is a comparative view of the tensile elongation of the PPS resin / PA46 resin composite material according to the embodiment of the present invention. 図7は本発明の実施の形態のPPS樹脂/PA46樹脂複合材料の試料として形成したペレットの断面写真である。FIG. 7 is a cross-sectional photograph of a pellet formed as a sample of the PPS resin / PA46 resin composite material according to the embodiment of the present invention. 図8は本発明の実施の形態のPPS樹脂/PA46樹脂複合材料の試料として形成した樹脂の流動方向の成形品の断面写真である。FIG. 8 is a cross-sectional photograph of the molded product in the flow direction of the resin formed as a sample of the PPS resin / PA46 resin composite material according to the embodiment of the present invention. 図9は本発明の実施の形態のPPS樹脂/PA46樹脂複合材料の試料として形成した樹脂の流動方向の成形品の断面写真である。FIG. 9 is a cross-sectional photograph of the molded product in the flow direction of the resin formed as a sample of the PPS resin / PA46 resin composite material according to the embodiment of the present invention. 図10は本発明の実施の形態のPPS樹脂/PA46樹脂複合材料の試料として形成した成形品の表面写真である。FIG. 10 is a surface photograph of a molded product formed as a sample of the PPS resin / PA46 resin composite material according to the embodiment of the present invention. 図11は本発明の実施の形態のPPS樹脂/PA46樹脂複合材料の試料として形成したペレットの断面写真に相当する概念図である。FIG. 11 is a conceptual diagram corresponding to a cross-sectional photograph of a pellet formed as a sample of the PPS resin / PA46 resin composite material according to the embodiment of the present invention. 図12は本発明の実施の形態のPPS樹脂/PA46樹脂複合材料の試料として形成したペレットの断面写真とは異なる状態を示す概念図である。FIG. 12 is a conceptual diagram showing a state different from a cross-sectional photograph of a pellet formed as a sample of the PPS resin / PA46 resin composite material according to the embodiment of the present invention.

以下、本発明の実施例について説明する。なお、実施例において、図示の同一記号及び同一符号は、同一または相当する機能部分であるから、ここではその重複する説明を省略する。   Examples of the present invention will be described below. Note that, in the embodiments, the same reference numerals and the same reference numerals are the same or corresponding functional parts, and therefore, redundant description thereof is omitted here.

まず、各比較例及び本発明の実施例と共にPPS樹脂として、東レ株式会社製のトレリナA900(商品名)を使用した。また、PA46樹脂(DSMエンジニアリングプラスチックス株式会社)のスタニールTW341J(商品名)を使用した。
そして、比較例3乃至比較例4、及び実施例では、PPS樹脂/PA46樹脂を70/30の重量部とした。そして、比較例4では、微粉体である粒子径が中位径100nmのアルミナ(大明化学工業株式会社、タイミクロンTM−DA(商品名)をPPS樹脂70重量部に対し1重量部添加し、比較例5及び実施例では、微粉体である粒子径が中位径33nmのアルミナ(シーアイ化成株式会社、ナノテック(商品名)をPA46樹脂30重量部またはPPS樹脂70重量部に対し1重量部を添加した。
First, TORELINA A900 (trade name) manufactured by Toray Industries, Inc. was used as a PPS resin together with each comparative example and the examples of the present invention. Further, Stanyl TW341J (trade name) of PA46 resin (DSM Engineering Plastics Co., Ltd.) was used.
And in the comparative example 3 thru | or the comparative example 4 and the Example, PPS resin / PA46 resin was 70 weight part weight. In Comparative Example 4, 1 part by weight of alumina (Daiming Chemical Industry Co., Ltd., Tymicron TM-DA (trade name) having a median diameter of 100 nm as a fine powder is added to 70 parts by weight of PPS resin, In Comparative Example 5 and Examples, alumina (Cai Kasei Co., Ltd., Nanotech (trade name)) having a median diameter of 33 nm as a fine powder was added in an amount of 1 part by weight to 30 parts by weight of PA46 resin or 70 parts by weight of PPS resin. Added.

なお、JIS Z 8901「試験用粉体及び試験用粒子」の本文及び解説の用語の定義によれば、「中位径」とは、粉体の粒径分布において、ある粒子径より大きい個数(または質量)が、全粉体のそれの50%を占めるときの粒子径(直径)、即ち、オーバサイズ50%の粒径であり、通常、メディアン径または50%粒子径といいD50と表わされる。定義的には、平均粒子径と中位径で粒子群のサイズを表現されるが、ここでは、レーザ回折・散乱法によって測定した値である。
そして、この「レーザ回折・散乱法によって測定した中位径」とは、レーザ回折式粒度分布測定装置を用いてレーザ回折・散乱法によって得られた粒度分布において積算重量部が50%となる粒子径(D50)をいう。なお、上記数値は、厳格なものでなく概ねの値であり、当然、測定等による誤差を含む概略値であり、数割の誤差を否定するものではない。この意味で、平均粒子径と中位径は殆ど同じである。
In addition, according to the definitions of terms in the text and explanation of JIS Z 8901 “Test Powder and Test Particles”, “median diameter” means the number larger than a certain particle diameter ( Or (mass) is the particle diameter (diameter) when 50% of that of the total powder, that is, the particle size of 50% oversize, usually referred to as the median diameter or 50% particle diameter, expressed as D50. . By definition, the size of the particle group is expressed by the average particle diameter and the median diameter, but here, it is a value measured by a laser diffraction / scattering method.
The “median diameter measured by the laser diffraction / scattering method” is a particle whose cumulative weight part is 50% in the particle size distribution obtained by the laser diffraction / scattering method using a laser diffraction particle size distribution measuring apparatus. This refers to the diameter (D 50 ). Note that the above numerical values are not strict, but are approximate values, and are naturally approximate values including errors due to measurement and the like, and do not deny errors of several percent. In this sense, the average particle diameter and the median diameter are almost the same.

比較例及び本発明の実施例をまとめると、比較例1はPPS樹脂のみ、比較例2はPA46樹脂のみ、比較例3はPPS樹脂/PA46樹脂を70/30の重量部とし、微粉体を混入していない。比較例4はPPS樹脂/PA46樹脂を70/30の重量部とし、ここに微粉体である中位径100nmのアルミナをPPS樹脂70重量部に対して1重量部添加した。比較例5はPPS樹脂/PA46樹脂を70/30の重量部とし、ここに微粉体である中位径33nmのアルミナをPA46樹脂30重量部に対して1重量部添加したものである。実施例はPPS樹脂/PA46樹脂を70/30の重量部とし、ここに微粉体である中位径33nmのアルミナをPPS樹脂70重量部に対して1重量部添加したものである。ここで、PA46樹脂は吸水率が高く、寸法精度が悪いので、PPS樹脂をベース樹脂とする。   To summarize the comparative examples and the examples of the present invention, Comparative Example 1 contains only PPS resin, Comparative Example 2 contains only PA46 resin, Comparative Example 3 contains 70/30 parts by weight of PPS resin / PA46 resin, and contains fine powder. Not done. In Comparative Example 4, 70 parts by weight of PPS resin / PA46 resin was added, and 1 part by weight of alumina having a median diameter of 100 nm as a fine powder was added to 70 parts by weight of PPS resin. In Comparative Example 5, 70 parts by weight of PPS resin / PA46 resin was added, and 1 part by weight of alumina having a median diameter of 33 nm as a fine powder was added to 30 parts by weight of PA46 resin. In the example, PPS resin / PA46 resin was 70/30 parts by weight, and 1 part by weight of alumina having a median diameter of 33 nm as a fine powder was added to 70 parts by weight of PPS resin. Here, since PA46 resin has a high water absorption rate and poor dimensional accuracy, PPS resin is used as a base resin.

次に、比較例及び本発明の実施例の製造方法について説明する。
まず、比較例及び本発明の実施例の成形材料は2軸混練押出機(株式会社テクノベル製)を使用し、スクリュー径がφ15mm、回転数300rpm、温度320℃の条件にて混練及び押出によりペレットとして作製した。このペレットを射出成形機(株式会社ソディックプラスチック製)にて射出することで流動長の測定と、引張試験用板材(厚みt=0.8mm、幅W=7mm)を成形した。流動長は、流動長の厚みをt=0.8mmとし、樹脂温度320℃、金型温度130℃、圧力100MPaのときのスパイラルフローにて測定した。そして引張試験は、引張試験用板材から引張試験用板材の長さ方向中央部に幅5mmとなるようにR10mmのくびれ部を切削加工によって引張試験用ダンベルを作製し、このダンベルを23℃の温度で引張試験機(株式会社島津製作所製)にて引張速度5mm/分で引張り、破断時の強度とそのときの伸びを測定した。なお、引張試験用板材は樹脂温度320℃、金型温度30℃にて射出成形した後、150℃で60分アニール処理を施したものを使用した。
Next, the manufacturing method of a comparative example and the Example of this invention is demonstrated.
First, the molding material of the comparative example and the example of the present invention was a pellet by kneading and extrusion using a twin screw kneading extruder (manufactured by Technobel Co., Ltd.) under the conditions of a screw diameter of φ15 mm, a rotation speed of 300 rpm, and a temperature of 320 ° C. As produced. The pellets were injected with an injection molding machine (manufactured by Sodick Plastic Co., Ltd.) to measure the flow length and form a tensile test plate (thickness t = 0.8 mm, width W = 7 mm). The flow length was measured by a spiral flow when the thickness of the flow length was t = 0.8 mm, the resin temperature was 320 ° C., the mold temperature was 130 ° C., and the pressure was 100 MPa. In the tensile test, a tensile test dumbbell was produced by cutting a constricted portion of R10 mm from the tensile test plate material to a width of 5 mm at the center in the length direction of the tensile test plate material. Then, the sample was pulled with a tensile tester (manufactured by Shimadzu Corporation) at a pulling speed of 5 mm / min, and the strength at break and the elongation at that time were measured. Note that the tensile test plate material was injection molded at a resin temperature of 320 ° C. and a mold temperature of 30 ° C. and then annealed at 150 ° C. for 60 minutes.

比較例1はPPS樹脂のみ、比較例2はPA46樹脂のみの特性であるから、その説明を省略する。
製造方法1の比較例4では、ステップS10でホッパーからPPS樹脂を供給し、ステップS11でホッパーからPA46樹脂を供給し、それらを一体化して70/30の重量部となるように押出機の投入口に供給し、ステップS12でPPS樹脂70重量部に対し微粉体Aとしてのアルミナを1重量部サイドフィーダーにて押出機に供給する。そしてスクリュー内で混練されることで、ステップS13でPPS樹脂/PA46樹脂の配合割合が70/30の重量部で、PPS樹脂側にPPS樹脂70重量部に対してアルミナが1重量部添加されて、PPS樹脂/PA46樹脂複合材料としては、PPS樹脂とPA46樹脂の総量100重量部に対し微粉体Aとしてのアルミナを1重量部含有するコンパウンドとなる。そして、このコンパウンドされた試料をステップS14でカットしてペレットを形成する。
比較例3では、ステップS12の混練したPPS樹脂/PA46樹脂の配合割合が70/30重量部で、微粉体Aとしてのアルミナを添加する工程が省略されている。
Since Comparative Example 1 has characteristics of only PPS resin and Comparative Example 2 has characteristics of only PA46 resin, the description thereof is omitted.
In Comparative Example 4 of Production Method 1, PPS resin is supplied from the hopper in step S10, PA46 resin is supplied from the hopper in step S11, and the extruder is charged so that they are integrated to 70/30 parts by weight. In step S12, alumina as fine powder A is supplied to the extruder by 1 part by weight side feeder with respect to 70 parts by weight of PPS resin. Then, by kneading in the screw, 1 part by weight of alumina is added to the PPS resin side with 70 parts by weight of the PPS resin at a blending ratio of PPS resin / PA46 resin of 70/30 in step S13. The PPS resin / PA46 resin composite material is a compound containing 1 part by weight of alumina as fine powder A with respect to 100 parts by weight of the total amount of PPS resin and PA46 resin. Then, the compounded sample is cut in step S14 to form a pellet.
In Comparative Example 3, the blending ratio of the kneaded PPS resin / PA46 resin in Step S12 is 70/30 parts by weight, and the step of adding alumina as the fine powder A is omitted.

また、製造方法2の比較例5は、ステップS20でホッパーからPA46樹脂を押出機の投入口に供給し、ステップS21でPA46樹脂を30重量部としたとき微粉体Aとしてのアルミナが1重量部添加となるように計算して微粉体Aとしてのアルミナをサイドフィーダーにて押出機に供給する。そして、押出機で混練することでステップS22のPA46樹脂に微粉体Aとしてのアルミナが添加された中間コンパウンドを得る。次に、この中間コンパウンドをステップS23でペレット状とし、ステップS24のPPS樹脂とともに押出機の投入口に供給し押出機で混練する。このときステップS24のPPS樹脂は、PPS樹脂/PA46樹脂の重量比が70/30重量部となるように調整して供給される。そしてステップS25でPPS樹脂/PA46樹脂の配合割合が70/30重量部で、PA46樹脂側にPA46樹脂30重量部に対してアルミナが1重量部添加されて、PPS樹脂/PA46樹脂複合材料としては、PPS樹脂とPA46樹脂の総量100重量部に対し微粉体Aとしてのアルミナを1重量部含有するコンパウンドとなる。そして、得られたコンパウンドをステップS26でカットし試料のペレットを形成する。   In Comparative Example 5 of the production method 2, PA46 resin is supplied from the hopper to the inlet of the extruder in step S20, and 1 part by weight of alumina as the fine powder A is 30 parts by weight of PA46 resin in step S21. It calculates so that it may become addition, and the alumina as the fine powder A is supplied to an extruder with a side feeder. And the intermediate compound by which the alumina as the fine powder A was added to PA46 resin of step S22 by kneading with an extruder is obtained. Next, this intermediate compound is formed into a pellet in step S23, and is supplied to the inlet of the extruder together with the PPS resin in step S24 and kneaded by the extruder. At this time, the PPS resin in step S24 is supplied by adjusting so that the weight ratio of PPS resin / PA46 resin is 70/30 parts by weight. In step S25, the blending ratio of PPS resin / PA46 resin is 70/30 parts by weight, and 1 part by weight of alumina is added to the PA46 resin side with respect to 30 parts by weight of PA46 resin. As a PPS resin / PA46 resin composite material, , A compound containing 1 part by weight of alumina as fine powder A with respect to 100 parts by weight of the total amount of PPS resin and PA46 resin. Then, the obtained compound is cut in step S26 to form a sample pellet.

そして、製造方法3の実施例は、ステップS30でホッパーからPPS樹脂を押出機の投入口に供給し、ステップS31でPPS樹脂を70重量部としたとき微粉体Aとしてのアルミナが1重量部添加となるように計算して微粉体としてのアルミナをサイドフィーダーにて押出機に供給する。そして、押出機で混練することでステップS32のPPS樹脂に微粉体Aとしてのアルミナが添加された中間コンパウンドを得る。次に、この中間コンパウンドをステップS33でペレット状とし、ステップS34のPA46樹脂とともに押出機の投入口に供給し押出機で混練する。このときステップS34のPPS樹脂は、PPS樹脂/PA46樹脂の重量比が70/30重量部となるように調整して供給される。そしてステップS35でPPS樹脂/PA46樹脂の配合割合が70/30重量部で、PPS樹脂側にPPS樹脂70重量部に対してアルミナが1重量部添加されて、PPS樹脂/PA46樹脂複合材料としては、PPS樹脂とPA46樹脂の総量100重量部に対し微粉体Aとしてのアルミナを1重量部含有するコンパウンドとなる。そして、得られたコンパウンドをステップS36でカットし試料のペレットを形成する。   In the embodiment of manufacturing method 3, PPS resin is supplied from the hopper to the inlet of the extruder in step S30, and 1 part by weight of alumina as fine powder A is added when 70 parts by weight of PPS resin is added in step S31. Alumina as a fine powder is supplied to the extruder through a side feeder. And the intermediate compound by which the alumina as the fine powder A was added to the PPS resin of step S32 is obtained by kneading with an extruder. Next, this intermediate compound is formed into a pellet in step S33, and is supplied to the charging port of the extruder together with the PA46 resin in step S34 and kneaded by the extruder. At this time, the PPS resin in step S34 is supplied by adjusting so that the weight ratio of PPS resin / PA46 resin is 70/30 parts by weight. In step S35, the blending ratio of PPS resin / PA46 resin is 70/30 parts by weight, and 1 part by weight of alumina is added to the PPS resin side with respect to 70 parts by weight of PPS resin. As a PPS resin / PA46 resin composite material, , A compound containing 1 part by weight of alumina as fine powder A with respect to 100 parts by weight of the total amount of PPS resin and PA46 resin. Then, the obtained compound is cut in step S36 to form a sample pellet.

比較例1乃至比較例5及び実施例を表にまとめると、次のようである。   It is as follows when the comparative example 1 thru | or the comparative example 5 and an Example are put together in a table | surface.

図4は、比較例1乃至比較例5及び実施例の流動長を示すものであり、比較例1のPPS樹脂は比較例2のPA46樹脂に比べて流動性が1/2以下と悪いことが分かる。これに対し、PPS樹脂にPA46樹脂を複合化した比較例3乃至比較例5及び実施例は、流動性が向上し、流動特性の改良が得られている。したがって、PPS樹脂を単独で使用したときに比べてPA46樹脂を複合化することで流動性が増して成形性が向上するため薄肉での成形が出来、製品の薄肉化が可能となる。   FIG. 4 shows the flow lengths of Comparative Examples 1 to 5 and Examples, and the PPS resin of Comparative Example 1 has a poor fluidity of 1/2 or less compared to the PA46 resin of Comparative Example 2. I understand. In contrast, Comparative Examples 3 to 5 and Examples in which PA46 resin is combined with PPS resin have improved fluidity and improved flow characteristics. Therefore, compared with the case where the PPS resin is used alone, the PA46 resin is compounded, so that the fluidity is increased and the moldability is improved, so that it is possible to mold with a thin wall and to reduce the thickness of the product.

図5に示す引張強度の結果から比較例1のPPS樹脂と比較例2のPA46樹脂の引張強度は略同等の結果であることから、PPS樹脂とPA46樹脂の複合化によっても同等の強度を示すことが期待できるが、この点については、複合化した比較例3乃至比較例5及び実施例の結果が略同等の強度を示していることで確認された。ここで比較例3乃至比較例5及び実施例は重量部で70/30重量部で複合化しているが、PA46樹脂の比率が50重量部まで多くなるとと流動性や引張強度の低下を招くことになる。   From the results of the tensile strength shown in FIG. 5, the PPS resin of Comparative Example 1 and the PA46 resin of Comparative Example 2 have substantially the same tensile strength, and therefore the same strength is exhibited even when the PPS resin and PA46 resin are combined. Although this can be expected, this was confirmed by the fact that the composite results of Comparative Examples 3 to 5 and Examples showed substantially the same strength. Here, Comparative Examples 3 to 5 and Examples are combined in 70/30 parts by weight by weight, but when the ratio of PA46 resin increases to 50 parts by weight, fluidity and tensile strength are reduced. become.

そして、引張伸び率は、図6に示すように、比較例2のPA46樹脂及び実施例が他より2〜3倍以上伸び率がよいことが確認される。ここで引張伸び率は、引張試験において引張試験によって破断したときのチャック間距離に対する引張前のチャック間距離(本試験では200mm)の比率で求められる値であり、引張伸び率が大きいほど破断するまでの伸びが大きいといえる。   As shown in FIG. 6, it is confirmed that the PA46 resin and the example of Comparative Example 2 have a tensile elongation of 2 to 3 times or more better than others. Here, the tensile elongation is a value determined by the ratio of the distance between chucks before tension (200 mm in this test) to the distance between chucks when fractured by a tensile test in a tensile test. It can be said that the growth up to is large.

以上の測定結果から、PPS樹脂と同等の引張強度を有し、成形品の肉厚を薄肉化するためにはPPS樹脂にPA46樹脂を複合化させることで可能となる。しかし、PPS樹脂と同等の引張強度を有し、破断時の伸びをPPS樹脂より大きくPA46樹脂に近づけるためには本発明の実施例のように100nm未満の微粉体をPPS樹脂側に配する必要がある。
次に、PPS樹脂/PA46樹脂複合樹脂中での微粉体の存在状況について説明する。
From the above measurement results, it is possible to have a tensile strength equivalent to that of the PPS resin and to reduce the thickness of the molded product by combining the PA46 resin with the PPS resin. However, it has the same tensile strength as PPS resin, and in order to make elongation at break larger than PPS resin closer to PA46 resin, it is necessary to arrange fine powder of less than 100 nm on the PPS resin side as in the embodiment of the present invention. There is.
Next, the presence of fine powder in the PPS resin / PA46 resin composite resin will be described.

本実施例のPPS樹脂/PA46樹脂複合材料の断面を走査型電子顕微鏡(SEM)で観測すると、図7の写真のようになっている。写真は目盛10個の間隔が5μmである。ここで、PPS樹脂で形成される図7のSEM写真の灰色部分を海原の海部Bと呼び、また、斑点がある黒色系の略円形状はPA46樹脂であり、海部Bに存在するから島部Cと呼ぶ。
白い細かい点がアルミナのナノ粒子であり、中位径33nmの微粉体Aである。この中位径33nmの微粉体Aは、PPS樹脂で形成される図7のSEM写真で海部Bのみに集中して分散されているが、PPS樹脂で形成される図7のSEM写真で孔状の斑点がある黒色系の略円形状の島部Cには分散されていない。即ち、島部Cが受け入れを拒否しているかの如く形成されている。この孔状の斑点がある黒色系の略円形状の島部CはPA46樹脂である。
When the cross section of the PPS resin / PA46 resin composite material of this example is observed with a scanning electron microscope (SEM), it is as shown in the photograph of FIG. In the photograph, the interval of 10 graduations is 5 μm. Here, the gray part of the SEM photograph of FIG. 7 formed of PPS resin is called the sea part B of the sea, and the black, substantially circular shape with spots is the PA46 resin, and the island part because it exists in the sea part B. Call it C.
White fine dots are alumina nanoparticles and fine powder A having a median diameter of 33 nm. The fine powder A having a median diameter of 33 nm is concentrated and dispersed only in the sea part B in the SEM photograph of FIG. 7 formed of PPS resin, but in the SEM photograph of FIG. It is not dispersed in the black, substantially circular island portion C having spots. That is, it is formed as if the island C refuses to accept. The black, substantially circular island C having the hole-like spots is PA46 resin.

ここで、図7の島部Cの面積は、本実施例のPPS樹脂/PA46樹脂複合材料のペレットを形成する樹脂の流れ方向に対して垂直の断面を採ったときに生ずるものである。本実施例のPPS樹脂/PA46樹脂複合材料の射出成型等による成形品の樹脂の流れ方向に沿って断面を形成したときには、図8のような形態となる。
島部Cの大きさは、平均直径で示されるが、平均直径1μm〜30μmの範囲である。この平均直径とは、各島部Cを円と見做した算術平均(相加平均)であり、まず、図7の写真の島部Cの縦長と横長の平均、即ち、[(縦長+横長)/2]で計算した単純平均の直径距離を各々の島部Cで算出し、その各々の島部Cの積分値を島部Cの数で除したものである。
Here, the area of the island portion C in FIG. 7 occurs when a cross section perpendicular to the flow direction of the resin forming the PPS resin / PA46 resin composite material pellets of this example is taken. When the cross section is formed along the flow direction of the resin of the molded product by injection molding or the like of the PPS resin / PA46 resin composite material of this embodiment, the form is as shown in FIG.
Although the magnitude | size of the island part C is shown by an average diameter, it is the range of an average diameter of 1 micrometer-30 micrometers. The average diameter is an arithmetic average (arithmetic average) in which each island C is regarded as a circle. First, the average of the vertical and horizontal lengths of the island C in the photograph of FIG. ) / 2] is calculated for each island C, and the integral value of each island C is divided by the number of islands C.

また、PA46樹脂からなる島部Cと島部Cとの間隔は、平均距離が10μ以下となっている。この島部Cと島部Cとの間隔は、図8の両端矢印の直線のように、図7の断面の写真ばかりでなく、樹脂の流れ方向の断面からも測定できる。
このとき本発明のPPS樹脂/PA46樹脂複合材料は、PPS樹脂中に中位径100nm未満の微粉体Aを混練して形成したペレットを基準にしている。図7の写真では、島部Cと島部Cとの間隔が密であるが、その成形品では、島部Cと島部Cとの間隔が粗くなっていることが確認される。何れも、島部Cには白い細かい点のアルミナの微粉体Aが殆ど存在していない。なお、図8の成形品の写真では、白い細かい点のアルミナの微粉体Aが島部Cにも数個存在するように写っているが、これは切断の際に微粉体Aが移動したものと推定されるが、その事実関係は不明である。しかし、PPS樹脂のように集中して分布した状態にないことは明らかである。
The distance between the island portion C and the island portion C made of PA46 resin has an average distance of 10 μm or less. The distance between the island portion C and the island portion C can be measured not only from the photograph of the cross section of FIG. 7 but also from the cross section in the resin flow direction as shown by the straight line of the double-ended arrow in FIG.
At this time, the PPS resin / PA46 resin composite material of the present invention is based on pellets formed by kneading fine powder A having a median diameter of less than 100 nm in the PPS resin. In the photograph of FIG. 7, the distance between the island part C and the island part C is close, but in the molded product, it is confirmed that the distance between the island part C and the island part C is rough. In any case, the fine powder A of alumina with fine white spots is hardly present in the island portion C. In the photograph of the molded product in FIG. 8, it is shown that there are several white fine alumina powders A on the islands C. This is a result of the fine powders A moving during cutting. The fact is unclear. However, it is clear that the PPS resin is not concentrated and distributed.

図9の写真は、図8の成形品の写真におけるアルミナの微粉体Aが島部Cにも数個存在するかの如く写っているので、更に10倍走査型電子顕微鏡の倍率を上げて確認したものである。この写真の結果からは、PPS樹脂に微粉体Aが存在しているが、PA46樹脂には微粉体Aが存在していないと確認できる。
なお、図10の写真は、成形品の板成物の表面の写真である。右下に10μmのスケールが表示されているが、この光学顕微鏡では、表層にも海部Bと島部Cが形成されているのが確認できる程度である。
The photograph in FIG. 9 is shown as if there are several alumina fine powders A in the island part C in the photograph of the molded product in FIG. 8, so confirm by further increasing the magnification of the 10 × scanning electron microscope. It is a thing. From the result of this photograph, it can be confirmed that the fine powder A exists in the PPS resin, but the fine powder A does not exist in the PA46 resin.
In addition, the photograph of FIG. 10 is a photograph of the surface of the plate product of a molded product. A scale of 10 μm is displayed in the lower right, but with this optical microscope, it is only possible to confirm that the sea part B and the island part C are also formed on the surface layer.

即ち、図7の写真を説明のために概念的に図示すると、図11及び図12に示すようになる。図11は本発明の実施の形態のPPS樹脂/PA46樹脂複合材料の試料として形成したペレットの断面写真に相当する概念図であり、図12は図7のペレットの断面写真とは異なる状態を示す概念図である。
PPS樹脂で形成される海原の海部Bは、全体に広がっている。略円形状はPA46樹脂であり、海部Bに存在する島部Cとなっている。ここで、黒い細かい点が微粉体Aである。この微粉体Aは、図7の写真の概念図の図11に示すように、PPS樹脂で形成される海部Bのみに集中して分散されている。
微粉体Aが全体に分散するものであれば、図12のように、略円形状の島部Cにも分散さるべきであるが、図7のSEM写真で確認されるように、図12のようにはなっていない。即ち、微粉体AはPPS樹脂で形成される海原の海部Bに集中して存在している。この現象は、予め微粉体AをPPS樹脂に含有させた後、PA46樹脂と複合化する製造方法によるものである。つまり微粉体AはPPS樹脂とPA46樹脂を複合化しても事前に含有しているPPS樹脂中に留まり、PA46樹脂中への移行が起こらないからである。
That is, if the photograph of FIG. 7 is conceptually illustrated for explanation, it is as shown in FIGS. FIG. 11 is a conceptual diagram corresponding to a cross-sectional photograph of a pellet formed as a sample of the PPS resin / PA46 resin composite material according to the embodiment of the present invention, and FIG. 12 shows a state different from the cross-sectional photograph of the pellet of FIG. It is a conceptual diagram.
The sea part B of the sea formed with PPS resin spreads throughout. The substantially circular shape is PA46 resin, which is an island C existing in the sea B. Here, the fine black dots are the fine powder A. As shown in FIG. 11 of the conceptual diagram of the photograph of FIG. 7, the fine powder A is concentrated and dispersed only in the sea part B formed of PPS resin.
If the fine powder A is dispersed throughout, it should be dispersed in the substantially circular island C as shown in FIG. 12, but as confirmed by the SEM photograph in FIG. It's not like that. That is, the fine powder A is concentrated in the sea part B of the sea formed of PPS resin. This phenomenon is due to the manufacturing method in which the fine powder A is previously contained in the PPS resin and then combined with the PA46 resin. That is, even if the fine powder A is combined with the PPS resin and the PA46 resin, the fine powder A remains in the PPS resin contained in advance and does not migrate into the PA46 resin.

上記実施例では、PPS樹脂とPA46樹脂の重量比率を70/30重量部としてのデータを添付しているが、発明者らの実験によると、60/40〜80/20重量部の範囲内であれば実用的にPPS樹脂単独よりも特性がよいと評価できることを確認した。そして50/50重量部ではかえって強度低下を招くことも確認できている。つまりPA46樹脂に対するPPS樹脂の重量比率が50%を超えるとPPS樹脂と同等の引張強度を有したまま、流動性と引張伸び率を向上させることができるが、重量部以下ではPA46樹脂量が多くなりすぎて複合化のバランスが崩れ強度低下を招き、また重量部を超えるとPPS樹脂の特性が強くなり過ぎて特性の向上が図れなくなる。
このようにPA46樹脂に対するPPS樹脂の重量比率が50%を越えて80%以下の範囲内のとき、薄肉製品が射出成型でき、PPS樹脂並みの耐熱性であり、延性、靭性に富む安定した材料となる。
In the above examples, data with the weight ratio of PPS resin and PA46 resin as 70/30 parts by weight is attached, but according to the experiments by the inventors, within the range of 60/40 to 80/20 parts by weight. It has been confirmed that if it is present, it can be evaluated that the characteristics are practically better than the PPS resin alone. It has also been confirmed that 50/50 parts by weight causes a decrease in strength. In other words, if the weight ratio of the PPS resin to the PA46 resin exceeds 50%, the fluidity and the tensile elongation can be improved while maintaining the same tensile strength as the PPS resin. If the amount of the PPS resin exceeds the weight, the properties of the PPS resin become too strong and the properties cannot be improved.
Thus, when the weight ratio of the PPS resin to the PA46 resin is in the range of more than 50% and not more than 80%, a thin product can be injection-molded, and it has a heat resistance comparable to that of the PPS resin, and is a stable material rich in ductility and toughness. It becomes.

また、PPS樹脂70重量部に対し、中位径33nmの微粉体を1重量部混練した事例を示したが、発明者らの実験によると、混練する量はPPS樹脂の配合量によって決定され最小はPPS樹脂/PA46樹脂の配合割合が80/20重量部のとき、1重量部(PPS樹脂100重量部に対して1重量部)であり、最大はPPS樹脂/PA46樹脂の配合割合が60/40重量部のときで5重量部(PPS樹脂100重量部に対して9重量部)であることが確認された。   In addition, an example in which 1 part by weight of a fine powder having a median diameter of 33 nm was kneaded with 70 parts by weight of PPS resin. According to experiments by the inventors, the amount to be kneaded is determined by the blending amount of the PPS resin and is minimum. When the blending ratio of PPS resin / PA46 resin is 80/20 parts by weight, it is 1 part by weight (1 part by weight with respect to 100 parts by weight of PPS resin), and the maximum blending ratio of PPS resin / PA46 resin is 60 / It was confirmed that it was 5 parts by weight (9 parts by weight with respect to 100 parts by weight of PPS resin) at 40 parts by weight.

PPS樹脂に配する微粉体Aは、PPS樹脂の結晶化を促進させるための結晶核剤として働かせるためにPPS樹脂中に含有させている。つまりPPS樹脂とPA46樹脂は結晶化に差があるが、PPS樹脂に微粉体Aを含有させることでPPS樹脂の結晶化を制御してPA46樹脂の結晶化に同期させることができ両樹脂の特性を併せ持った複合材料とすることが可能となる。ここで、微粉体Aの配合量が少ないと結晶核剤としての働きが少なく所望の特性が得ることが困難となり、微粉体Aの配合量が多いと異物として働き、返って特性の低下を招くことになる。したがって、中位径100nm未満の微粉体であればPPS樹脂100重量部に対して1重量部乃至9重量部の微粉体Aは異物として作用せずに結晶化を促進させることができる。   The fine powder A distributed in the PPS resin is contained in the PPS resin in order to function as a crystal nucleating agent for promoting crystallization of the PPS resin. In other words, there is a difference in crystallization between PPS resin and PA46 resin, but by adding fine powder A to PPS resin, crystallization of PPS resin can be controlled and synchronized with crystallization of PA46 resin. It becomes possible to make a composite material having both. Here, when the blending amount of the fine powder A is small, the function as a crystal nucleating agent is small and it is difficult to obtain desired characteristics, and when the blending amount of the fine powder A is large, it acts as a foreign substance and causes a decrease in characteristics. It will be. Therefore, if the fine powder has a median diameter of less than 100 nm, 1 to 9 parts by weight of fine powder A with respect to 100 parts by weight of the PPS resin can promote crystallization without acting as a foreign substance.

ここで微粉体Aは結晶核剤となりえる微粉体であれば特に限定されるものではないが、中位径30〜50nmの範囲内のアルミナとしたものでは、特に、複合化(アロイ化)が安定して行われることが確認された。そして、アルミナの持つ熱伝導性等の特性によってPPS樹脂/PA46樹脂複合材料自体の熱伝導性等の向上も見込まれる。
また、この微粉体Aは、表面処理した粒体とすることもできる。特に、微粉体Aの表面にコーティングした材料とすると、コーティング材料に多種多様のものが使用でき、そして、コーティング材料の変化及びその芯材の選択の自由度が高くなる。
Here, the fine powder A is not particularly limited as long as it is a fine powder that can be a crystal nucleating agent. However, in the case of alumina having a median diameter of 30 to 50 nm, the composite (alloying) is particularly important. It was confirmed that it was performed stably. And the improvement of the thermal conductivity etc. of PPS resin / PA46 resin composite material itself is also anticipated with the characteristics, such as thermal conductivity which an alumina has.
The fine powder A can also be a surface-treated granule. In particular, when the material is coated on the surface of the fine powder A, a wide variety of coating materials can be used, and the degree of freedom in changing the coating material and selecting the core material is increased.

本実施例のPPS樹脂/PA46樹脂複合材料のPA46樹脂からなる島部Cと島部Cとの間隔は、平均距離が10μ以下としたものである。
ここで、本発明の説明において、平均距離とは、算術平均(相加平均)であり、島部Cと島部Cとの相互間隔の距離の積分値を島部Cと島部Cとの相互間隔の数で除したものである。勿論、発明者らの確認によると、試料用のペレットでは、実施例のPPS樹脂/PA46樹脂複合材料のPA46樹脂からなる島部Cと島部Cとの間隔は、10μ以下としても殆ど問題はない。但し、それを用いて製品の成形を行うと、そのばらつきのために、10μを超える場合が出てくる。そこで、特定を明確にするため、島部Cと島部Cとの間隔を10μ以下と特定したものである。
The distance between the island portion C and the island portion C made of the PA46 resin of the PPS resin / PA46 resin composite material of this example is such that the average distance is 10 μm or less.
Here, in the description of the present invention, the average distance is an arithmetic average (arithmetic average), and an integrated value of the distance between the island part C and the island part C is calculated as an integral value between the island part C and the island part C. Divided by the number of mutual intervals. Of course, according to the confirmation by the inventors, in the pellet for the sample, there is almost no problem even if the distance between the island part C and the island part C made of PA46 resin of the PPS resin / PA46 resin composite material of the example is 10 μm or less. Absent. However, when a product is molded using the same, there are cases where it exceeds 10 μm due to the variation. Therefore, in order to clarify the specification, the interval between the island part C and the island part C is specified as 10 μm or less.

このように、本発明のPPS樹脂/PA46樹脂複合材料の製造方法は、PPS樹脂/PA46樹脂複合材料中のPPS樹脂の体積がPA46樹脂の体積より大きく、PPS樹脂とPA46樹脂の重量比率を60/40〜80/20重量部の範囲内とし、先にPPS樹脂と中位径100nm以下の微粉体AをPPS樹脂100重量部に対して1重量部乃至9重量部を混練し、次いで、PA46樹脂を加えて混練し、得られた材料の構造として海島構造を有している。そして、海部BとなるPPS樹脂側に微粉末Aが集中して存在し、また、PA46樹脂からなる島部Cの大きさは平均直径が1μ〜30μとしたものである。   Thus, in the method for producing the PPS resin / PA46 resin composite material of the present invention, the volume of the PPS resin in the PPS resin / PA46 resin composite material is larger than the volume of the PA46 resin, and the weight ratio of the PPS resin to the PA46 resin is set to 60. First, the PPS resin and the fine powder A having a median diameter of 100 nm or less are kneaded with 1 to 9 parts by weight with respect to 100 parts by weight of the PPS resin. A resin is added and kneaded, and the resulting material has a sea-island structure. The fine powder A is concentrated on the PPS resin side serving as the sea part B, and the size of the island part C made of the PA46 resin has an average diameter of 1 to 30 μm.

特に、発明者らは、PPS樹脂とPA46樹脂を混ぜ合わせ、50nm以下の微粉末AをPPS樹脂側に集中的に添加すると、引張強度の低下を抑えて、得られた材料の引張伸び率が向上することを確認した。したがって、このPPS樹脂/PA46樹脂複合材料は、薄肉製品の射出成型ができ、PPS樹脂並みの耐熱性、耐薬品性、延性、靭性が必要な部品、例えば、自動車部品、家電部品、また、同じくPPS樹脂であるが、強化材、添加剤等で補強や新たな機能を付与するためのベース樹脂としても使用できる。   In particular, when the inventors mixed PPS resin and PA46 resin and concentratedly added fine powder A of 50 nm or less to the PPS resin side, the tensile elongation of the obtained material was reduced while suppressing the decrease in tensile strength. Confirmed to improve. Therefore, this PPS resin / PA46 resin composite material can be used for injection molding of thin-walled products, and parts that require heat resistance, chemical resistance, ductility, and toughness similar to PPS resins, such as automobile parts, home appliance parts, Although it is a PPS resin, it can also be used as a base resin for reinforcing or adding a new function with a reinforcing material or additive.

上記実施例では、PPS樹脂/PA46樹脂複合材料中のPPS樹脂の体積がPA46樹脂の体積より大きい関係があり、PPS樹脂とPA46樹脂の重量比率を60/40〜80/20重量部の範囲内とし、先にPPS樹脂と中位径100nm未満の微粉体AをPPS樹脂100重量部に対して1重量部乃至9重量部を混練し、次いで、PA46樹脂を加えて混練し、得られた材料の構造として海島構造を有しており、海部BとなるPPS樹脂側に微粉末Aが集中して存在し、また、PA46樹脂からなる島部Cの大きさは平均直径が1μ〜30μとしたものであるが、図7の実施例の形態を維持できた構造であればよい。   In the above examples, the volume of the PPS resin in the PPS resin / PA46 resin composite material is larger than the volume of the PA46 resin, and the weight ratio of the PPS resin to the PA46 resin is in the range of 60/40 to 80/20 parts by weight. First, the PPS resin and fine powder A having a median diameter of less than 100 nm are kneaded with 1 to 9 parts by weight with respect to 100 parts by weight of the PPS resin, and then the PA46 resin is added and kneaded to obtain the obtained material. As a structure of the sea part, the fine powder A is concentrated on the PPS resin side which becomes the sea part B, and the size of the island part C made of PA46 resin has an average diameter of 1 μ to 30 μ. However, any structure that can maintain the form of the embodiment of FIG.

即ち、本発明のPPS樹脂/PA46樹脂複合材料は、体積比でPPS樹脂>PA46樹脂の関係があり、PPS樹脂とPA46樹脂の重量比率を60/40〜80/20重量部の範囲内とし、それらPPS樹脂に対して中位径100nm未満の微粉体をPPS樹脂100重量部に対して1重量部乃至9重量部を混練し、得られた材料の構造として海島構造を有しており、前記海部BとなるPPS樹脂側に微粉末Aが集中して存在し、また、前記PA46樹脂からなる島部Cの大きさは平均直径が1μ〜30μとした実施例とすることができる。   That is, the PPS resin / PA46 resin composite material of the present invention has a volume ratio of PPS resin> PA46 resin, and the weight ratio of the PPS resin to the PA46 resin is in the range of 60/40 to 80/20 parts by weight. A fine powder having a median diameter of less than 100 nm with respect to the PPS resin is kneaded with 1 to 9 parts by weight with respect to 100 parts by weight of the PPS resin, and the resulting material has a sea-island structure, The fine powder A is concentrated on the PPS resin side that becomes the sea part B, and the size of the island part C made of the PA46 resin can be set to an average diameter of 1 to 30 μm.

特に、発明者らは、PPS樹脂とPA46樹脂を混ぜ合わせ、50nm以下の微粉末AをPPS樹脂に集中的に添加すると引張伸び率が向上する事実を確認し、流動性と引張伸び率が良好なPPS樹脂/PA46樹脂複合材料を得た。PPS樹脂/PA46樹脂複合材料は、薄肉製品の射出成型ができ、PPS樹脂並みの耐熱性、耐薬品性、延性、靭性が必要な部品、例えば、自動車部品、家電部品、また、同じくPPS樹脂であるが、強化材、添加剤等で補強や新たな機能を付与するためのベース樹脂としても使用ができる。   In particular, the inventors confirmed that the tensile elongation is improved by mixing PPS resin and PA46 resin and adding fine powder A of 50 nm or less intensively to the PPS resin, and the fluidity and tensile elongation are good. PPS resin / PA46 resin composite material was obtained. PPS resin / PA46 resin composite material can be used for injection molding of thin-walled products, and parts that require heat resistance, chemical resistance, ductility, and toughness similar to PPS resin, such as automobile parts, home appliance parts, and PPS resin. However, it can be used as a base resin for reinforcing or adding a new function with a reinforcing material or additive.

微粉体Aは結晶核剤の効果を有する材料が使用できるが、本発明を実施する場合には、微粉体Aは、表面処理した粒体とすることによって如何なる材料とすることもできる。特に、微粉体Aの表面にコーティングした材料では、コーティング材料に多種多様のものが使用でき、また、コーティング材料の変化及びその芯材の選択の自由度が高くなり、本発明のPPS樹脂/PA46樹脂複合材料の比重も任意に設定できる。また、ナノバルーン等を使用することもできる。
また、PPS樹脂が海部Bを構成しているから接合性がよく、他の樹脂のベース樹脂としても使用可能であり、薄肉製品でPPS樹脂と同等以上の耐熱性、耐薬品性、延性、靭性が必要な自動車部品、家電部品及び製品、同じくPPS樹脂部品として、強化材、添加剤等で補強や新たな機能を付与するためのベース樹脂として使用されるPPS樹脂とPA46樹脂の複合材料となる。
As the fine powder A, a material having the effect of a crystal nucleating agent can be used. However, when the present invention is carried out, the fine powder A can be any material by forming a surface-treated granule. In particular, in the material coated on the surface of the fine powder A, a wide variety of coating materials can be used, and the degree of freedom in changing the coating material and the core material is increased. The specific gravity of the resin composite material can also be set arbitrarily. A nanoballoon or the like can also be used.
In addition, PPS resin constitutes sea part B, so it has good bondability and can be used as a base resin for other resins. It is a thin-walled product with heat resistance, chemical resistance, ductility, and toughness equivalent to or better than PPS resin. Is a composite material of PPS resin and PA46 resin that is used as a base resin for reinforcing or adding new functions with reinforcing materials, additives, etc. .

A 微粉体
B 海部
C 島部
A Fine powder B Sea part C Island part

Claims (5)

PPS樹脂(ポリフェニレンサルファイド樹脂)とPA46樹脂(ポリアミド46樹脂)を溶融混練して作製した海島構造を有するポリマーアロイであって、
前記PPS樹脂が海島構造の海部となり、前記海部の前記PPS樹脂側に中位径100nm未満の微粉体が配されていることを特徴とするPPS樹脂/PA46樹脂複合材料。
A polymer alloy having a sea-island structure prepared by melt-kneading PPS resin (polyphenylene sulfide resin) and PA46 resin (polyamide 46 resin),
The PPS resin / PA46 resin composite material, wherein the PPS resin becomes a sea part having a sea-island structure, and fine powder having a median diameter of less than 100 nm is arranged on the PPS resin side of the sea part.
前記微粉体の配合量が、前記PPS樹脂100重量部に対して1重量部乃至9重量部配されていることを特徴とする請求項1に記載のPPS樹脂/PA46樹脂複合材料。   2. The PPS resin / PA46 resin composite material according to claim 1, wherein the blending amount of the fine powder is 1 to 9 parts by weight with respect to 100 parts by weight of the PPS resin. 前記微粉体は、中位径30〜50nmの範囲内のアルミナとしたことを特徴とする請求項1乃至請求項3の何れか1つに記載のPPS樹脂/PA46樹脂複合材料。   The PPS resin / PA46 resin composite material according to any one of claims 1 to 3, wherein the fine powder is alumina having a median diameter of 30 to 50 nm. PPS樹脂中に、中位径100nm未満の微粉体を配合量で前記PPS樹脂100重量部に対して1重量部乃至9重量部配合して、溶融押出により微粉体添加PPS樹脂のペレットを作製し、次いで、前記微粉体添加PPS樹脂ペレットとPA46樹脂を溶融押出して複合化したことを特徴とするPPS樹脂/PA46樹脂複合材料の製造方法。   In the PPS resin, a fine powder having a median diameter of less than 100 nm is blended in an amount of 1 to 9 parts by weight with respect to 100 parts by weight of the PPS resin, and pellets of the fine powder added PPS resin are prepared by melt extrusion. Next, a method for producing a PPS resin / PA46 resin composite material, wherein the fine powder-added PPS resin pellets and PA46 resin are melt-extruded to form a composite. 前記微粉体は、中位径30〜50nmの範囲内のアルミナとしたことを特徴とする請求項4に記載のPPS樹脂/PA46樹脂複合材料の製造方法。   The method for producing a PPS resin / PA46 resin composite material according to claim 4, wherein the fine powder is alumina having a median diameter of 30 to 50 nm.
JP2012141754A 2012-06-25 2012-06-25 Polyphenylene sulfide resin / polyamide 46 resin composite material Active JP5916532B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012141754A JP5916532B2 (en) 2012-06-25 2012-06-25 Polyphenylene sulfide resin / polyamide 46 resin composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012141754A JP5916532B2 (en) 2012-06-25 2012-06-25 Polyphenylene sulfide resin / polyamide 46 resin composite material

Publications (2)

Publication Number Publication Date
JP2014005361A true JP2014005361A (en) 2014-01-16
JP5916532B2 JP5916532B2 (en) 2016-05-11

Family

ID=50103391

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012141754A Active JP5916532B2 (en) 2012-06-25 2012-06-25 Polyphenylene sulfide resin / polyamide 46 resin composite material

Country Status (1)

Country Link
JP (1) JP5916532B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130112611A (en) * 2012-04-04 2013-10-14 삼성전자주식회사 Data receiver device and testing method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0551532A (en) * 1991-01-14 1993-03-02 Kureha Chem Ind Co Ltd Composition consisting of polyarylene sulfide and polyamide
JPH0959511A (en) * 1995-08-18 1997-03-04 Tokai Rubber Ind Ltd Thermally conductive resin composition
JP2001302918A (en) * 1999-10-12 2001-10-31 Toray Ind Inc Resin structure and its use
JP2003113307A (en) * 2001-07-31 2003-04-18 Toray Ind Inc Polyphenylene sulfide resin composition and method for producing the same
JP2005139347A (en) * 2003-11-07 2005-06-02 Toray Ind Inc Thermoplastic resin composition and method for producing the same
JP2009263476A (en) * 2008-04-24 2009-11-12 Otsuka Chem Co Ltd Highly heat conductive resin composition

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0551532A (en) * 1991-01-14 1993-03-02 Kureha Chem Ind Co Ltd Composition consisting of polyarylene sulfide and polyamide
JPH0959511A (en) * 1995-08-18 1997-03-04 Tokai Rubber Ind Ltd Thermally conductive resin composition
JP2001302918A (en) * 1999-10-12 2001-10-31 Toray Ind Inc Resin structure and its use
JP2003113307A (en) * 2001-07-31 2003-04-18 Toray Ind Inc Polyphenylene sulfide resin composition and method for producing the same
JP2005139347A (en) * 2003-11-07 2005-06-02 Toray Ind Inc Thermoplastic resin composition and method for producing the same
JP2009263476A (en) * 2008-04-24 2009-11-12 Otsuka Chem Co Ltd Highly heat conductive resin composition

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
林小太郎, 中津美智代, 近藤幸江, 小高忠男, 森坂鶴江: "ポリマーアロイの研究開発 PPSとPAの溶融混練アロイの研究 (第3報) SEMによる構造解析", 福井県工業技術センター研究報告書, vol. No.9(1992), JPN6015045179, November 1993 (1993-11-01), JP, pages 46 - 50, ISSN: 0003289552 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130112611A (en) * 2012-04-04 2013-10-14 삼성전자주식회사 Data receiver device and testing method thereof

Also Published As

Publication number Publication date
JP5916532B2 (en) 2016-05-11

Similar Documents

Publication Publication Date Title
KR101309738B1 (en) Polymer/conductive filler composite with high electrical conductivity and the preparation method thereof
JP6319287B2 (en) Resin composition for high dielectric constant material, molded product containing the same, and coloring masterbatch
KR20100075878A (en) Heat-processable thermally conductive polymer composition
JPWO2012050083A1 (en) High thermal conductive resin molding and method for producing the same
JP2008088377A (en) Polyamide resin composition for breaker box body and breaker box body
JP6527010B2 (en) Thermally conductive resin molding and method for producing the same
JPWO2009044884A1 (en) Glass-containing molding pellets and method for producing the same
JP2006097006A (en) Method for producing electrically conductive resin composition and application thereof
WO2019079471A1 (en) Thermally conductive polymer based filament
JP2008024924A (en) Binding band
CN104968727B (en) Electronic apparatus
JP5359825B2 (en) Thermally conductive resin composition
JP2008007753A (en) Polyamide resin composition and molded product thereof
JP2009155359A (en) Thermoplastic resin molding
JP5916532B2 (en) Polyphenylene sulfide resin / polyamide 46 resin composite material
JP2016017086A (en) Electrically insulating thermally conductive resin composition and method for producing the same
JP2007016221A (en) Resin material for molding and molded product
KR20170112980A (en) Electro-conductive polymer composite and resin composition having improved impact strength and method for preparing the same
KR101380841B1 (en) Method for preparing the molded parts of heat resistant and thermally conductive polymer compositions and the molded parts of heat resistant and thermally conductive polymer compositions prepared by the same method
CN108070158A (en) A kind of PP composite material of low post-shrinkage ratio and preparation method thereof
JP5981759B2 (en) Method for producing thermoplastic resin composition
JP2013203869A (en) Polyamide resin composition
JP2017200986A (en) Thermoplastic resin composition, molded article, and method for producing molded article
US20170287585A1 (en) Electroconductive Resin Composite and Electroconductive Resin Composition Having Excellent Impact Strength, and Method of Producing the Same
JP2019014163A (en) Injection molded article and production method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160405

R150 Certificate of patent or registration of utility model

Ref document number: 5916532

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250