JP2013541442A - Flexible polymer substrate coated with glass for photovoltaic cells - Google Patents

Flexible polymer substrate coated with glass for photovoltaic cells Download PDF

Info

Publication number
JP2013541442A
JP2013541442A JP2013529294A JP2013529294A JP2013541442A JP 2013541442 A JP2013541442 A JP 2013541442A JP 2013529294 A JP2013529294 A JP 2013529294A JP 2013529294 A JP2013529294 A JP 2013529294A JP 2013541442 A JP2013541442 A JP 2013541442A
Authority
JP
Japan
Prior art keywords
glass
layer
precursor
polymer
polymer substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2013529294A
Other languages
Japanese (ja)
Inventor
ボーサード サラ
フランシス リアドン ダミエン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EIDP Inc
Original Assignee
EI Du Pont de Nemours and Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EI Du Pont de Nemours and Co filed Critical EI Du Pont de Nemours and Co
Publication of JP2013541442A publication Critical patent/JP2013541442A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/08Heat treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0322Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIBIIICVI chalcopyrite compounds, e.g. Cu In Se2, Cu Ga Se2, Cu In Ga Se2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03925Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate including AIIBVI compound materials, e.g. CdTe, CdS
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03926Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate comprising a flexible substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03926Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate comprising a flexible substrate
    • H01L31/03928Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate comprising a flexible substrate including AIBIIICVI compound, e.g. CIS, CIGS deposited on metal or polymer foils
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2379/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

本開示は、ガラスがコーティングされた可撓性ポリマー基材の製造方法に関する。また、本発明は、可撓性太陽電池および電子デバイスを製造するために適しているコーティングされた可撓性ポリマー基材に関する。  The present disclosure relates to a method for manufacturing a glass-coated flexible polymer substrate. The present invention also relates to a coated flexible polymer substrate that is suitable for manufacturing flexible solar cells and electronic devices.

Description

本開示は、ガラスがコーティングされた可撓性基材製品を製造する方法に関する。また、本発明は可撓性太陽電池およびその他の物品を製造するために適しているコーティングされた基材材料に関する。   The present disclosure relates to a method of manufacturing a flexible substrate product coated with glass. The invention also relates to coated substrate materials that are suitable for producing flexible solar cells and other articles.

光電池は、材料の様々な層を基材上に堆積することによって製造される。基材は硬質(例えば、ガラスまたはシリコンウエハ)または可撓性(例えば、金属またはポリマーシート)であり得る。   Photovoltaic cells are manufactured by depositing various layers of material on a substrate. The substrate can be rigid (eg, glass or silicon wafer) or flexible (eg, metal or polymer sheet).

薄膜Cu(In,Ga)Se(CIGS)太陽電池の製造において使用される最も一般的な基材材料はソーダ石灰ガラスである。ソーダ石灰ガラスは、ガラスからのアルカリ金属(主にナトリウム)のCIGS層への拡散のために、太陽電池の効率の一因となる。しかしながら、ガラス基材上のCIGSのバッチ生産は費用がかかり、ガラスは典型的に非常に硬質であるためロールツーロール法に適したものにすることができない。光電池のために一般的なガラス基材を使用することの不利な点は、可撓性であり、光活性層を作るために用いられる高温に耐性があり、高価でなくロールツーロール法に使用するために適している基材を求める要因となっている。 The most common substrate material used in the manufacture of thin film Cu (In, Ga) Se 2 (CIGS) solar cells is soda-lime glass. Soda lime glass contributes to solar cell efficiency due to diffusion of alkali metals (mainly sodium) from the glass into the CIGS layer. However, batch production of CIGS on a glass substrate is expensive and the glass is typically so hard that it cannot be made suitable for a roll-to-roll process. The disadvantages of using common glass substrates for photovoltaic cells are flexibility, resistance to the high temperatures used to make the photoactive layer, and they are not expensive and used for roll-to-roll processes This is a factor for finding a suitable base material.

ポリイミドなどのポリマーおよびモリブデン、アルミニウムおよびチタン箔などの金属など、いくつかの材料が可撓性CIGS太陽電池のための基材材料として試験されている。基材は800℃までの温度および還元雰囲気に耐性であるべきである。また、金属基材は、集積直列接続を有するCIGSモジュールの製造を容易にするためにバックコンタクトから電気絶縁されなければならない。絶縁材の熱分解または基材からの離層を避けるために基材材料の熱膨脹率(CTE)が電気絶縁材のCTEにできる限り近いのが望ましい。   Several materials have been tested as substrate materials for flexible CIGS solar cells, such as polymers such as polyimide and metals such as molybdenum, aluminum and titanium foil. The substrate should be resistant to temperatures up to 800 ° C. and a reducing atmosphere. Also, the metal substrate must be electrically isolated from the back contact to facilitate the manufacture of CIGS modules having integrated series connections. In order to avoid thermal decomposition of the insulation or delamination from the substrate, it is desirable that the coefficient of thermal expansion (CTE) of the substrate material be as close as possible to the CTE of the electrical insulation.

また、CIGSの代わりにCZTS−Seが用いられていること以外はCIGS太陽電池に似ているCZTS−Se系太陽電池を開発することが関心の的となっており、そこにおいて「CZTS−Se」は、CuZnSnS、CuZnSnSe、およびCuZnSnSSe4−x(0≦x≦4)など、CuZnSn(S,Se)の全ての可能な組み合わせを包含する。 Moreover, it is of interest to develop CZTS-Se solar cells that are similar to CIGS solar cells except that CZTS-Se is used instead of CIGS, where “CZTS-Se” Includes all possible combinations of Cu 2 ZnSn (S, Se) 4 such as Cu 2 ZnSnS 4 , Cu 2 ZnSnSe 4 , and Cu 2 ZnSnS x Se 4-x (0 ≦ x ≦ 4).

ポリマーは一般に、450℃を超えると熱的に安定していないため、光電池などの多くの用途において450℃を超える温度にごく普通に達することから、コーティングされた金属基材が望ましい。   Coated metal substrates are desirable because polymers generally are not thermally stable above 450 ° C., and temperatures of over 450 ° C. are usually reached in many applications such as photovoltaic cells.

電気絶縁層を金属基材上に形成するために、バッチ式堆積法においてSiOまたはSiOを金属ストリップ上に堆積することが公知である。 In order to form an electrically insulating layer on a metal substrate, it is known to deposit SiO x or SiO 2 on a metal strip in a batch deposition process.

また、任意選択的にアルミナ粒子を含有するアルカリシリケートの第1のコートで金属ベースをコーティングすることが公知である。シリコーンの第2のコートをアルカリシリケートの第1のコート上に適用することができる。   It is also known to coat the metal base with a first coat of alkali silicate optionally containing alumina particles. A second coat of silicone can be applied over the first coat of alkali silicate.

別の方法において、ステンレス鋼板を金属アルコキシド、有機アルコキシシラン、水、およびアルコキシシランなどの増粘剤を有機溶剤に溶かした溶液と接触させ、次に乾燥させ、か焼させる(calcined)。   In another method, a stainless steel plate is contacted with a solution of a thickener such as metal alkoxide, organoalkoxysilane, water, and alkoxysilane in an organic solvent, then dried and calcined.

また、第1の絶縁層を金属板(例えば、ステンレス鋼板)上に形成するソーラーバッテリ用の基材を製造する方法が開示されている。次に、金属板を空気中で加熱することによって、第1の絶縁層の微小な穴によって露出された金属板の表面を酸化させる。次に、第2の絶縁層を第1の絶縁層の上に適用する。   Moreover, the method of manufacturing the base material for solar batteries which forms a 1st insulating layer on a metal plate (for example, stainless steel plate) is disclosed. Next, the surface of the metal plate exposed by the minute holes of the first insulating layer is oxidized by heating the metal plate in the air. Next, a second insulating layer is applied over the first insulating layer.

モリブデンの電気導電層が上に堆積されたナトリウムドープトアルミナ層がコーティングされたステンレス鋼ストリップを含む、可撓性CIGS太陽電池用の基材として有用な、コーティングされた鋼板基材が開示されている。   Disclosed is a coated steel plate substrate useful as a substrate for flexible CIGS solar cells, comprising a stainless steel strip coated with a sodium doped alumina layer having an electrically conductive layer of molybdenum deposited thereon. Yes.

酸化アルミニウムの電気絶縁層をフェライトステンレス鋼上に形成する方法が開示されている。アルミナがコーティングされたステンレス鋼シートが、酸化物膜上に、プラズマ化学蒸着(P−CVD)によって製造された非晶質シリコン太陽電池のための基材として使用された。   A method of forming an aluminum oxide electrical insulation layer on ferritic stainless steel is disclosed. Alumina-coated stainless steel sheet was used as a substrate for amorphous silicon solar cells fabricated by plasma-enhanced chemical vapor deposition (P-CVD) on oxide films.

同時係属中の出願番号(CL4932)において、ガラスのコーティングを有し、ガラスと鋼層との間に配置されたアルミナの層を有する鋼基材が開示されている。   In co-pending application number (CL4932), a steel substrate having a glass coating and having a layer of alumina disposed between the glass and the steel layer is disclosed.

金属の可撓性、ガラスの表面特性を有し、ガラスコーティングと金属基材との間の中間層コーティングを必要とせずにCIGS電池の製造のためにロールツーロール法において使用することができる基材を製造することが依然として必要とされている。   A substrate that has the flexibility of a metal, the surface properties of glass, and can be used in a roll-to-roll process for the manufacture of CIGS batteries without the need for an intermediate coating between the glass coating and the metal substrate. There is still a need to produce materials.

一態様において本発明は、
a)可撓性ポリマー基材と、
b)可撓性ポリマー基材の表面の少なくとも一部の上に直接に配置されたガラス層とを含む多層物品であり、ガラス層と可撓性ポリマー基材の表面との間に配置された介在層がなく、ガラス層がSiO、Al、NaO、Bおよび任意選択的に、金属酸化物を含む、多層物品である。
In one aspect, the present invention provides:
a) a flexible polymer substrate;
b) a multilayer article comprising a glass layer disposed directly on at least a portion of the surface of the flexible polymer substrate, the multilayer article disposed between the glass layer and the surface of the flexible polymer substrate. no intervening layer, the glass layer is SiO 2, Al 2 O 3, Na 2 O, B 2 O 3 and, optionally, containing a metal oxide, a multilayer article.

一態様において本発明は、
1)10nm〜1cmの厚さを有するポリマー基材層の表面の少なくとも一部の上に直接に配置されたガラス前駆体層を堆積する工程であって、ガラス前駆体層とポリマー基材の表面との間に配置された介在層がなく、ガラス前駆体層がSiO前駆体、Al前駆体、NaO前駆体、B前駆体および任意選択的に、金属酸化物前駆体を含む工程と、
b)光源を使用して約10nm〜約5マイクロメートルの厚さを有するガラス前駆体層を約30秒未満の時間の間フラッシュ加熱し、それによってガラス前駆体層の加熱がポリマー表面の局部加熱をもたらし、それによってポリマー表面が約30秒未満の時間の間約250℃〜約400℃の温度に加熱される工程とを含む、多層物品の製造方法である。
In one aspect, the present invention provides:
1) depositing a glass precursor layer disposed directly on at least a portion of the surface of a polymer substrate layer having a thickness of 10 nm to 1 cm, the glass precursor layer and the surface of the polymer substrate There is no intervening layer disposed between and the glass precursor layer is SiO 2 precursor, Al 2 O 3 precursor, Na 2 O precursor, B 2 O 3 precursor and optionally, a metal oxide Including a precursor;
b) using a light source to flash heat a glass precursor layer having a thickness of about 10 nm to about 5 micrometers for a time of less than about 30 seconds, whereby heating of the glass precursor layer causes local heating of the polymer surface And thereby heating the polymer surface to a temperature of about 250 ° C. to about 400 ° C. for a time of less than about 30 seconds.

一実施形態において、本発明は、ガラス層を可撓性基材の表面上に堆積および/または形成するための方法である。例えば、光電池において一般的なガラス基材を使用する少なくともいくつかの不利な点を克服するために、可撓性材料の表面にガラスのような性質を与えることが望ましいとされ得る。   In one embodiment, the present invention is a method for depositing and / or forming a glass layer on the surface of a flexible substrate. For example, it may be desirable to impart glass-like properties to the surface of a flexible material to overcome at least some of the disadvantages of using a common glass substrate in a photovoltaic cell.

本発明の可撓性基材は可撓性ポリマー基材であり得る。本発明において使用するために適したポリマー基材には、例えばポリイミドポリマーおよびポリエチレンテレフタレート(PET)ポリマーなどが挙げられる。全てのポリマーがここにおいて使用するために適しているわけではない。PETなどのポリマーは、本発明の方法において用いられる高温で分解され得る。しかしながら、一実施形態において、本発明は、このような熱分解性ポリマーを本発明の実施において使用するために適したものにする方法であり、それによって高温がポリマーの表面だけに局在化し、それによって熱のこのような局在化は、ポリマーの他の領域の実質的な熱分解を避けることにより、高温加工が分解性ポリマーに与える好ましくない影響を実質的に低減することができる。   The flexible substrate of the present invention can be a flexible polymer substrate. Suitable polymer substrates for use in the present invention include, for example, polyimide polymers and polyethylene terephthalate (PET) polymers. Not all polymers are suitable for use herein. Polymers such as PET can be degraded at the elevated temperatures used in the method of the present invention. However, in one embodiment, the present invention is a method that makes such a thermally decomposable polymer suitable for use in the practice of the present invention, whereby high temperatures are localized only on the surface of the polymer, Thereby, such localization of heat can substantially reduce the undesirable effects of high temperature processing on the degradable polymer by avoiding substantial thermal decomposition of other regions of the polymer.

一実施形態において、本発明は、ガラスがコーティングされたポリマー複合層を含む物品である。ガラスがコーティングされたポリマー複合層は、電子デバイスにおいてまたは例えば光電池の部品として有用であり得る。例えば、ガラスがコーティングされたPET複合層は、光電池においてバリア層として有用であり得る。ガラスがコーティングされたポリイミド複合層は、薄膜光電池の堆積のために光電池において基材層として有用であり得る。また、本発明のガラスがコーティングされた基材はプリント配線板、トランジスタにおいて、そして例えば防湿層として有用であり得る。   In one embodiment, the present invention is an article comprising a polymer composite layer coated with glass. Glass-coated polymer composite layers can be useful in electronic devices or as components of, for example, photovoltaic cells. For example, a glass-coated PET composite layer can be useful as a barrier layer in a photovoltaic cell. Glass coated polyimide composite layers can be useful as substrate layers in photovoltaic cells for the deposition of thin film photovoltaic cells. Also, the glass-coated substrate of the present invention can be useful in printed wiring boards, transistors, and for example as a moisture barrier.

ガラス前駆体のコーティングを焼成し且つガラス層を可撓性基材上に形成するために必要とされる処理温度のために、適した基材は250℃超〜約800℃までの加工温度に耐えることができなければならない。   Due to the processing temperatures required to fire the glass precursor coating and form the glass layer on the flexible substrate, suitable substrates can be used at processing temperatures above 250 ° C. to about 800 ° C. Must be able to withstand.

この処理は、可撓性基材の表面の表面を不動態化するために有用である。不動態化は表面を化学的攻撃から保護することができる。ガラス層は、断熱および/または電気絶縁層として、もしくはイオンバリアとしても作用し、高温において太陽電池を熱加工した時に不純物によるCIGSの好ましくないドーピングを防ぐことができる(600℃においてイオン移動の防止がESCAによって確認されている)。   This treatment is useful for passivating the surface of the surface of the flexible substrate. Passivation can protect the surface from chemical attack. The glass layer also acts as a heat insulation and / or electrical insulation layer or as an ion barrier, and can prevent undesired doping of CIGS by impurities when the solar cell is thermally processed at high temperatures (prevent ion migration at 600 ° C. Has been confirmed by ESCA).

本発明において、不動態化とは、光電池において可撓性基材層がCIGS層と望ましくない相互作用するのを防ぐことを一般に意味する。例えば、本発明の不動態化層は、(1)ステンレス鋼または他の可撓性基材によるCIGS層のイオン汚染を防ぎ、(2)可撓性基材の表面の凸凹を平滑にするように作用する。   In the present invention, passivating generally means preventing the flexible substrate layer from undesirably interacting with the CIGS layer in the photovoltaic cell. For example, the passivation layer of the present invention (1) prevents ionic contamination of the CIGS layer by stainless steel or other flexible substrate, and (2) smoothes the surface irregularities of the flexible substrate. Act on.

この処理を回分式または連続法として、例えば、ロールツーロール法で行うことができる。   This treatment can be performed as a batch or continuous method, for example, a roll-to-roll method.

ポリマー基材
一実施形態において、本発明は、ガラス層またはガラス前駆体層を可撓性ポリマー基材の表面上に堆積するための方法である。本発明の実施のために適したポリマー基材は、ポリマー鎖の実質的な分解を伴わずに、もしくはガラス/ポリマー多層物品の使用目的のためのポリマーの望ましいおよび/または必要とされる性質の著しい低下を伴わずに250℃を超える温度において加工され得る熱可塑性または熱硬化性ポリマーである。例えば、ポリエチレンテレフタレート(PET)ポリマーなどのポリエステルポリマーが適し得る。そしてポリイミドポリマーが本発明の実施において有用であり得る。ポリマー基材の他の領域のポリマーの分解を避けるために、特定のポリマーの表面だけを加熱することが必要とされ得るが、そこにおいてガラス層またはガラス前駆体層と接触する。任意選択的に、充填剤入りポリマーが本発明の実施において使用に適し得る。本明細書において有用な充填剤は、本技術分野において公知であり且つ慣例的であると共に処理条件、特に、本明細書において使用される処理温度に耐えることができる一切の充填剤である。例えば、ガラスおよびタルクは可撓性ポリマー基材において適した充填剤であり得る。本明細書において有用な充填剤の量は、本発明の可撓性ポリマー基材の有用な性質を損なう量であってはならない、通常の実験または従来の知識から当業者に公知であり得る。
Polymer Substrate In one embodiment, the present invention is a method for depositing a glass layer or glass precursor layer on the surface of a flexible polymer substrate. Polymer substrates suitable for the practice of the present invention are those that are desirable and / or required properties of the polymer without substantial degradation of the polymer chains or for the intended use of the glass / polymer multilayer article. A thermoplastic or thermoset polymer that can be processed at temperatures above 250 ° C. without significant degradation. For example, a polyester polymer such as polyethylene terephthalate (PET) polymer may be suitable. Polyimide polymers can then be useful in the practice of the present invention. In order to avoid degradation of the polymer in other areas of the polymer substrate, it may be necessary to heat only the surface of the particular polymer, where it contacts the glass layer or glass precursor layer. Optionally, filled polymers may be suitable for use in the practice of the present invention. Useful fillers herein are any fillers that are known and customary in the art and can withstand the processing conditions, particularly the processing temperatures used herein. For example, glass and talc can be suitable fillers in flexible polymer substrates. The amount of filler useful herein can be known to those skilled in the art from routine experimentation or conventional knowledge, which should not detract from the useful properties of the flexible polymer substrate of the present invention.

ガラス前駆体層
本発明の一態様において、基材をガラス前駆体層でコーティングし、その後に、ガラス前駆体層を乾燥および焼成する工程を実施してガラス層を可撓性基材上に形成する。以下に説明するように、ガラス層の厚さは、焼成の前にコーティング−および−乾燥の複数サイクルを実施することによって、またはコーティング−乾燥−および−焼成のいくつかのサイクルを実施することによって増加され得る。
Glass precursor layer In one embodiment of the present invention, the substrate is coated with the glass precursor layer, and then the glass precursor layer is dried and fired to form the glass layer on the flexible substrate. To do. As explained below, the thickness of the glass layer can be determined by performing multiple cycles of coating-and-drying before firing, or by performing several cycles of coating-drying-and-firing. Can be increased.

ガラス層は、可撓性基材の表面を、全部または部分的にガラス前駆体組成物でコーティングすることによって形成される。前駆体組成物は、(1)少なくとも1つの溶剤に可溶性であるシリコンの形態、(2)アルミニウム化合物、(3)ホウ素含有化合物、(4)ナトリウム塩および任意選択的に(5)カリウム塩を含むことができる。   The glass layer is formed by coating the surface of the flexible substrate in whole or in part with the glass precursor composition. The precursor composition comprises (1) a form of silicon that is soluble in at least one solvent, (2) an aluminum compound, (3) a boron-containing compound, (4) a sodium salt and optionally (5) a potassium salt. Can be included.

シリコンの可溶性形態は、例えば、四酢酸シリコン、四プロピオン酸シリコン、ビス(アセチルアセトナト)ビス(アセタト)シリコン、ビス(2−メトキシエトキシ)ビス(アセタト)シリコン、ビス(アセチルアセトナト)ビス(エトキシ)シリコン、テトラメチルオルトシリケート、テトラエチルオルトシリケート、テトライソプロピルオルトシリケート、またはそれらの混合物)とすることができる。   Soluble forms of silicon include, for example, silicon tetraacetate, silicon tetrapropionate, bis (acetylacetonato) bis (acetato) silicon, bis (2-methoxyethoxy) bis (acetato) silicon, bis (acetylacetonato) bis ( Ethoxy) silicon, tetramethylorthosilicate, tetraethylorthosilicate, tetraisopropylorthosilicate, or mixtures thereof.

アルミニウム化合物は、例えば、トリス(アセチルアセトナト)アルミニウム、アルミニウムメトキシド、アルミニウムエトキシド、アルミニウムイソプロポキシド、アルミニウムn−プロポキシド、またはそれらの混合物)とすることができ、添加され、ならびにトリアルキルボレート(例えば、トリメチルボレート、トリエチルボレート、トリプロピルボレート、トリメトキシボロキシン、またはそれらの混合物。   The aluminum compound can be, for example, tris (acetylacetonato) aluminum, aluminum methoxide, aluminum ethoxide, aluminum isopropoxide, aluminum n-propoxide, or mixtures thereof, added, and trialkyl Borate (eg, trimethyl borate, triethyl borate, tripropyl borate, trimethoxyboroxine, or mixtures thereof.

酸化ナトリウムの前駆体は、例えば、酢酸ナトリウム、プロピオン酸ナトリウム、ケイ酸ナトリウム、ナトリウムアルコキシド、ホウ酸ナトリウム、ナトリウムテトラフェニルボレート、またはそれらの混合物とすることができる。   The precursor of sodium oxide can be, for example, sodium acetate, sodium propionate, sodium silicate, sodium alkoxide, sodium borate, sodium tetraphenylborate, or a mixture thereof.

任意選択的であるカリウム塩は、例えば酢酸カリウム、プロピオン酸カリウム、カリウムメトキシド、カリウムエトキシド、カリウムイソプロポキシド、またはそれらの混合物とすることができる。   The optional potassium salt can be, for example, potassium acetate, potassium propionate, potassium methoxide, potassium ethoxide, potassium isopropoxide, or mixtures thereof.

ガラス前駆体組成物を形成するために、可溶性シリコンを例えば(1)C1〜C10アルコール(例えばメタノール、エタノール、1−プロパノール、2−プロパノール、1−ブタノール、2−ブタノールの他、1−ブタノール、1−ペンタノール、2−ペンタノール、3−ペンタノールの異性体、1−ペンタノール、1−ヘキサノール、2−ヘキサノール、3−ヘキサノールの異性体、1−ヘキサノール、1−ヘプタノールの異性体、1−ヘプタノールの異性体、またはそれらの混合物)、(2)酸(例えば、酢酸、プロピオン酸、塩酸、硝酸、硫酸、またはそれらの混合物)および(3)水などの溶剤中に溶解して、溶解されたシリコン溶液の溶液を得ることができる。水はシリコンに対して0〜4モル当量の量において含有され得る。溶剤の最小量を使用することができるが、ただし、量は成分の溶液を形成するために十分且つ有効であるべきである。   In order to form the glass precursor composition, the soluble silicon is, for example, (1) C1-C10 alcohol (for example, methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, 1-butanol, 1-pentanol, 2-pentanol, 3-pentanol isomer, 1-pentanol, 1-hexanol, 2-hexanol, 3-hexanol isomer, 1-hexanol, 1-heptanol isomer, 1 -Isomers of heptanol, or mixtures thereof), (2) acids (eg acetic acid, propionic acid, hydrochloric acid, nitric acid, sulfuric acid, or mixtures thereof) and (3) dissolved in solvents such as water A solution of the finished silicon solution can be obtained. Water may be contained in an amount of 0-4 molar equivalents relative to silicon. A minimum amount of solvent can be used, provided that the amount should be sufficient and effective to form a solution of the components.

最初のシリコン溶液を調製するために使用された同じC1〜C10アルコール中にナトリウム塩を溶解し、シリコン溶液に添加することができる。いくつかの実施形態において、ガラス前駆体調合物をステンレス鋼基材にコーティングする前に濾過する。いくつかの実施形態において、調合物中のガラス前駆体の組成は約100(Si):45(B):26(Na):3(Al)の元素比である。   The sodium salt can be dissolved in the same C1-C10 alcohol used to prepare the initial silicon solution and added to the silicon solution. In some embodiments, the glass precursor formulation is filtered before coating the stainless steel substrate. In some embodiments, the composition of the glass precursor in the formulation is an elemental ratio of about 100 (Si): 45 (B): 26 (Na): 3 (Al).

一実施形態において、シリコン酸化物前駆体(例えば、テトラエチルオルトシリケート)を最小量の1−ブタノール、または1−ブタノールと酢酸の1:1混合物に溶解し、撹拌することによって前駆体組成物を調製することができる。この溶液に2モル当量の水を添加し、溶液を1時間にわたって還流する。1−ブタノールに溶かした酸化アルミニウム前駆体(例えば、トリス(アセチルアセトナト)アルミニウム)、酸化ホウ素前駆体(例えば、トリエチルボレート)および酸化ナトリウム前駆体(例えば、ナトリウムテトラフェニルボレート)を添加する。前駆体が溶解されると、さらに溶剤が添加されて所望の濃度を得る。   In one embodiment, a precursor composition is prepared by dissolving a silicon oxide precursor (eg, tetraethylorthosilicate) in a minimal amount of 1-butanol or a 1: 1 mixture of 1-butanol and acetic acid and stirring. can do. To this solution is added 2 molar equivalents of water and the solution is refluxed for 1 hour. An aluminum oxide precursor (eg, tris (acetylacetonato) aluminum) dissolved in 1-butanol, a boron oxide precursor (eg, triethylborate) and a sodium oxide precursor (eg, sodium tetraphenylborate) are added. Once the precursor is dissolved, more solvent is added to obtain the desired concentration.

ガラス層は任意選択的に、リチウム、マグネシウム、カリウム、カルシウム、バリウム、鉛、ゲルマニウム、スズ、アンチモン、ビスマスまたは任意のランタニドの酸化物を含有することができる。LiO、MgO、BaO、KO、CaO、PbO、GeO、SnO、Sb、Biまたはランタニド金属の任意の酸化物のための適した前駆体には、それぞれの酢酸塩、例えば、酢酸カリウム、酢酸カルシウム、酢酸鉛、酢酸ゲルマニウム、酢酸スズ、酢酸アンチモン、および酢酸ビスマスを含むことができる。当業者に公知であり得るように、他の酸化物前駆体を使用することもできる。 The glass layer can optionally contain an oxide of lithium, magnesium, potassium, calcium, barium, lead, germanium, tin, antimony, bismuth or any lanthanide. Suitable precursors for any oxide of Li 2 O, MgO, BaO, K 2 O, CaO, PbO, GeO 4 , SnO 2 , Sb 2 O 3 , Bi 2 O 3 or lanthanide metals are respectively Acetates such as potassium acetate, calcium acetate, lead acetate, germanium acetate, tin acetate, antimony acetate, and bismuth acetate. Other oxide precursors can also be used, as may be known to those skilled in the art.

また、シリコンアルコキシド(例えば、シリコンテトラアルキルオルトシリケート)およびアルミニウムアルコキシド(例えば、アルミニウムイソプロポキシド)をガラス前駆体組成物の調製において使用することができる。   Silicon alkoxides (eg, silicon tetraalkylorthosilicate) and aluminum alkoxides (eg, aluminum isopropoxide) can also be used in the preparation of the glass precursor composition.

任意選択的に、ホウケイ酸ガラスナノ粒子を調合物に添加することができる。   Optionally, borosilicate glass nanoparticles can be added to the formulation.

可撓性基材上へのガラス前駆体組成物のコーティングの堆積は、バーコーティング、噴霧コーティング、浸漬コーティング、マイクログラビアコーティング、またはスロットダイコーティングなどの任意の公知のおよび/または慣例的な手段によって行うことができる。当業者はこれらの慣例的なコーティング手段のいかなる利点および/または不利な点も理解するであろうし、考察中の処理パラメータの詳細に基づいて適切なコーティング方法を選択することができる。   The deposition of the glass precursor composition coating on the flexible substrate is by any known and / or conventional means such as bar coating, spray coating, dip coating, microgravure coating, or slot die coating. It can be carried out. Those skilled in the art will appreciate any advantages and / or disadvantages of these conventional coating means and can select an appropriate coating method based on the details of the processing parameters under consideration.

一実施形態において、ガラス前駆体層は、10nm〜1cmの厚さを有するポリマー基材層の表面の少なくとも一部の上に配置することができ、そこにおいてガラス前駆体層とポリマー基材の表面との間に配置された介在層がない。ガラス前駆体層を非常に短時間の間、例えば30秒未満の間加熱して、ガラス層と直接に接触しているポリマー表面を有効に加熱することができ、この処理は本明細書ではフラッシュ加熱と定義される。本明細書で実施されるフラッシュ加熱処理において、ポリマー表面は約30秒未満の時間の間、別の選択肢として1秒未満の時間の間、別の選択肢として5ミリセカンド(5000マイクロ秒)未満の時間の間、もしくは別の選択肢として約1ミリセカンド(1000マイクロ秒)の間、約250℃〜約400℃の温度に加熱される。ガラス基材をフラッシュ加熱に複数回暴露することが本発明の方法において考えられる。   In one embodiment, the glass precursor layer can be disposed on at least a portion of the surface of the polymer substrate layer having a thickness of 10 nm to 1 cm, wherein the glass precursor layer and the surface of the polymer substrate. There is no intervening layer placed between the two. The glass precursor layer can be heated for a very short time, for example, less than 30 seconds, to effectively heat the polymer surface in direct contact with the glass layer; Defined as heating. In the flash heat treatment practiced herein, the polymer surface is less than about 30 seconds, alternatively less than 1 second, alternatively less than 5 milliseconds (5000 microseconds). Heat to a temperature of about 250 ° C. to about 400 ° C. for a period of time, or alternatively for about 1 millisecond (1000 microseconds). It is contemplated in the method of the present invention that the glass substrate is exposed to flash heating multiple times.

フラッシュ加熱へのガラス層の暴露時間および回数は、熱源によって発生された出力の他、所与の一連の条件下でガラスをポリマー基材に接着する有効性など、複数の処理条件に依存し得る。任意の一連の条件下でポリマーの破壊を避けることができる。   The exposure time and number of times the glass layer is exposed to flash heating can depend on multiple processing conditions, such as the power generated by the heat source, as well as the effectiveness of bonding the glass to the polymer substrate under a given set of conditions. . Polymer breakdown can be avoided under any set of conditions.

ガラス前駆体組成物を可撓性基材上にコートした後、典型的に前駆体を100〜150℃の空気中で乾燥させて溶剤を除去する。いくつかの実施形態において、次に、乾燥されたガラス前駆体層を250〜800℃の空気中でまたは酸素含有雰囲気中で焼成してガラス前駆体層を焼成ガラス層に変換する。「焼成」とは、ガラス前駆体層を酸化雰囲気中で前駆体の分解温度を超える温度に加熱して、
1) ガラス前駆体をコート可能な溶液に可溶化するために使用された一切の有機配位子を除去する、
2) 溶液のシリコン、アルミニウム、ホウ素およびナトリウム成分を酸化してそれらのそれぞれの酸化物の形態にする、および
3) 薄い、緻密なガラス膜を基材上に形成する、
ことを意味する。
After the glass precursor composition is coated on the flexible substrate, the precursor is typically dried in air at 100-150 ° C. to remove the solvent. In some embodiments, the dried glass precursor layer is then fired in air at 250-800 ° C. or in an oxygen-containing atmosphere to convert the glass precursor layer to a fired glass layer. “Baking” means heating the glass precursor layer to a temperature above the decomposition temperature of the precursor in an oxidizing atmosphere,
1) remove any organic ligands used to solubilize the glass precursor in a coatable solution;
2) oxidizing the silicon, aluminum, boron and sodium components of the solution to their respective oxide forms, and 3) forming a thin, dense glass film on the substrate.
Means that.

(1)ガラス前駆体を基材の表面上に堆積させ(コーティング)、(2)焼成の前に乾燥させる付加的なサイクルを行うことによって焼成ガラス層の厚さを増加させることが望ましいとされ得る。   It would be desirable to increase the thickness of the fired glass layer by performing an additional cycle of (1) depositing the glass precursor on the surface of the substrate (coating) and (2) drying before firing. obtain.

(1)コーティングの後に(2)乾燥を行なうサイクルを、望ましいガラス層の厚さに応じて、そして所望の厚さを得るために必要とされる繰り返しの数に応じて、何度も繰り返すことができる。典型的に所望の厚さは、コーティング/乾燥サイクルを2〜5回繰り返すことによって得ることができる。   The cycle of (1) coating and (2) drying is repeated many times depending on the desired glass layer thickness and the number of repetitions required to obtain the desired thickness. Can do. Typically the desired thickness can be obtained by repeating the coating / drying cycle 2-5 times.

焼成ガラス層の厚さは、厚さ約1nm〜数マイクロメートルであり得る。特定の実施形態において、ガラス焼成層の厚さは、厚さ約10nm〜数ミクロンの範囲であり得る。いくつかの用途において−例えば光電池において使用されるとき−その厚さを約10nm〜約数ミクロン、または約25nm〜約10マイクロメートル、または約50nm〜約5マイクロメートルの範囲、もしくは約3マイクロメートル未満に低減することによって、焼成ガラス層の可撓性を増加させることが望ましいとされ得る。しかしながら、可撓性のための所望の厚さは、用途、組成、または他の要因に依存され得る。例えば、いくつかの用途においてガラス層の微小な穴が望ましいとされ得、したがって、ガラス層の厚さを低減して微小な穴を可能にすることが望ましいとされ得る。他の用途において厚さを増加させて最適な絶縁を提供することができ、したがって、ガラス層に最小限の微小な穴を提供することができる。いずれにしても、本発明の目的はガラス層に可撓性を与えることであり、それによって通常の取扱いではガラスに亀裂を生じない。亀裂は、顕微鏡でしか観察できないとしても望ましくない。ガラス層に亀裂が生じるのを避けるために、ガラス層の厚さの上限は約5マイクロメートル、または約4マイクロメートル、もしくは約3マイクロメートルになることもある。   The thickness of the fired glass layer can be about 1 nm to several micrometers in thickness. In certain embodiments, the thickness of the glass fired layer can range from about 10 nm to several microns thick. In some applications—for example when used in photovoltaic cells—its thickness ranges from about 10 nm to about several microns, or from about 25 nm to about 10 micrometers, or from about 50 nm to about 5 micrometers, or about 3 micrometers. It may be desirable to increase the flexibility of the fired glass layer by reducing it to less than. However, the desired thickness for flexibility may depend on the application, composition, or other factors. For example, it may be desirable to have microscopic holes in the glass layer in some applications, and therefore it may be desirable to reduce the thickness of the glass layer to allow microholes. In other applications, the thickness can be increased to provide optimal insulation, thus providing a minimum of micro holes in the glass layer. In any event, the object of the present invention is to provide flexibility to the glass layer so that it does not crack in normal handling. Cracks are undesirable even if they can only be observed with a microscope. In order to avoid cracking in the glass layer, the upper limit of the thickness of the glass layer may be about 5 micrometers, or about 4 micrometers, or about 3 micrometers.

任意選択的に、(1)コーティング、(2)乾燥、および(3)焼成の工程を2回以上繰り返すことができる。また、これは焼成ガラス層の全厚さを増加させ得る。複数の中間焼成工程が、ガラス前駆体成分中に存在することもある一切の炭素の除去を促進し、したがって複数の焼成工程が好ましいとされ得る。   Optionally, the steps of (1) coating, (2) drying, and (3) firing can be repeated two or more times. This can also increase the total thickness of the fired glass layer. Multiple intermediate firing steps facilitate the removal of any carbon that may be present in the glass precursor component, and thus multiple firing steps may be preferred.

また任意選択的に、乾燥工程を省くことができ、ガラス前駆体層を焼成工程よりも低い温度で予備焼成し、次いでその後、焼成することができる。ガラス前駆体層を予備焼成して、例えば、溶剤をより速い速度で除去し、ガラス前駆体層のゲル化を促進し、および/またはガラス前駆体層の成分の間の他の相互作用を促進することが有利となり得る。乾燥、予備焼成および焼成工程の任意の組み合わせを複数回繰り返して、最終ガラス層において望ましい厚さまたは他の性質を得ることができる。   Also optionally, the drying step can be omitted and the glass precursor layer can be pre-fired at a lower temperature than the firing step and then fired thereafter. Pre-baking the glass precursor layer, for example, removing solvent at a faster rate, promoting gelation of the glass precursor layer, and / or promoting other interactions between components of the glass precursor layer Can be advantageous. Any combination of drying, pre-baking and baking steps can be repeated multiple times to obtain the desired thickness or other properties in the final glass layer.

いくつかの実施形態において、コーティング工程の前に水を前駆体混合物に添加する。これは、ガラス前駆体組成物の粘度を増加させ、1回のコーティングおよび乾燥サイクルにおいて50nm〜2ミクロンの厚さのガラス層の形成を促す。   In some embodiments, water is added to the precursor mixture prior to the coating process. This increases the viscosity of the glass precursor composition and facilitates the formation of a 50 nm to 2 micron thick glass layer in a single coating and drying cycle.

典型的に焼成工程と乾燥工程の両方を空気中で実施して確実にガラス前駆体を完全に酸化させる。ガラス層中に元素炭素、炭酸塩中間体または還元金属酸化物が存在することによって絶縁層の破壊電圧を低くしてもよい。   Typically, both the firing and drying steps are performed in air to ensure complete oxidation of the glass precursor. The breakdown voltage of the insulating layer may be lowered by the presence of elemental carbon, carbonate intermediate or reduced metal oxide in the glass layer.

焼成後に、ガラス層は典型的に、シリカ70重量%超、アルミナ10重量%未満、酸化ホウ素5〜15重量%、およびナトリウムおよび/またはカリウムの酸化物10重量%未満を含む。一実施形態において、焼成ガラス層は、約81重量%のSiO、約13重量%のB、約1%〜約4重量%のNaO、および約2重量%のAlを含む。 After firing, the glass layer typically comprises more than 70% silica, less than 10% alumina, 5-15% boron oxide, and less than 10% sodium and / or potassium oxide. In one embodiment, firing the glass layer is about 81 wt% of SiO 2, about 13 weight% B 2 O 3, from about 1% to about 4 wt% of Na 2 O, and about 2 wt% of Al 2 O 3 is included.

いくつかの実施形態において、ガラス前駆体組成物は、MoおよびCIGS(またはCZTS−Se)層の線熱膨脹率(CTE)に近いガラス層のCTEを提供するように選択され、MoおよびCIGS(またはCZTS−Se)層にかかる応力を低減し、膜のカーリングを低減する。いくつかの実施形態において、ホウケイ酸ガラスのCTEは約3.25×10−6/℃であり、Mo層のCTE(約4.8×10−6/℃)およびCIGS層のCTE(約9×10−6/℃)によく整合する。 In some embodiments, the glass precursor composition is selected to provide a CTE of the glass layer close to the linear thermal expansion coefficient (CTE) of the Mo and CIGS (or CZTS-Se) layer, and Mo and CIGS (or The stress applied to the (CZTS-Se) layer is reduced, and the curling of the film is reduced. In some embodiments, the CTE of the borosilicate glass is about 3.25 × 10 −6 / ° C., the CTE of the Mo layer (about 4.8 × 10 −6 / ° C.) and the CTE of the CIGS layer (about 9 × 10 −6 / ° C.)

本発明の一態様は、
a)可撓性ポリマー基材と、
b)可撓性ポリマー基材の少なくとも一部の上に直接に配置されたガラス層とを含む多層物品であり、ガラス層は、SiO、Al、NaO、Bの他、任意選択的に、LiO、BeO、BaO、MgO、KO、CaO、MnO、NiO、SrO、FeO、Fe、CuO、CuO、CoO、ZnO、PbO、GeO、SnO、Sb、Bi、およびランタニド金属の任意の酸化物からなる群から選択された酸化物を含む。
One embodiment of the present invention provides:
a) a flexible polymer substrate;
b) a multi-layer article comprising a glass layer disposed directly on at least a portion of the flexible polymer substrate, a glass layer, SiO 2, Al 2 O 3 , Na 2 O, B 2 O 3 And optionally, Li 2 O, BeO, BaO, MgO, K 2 O, CaO, MnO, NiO, SrO, FeO, Fe 2 O 3 , CuO, Cu 2 O, CoO, ZnO, PbO, GeO 4 , SnO 2 , Sb 2 O 3 , Bi 2 O 3 , and an oxide selected from the group consisting of any oxide of lanthanide metals.

可撓性ポリマー基材およびガラス層は上に記載された通りである。   The flexible polymer substrate and the glass layer are as described above.

この多層物品を例えば、有機発光ダイオードディスプレイ用途、白色光有機発光ダイオード用途、光電池用途などの電子デバイスの製造用の基材として使用することができる。また、このような多層物品を心臓弁などの医療用具において使用することができる。   This multilayer article can be used, for example, as a substrate for manufacturing electronic devices such as organic light emitting diode display applications, white light organic light emitting diode applications, and photovoltaic cell applications. Such multilayer articles can also be used in medical devices such as heart valves.

いくつかの実施形態において、多層物品は、
d)ガラス層の少なくとも一部の上に配置された導電層をさらに含む。
In some embodiments, the multilayer article is
d) further includes a conductive layer disposed on at least a portion of the glass layer.

いくつかの実施形態において、多層物品は、
e)導電層上に配置された光活性層と、
f)光活性層上に配置されたCdS層と、
g)CdS層上に配置された透明な導電性酸化物とをさらに含む。
In some embodiments, the multilayer article is
e) a photoactive layer disposed on the conductive layer;
f) a CdS layer disposed on the photoactive layer;
g) a transparent conductive oxide disposed on the CdS layer.

このような多層物品を例えば光電池において使用することができる。   Such multilayer articles can be used, for example, in photovoltaic cells.

適した導電層は、金属、酸化物がドープされた金属、金属酸化物、有機導体、およびそれらの組み合わせからなる群から選択された材料を含む。導電金属層は、蒸着法または無電解めっきによってガラス層上に堆積され得る。適した金属にはMo、Ni、Cu、Ag、Au、Rh、PdおよびPtなどがある。導電金属層は典型的に厚さ200nm〜1ミクロンである。一実施形態において、導電材料は、酸化モリブデンがドープされたモリブデンである。   Suitable conductive layers include materials selected from the group consisting of metals, metals doped with oxides, metal oxides, organic conductors, and combinations thereof. The conductive metal layer can be deposited on the glass layer by vapor deposition or electroless plating. Suitable metals include Mo, Ni, Cu, Ag, Au, Rh, Pd and Pt. The conductive metal layer is typically 200 nm to 1 micron thick. In one embodiment, the conductive material is molybdenum doped with molybdenum oxide.

いくつかの実施形態において、多層物品は、有機機能性層、例えば、ポリアニリンおよびポリチオフェンなどの有機導体を含む。このような実施形態において、多層物品は一般に、有機機能性層が堆積された後に450℃、または400℃、または350℃、または300℃、または250℃、または200℃、または150℃、または100℃を超える温度に加熱されない。   In some embodiments, the multilayer article includes organic functional layers, for example, organic conductors such as polyaniline and polythiophene. In such embodiments, the multilayer article is generally 450 ° C., or 400 ° C., or 350 ° C., or 300 ° C., or 250 ° C., or 200 ° C., or 150 ° C., or 100 after the organic functional layer is deposited. Do not heat to temperatures above ℃.

適した光活性層はCIS(カドミウム−インジウム−セレニド)、CIGS、およびCZTS−Seを含有する。   Suitable photoactive layers include CIS (Cadmium-Indium-Selenide), CIGS, and CZTS-Se.

CIGSおよびCIS層は、銅、インジウムおよび任意選択的にガリウムを順次にまたは同時に蒸発させるかまたはスパッタする工程と、次に、得られた膜をセレン蒸気と反応させる工程とによって形成され得る。別の選択肢として、スクリーン印刷およびインクジェット印刷などの多種多様な印刷方法を用いてインク中の金属酸化物粒子の懸濁液を導電層上に堆積することができる。これは多孔質膜を生じ、次にそれを熱処理において高密度化して還元し、CIGSまたはCIS層を形成する。上述の処理は公知であり、本技術分野において慣例的である。実際、任意の公知のまたは慣例的な処理を用いてCIGSまたはCIS層を形成することができる。   CIGS and CIS layers may be formed by sequentially or simultaneously evaporating or sputtering copper, indium and optionally gallium, and then reacting the resulting film with selenium vapor. As another option, a suspension of metal oxide particles in the ink can be deposited on the conductive layer using a wide variety of printing methods such as screen printing and ink jet printing. This produces a porous membrane that is then densified and reduced in a heat treatment to form a CIGS or CIS layer. The processing described above is well known and routine in the art. In fact, any known or conventional process can be used to form the CIGS or CIS layer.

熱蒸発、スパッタリング、ハイブリッドスパッタリング、パルスレーザー堆積法、電子線蒸発、光化学堆積法、および電気化学堆積法などのいくつかの方法によってCZTS−Se薄膜を製造することができる。また、硫黄源としてチオ尿素を使用して、金属塩、典型的にCuCl、ZnCl、およびSnClを含有する溶液の噴霧熱分解によってCZTS薄膜を製造することができる。 CZTS-Se thin films can be produced by several methods such as thermal evaporation, sputtering, hybrid sputtering, pulsed laser deposition, electron beam evaporation, photochemical deposition, and electrochemical deposition. CZTS thin films can also be produced by spray pyrolysis of solutions containing metal salts, typically CuCl, ZnCl 2 , and SnCl 4 , using thiourea as the sulfur source.

CdS層を例えば化学浴堆積法によって堆積することができる。公知のおよび/または慣例的な他の手段を使用することができる。   The CdS layer can be deposited, for example, by chemical bath deposition. Other means known and / or customary can be used.

ドープされた酸化亜鉛またはインジウムスズ酸化物などの適した透明な導電性酸化物層を例えばスパッタリングまたは層のパルス堆積法によってCdS層上に堆積することができる。当業者に公知のおよび/または慣例的な他の方法を使用することができる。   A suitable transparent conductive oxide layer, such as doped zinc oxide or indium tin oxide, can be deposited on the CdS layer, for example by sputtering or pulse deposition of layers. Other methods known to the person skilled in the art and / or customary can be used.

実施例1
Kapton(登録商標)上にコーティングされた10重量%のNaOを有するアルミノホウケイ酸ナトリウムガラス組成物
[Si]に対して0.5Mの前駆体調合物を以下の方法で調製した。
2.4109g(11.57mmol)のテトラエチルオルトシリケート(Sigma Aldrich、>99.0%の純度)を10mlの1−ブタノール中に溶解した。この溶液に、1.5モル当量の氷酢酸(1.0400g、17.35mmol、EMD、>99.7%の純度)および1滴(0.02g)の硝酸を添加した。次に、溶液を2時間118℃において還流した。還流の終了時に以下の添加の順序で、0.2873g(2.99mmol)のプロピオン酸ナトリウム(Sigma Aldrich、>99%の純度)、0.1179g(0.36mmol)のトリス(アセチルアセトナト)アルミニウム(Sigma Aldrich、>99%の純度)および0.5054g(3.46mmol)のトリエチルボレート(Sigma Aldrich、99%の純度)を室温の溶液に添加した。次に、溶液を透明になるまで撹拌し、全容積25.00mlが得られるまで1−ブタノールを添加した。
Example 1
Kapton was prepared (R) 10 wt% of Na alumino borosilicate sodium glass composition having 2 O coated on [Si] 0.5M precursor formulation with respect to the following method.
2.4109 g (11.57 mmol) of tetraethylorthosilicate (Sigma Aldrich,> 99.0% purity) was dissolved in 10 ml of 1-butanol. To this solution was added 1.5 molar equivalents of glacial acetic acid (1.0400 g, 17.35 mmol, EMD,> 99.7% purity) and 1 drop (0.02 g) nitric acid. The solution was then refluxed at 118 ° C. for 2 hours. At the end of reflux, 0.2873 g (2.99 mmol) sodium propionate (Sigma Aldrich,> 99% purity), 0.1179 g (0.36 mmol) tris (acetylacetonato) aluminum in the following order of addition: (Sigma Aldrich,> 99% purity) and 0.5054 g (3.46 mmol) of triethyl borate (Sigma Aldrich, 99% purity) were added to the room temperature solution. The solution was then stirred until clear and 1-butanol was added until a total volume of 25.00 ml was obtained.

50.8マイクロメートルの厚さのKapton(登録商標)(DuPont)膜を寸法通りにさいの目に切り、表面をメタノールで洗浄することによって洗浄し、および/または以下の条件下で30秒間アルゴンプラズマ洗浄した(A.G.Services PE−PECVD System 1000):
電力=24.3W
圧力=100.0ミリトール
スロットル圧力=200.0ミリトール
アルゴンガス流=10.0sccm
A 50.8 micrometer thick Kapton® (DuPont) membrane is diced to size, cleaned by rinsing the surface with methanol, and / or argon plasma cleaned for 30 seconds under the following conditions: (AG Services PE-PECVD System 1000):
Power = 24.3W
Pressure = 100.0 mTorr Throttle pressure = 200.0 mTorr Argon gas flow = 10.0 sccm

ガラス前駆体調合物を0.45ミクロンのPTFEフィルターを用いて濾過した。   The glass precursor formulation was filtered using a 0.45 micron PTFE filter.

Cheminstrument(登録商標)モーター付きドローダウンコーターで♯40バーを用いて、洗浄されたポリイミド基材に0.1mlの濾過されたガラス前駆体調合物をクリーンルーム環境(クラス100)で室温においてロッドコートした。次に、コーティングされた試料を30秒間室温において、次いで2分間150℃において乾燥させた。   Using a # 40 bar on a Chemistrum® motored drawdown coater, 0.1 ml of the filtered glass precursor formulation was rod coated at room temperature in a clean room environment (Class 100) using a # 40 bar. . The coated sample was then dried at room temperature for 30 seconds and then at 150 ° C. for 2 minutes.

ドローダウンコーティングと乾燥のサイクルを所望の厚さが得られるまで同じ条件下で繰り返した。   The draw down coating and drying cycle was repeated under the same conditions until the desired thickness was obtained.

次に、最終層を10℃/sの上昇速度で2分間400℃まで焼成した。   The final layer was then baked to 400 ° C. for 2 minutes at a rate of 10 ° C./s.

ガラスコーティングの結合性をESCAによって特性決定し、トップコート面上のガラス組成物を定量した。   The binding properties of the glass coating were characterized by ESCA and the glass composition on the topcoat surface was quantified.

実施例2
50.8umの30重量%TiO充填ポリイミド膜上にコーティングされた10重量%のNaOを有するアルミノホウケイ酸ナトリウムガラス組成物
[Si]に対して0.5Mの前駆体調合物を以下の方法で調製した。
2.4109g(11.57mmol)のテトラエチルオルトシリケート(Sigma Aldrich、>99.0%の純度)を10mlの1−ブタノール中に溶解した。この溶液に、1.5モル当量の氷酢酸(1.0400g、17.35mmol、EMD、>99.7%の純度)および1滴(0.02g)の硝酸を添加した。次に、溶液を2時間118℃において還流した。還流の終了時に以下の添加の順序で、0.2873g(2.99mmol)のプロピオン酸ナトリウム(Sigma Aldrich、>99%の純度)、0.1179g(0.36mmol)のトリス(アセチルアセトナト)アルミニウム(Sigma Aldrich、>99%の純度)および0.5054g(3.46mmol)のトリエチルボレート(Sigma Aldrich、99%の純度)を室温の溶液に添加した。次に、溶液を透明になるまで撹拌し、全容積25.00mlが得られるまで1−ブタノールを添加した。
Example 2
Sodium aluminoborosilicate glass composition having 10 wt% Na 2 O coated on 50.8 um 30 wt% TiO 2 filled polyimide film 0.5 M precursor formulation for [Si] Prepared by method.
2.4109 g (11.57 mmol) of tetraethylorthosilicate (Sigma Aldrich,> 99.0% purity) was dissolved in 10 ml of 1-butanol. To this solution was added 1.5 molar equivalents of glacial acetic acid (1.0400 g, 17.35 mmol, EMD,> 99.7% purity) and 1 drop (0.02 g) nitric acid. The solution was then refluxed at 118 ° C. for 2 hours. At the end of reflux, 0.2873 g (2.99 mmol) sodium propionate (Sigma Aldrich,> 99% purity), 0.1179 g (0.36 mmol) tris (acetylacetonato) aluminum in the following order of addition: (Sigma Aldrich,> 99% purity) and 0.5054 g (3.46 mmol) of triethyl borate (Sigma Aldrich, 99% purity) were added to the room temperature solution. The solution was then stirred until clear and 1-butanol was added until a total volume of 25.00 ml was obtained.

50.8マイクロメートルの30重量%TiO充填ポリイミド膜(DuPont)を寸法通りにさいの目に切り、表面をメタノールで洗浄することによって洗浄し、および/または以下の条件下で30秒間アルゴンプラズマ洗浄した(A.G.Services PE−PECVD System 1000):
電力=24.3W
圧力=100.0ミリトール
スロットル圧力=200.0ミリトール
アルゴンガス流=10.0sccm
A 50.8 micrometer 30 wt% TiO 2 filled polyimide film (DuPont) was diced to size, cleaned by rinsing the surface with methanol, and / or argon plasma cleaned for 30 seconds under the following conditions: (A.G. Services PE-PECVD System 1000):
Power = 24.3W
Pressure = 100.0 mTorr Throttle pressure = 200.0 mTorr Argon gas flow = 10.0 sccm

ガラス前駆体調合物を0.45ミクロンのPTFEフィルターを用いて濾過した。   The glass precursor formulation was filtered using a 0.45 micron PTFE filter.

Cheminstrument(登録商標)モーター付きドローダウンコーターで♯40バーを用いて、洗浄されたポリイミド基材に0.1mlの濾過されたガラス前駆体調合物をクリーンルーム環境(クラス100)で室温においてロッドコートした。次に、コーティングされた試料を30秒間室温において、次いで2分間150℃において乾燥させた。   Using a # 40 bar on a Chemistrum® motored drawdown coater, 0.1 ml of the filtered glass precursor formulation was rod coated at room temperature in a clean room environment (Class 100) using a # 40 bar. . The coated sample was then dried at room temperature for 30 seconds and then at 150 ° C. for 2 minutes.

ドローダウンコーティングと乾燥のサイクルを所望の厚さが得られるまで同じ条件下で繰り返した。   The draw down coating and drying cycle was repeated under the same conditions until the desired thickness was obtained.

次に、最終層を10℃/sの上昇速度で2分間400℃まで焼成した。   The final layer was then baked to 400 ° C. for 2 minutes at a rate of 10 ° C./s.

実施例3
50.8umの30重量%タルク充填ポリイミド膜上にコーティングされた10重量%のNaOを有するアルミノホウケイ酸ナトリウムガラス組成物
[Si]に対して0.5Mの前駆体調合物を以下の方法で調製した。
2.4109g(11.57mmol)のテトラエチルオルトシリケート(Sigma Aldrich、>99.0%の純度)を10mlの1−ブタノール中に溶解した。この溶液に、1.5モル当量の氷酢酸(1.0400g、17.35mmol、EMD、>99.7%の純度)および1滴(0.02g)の硝酸を添加した。次に、溶液を2時間118℃において還流した。還流の終了時に以下の添加の順序で、0.2873g(2.99mmol)のプロピオン酸ナトリウム(Sigma Aldrich、>99%の純度)、0.1179g(0.36mmol)のトリス(アセチルアセトナト)アルミニウム(Sigma Aldrich、>99%の純度)および0.5054g(3.46mmol)のトリエチルボレート(Sigma Aldrich、99%の純度)を室温の溶液に添加した。次に、溶液を透明になるまで撹拌し、全容積25.00mlが得られるまで1−ブタノールを添加した。
Example 3
30 wt% talc filled polyimide film aluminoborosilicate sodium glass composition having a coated 10 wt% of Na 2 O on the 50.8um [Si] following method 0.5M precursor formulation against It was prepared with.
2.4109 g (11.57 mmol) of tetraethylorthosilicate (Sigma Aldrich,> 99.0% purity) was dissolved in 10 ml of 1-butanol. To this solution was added 1.5 molar equivalents of glacial acetic acid (1.0400 g, 17.35 mmol, EMD,> 99.7% purity) and 1 drop (0.02 g) nitric acid. The solution was then refluxed at 118 ° C. for 2 hours. At the end of reflux, 0.2873 g (2.99 mmol) sodium propionate (Sigma Aldrich,> 99% purity), 0.1179 g (0.36 mmol) tris (acetylacetonato) aluminum in the following order of addition: (Sigma Aldrich,> 99% purity) and 0.5054 g (3.46 mmol) of triethyl borate (Sigma Aldrich, 99% purity) were added to the room temperature solution. The solution was then stirred until clear and 1-butanol was added until a total volume of 25.00 ml was obtained.

50.8マイクロメートルの30重量%タルク充填ポリイミド膜(DuPont)を寸法通りにさいの目に切り、表面をメタノールで洗浄することによって洗浄し、および/または以下の条件下で30秒間アルゴンプラズマ洗浄した(A.G.Services PE−PECVD System 1000):
電力=24.3W
圧力=100.0ミリトール
スロットル圧力=200.0ミリトール
アルゴンガス流=10.0sccm
A 50.8 micrometer 30 wt% talc filled polyimide membrane (DuPont) was diced to size, cleaned by rinsing the surface with methanol, and / or argon plasma cleaned for 30 seconds under the following conditions ( A. G. Services PE-PECVD System 1000):
Power = 24.3W
Pressure = 100.0 mTorr Throttle pressure = 200.0 mTorr Argon gas flow = 10.0 sccm

ガラス前駆体調合物を0.45ミクロンのPTFEフィルターを用いて濾過した。   The glass precursor formulation was filtered using a 0.45 micron PTFE filter.

Cheminstrument(登録商標)モーター付きドローダウンコーターで♯40バーを用いて、洗浄されたポリイミド基材に0.1mlの濾過されたガラス前駆体調合物をクリーンルーム環境(クラス100)で室温においてロッドコートした。次に、コーティングされた試料を30秒間室温において、次いで2分間150℃において乾燥させた。   Using a # 40 bar on a Chemistrum® motored drawdown coater, 0.1 ml of the filtered glass precursor formulation was rod coated at room temperature in a clean room environment (Class 100) using a # 40 bar. . The coated sample was then dried at room temperature for 30 seconds and then at 150 ° C. for 2 minutes.

ドローダウンコーティングと乾燥のサイクルを所望の厚さが得られるまで同じ条件下で繰り返した。   The draw down coating and drying cycle was repeated under the same conditions until the desired thickness was obtained.

次に、最終層を10℃/sの上昇速度で2分間400℃まで焼成した。   The final layer was then baked to 400 ° C. for 2 minutes at a rate of 10 ° C./s.

実施例4
Kapton(登録商標)上にコーティングされた10重量%のNaOを有するアルミノホウケイ酸ナトリウムガラス組成物
[Si]に対して0.5Mの前駆体調合物を以下の方法で調製した。
2.4109g(11.57mmol)のテトラエチルオルトシリケート(Sigma Aldrich、>99.0%の純度)を10mlの1−ブタノール中に溶解した。この溶液に、1.5モル当量の氷酢酸(1.0400g、17.35mmol、EMD、>99.7%の純度)および1滴(0.02g)の硝酸を添加した。次に、溶液を2時間118℃において還流した。還流の終了時に以下の添加の順序で、0.2873g(2.99mmol)のプロピオン酸ナトリウム(Sigma Aldrich、>99%の純度)、0.1179g(0.36mmol)のトリス(アセチルアセトナト)アルミニウム(Sigma Aldrich、>99%の純度)および0.5054g(3.46mmol)のトリエチルボレート(Sigma Aldrich、99%の純度)を室温の溶液に添加した。次に、溶液を透明になるまで撹拌し、全容積25.00mlが得られるまで1−ブタノールを添加した。
Example 4
Kapton was prepared (R) 10 wt% of Na alumino borosilicate sodium glass composition having 2 O coated on [Si] 0.5M precursor formulation with respect to the following method.
2.4109 g (11.57 mmol) of tetraethylorthosilicate (Sigma Aldrich,> 99.0% purity) was dissolved in 10 ml of 1-butanol. To this solution was added 1.5 molar equivalents of glacial acetic acid (1.0400 g, 17.35 mmol, EMD,> 99.7% purity) and 1 drop (0.02 g) nitric acid. The solution was then refluxed at 118 ° C. for 2 hours. At the end of reflux, 0.2873 g (2.99 mmol) sodium propionate (Sigma Aldrich,> 99% purity), 0.1179 g (0.36 mmol) tris (acetylacetonato) aluminum in the following order of addition: (Sigma Aldrich,> 99% purity) and 0.5054 g (3.46 mmol) of triethyl borate (Sigma Aldrich, 99% purity) were added to the room temperature solution. The solution was then stirred until clear and 1-butanol was added until a total volume of 25.00 ml was obtained.

50.8マイクロメートルの厚さのKapton(登録商標)(DuPont)膜を寸法通りにさいの目に切り、表面をメタノールで洗浄することによって洗浄し、および/または以下の条件下で30秒間アルゴンプラズマ洗浄した(A.G.Services PE−PECVD System 1000):
電力=24.3W
圧力=100.0ミリトール
スロットル圧力=200.0ミリトール
アルゴンガス流=10.0sccm
A 50.8 micrometer thick Kapton® (DuPont) membrane is diced to size, cleaned by rinsing the surface with methanol, and / or argon plasma cleaned for 30 seconds under the following conditions: (AG Services PE-PECVD System 1000):
Power = 24.3W
Pressure = 100.0 mTorr Throttle pressure = 200.0 mTorr Argon gas flow = 10.0 sccm

ガラス前駆体調合物を0.45ミクロンのPTFEフィルターを用いて濾過した。   The glass precursor formulation was filtered using a 0.45 micron PTFE filter.

Cheminstrument(登録商標)モーター付きドローダウンコーターで♯40バーを用いて、洗浄されたポリイミド基材に0.1mlの濾過されたガラス前駆体調合物をクリーンルーム環境(クラス100)で室温においてロッドコートした。次に、コーティングされた試料を30秒間室温において、次いで2分間150℃において乾燥させた。   Using a # 40 bar on a Chemistrum® motored drawdown coater, 0.1 ml of the filtered glass precursor formulation was rod coated at room temperature in a clean room environment (Class 100) using a # 40 bar. . The coated sample was then dried at room temperature for 30 seconds and then at 150 ° C. for 2 minutes.

次に、NovaCentrix(登録商標)によって開発されたPulseForge 3300計測器を用いて、200nm〜1000nmの幅の広い波長の光スペクトルの51%〜100%の範囲の4つの異なった相対照射量において1000マイクロ秒のパルス長に試料を暴露して、コーティングされた基材の必須の性質を損なわずにポリイミド基材上のガラス膜を硬化させた。コーティングされた膜を1000マイクロ秒のパルスに対して最大出力>100kW/cmに暴露したが、それはポリイミド基材上にガラスを形成するために十分であった。最終コーティングをESCAによって分析してコーティングの化学組成を定量し、暴露された上面にアルミノホウケイ酸ナトリウムガラス組成物を確認した。 Next, using a PulseForge 3300 instrument developed by NovaCentrix®, 1000 micrometres at 4 different relative doses ranging from 51% to 100% of the wide wavelength light spectrum from 200 nm to 1000 nm. The sample was exposed to a pulse length of seconds to cure the glass film on the polyimide substrate without compromising the essential properties of the coated substrate. The coated film was exposed to a maximum output> 100 kW / cm 2 for a 1000 microsecond pulse, which was sufficient to form glass on a polyimide substrate. The final coating was analyzed by ESCA to quantify the chemical composition of the coating and confirmed the sodium aluminoborosilicate glass composition on the exposed top surface.

Claims (10)

a)可撓性ポリマー基材層と、
b)前記可撓性ポリマー基材層の表面の少なくとも一部の上に直接に配置されたガラス層とを含む多層物品であって、前記ガラス層と前記可撓性ポリマー基材の前記表面との間に配置される介在層がなく、前記ガラス層がSiO、Al、NaO、B、および任意選択的に金属酸化物、を含む、多層物品。
a) a flexible polymer substrate layer;
b) a multilayer article comprising a glass layer disposed directly on at least a portion of the surface of the flexible polymer substrate layer, the glass layer and the surface of the flexible polymer substrate; no intervening layer disposed between the glass layer is SiO 2, Al 2 O 3, Na 2 O, B 2 O 3, and optionally a metal oxide, including, multilayer article.
前記ポリマー基材がポリイミドポリマーまたはポリエステルポリマーである、請求項1に記載の多層物品。   The multilayer article of claim 1, wherein the polymer substrate is a polyimide polymer or a polyester polymer. 前記ポリマー基材が充填剤を含む、請求項1に記載の多層物品。   The multilayer article of claim 1, wherein the polymer substrate comprises a filler. 前記ポリマー基材がポリイミドである、請求項3に記載の多層物品。   The multilayer article of claim 3, wherein the polymer substrate is polyimide. 前記充填剤がガラスまたはタルクである、請求項4に記載の多層物品。   The multilayer article of claim 4, wherein the filler is glass or talc. 前記充填剤がタルクである、請求項5に記載の多層物品。   The multilayer article of claim 5, wherein the filler is talc. 1)10nm〜1cmの厚さを有するポリマー基材層の表面の少なくとも一部の上に直接に配置されたガラス前駆体層を堆積する工程であって、前記ガラス前駆体層と前記ポリマー基材の前記表面との間に配置される介在層がなく、前記ガラス前駆体層がSiO前駆体、Al前駆体、NaO前駆体、B前駆体、および任意選択的に金属酸化物前駆体、を含む工程と、
b)光源を使用して約10nm〜約5マイクロメートルの厚さを有する前記ガラス前駆体層を約30秒未満の時間の間フラッシュ加熱することによって、前記ガラス前駆体層の加熱がポリマー表面の局部加熱をもたらすことにより、前記ポリマー表面が少なくとも1回約30秒未満の時間の間、約250℃〜約400℃の温度に加熱される工程とを含む多層物品の製造方法。
1) depositing a glass precursor layer disposed directly on at least part of the surface of a polymer substrate layer having a thickness of 10 nm to 1 cm, the glass precursor layer and the polymer substrate There is no intervening layer disposed between the surface and the glass precursor layer is SiO 2 precursor, Al 2 O 3 precursor, Na 2 O precursor, B 2 O 3 precursor, and optional A process comprising a metal oxide precursor,
b) flash heating the glass precursor layer having a thickness of about 10 nm to about 5 micrometers using a light source for a time of less than about 30 seconds so that the heating of the glass precursor layer Heating the polymer surface to a temperature of about 250 ° C. to about 400 ° C. at least once for a time of less than about 30 seconds by providing local heating.
前記ポリマー基材がポリイミドポリマーである、請求項7に記載の方法。   The method of claim 7, wherein the polymer substrate is a polyimide polymer. 前記ポリマー表面が少なくとも1回約1000マイクロ秒の時間の間加熱される、請求項8に記載の方法。   9. The method of claim 8, wherein the polymer surface is heated at least once for a time of about 1000 microseconds. 請求項7に記載の方法によって製造された物品。   An article made by the method of claim 7.
JP2013529294A 2010-09-14 2011-09-14 Flexible polymer substrate coated with glass for photovoltaic cells Withdrawn JP2013541442A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US38250610P 2010-09-14 2010-09-14
US61/382,506 2010-09-14
PCT/US2011/051572 WO2012037234A1 (en) 2010-09-14 2011-09-14 Glass-coated flexible polymeric substrates in photovoltaic cells

Publications (1)

Publication Number Publication Date
JP2013541442A true JP2013541442A (en) 2013-11-14

Family

ID=44675850

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013529294A Withdrawn JP2013541442A (en) 2010-09-14 2011-09-14 Flexible polymer substrate coated with glass for photovoltaic cells

Country Status (5)

Country Link
EP (1) EP2617060A1 (en)
JP (1) JP2013541442A (en)
KR (1) KR20130110166A (en)
CN (1) CN103119725A (en)
WO (1) WO2012037234A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022543916A (en) * 2019-12-19 2022-10-14 浙江道明光電科技有限公司 Colorless and transparent polyimide composite film and its manufacturing method

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013174754A2 (en) 2012-05-22 2013-11-28 Dsm Ip Assets B.V. Composition and process for making a porous inorganic oxide coating
US9868130B2 (en) 2012-08-09 2018-01-16 Dsm Ip Assets B.V. Roll coating process and apparatus
CN103311322B (en) * 2013-06-18 2015-11-18 天津理工大学 A kind of CIGS solar cell device and preparation method thereof
CN103296092B (en) * 2013-06-18 2015-11-18 天津理工大学 A kind of CIGS solar cell device and preparation method thereof
TW201740096A (en) 2015-12-11 2017-11-16 帝斯曼知識產權資產管理有限公司 System and method for optical measurements on a transparent sheet
WO2018192910A2 (en) 2017-04-18 2018-10-25 Dsm Ip Assets B.V. Process for making an anti-soiling coating composition and a coating made therefrom

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4017340A (en) * 1975-08-04 1977-04-12 General Electric Company Semiconductor element having a polymeric protective coating and glass coating overlay
JPS5498583A (en) * 1978-01-20 1979-08-03 Sanyo Electric Co Ltd Coating method of metallic film
EP0078541B1 (en) * 1981-11-04 1991-01-16 Kanegafuchi Kagaku Kogyo Kabushiki Kaisha Flexible photovoltaic device
US5439849A (en) * 1994-02-02 1995-08-08 At&T Corp. Encapsulation techniques which include forming a thin glass layer onto a polymer layer
AU4462400A (en) * 1999-04-14 2000-11-14 Allied-Signal Inc. Low dielectric nano-porous material obtainable from polymer decomposition
KR100362834B1 (en) * 2000-05-02 2002-11-29 삼성전자 주식회사 Method for forming oxide layer in semiconductor manufacturing process and semiconductor device manufactured by using the same
KR20050041888A (en) * 2003-10-30 2005-05-04 니폰 파이오니쿠스 가부시키가이샤 Material for forming insulation film and film-forming method with the use of the material
GB2430547A (en) * 2005-09-20 2007-03-28 Seiko Epson Corp A method of producing a substrate having areas of different hydrophilicity and/or oleophilicity on the same surface
US8017186B2 (en) * 2006-08-17 2011-09-13 Semiconductor Energy Laboratory Co., Ltd. Film forming method, discharging droplet method and droplet discharging device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022543916A (en) * 2019-12-19 2022-10-14 浙江道明光電科技有限公司 Colorless and transparent polyimide composite film and its manufacturing method
JP7174885B2 (en) 2019-12-19 2022-11-17 浙江道明光電科技有限公司 Colorless and transparent polyimide composite film and its manufacturing method

Also Published As

Publication number Publication date
EP2617060A1 (en) 2013-07-24
WO2012037234A1 (en) 2012-03-22
KR20130110166A (en) 2013-10-08
CN103119725A (en) 2013-05-22

Similar Documents

Publication Publication Date Title
US20120006395A1 (en) Coated stainless steel substrate
US20120064352A1 (en) Articles comprising a glass - flexible stainless steel composite layer
US20120060559A1 (en) Process for coating glass onto a flexible stainless steel substrate
JP2013541442A (en) Flexible polymer substrate coated with glass for photovoltaic cells
WO2012037242A2 (en) Glass-coated flexible substrates for photovoltaic cells
US20120234391A1 (en) Glass-coated flexible substrates for photvoltaic cells
CN100499174C (en) New metal strip product
US20130309613A1 (en) Liquid Based Films
TWI500050B (en) Method of producing conductive thin film
JPS60236404A (en) Method of producing thin film ferrodielectric material
WO2006051877A1 (en) Process for forming metal oxide films
CN100482461C (en) Stainless-steel foils with inorganic/organic hybrid film coating
US20130004762A1 (en) Articles comprising a glass-flexible stainless steel composite layer
CN103140932B (en) The cover group of solar cell collecting electrodes formation method, solar cell collecting electrodes formation conductive composition and solar battery cell
GB2428689A (en) Process for preparing transparent conducting metal oxides
TW201044463A (en) Transparent conductive film encapsulating mesh-like structure formed from metal microparticles, substrate on which transparent conductive film is laminated, and method for producing the same
JP2010129379A (en) Wetting gel film, transparent and conductive film, transparent and conductive film laminated substrate, and method for manufacturing the same
US20120237744A1 (en) Glass-coated flexible polymeric substrates in photovoltaic cells
JP2009040640A (en) Method for producing zinc oxide thin film
KR101606990B1 (en) A laminate and thin film solar cell comprising same
CN115279942B (en) dielectric coating
TW201250710A (en) Conductive composition for making current collecting electrode for solar cell and solar cell
JP2010143802A (en) Silicon oxide gel film, transparent conductive film and substrate in which transparent conductive film is laid and method for producing those
US8716053B2 (en) Moisture barrier for photovoltaic cells
TWI314760B (en) Method for manufacturing transparent conductive thin films

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20141202